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Abstract

In the last few decades we assisted to an extraordinary expansion of the
Internet and of wireless technologies. These interconnection technologies
allow a continuously increasing number of devices to exchange information.
This fact, together with the parallel increase in the availability of inexpensive
nodes carrying a wide range of sensing capabilities, attracts the interest in
developing large-scale sensing platforms, which could be used to measure a
variety of physical phenomena.

However, these huge networks of simple devices are subject to tight energy
and bandwidth constraints, making e�cient distributed estimation and data
fusion algorithms a strong need, to avoid unmanageable computational and
communicational burden on network bottleneck nodes.

In this thesis we address some issues in this �eld, presenting and analyzing
distributed algorithms to solve speci�c distributed estimation problems and
carrying out the analysis of some other recently-proposed algorithms.

To perform data fusion in a distributed fashion, we relay on consensus
algorithms, namely algorithms that achieve agreement on a common value in
the network. Using consensus as a basic brick to build estimation algorithms
we can take advantage of the solid understanding on this problem that many
recent contributions deepened and sharpened, and we can leverage for our
analysis on powerful and e�ective tools.

In the thesis we propose a distributed algorithm for o�set removal and an
algorithm for least-square identi�cation of the wireless-channel parameters,
motivated by the application of localization and tracking of a moving object.
We present moreover a novel linear algebra inequality, useful in the analysis
of randomized algorithms. This result comes into play when we carry out
an analysis of a recently-proposed distributed Kalman �ltering algorithm.
Finally, we look at the intriguing set up of a network cooperation to estimate
di�erent but correlated quantities, proposing and analyzing a distributed
algorithm that performs inference over a simple Gauss-Markov random �eld.

Keywords: Distributed Estimation, Sensor Networks, Wireless Sensor Net-
works, Applications of Consensus, Distributed Kalman Filter, Distributed
Kalman Smoothing, Localization and Tracking.
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Sommario

Gli ultimi decenni sono stati segnati dallo straordinario sviluppo di Inter-
net e dalla pervasiva di�usione della tecnologia wireless, consentendo ad un
numero sempre maggiore di dispositivi di scambiare tra loro informazioni.
Questo fatto, assieme alla crescente disponibilità, a prezzi modici, di nodi
equipaggiati con un'ampia varietà di dispositivi di misura, rende tecnologi-
camente concretizzabile l'idea di sviluppare grandi piattaforme di sensing,
incaricate di monitorare qualsivoglia grandezza �sica.

Tuttavia, queste grandi reti di dispositivi estremamente semplici hanno
stringenti vincoli sul consumo energetico e sulla banda di comunicazione, che
rendono criticamente necessario lo sviluppo di tecniche e�cienti per la stima
e la data-fusion, così da evitare carichi computazionali e di comunicazione
insostenibili ai colli di bottiglia della rete.

Questa tesi si propone di contribuire proprio in questo settore, presen-
tando alcuni algoritmi per la soluzione distribuita di speci�ci problemi di
stima ed analizzando le prestazioni di algoritmi recentemente proposti.

Strumento chiave nella decentralizzazione della stima è la teoria del con-
sensus, che propone algoritmi in grado di portare l'intera rete a concordare
su una speci�ca quantità. L'utilizzo di algoritmi di consensus come elemento
base nella costruzione di algoritmi di stima ci consente di sfruttare la solida
comprensione di questo problema, a�nata dai molti risultati recentemente
proposti in letteratura, e di sfruttare degli strumenti di analisi ben consoli-
dati.

Nella tesi, motivati dal problema della localizzazione e del tracking di
un oggetto, proponiamo un algoritmo per la compensazione degli o�set ed
un algoritmo per la stima ai minimi quadrati dei parametri caratterizzanti
il canale wireless. Inoltre presentiamo un nuovo risultato di algebra lineare,
utile nell'analisi di algoritmi randomizzati. Questo risultato giocherà un ruolo
centrale nell'analisi qui proposta di un algoritmo distribuito per la stima
alla Kalman. In�ne, consideriamo l'interessante caso di una rete di sensori
incaricata di stimare quantità diverse ma tra loro correlate e proponiamo un
algoritmo per l'inferenza di un semplice campo di Gauss-Markov.

Parole chiave: Stima Distribuita, Reti di Sensori, Reti di Sensori Wireless,
Applicazioni del Consensus, Filtro di Kalman Distribuito, Interpolatore di
Kalman Distribuito, Localizzazione e Tracking





The most beautiful thing we can experience is the mysterious.
It is the source of all true art and science.

[Albert Einstein]
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Introduction

In the last few decades we assisted to an extraordinary expansion of the
Internet and of wireless technologies. These interconnection technologies al-
low a continuously increasing number of devices to exchange information.
This fact, together with the parallel increase in the availability of inexpen-
sive nodes carrying a wide range of sensing capabilities, enforces the interest
in developing large-scale sensing platforms, which could be used to measure
a variety of physical phenomena. However, these huge networks of simple
devices have tight energy and bandwidth constraints, making e�cient dis-
tributed estimation and data fusion algorithms a strong need to avoid unman-
ageable computational and communicational burden on network bottleneck
nodes.

In particular, wireless sensor networks (WSNs), i.e. networks of smart
devices that can sense, compute and exchange information with their neigh-
bors, are becoming very popular because of their promise to revolutionize
many engineering areas involving monitoring and control [1]. The strength of
WSNs resides in their �exibility and scalability, since the same hardware and
software can be rapidly recon�gured and adapted to manage rather di�erent
applications, from ambient monitoring to people tracking, from industrial
control to energy management in buildings. However, many challenges rang-
ing from hardware design, to real-time middleware prototyping, from data
routing protocols to distributed signal processing still remain to be solved
before WSNs can become really ubiquitous and successful.

In this thesis we address some problems in distributed estimation and
carry out the analysis of some recently proposed algorithms. A detailed
overview of this dissertation and a summary of its contribution can be found
in the next section.



2 Introduction

1 Overview of the dissertation

This thesis is organized as follows.

• Chapter 1. In this chapter we brie�y review some material on graph
theory and consensus theory that will be broadly used in this thesis. In
particular, we summarize some convergence results both for the time-
invariant and time-varying case, with special attention to the important
class of randomized algorithms. Probabilistic convergence results are
presented and two important examples, namely symmetric gossip and
broadcast, are discussed and compared.

• Chapter 2. In this chapter we consider the problem of computing
global quantities, i.e. quantities that are function of all the data col-
lected in the network. We report a result that characterizes a class
of global functions that can be computed by means of consensus al-
gorithms and we show that many problems of interest �t this class.
Consensus algorithms have therefore to be looked as one of the basic
tools for distributed estimation. In particular, we show how to cast
into a consensus problem the problem of computing the least square
estimate of data collected by the nodes. We will apply this algorithm
in Chapter 3 to estimate in a distributed manner the wireless channel
parameters.

• Chapter 3. In this chapter we focus on one of the most important
applications of wireless sensor networks: localization and tracking. In
particular, we study two problems arising when localization is based on
the strength of the radio signal received. Speci�cally, we �rst propose
a distributed strategy to minimize the e�ects of unknown constant o�-
sets in the reading of the Radio Strength Signal Indicator (RSSI), due
to uncalibrated sensors. Then, we consider the problem of estimating
the channel parameters for a generic wireless sensor network in a dis-
tributed manner. To do so, we formulate the estimation problem as
global least-square problem, that we solve using the distributed algo-
rithm presented in Chapter 2. The proposed algorithms do not require
any knowledge on the global topology of the network nor on the total
number of nodes. Finally, we apply these algorithms to experimental
data collected from an indoor wireless sensor network.

The material presented in this chapter is the result of the joint work
with Saverio Bolognani, Damiano Varagnolo and Luca Schenato. These
results are presented also in [2] and in [3].
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• Chapter 4. In the analysis of a recently proposed distributed estima-
tion algorithm based on the Kalman �ltering and on gossip iterations,
that will be object of Chapter 5, we developed a new inequality which
is valid for i.i.d. matrix valued random processes. This inequality is a
general linear algebra result that can be useful in the analysis of the
convergence rate of general jump-Markov linear systems.

In this chapter we present this inequality, based on the theory of ma-
jorization and on its use in the analysis of the singular values.

The material presented in this chapter is the result of the joint work
with Sandro Zampieri and they are present also in [4] and in [5].

• Chapter 5. In this chapter we consider the problem of estimating a
random process from noisy measurements, collected by a sensor net-
work. We analyze a distributed two�stage algorithm. The �rst stage
is a Kalman�like estimate update, in which each agent makes use only
of its own measurements. During the second phase agents communi-
cate with their neighbors to improve their estimate. Estimates fusion is
operated by running a consensus iteration. In literature it has been con-
sidered only the case of �xed communication strategies, i.e. described
by a �xed constant consensus matrix. However, in many practical cases
this is just a rough model of communication in a sensor network, that
usually happens according to a randomized strategy. This strategy is
more properly modeled by assuming that the consensus matrices are
drawn, according to a selection probability, from an alphabet of ma-
trices compatible with the communication graph, at each time instant.
This chapter deals therefore with randomized communication strategies
and in particular with the symmetric gossip. A worst�case and a mean�
square performance analysis is carried out and an upper�bound for the
estimation-error variance is derived, based on the result presented in
Chapter 4. This upper�bound is a good performance assessment in-
dex and therefore it is assumed as a cost function to be minimized.
Moreover we show that the problem of minimizing this cost function
by choosing the Kalman gain and the selection probability is convex in
each of the two variables separately although it is not jointly convex.
Finally simulations are presented and the results discussed.

The material presented in this chapter is the result of the joint work
with Sandro Zampieri and they are present also in [4] and partially
covered in [5].

• Chapter 6. In this chapter we consider the set up of a network of
nodes cooperating to estimate di�erent but correlated quantities and
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we assume these quantities to be constant in time. We present a co-
operative smoothing algorithm for Gauss-Markov linear models whose
aim is to reconstruct the overall state sequence in a cooperative way,
by taking advantage of all the data obtained by the network.

A convergence analysis is carried out, fully characterizing the gap be-
tween distributed and optimal estimate. This points out the impor-
tance, in the algorithm design, of �nding the right trade-o� between
parallelism and rate of convergence toward the optimal estimate. In
the simple yet signi�cant case of a random walk, this issue is further
investigated. The convergence rate has been studied as a function of
J and we derived a simple approximation of it for large values of J ,
suggesting that the it increases exponentially with J .

The material presented in this chapter is the result of the joint work
with Gianluigi Pillonetto and Bradley M. Bell and it represents an ex-
tension of [6]. We present here some recent results of our joint research
on this topic, reported also in [7].
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2 Notation

We will denote with N the set of the integer numbers with R the set of real
numbers and with C the set of complex numbers.

Vectors are meant to be column vectors. We will denote with xT the
transposed of x and with x∗ its conjugate transposed.

1N represents the vector [1, . . . , 1]T ∈ RN . If the dimension N is clear
from the context, we will simply write 1. ei denotes the vector of RN having
i-th entries equal to 1 and all the other entries equal to 0. Hence e1 =
[1, 0, . . . , 0] ∈ RN .

Given a square matrix M ∈ RN×N , tr(M) will denote the trace of the
matrix M and vect(M) it vectorization.

Given a matrix M ∈ RN×N we will denote with σ(M) the vector in RN
formed by the singular values of M decreasingly ordered and with λ(M) the
vector in CN formed by the eigenvalues of M ordered so that |λ1(M)| ≥
· · · ≥ |λN(M)|, where each eigenvalue appears as many times as its algebraic
multiplicity. Recall moreover that for any normal matrix N , NNT = NTN ,
σ(N) ≡ |λ(N)|, where with |λ(N)| we mean the Rn vector having entries
|λi(N)| .

Through the thesis, for ease of notation, we will write σij(M) to denote

(σj(M))i. Note that, using the notation we just de�ned, λj(M
i) = λij(M)

and, therefore, for a normal matrix N , σj(N
i) = σij(N).

Moreover we will denote with ⊗ the Kronecker product of two matrices
while � will represent the Hadamard product, i.e. the entry�wise product.

Recall that a stochastic matrix P is a matrix with non�negative entries
such that P1 = 1. A matrix P is said to be doubly stochastic if both P
and P T are stochastic. Any symmetric stochastic matrix is therefore doubly
stochastic.

We will denote with S the set of symmetric matrices.
We will denote with P a probability measure over a measurable space

and with E the expected value of a random variable. Given a random
vector x, taking values in CN , V(x) will represent its variance, V(x) =
E [(x− E[x])(x− E[x])∗] while V(xy) denotes the covariance between two
random vectors V(xy) = E [(y − E[y])(x− E[x])∗].

x ∼ N (µ,Σ) will denote a Gaussian random vector with mean µ and
variance Σ.

Finally, we will denote a graph as G, G = (V , E) where V is the node set
and E ⊂ V × V is the edge set. For further notation related to graphs we
refer to section 1.1.
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N set of natural numbers

R set of real numbers

C set of complex numbers

xT transposed of x

x∗ conjugate transposed of x

xi i-th entry of the vector x

1N ,1 RN vector having all entries equal to 1

ei RN vector having the i-th entry 1 and the other entries 0

Mij, Mi,j, [M ]ij (i,j) entry of the matrix M

tr(M) trace of M

vect(M) vectorization of M

σ(M), σ(M) RN vector of the singular values of M ,
ordered decreasingly

λ(M), λ(M) CN vector of the eigenvalues of M ,
ordered by decreasing modulus

⊗ Kronecker product

� Hadamard product (entry-wise product)

P probability measure

E expected value

V(xy) covariance matrix of x, y

V(x) variance matrix x

G graph

V node set

E edge set

V(i) i's neighbor nodes set

d(i) degree of node i

Table 1: List of Symbols



1
Networks Modeling and Consensus Theory:

a brief review

In this chapter we brie�y review some material on graph theory and consensus
theory that will be broadly used in this thesis. In fact, the most natural way
to model a network is by mean of a graph and the achievement of average
consensus, namely to compute the arithmetic mean of local quantities, is one
of the simplest distributed estimation problems. Indeed, consensus is much
more than a data fusion toy problem: as we will see throughout this thesis
and in particular in Chapter 2, consensus is the basic brick used to build
much more complex distributed estimation algorithms.

Convergence results for consensus algorithms are summarized in this
chapter, both for the time invariant and time-varying case. Moreover we
will introduce an important class of time-varying algorithms: the random-
ized ones. For this class we present some probabilistic convergence results
and two important examples, namely symmetric gossip and broadcast, are
discussed and compared.

1.1 Networks Modeling

The most natural way to model a network is by means of a graph G = (V , E).
The agents of the network are modeled as nodes of the graph, namely as
elements of the node set V = {1 . . . N}, where N is the number of agents in
the network. The edge set E ⊆ V ×V models the communication constraints
of the network: if node i can send informations to node j than (i, j) ∈ E .
Through all this thesis we will assume moreover that all the self�loops (i, i)
belong to the edge set, (i, i) ∈ E ∀i ∈ V , since in all the application of interest
node i can access to the information that it stores.
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If (j, i) ∈ E , i 6= j than j, is said to be neighbor of i and we denote with
V(i) the set of neighbors of node i

V(i) = {j | (j, i) ∈ E , i 6= j}

and we call in-degree, or simply degree, of i

d(i) = |V(i)|

the cardinality of this set, namely the amount of nodes that can send infor-
mation from i.
Moreover, we call out-degree of i

dout(i) = |{j | (i, j) ∈ E , i 6= j}|,

that is the amount of nodes that can receive information from i.
Such a mathematical formulation is well suited to describe a broad variety

of networks and to e�ectively model many di�erent applications of interest.
Nodes may represent sensors of a sensor network, computers in a Local Area
Network or in the Internet. The network may consist of mobile robots that
have to be coordinated or of computers running a peer to peer application.
As well, communications that happen between agents may be very di�erent:
they might be based on a wired link between two nodes or rely on wireless
transmissions. Links might be very reliable or be subject to interference and
failure. Moreover, the fact that i can send informations to node j does not
imply that also j can send informations to node i. If this happens the link
is said to be bidirectional.

Furthermore the graph describing a network might vary in time, G(t).
New communication links might be created or break down. Think for in-
stance to a swarm of mobile robots that can communicate only when su�-
ciently close each other. As their relative positions change the communication
graph changes consequently, leading to great challenges in their coordination.
Link failure is an event that can not be considered rare in sensor networks.
It might, for instance, happen if an obstacle interposes between two wireless
nodes. Nodes themselves may fail and new nodes may join to the network,
as for instance in a peer to peer network where nodes commonly join and
leave the network or in a sensor network of battery powered sensors, where
a node may permanently fail since it runs out of battery.

Even when nodes and links do not permanently fail, communications
trough a link may occasionally fail. This fact might be not negligible for es-
timation and control purposes, especially when dealing with wireless trans-
missions that, due to frequent packet losses and interferences, are rather
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unreliable. To take into account this uncertainty in the communication a
typical approach is to associate to every link (i, j) the probability ci,j that a
transmission is successfully carried out through that link. The probabilities
cij are then collected in the connectivity matrix C ∈ RN×N , where [C]ij = cij.
One can then de�ne the c-connectivity graph Gc = (V , Ec) associated to the
connectivity matrix C as the graph such that (i, j) belongs to the edge set Ec
if and only if cij ≥ c. Therefore, in the c-connectivity graph only the reliable
links are kept. The matrix C can be experimentally estimated sending on
each link M messages, recording the number mij of messages successfully
received and setting ĉij =

mij
M

.

Since this formalism is particularly useful in the case of wireless trans-
missions, it is worth to note that, in this case some peculiarity of the wireless
channel can be exploited to improve the previously mentioned procedure. In
fact, since the wireless channel is approximately symmetric we can assume
that C = CT . The matrix C can be experimentally estimated by letting each
node broadcast M packets at random instants (with retransmission intervals
su�ciently large in order to avoid collisions), making each node i record the
number mij of messages received by each node j and setting ĉij =

mij
M

. Sub-

sequently, each node communicate its ĉij to its neighbors and sets cij =
ĉij+ĉji

2

since ĉij and ĉji are di�erent being empirical means.

It is worth, moreover, to remark that the communication graph G that
we consider might be di�erent from the graph of the communications feasible
at the physical layer. In fact, even if two nodes i and j are not connected by
means of a direct physical link, an appropriate routing protocol may allow
information to �ow between them. If the sequence of communications that
allows information to �ow between i and j is su�ciently fast with respect to
the other operations sensors have to do, we might consider i connected with
j and add the link (i, j) to the set E .

Di�erent nodes and links characteristics lead to di�erent graph properties.
For instance bidirectional communication links lead to undirected graph1. In
the next paragraph we recall the de�nition of some further graph properties
that will be of interest in the following.

Review of some graph properties

A graph is said to be a tree rooted at node k ∈ V if the is always a path
connecting k to any other node j, j ∈ V , j 6= k and there are no cycles.

A graph is rooted in k if there exists a tree embedded in the graph and
rooted at node k ∈ V which spans all nodes . It is said strongly rooted in k

1a graph is said to be undirected if (i, j) ∈ E ⇔ (j, i) ∈ E and to be directed otherwise.



10 1. Networks Modeling and Consensus Theory: a brief review

if node k is directly connected to all other nodes, i.e. (j, k) ∈ E ,∀j ∈ V .
A graph is strongly connected if there is a path from any node to any

other node in the graph. Clearly, if a graph is strongly connected graph this
implies the graph is also a rooted graph for any node. A graph is complete
if (i, j) ∈ E ,∀i, j ∈ V .

The concatenation of two graphs G1 = (V , E1) and G2 = (V , E2) is a graph
G = (V , E) = G2 ◦ G1 such that (i, j) ∈ E if there exists k ∈ V such that
(k, j) ∈ E1, (i, k) ∈ E2. The concatenation G ◦G describes the communication
feasible in the network G in two hops.

Similarly, the union of two graphs is a graph G = G1 ∪ G2 for which
E = E1 ∪ E1. Clearly G1 ∪ G2 = G2 ∪ G1 while G2 ◦ G1 6= G1 ◦ G2.

We recall than that, given a matrix P ∈ RN×N , we de�ne graph associated
to the matrix P the graph GP = (N , EP ), where the nodes N = {1, 2, . . . , N}
and (i, j) ∈ EP if and only if [P ]i,j 6= 0.

A matrix P is said to be adapted to, or compatible with, the graph G if
[P ]ij 6= 0 only if (j, i) ∈ E . We write in this case P ∼ G. It is clear, then,
that P ∼ G if and only if EP ⊆ E .

1.2 Review of Consensus Theory

In this section we brie�y recall some well known results on consensus theory
which we will use in the following chapters. Let us start by formalizing the
concept of distributed algorithm implementable on a network described by
the graph G. Any recursive algorithm where the i-th node's update law
depends only on the state of i and on the state of its neighbors j ∈ V(i)

xi(t+ 1) = f(xi(t), xj1(t), . . . xjd(i)(t), t) with j1, . . . , jd(i) ∈ V(i)

is said to be adapted to the graph G and to be performed needs only of
information that each node can retrieve via communications permitted by
the graph G.

Let us introduce then the consensus problem: a network is said to reach
consensus if all nodes agree on a common value, that is, if all the nodes reach
asymptotically the same value. More precisely

De�nition 1 (Algorithm achieving Consensus).
A recursive distributed algorithm adapted to the graph G is said to asymptot-
ically achieve consensus

1. if there exist T such that xi(T ) = α ∀ i ∈ V then it implies

xi(t) = α ∀t ≥ T and ∀i ∈ V (1.1)
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2. if all the nodes reach asymptotically a common value

lim
t→+∞

xi(t) = α ∀i ∈ V (1.2)

If moreover this common value is the average of the nodes' initial conditions

α =
1

N

∑
i∈V

xi(0),

then the algorithm is said to achieve average consensus.

If xi(t) is a random variable, than the limit in (1.2) has to be interpreted in a
probabilistic sense. We will then speak about algorithms achieving consensus
almost surely, in mean, in probability and so on.

The consensus problem has attracted great attention of researchers in
the last few years and many algorithms have been proposed and analyzed
in the literature, [8, 9, 10, 11, 12, 13, 14, 15, 16], to mention only few of
them. Most of them are linear but also nonlinear algorithms have been
proposed, for instance [17, 18], even achieving consensus in a �nite time.
Linear consensus algorithms maintain though a prominent role, since they
are simpler to be analyzed. In particular, many results are available on their
speed of convergence and it is possible to carry out a probabilistic analysis of
their performances in presence of noise or quantization and to e�ectively take
into account the e�ect of a time varying topologies, [19, 20, 21, 22, 23, 24, 25].

Let us consider, then, a linear recursive distributed algorithm, adapted
to the graph G. It can be written as

xi(t+ 1) = pii(t)xi(t) +
∑
j∈V(i)

pij(t)xj(t) (1.3)

Collecting all xj(t) in a vector x(t) ∈ RN (1.3) can be rewritten as

x(t+ 1) = P (t)x(t) (1.4)

where P (t) ∈ RN×N , P (t) compatible with G.
Condition 1 of De�nition 1 requires that2, whenever x(T ) = α1, then

x(t) = α1 for all t > T , that is

P (t)1 = 1 ∀t. (1.5)

2Recall that we denote with 1 the vector of RN having all entries equal to 1, see section
2 of the Introduction.
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A matrix P (t) having such a property is said to be quasi-stochastic.
If it holds moreover that [Pi,j(t)] ≥ 0 ∀i, j ∈ V , than the matrix is said

to be stochastic. A stochastic matrix P is said doubly stochastic if also∑N
i=1 pij = 1, i.e. each column sums to unity. Clearly, if a stochastic matrix

is symmetric then it is also doubly stochastic: 1TP = (P T1)T = 1T .
Stochastic matrices have been widely studied in many �elds and they

are well understood. In particular, even if the assumption [Pi,j(t)] ≥ 0 is not
strictly necessary for consensus, convergence results for consensus algorithms
are usually available only for stochastic matrices and there are not equivalent
results of the same generality for quasi�stochastic matrices.

As a �nal comment, note that (1.5) reads that the sum of the entries of
any row of the matrix is always 1, that is

pii(t) = 1−
∑
j∈N(i)

pij(t).

Equation (1.3) can then be rewritten as

xi(t+ 1) = pii(t)xi(t) +
∑
j∈N(i)

pij(t)xj(t)

=

1−
∑
j∈N(i)

pij(t)

xi(t) +
∑
j∈N(i)

pij(t)xj(t)

= xi(t) +
∑
j∈N(i)

pij(t)(xi(t)− xj(t))

which has an appealing interpretation: the new state is the old state plus a
control action that corrects the distance from consensus.

In the next section we summarize some su�cient conditions to guarantee
that a linear algorithm reaches consensus.

1.3 Convergence and Design of Consensus Al-

gorithms

To present convergence results we abandon the general approach we have
taken so far and consider three di�erent situations: constant consensus ma-
trix P (t) = P , deterministic time-varying strategies P (t) and randomized
strategies where P (t) is drawn from some distributions on a set of stochastic
matrices P .
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1.3.1 Constant Consensus Matrix

Let us consider �rst the simple case a �xed communication scheme: we as-
sume that all the information exchanges prescribed by the communication
graph happen between two iterations of the algorithm. We assume moreover
that communications can be considered reliable, for instance thanks to a
communication protocol that allows to recover packet losses, say prescribing
retransmission.

Clearly, this is just a rough model of communications in a network, valid
if the time between two subsequent consensus iterations is su�ciently large.
More interesting communication scenario will be analyzed in the following of
this section. Nevertheless, this scenario allows to consider a class of particu-
larly simple consensus algorithms, for which many interesting results can be
stated. In fact, in such a scenario we can make use a consensus algorithm
based on a sequence of constant matrices P (t) = P and the consensus algo-
rithm reduces to simple and well understood linear time-invariant dynamical
system with transition matrix P .

Condition 1 of De�nition 1 reads then that any point of the space span(1)
has to be an equilibrium point and the space has to be attractive. From
system theory we inherit the following proposition, [15]

Proposition 1. A matrix P yields asymptotically to consensus if and only
if

1. 1 is an eigenvalue having 1 as an eigenvector.

2. 1 is the only eigenvalue on the unit disk and its algebraic multiplicity
is 1 (i.e. it is a simple root of the characteristic polynomial of P )

3. all the other eigenvalues have modulus strictly less than 1

|λi(P ) < 1| ∀i = 2, . . . , N

Note moreover that a matrix P satisfying the above three property achieves
average consensus if and only if 1TP = 1, in fact in this case∑

xi(t) = 1Tx(t) = 1TPx(t− 1) = 1Tx(t− 1) =
∑

xi(t− 1)

To the best of our knowledge, there is no other condition regarding quasi-
stochastic matrices characterizing the convergence of the consensus algo-
rithm. Something more can be said if we restrict to non�negative matrices,
i.e., stochastic matrices. The following result is a straightforward conse-
quence of standard results in on stochastic matrices
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Theorem 2. Given a stochastic matrix P , such that GP is a directed graph
containing all self�loops (i, i) and is GP rooted, then P solves the consensus
problem.

If in addition P is doubly stochastic, then GP is strongly connected and P
solves the average consensus problem. Moreover, the convergence rate in both
cases is exponential and it is given by second largest eigenvalue in absolute
value of the matrix P .

Proof.

It is a straightforward consequence of standard results on stochastic matrices
[26, pag. 88 and pag. 95] �

The above theorem shows how convergence conditions can be reframed
as a graph problem which is easy to verify [27].

Algorithm Design

The question of how to assign the weights Pij arises naturally at this point.
In [23] it was presented a constructive algorithm that, given a symmetric
graph, �nd a doubly stochastic matrix P compatible with the graph which
maximize the rate of convergence of the consensus algorithm. Nevertheless,
as it was shown in [28, 29], when consensus is not an objective per se, but
rather it is used to solve an estimation or control problem, the convergence
speed is not a meaningfully index for performance evaluation. In these cases
it is important to consider other performance measures, more tightly related
to the actual objective pursued. Di�erent costs arise from di�erent problems
and this di�erence might be crucial: indeed, it can be shown by examples that
considering a di�erent performance measure can lead to preferring di�erent
graph topologies,[28, 29].

Moreover, it is common to assign consensus weights according to simpler
roles, rather than carrying out complex optimization procedures, that might
reveal extremely expensive on a computational point of view. We report in
the following three of these methods commonly used in literature.

Nearest Neighbor role:

Every node weights uniformly its own state and the state of its neigh-
bors. Therefore

Pi,j =

{ 1
d(i)+1

j ∈ V(i) ∪ {i}
0 otherwise
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It is clear that the matrix P obtained is stochastic and compatible with
the graph, but in general not doubly stochastic. It can therefore be used
to enforce consensus but not average consensus. Note moreover that the
weights Pi,j can be easily and distributedly computed by every node. In fact,
the weight that node i has to apply to the states received by other nodes
is determined by its degree, namely the number of messages it has received
during two subsequent iterations of the consensus algorithm.

Maximum-degree weights:

Let us call d the maximum degree of the network

d = max
i∈V

d(i) = max
i∈V
|V(i)|

Every node weights the state of its neighbor 1
d+1

and give to its own
state the remaining weight. Therefore

Pi,j =


1
d+1

j ∈ V(i)

1− d(i)
d+1

i = j

0 otherwise

If the communication graph G is undirected, this method allows to have
symmetric weights Pi,j = Pj,i. P is therefore symmetric and stochastic.
It requires, although, to compute the maximum degree of the network.
There are algorithms to compute the maximum over a network with
local communications, but they might require a signi�cant computation
burden.

Metropolis weights:

Set

Pi,j =


1

max{d(i),d(j)}+1
j ∈ V(i)

1−∑k∈V(i) Pi,k i = j

0 otherwise

Again, the matrix P so obtained is stochastic and compatible with the graph
G and, if the graph is undirected, this method leads to a P that is also
symmetric and therefore doubly stochastic. In this case P can hence be
used to enforce average consensus. It is worth noting that in the Metropolis
weights case the node i can compute its weights Pij ∀j ∈ V(i) exchanging
d(i) with its neighbors. Metropolis weights can therefore be easily computed
in distributed manner and it is no need to evaluate the maximum degree of
the network.
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1.3.2 Deterministic Sequence of Stochastic Matrices

A more realistic communication model considers a time-varying communica-
tion graph G(t), rather than a constant one. Time dependence of the com-
munication graph might be due to deterministic scheduling protocols, that
manage nodes access to the medium to avoid collisions, or to the fact that we
are considering mobile agents whose connectivity depends on their mutual
position. {G(t, ω)}t∈N might moreover represent the deterministic realization
of the connectivity graph, when it occurs a particular sequence of random
events ω, such as node failure and packet losses. The worst realization can
be used to perform worst case analysis.

Let us consider, therefore, a deterministic sequence of stochastic matrices
{P (t)}+∞

t=0 and the corresponding associated graphs GP (t) = GP (t). Assume
moreover that GP (t) contains all the self�loops, for all time instants. Under
this assumption it holds the following result

Theorem 3. If there exists a �nite positive integer number T such that the
graphs

ḠT (τ) = GP (τ + T − 1) ◦ . . . ◦ GP (τ), τ = 0, 1, . . .

are rooted, then the sequence {P (t)} solves the consensus problem.
If the matrices P (t) are all doubly stochastic, then the sequence {P (t)}

solves the average consensus problem.

The above theorem shows that it is not necessary for the communica-
tion graph to be connected at any time instant but rather over a �xed time
window [30, 24].

Finally we note that the strategies previously proposed to obtain assign
consensus weights can be extended to the time varying case. In fact, these
techniques are based on the degree of the nodes, that corresponds to the
number of communication they received between two subsequent algorithm
iterations. Hence we have

Nearest Neighbor role:

Pi,j(t) =

{ 1
d(i,t)+1

j ∈ V(i) ∪ {i}
0 otherwise

Metropolis weights:

Set

Pi,j(t) =


1

max{d(i,t),d(j,t)}+1
j ∈ V(i, t)

1−∑k∈V(i) Pi,k(t) i = j

0 otherwise
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Note moreover that this method yields to a symmetric matrix P (t) if
the graph G(t) is undirected.

More computationally demanding is the evaluation of the maximum degree
weights since it prescribes to evaluate, at each time instant, maxi∈V d(i, t),
unless an a-priori bound on the degree is known: d̄(t) ≤ dmax, ∀t. In this
case set

Pi,j(t) =


1

dmax+1
j ∈ V(i, t)

1−∑k∈V(i) Pi,k(t) i = j

0 otherwise

It has to be noted that the convergence of the consensus algorithms ob-
tained using these weight strategies can be guaranteed by ad hoc connectivity
conditions, that are even weaker than the ones prescribed by Theorem 3, as
shown in [31, 32].

1.3.3 Randomly Drawn Consensus Matrices

In many cases, especially in sensors networks, communication happens ac-
cording to randomized communications protocols [33, 34], prescribing the
random activation of certain links with designed probabilities. These strate-
gies are used to handle the accesses to the communication channel, avoid-
ing cumbersome communication scheduling and reducing the need of time-
synchronization. An e�ective use of randomized protocols may moreover
allow to reduce power consumption. A further cause of randomness in the
communication is the potential unpredictably of the environment where these
protocols are implemented: packet losses, collisions and node failure [35] are
in fact rather common in a sensor network.

Therefore, it is rather natural to consider randomized consensus algo-
rithms that exploit randomized communication protocols. Let us consider,
then, a random i.i.d. sequence of stochastic matrices {P (t)}+∞

t=0 drawn ac-
cording to some distribution from a set, P = {P (α) α ∈ A}, of stochastic
matrices compatible with the graph G, P (α) ∼ G ∀P (α) ∈ P , such that

[P (α)]ii > 0 ∀i and ∀P (α) ∈ P (1.6)

The following theorem shows a remarkable fact: the convergence of a ran-
domized consensus algorithm is determined by its average consensus matrix
P = E[P (t)]

Theorem 4. Assume that (1.6) holds true and consider the stochastic matrix
P = E[P (t)]. If GP is rooted, then the sequence {P (t)} solves the consensus
problem almost surely.
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If, in addition, P (t) are all doubly stochastic, then they solve the proba-
bilistic average consensus problem.

Hence, the convergence of a randomized algorithm reduces to the study of
the convergence of the constant matrix algorithm.

Note, although, that to guarantee average consensus it is not su�cient
that E[P (t)] is doubly stochastic but rather it is required that P (t) is doubly
stochastic at each time instant t.

We present now some randomized communication strategies and the as-
sociated randomizes consensus algorithms, commonly adopted in sensor net-
works: the asymmetric gossip, where a node i transmits a message to one of
its neighbor nodes, the symmetric gossip, where a node i transmits a message
one of its neighbor nodes and receives a reply message from it, and �nally
the broadcast communication, where a node transmits a message to all its
neighbors.

Asymmetric Gossip:

A node, say i, randomly wakes up and randomly picks up one of its
neighbor nodes, j ∈ V(i) to which it sends its state xi, as depicted in
�gure 1.1. We call wij the probability that the link (i, j) ∈ E is selected.
The consensus iteration associated to this communication is

xi(t+ 1) = xi(t)

xj(t+ 1) = (1− pji)xj(t) + pjixi(t)

xk(t+ 1) = xk(t) ∀k 6= i, j

Therefore, with probability wi,j, it is extracted the matrix P (t) = PAG
(i,j)

PAG
(i,j) = I − pjiej(ei − ej)T .

Moreover, we set all the weights pji to a common value

pji = p, 0 < p < 1.

Example 1. In the case depicted in �gure 1.1, setting p = 1/3,

PAG
(4,1) =


2/3 0 0 1/3 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


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Figure 1.1: Asymmetric gossip. In this example node 4 wakes up and sends
its estimate to node 1

Symmetric Gossip:

Consider an undirected graph G. A node, say i, randomly wakes up
and randomly picks up one of its neighbor nodes, j ∈ V(i). Nodes
i and j exchange then their states. The communication is therefore
bidirectional. A pictorial representation of this situation is reported in
�gure 1.2. Again, we call wij the probability that the link (i, j) ∈ E is
selected. The consensus iteration associated to this communication is

xi(t+ 1) = (1− pij)xi(t) + pijxj(t)

xj(t+ 1) = (1− pji)xj(t) + pjixi(t)

xk(t+ 1) = xk(t) ∀k 6= i, j

where moreover, to enforce symmetry, we put pji = pij. Therefore,
with probability wi,j, it is extracted the matrix P (t) = P SG

(i,j)

P SG
(i,j) = I − pij(ei − ej)(ei − ej)T .

Again, we set all the weights pij to a common value

pij = p, 0 < p < 1

and typically p = 1/2.
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Figure 1.2: Symmetric gossip. In this example node 4 wakes up and sends its
estimate to node 1. Node 1 responds sending its estimate to node 4. Clearly
a bidirectional channel is need for this communication scheme.

Example 2. In the case depicted in �gure 1.2

P SG
(4,1) =


1/2 0 0 1/2 0 0
0 1 0 0 0 0
0 0 1 0 0 0

1/2 0 0 1/2 0 0
0 0 0 0 1 0
0 0 0 0 0 1


Broadcast:

A node, say i, randomly wakes up and broadcasts its state to anyone can
hear its transmission. All its neighbor nodes receive therefore the state
xi. A pictorial representation of this situation is reported in �gure 1.3.
We call wi the probability that node i ∈ V is selected. The consensus
iteration associated to this communication is

xi(t+ 1) = xi(t)

xj(t+ 1) = (1− pji)xj(t) + pjixi(t) ∀j ∈ V(i)

xk(t+ 1) = xk(t) ∀k /∈ V(i)
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Figure 1.3: Broadcast. In this example node 4 wakes up and broadcasts its
state to its neighbor nodes.

Therefore, with probability wi, it is extracted the matrix P (t) = PB
i

PB
i = I −

∑
j∈V(i)

pjiej(ei − ej)T .

Moreover, we set all the weights pij to a common value

pij = p, 0 < p < 1.

The parameter p plays, this time, an important rule in tuning the al-
gorithm. We will discuss its importance in the following. As a �nally
remark, note that a broadcast communication corresponds to d(i) par-
allel asymmetric gossip iterations.

Example 3. In the case depicted in �gure 1.3, setting p = 1/4, we get
that

PB
4 =


3/4 0 0 1/4 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1/4 3/4 0
0 0 0 1/4 0 3/4


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Algorithm Design

The most relevant parameter to be designed in the case of randomized algo-
rithms is the selection probability measure, namely the edge selection proba-
bilities {wij}(i,j)∈E , in the gossip case, or node selection probabilities {wi}i∈V ,
in the broadcast case.

An elegant and meaningful way to compute these selection probabilities
is by solving an optimization problem, determining in this way the selec-
tion probabilities that minimize a suitable cost function, as for instance the
speed of convergence of the consensus algorithm, [33]. As already mentioned,
di�erent performance assessment criteria might lead to very di�erent cost
functions, as pointed out in [28, 29], and therefore to very di�erent selection
probabilities. In chapter 5, for instance, we will make use of randomized con-
sensus as a step of an estimation algorithm and we will compute the selection
probabilities to minimize the steady state estimation error.

In other cases, one might prefer to assign simple and robust selection
probabilities rather that solving a complex optimization problem. It has
moreover to be noted that in certain cases, as in the one presented in chap-
ter 5, the little improvement in the performance that can be achieved solving
an optimization problem seems to be not worth the computation e�ort it
takes. A simple choice is to assign uniform selection probability to every link
or node:

wi,j =
1

|E| wi =
1

|V| .

Another very reasonable choice in the gossip case is to assume that every
node wakes up with uniform probability 1

|V| and choses then a node uniformly

within its neighbors. Therefore, the probability that the link (i, j) is given
by the probability i is selected:

wi,j =
1

|V|
1

d(i)
.

The intuition suggests that this edge selection probability measure should
lead to faster consensus algorithms that the uniform one on most of the
graph. In fact, using the latter strategy every node has the same change to
spread out its information while with the uniform probability nodes with few
connections are penalized.

Another degree of freedom in the design of the algorithm is the consensus
weight p. Roughly speaking, a small p means little con�dence in the neigh-
bor opinion and leads to slow convergence of consensus algorithms. On the
contrary, p close to 1/2 means high con�dence in the neighbor opinion that
produces fast information spread and hence fast consensus algorithms.
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Nevertheless, the choice of p has another important e�ect in the broad-
cast case. In [34] it is shown that expected 3 steady state of the broadcast
algorithms is average of the initial conditions and the steady state dispersion
of a single realization depends on the weight p. The closest p is chose to zero,
the smaller the dispersion.

In many cases, especially in the �eld of distributed estimation, to reach
average consensus is a key feature and it is not su�cient to simply reach con-
sensus. Therefore, in the broadcast case, the choice of the consensus weight
p has to be a trade�o� between steady state accuracy in reaching average
consensus and speed of convergence of the algorithm. On the contrary, in the
symmetric gossip algorithm, where it is guaranteed achievement of average
consensus, it is usually chosen p = 1/2.

Analysis for Standard Selection Probabilities.

To better illustrate the issues presented so far, let us analyze the symmetric
gossip and the broadcast with the commonly used selection probabilities.
Given an undirected graph G, let us consider the symmetric gossip with
probability wi,j = 1

|E|
1
d(i)

that the link (i, j) is selected . Noting that P SG
(i,j) =

P SG
(j,i), it results that the expected consensus matrix P

SG
= E[P SG] is

[P
SG

]mn=


1−∑i∈V(n)

p
N

(
1
d(i)

+ 1
d(j)

)
if m = n;

p
N

(
1
d(i)

+ 1
d(j)

)
if m 6= n and (m,n)∈E ;

0 otherwise.

Obviously P
SG

= (P
SG

)T since all the gossip matrices P SG
(i,j) that can be

drawn are symmetric by construction. Moreover, we have G
P
SG = G, i.e. the

graph associated with the expected consensus matrix P
B
coincides with the

underlying communication graph G. Furthermore, P (t)ii > 0 ∀t. Therefore,
using theorem 4, we have that if the graph G is strongly connected then the
symmetric gossip achieves consensus w.p. 1. Since moreover the matrices
P (t) are all doubly stochastic then the symmetric gossip achieves average
consensus w.p. 1.

Consider then the broadcast algorithm with uniform node selection prob-

ability wi = 1/|V|. It results that the expected consensus matrix P
B

= E[PB]

3where the expectation, here, is taken with respect to the randomness introduced by
the random selection of the broadcasting node.
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is given by:

[P
B
]mn =

 1− p·d(n)
N

if m = n;
p
N

if m ∈ V(n);
0 otherwise.

Note that G
P
B = G. Again, if G is strongly connected, it implies that the

randomized broadcast guarantees probabilistic consensus, although it does
not guarantee average consensus for all possible realizations of PB(t), since
the matrices P (t) are not doubly stochastic. Even if the broadcast matrices

are never symmetric, the expected consensus matrix P
B
is symmetric and

hence doubly stochastic. Therefore the expected steady state of the algorithm
is the average of the initial conditions. As we said, in [34] was shown that
the parameter p can be tuned to obtain a �nal consensus value closer to the
average of the initial conditions, at the price of slower convergence rate. It
was moreover proved, in the case of a complete graph, that the dispersion of
the �nal consensus value from the average of the initial conditions decreases
as the number of nodes increases.

One might also wonder if P
B
provides some information about conver-

gence rate for the randomized strategy. In [34] there is an extensive analysis
of rates of convergence. The main message being that the second largest

eigenvalue of P
B
provides only an lower bound rate of convergence.

Packet Loss and Link Failure So far, we have not considered packet
losses and link failure. These events can easily be taken into account in this
set up. Assume, that the failure probability of a transmission from node i
to a node j ∈ V(i) is equal to 1 − ci,j. For sake of simplicity assume that
ci,j = c for all nodes.

When link failure happens in broadcast communication, the matrix PB
i

needs to be modi�ed with [PB
i ]jj = 1, [PB

i ]ji = 0. Instead, when it happens
in symmetric gossip, there is no communication at all, and then no update
is performed, i.e. P SG

(i,j) = I. Recomputed the expected consensus matrices
taking packet loss probability into account gives the following results:

[P
SG

]mn=


1−∑i∈V(n)

cp
N

(
1
d(i)

+ 1
d(j)

)
if m = n;

cp
N

(
1
d(i)

+ 1
d(j)

)
if m 6= n and (m,n)∈E ;

0 otherwise.

[P
B
]mn =

 1− cp·d(n)
N

if m = n;
cp
N

if m ∈ V(n);
0 otherwise.

.
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Since the graph associated with the expected consensus matrix still coincides
with the underlying communication graph G the above discussion is still valid.

Comparison between Gossip and Broadcast

Gossip communications naturally arise when the network we are dealing with
relies on point to point communications at the physical layer, for instance it is
based on wired links. On the contrary, broadcast communications naturally
arise when considering wireless communication based on radio transmissions.
Nevertheless, an appropriate communication protocol may be used to enforce
symmetric gossip in a radio channel. The simplest version of such a protocol
is the following:

1. A node randomly wakes up, say i, and broadcasts its state

2. Randomly, among all the nodes that received the transmission, one
answers to the broadcaster node i, say node j.

3. Node i acknowledges node j that it received the replay.

Therefore, if working in a wireless environment, symmetric gossip is somehow
ine�cient on a communication point of view, requiring least two communi-
cations and an acknowledgment transmission to perform two state updates.
On the contrary, broadcast, exploiting the potential of the radio channel,
is very e�ective on a communication point of view : only one transmission
is required to perform d(i) state updates. Broadcast hence exhibits faster
convergence than symmetric gossip. Unluckily broadcast algorithms can be
used to enforce consensus but not average consensus, since PB

i is not dou-
bly stochastic, while symmetric gossip consensus algorithms are guaranteed
to yield to average consensus if they reaches consensus. Figure 1.5 depicts
exactly this two points, comparing a realization of the symmetric gossip con-
sensus algorithm and of the broadcast consensus algorithm over the network
depicted in �gure 1.4 The fact that symmetric gossip leads to a converge
is then much slower can also be guessed, at least in the case of standard
selection probabilities, noting that the o�-diagonal elements of the matrix

P
SG

are smaller than their counterparts in P
B
, i.e. there is slower information

propagation. We will discuss these di�erences also in Chapter 2.
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Figure 1.4: An example of network graph
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Figure 1.5: Comparison between Symmetric Gossip and Broadcast: a typical
realization is depicted. The dashed line represents the average of the initial
conditions.
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A class of Consensus Computable Functions

Consider the problem of evaluating a quantity that, to be computed, requires
data from all nodes of a sensor network. Let us use the adjective global to
describe such a quantity. One immediately realizes how this issue, the issue
of fusing sensors data to compute global quantities, is crucial when dealing
with estimation over sensor networks, as it is clear that such a problem is
central in any multi-agents system and it has to be tackled when studying
applications such as coordination of mobile robots, formation control, clock
synchronization and so on.

We have seen in the previous chapter that one problem of this kind, the
problem computing the average of the values stored in the nodes, has received
great attention from the scienti�c community in recent years, leading to the
development of an organic theory that goes under the name of consensus
theory.

In this chapter we show how the problem of computing many other global
quantities can be casted into an average consensus problem, making consen-
sus algorithms one of the basic tools of distributed computing.

More precisely, in this chapter we characterize a class of global quanti-
ties computable through average consensus. An analogous result has been
proposed in the context of continuous-time consensus problems by Bauso
et al. [36] and later generalized by Cortes [37], leading to the so-called χ-
consensus. Here we proposed a discrete time counterpart which has less
strict hypothesis and a much simpler to proof.
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Then, we consider in detail the problem of computing four important
global quantities:

• Generalized means

• Distributed Kalman Filter

• Maximum Likelihood Parameter Estimation

• Least Square Parameter Estimation

and we show how to reduce this to an average consensus problem. This
allows to perform these computations in a distributed manner by means of
any standard average consensus algorithm.

The distributed algorithm for least square parameter estimation so ob-
tained will be then used in Chapter 3 to estimate the wireless channel pa-
rameters.

Chapter organization

The chapter is organized as follows. In Section 2.1 we present a result that
characterizes a class of global quantities whose computation can be casted
into an average consensus problem. In each of the subsequent four sections
we focus on the problem of computing one of the above global quantities: in
Section 2.2 the generalized means, in Section 2.3 the Kalman �lter estimate,
in Section 2.4 the Maximum Likelihood estimate and �nally in Section 2.5
the Least Square estimate. The chapter is concluded by Section 2.6 where
we give some �nal comments and we discuss some of the issues still open.
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2.1 A class Consensus-computable global quantities

The following proposition simply states that, if the variable we need to com-
pute is a function of the mean of some transformation of the data, then it
can be computed using average consensus algorithms. We will see in the
following that many problems of interest �ts in this category.

Proposition 5. Let G = (V , E) be the connectivity graph associated to a
sensor network with N nodes, i.e. N = |V|. Let moreover zi ∈ Rp, i =
1, . . . , N be the data available to i-th node. Consider the global quantity
ξ ∈ Rr. If such a quantity can be written as follows:

ξ = f

(
1

N

∑
i∈N

gi(zi)

)
(2.1)

where gi : Rp → Rq are generic functions, and f : Rq → Rr is continuous,
than it is consensus�computable.

To compute ξ using consensus, consider a consensus algorithm {P (t)},
namely a sequence of doubly stochastic matrices compatible with the graph
P (t) ∼ G ∀t which solves the (probabilistic) average consensus problem. Set,
then,

xi(0) = gi(zi), ∀i ∈ V . (2.2)

Run then the consensus algorithm with such an initial condition:

xi(t+ 1) = pii(t)xi(t) +
∑
j∈V(i)

pij(t)xj(t), (2.3)

where pij(t) = [P (t)]ij and compute at each time instant

ηi(t) = f(xi(t)). (2.4)

One has that:

lim
t→∞

ηi(t) = ξ, ∀i ∈ V

Proof.

If {P (t)} solves the average consensus problem, then

lim
t→∞

xi(t) = xave =
1

N

N∑
i=1

xi(0) =
1

N

N∑
i=1

gi(zi)
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since f is continuous

lim
t→∞

ηi(t) = f
(

lim
t→∞

xi(t)
)

= f

(
1

N

N∑
i=1

gi(zi)

)
�

This result has been �rst proposed in the context of continuous-time consen-
sus problems, where the proof is much more delicate, by Bauso et al. [36] and
later generalized by Cortes [37], leading to the so called χ-consensus. Note
that the discrete time counterpart here proposesd is less demanding in terms
of conditions on the functions f and g.

In general, the key point is to �nd the appropriate functions g and f which
solve the original problem, being the theorem a straightforward application
of consensus theory. Many problems, as we will see, cannot be quite written
as in Eqn. (2.1), but in the more general form

ξ = f

(∑
i∈N

g(zi)

)
.

Clearly, the previous result can still be used ifN is known, with the simple
change ηi(t) = f(Nxi(t)) while the rest of the algorithm is left unchanged.
One might therefore wonder if it is possible to compute N distributively, if
its value is not known in advance. The following result provides a partial
answer to this question.

Proposition 6. Let G = (V , E) the connectivity graph associated to a sensor
network with N nodes, i.e. N = |V|, and assume that there is a special node
k ∈ V, referred as graph leader. Without loss of generality, we set k = 1.

To compute N using consensus, consider a consensus algorithm {P (t)},
namely a sequence of stochastic matrices compatible with the graph P (t) ∼
G ∀t which solves the (probabilistic) average consensus problem and set:

x1(0) = 1,

xi(0) = 0, ∀i ∈ V, i 6= 1.

Run then the consensus algorithm with such an initial condition:

xi(t+ 1) = pii(t)xi(t) +
∑
j∈V(i)

pij(t)xj(t) ∀i ∈ V ,

where pij(t) = [P (t)]ij, and compute at each time instat

ηi(t) =
1

xi(t)
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Then we have:

lim
t→∞

ηi(t) = N ∀i ∈ V .

Proof.

Analogously to the previous theorem one gets that, since {P (t)} solves the
average consensus problem,

lim
t→∞

xi =
1

N

N∑
i=1

xi(0) =
1

N
∀i ∈ V

and therefore

lim
t→∞

ηi = lim
t→∞

1

xi
= N

�

This proposition shows that it is possible to compute the number of nodes in
a graph using an average consensus algorithm as long as a leader is elected.
As a consequence, the algorithm is not truly distributed, in the sense that
not all the nodes perform the same actions, being the initialization di�erent.
Nonetheless, the problem of leader election is a very well studied problem and
e�cient algorithms exist [38], therefore a fully distributed algorithm would
consist in two stages: a leader election stage and an average consensus stage.

In the remaining part of the chapter we show how many important data
aggregation problems can be reframed as in Proposition 5.

2.2 Generalized means

As shown in [36], it possible to use Proposition 5 to compute di�erent means
besides the standard arithmetic mean. For example the geometric mean

ξ = N

√∏N
i=1 zi can be computed as

ξ = N

√√√√ N∏
i=1

zi = e
log
(
N
√∏N

i=1 zi

)
= e

1
N

∑N
i=1 log(zi),

therefore in this case gi(·) = log(·) and f(·) = exp(·).
Similarly, the harmonic mean de�ned as ξ =

(
1
N

∑N
i=1

1
zi

)−1

can be com-

puted distributively by setting gi(·) = (·)−1 and f(·) = (N ·)−1.
As a �nal example of generalized mean, consider the mean of order p,

de�ned as ξ = p

√
1
N

∑N
i=1 z

p
i , where p = 1, 2, . . ., can be obtained by setting

gi(·) = (·)p and f(·) = p
√·.
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2.3 Kalman Filter

Spanos et al. [39] proposed the use of consensus algorithms to implement dis-
tributed Kalman �lters in sensor networks, achieving the same performance
of the centralized Kalman �lter.

Let us consider a linear discrete time stochastic system observed by N
distinct sensors, modeled as follows:

x(k + 1) = Ax(k) + w(k)

yi(k) = Cix(k) + vi(k)

where w and vi are white Gaussian noises with covariance Q and Ri > 0,
respectively, and yi(k) is the observation of the i-th node in the network.
The centralized Kalman estimate is de�ned as

x̂c(k|τ) = E[x(k) | y(τ), y(τ − 1), . . . , y(0)],

where y(τ) = [yT1 (τ) yT2 (τ) . . . yTN(τ)]T is the complete sensors measurements
vector. It is well known that the optimal �lter estimate x̂c(k|k) can be
computed using the inverse covariance as:

S(k|k − 1) = AS(k − 1|k − 1)AT +Q

x̂c(k|k − 1) = Ax̂(k − 1|k − 1)

S(k|k) =

(
S−1(k|k − 1) +

N∑
i=1

CT
i R
−1
i Ci

)−1

x̂c(k|k) = S(k|k)

(
S−1(k|k − 1)x̂(k|k − 1) +

N∑
i=1

CT
i R
−1
i yi(k)

)
.

If each node knows all the model parameters (A,C1, . . . , CN , Q,R1, . . . , RN),
then it could in principle compute o�-line the matrices S(t|t− 1) and S(t|t).
Therefore, the only quantity necessary to obtain the centralized Kalman
estimate is the su�cient statistic ξ(k) =

∑N
i=1 C

T
i R
−1
i yi(k). This quantity

can be computed as in Proposition 5, by setting

zi = yi(t), xi(0) = gi(zi) = CT
i R
−1
i zi and ηi(t) = Nxi(t).

It is important to remark that each node needs to know the total number of
nodes N in the network. Also note that ξ(k) = limt→0 ηi(t), i.e. between two
measurements instants k and k + 1, it is necessary to iterate the consensus
algorithm till convergence has been reached. If the number of consensus
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iterations t between two consecutive measurements is small, then ηi(t) might
not coincide with the exact su�cient statistics, therefore this strategy is not
guaranteed to achieve the centralized Kalman �lter estimate.

Many other strategies to implement distributed Kalman �lter have been
proposed in literature. Chapter 5 is devoted to the analysis of one of them,
optimized for the case in which there is not enough time to achieve con-
sensus between two subsequent measurements. For a detailed discussion on
distributed Kalman �lters, we refer the reader to Chapter 5 or to the papers
[40, 4].

The distributed Kalman �lter can be generalized even further to time-
varying system parameters and to scenarios where each node knows only the
system dynamics and its own parameters, i.e.

A(k), Q(k), Ci(k), Ri(k),

and the total number of nodes N in the network. In fact in this case, besides
the su�cient statistics vector

ξ(k) =
N∑
i=1

CT
i (k)R−1

i (k)yi(k),

each node needs to compute the matrix

Ξ(k) =
N∑
i=1

CT
i (k)R−1

i (k)Ci(k)

necessary to recover the matrix S(k|k). It is not di�cult to see that by
setting

xi(0) = CT
i (k)R−1

i (k)Ci(k)

and

ηi(t) = Nxi(t),

where with a little abuse of notation xi has to be intended as the vectorization
of the matrix, we have

lim
t→0

ηi(t) = Ξ(k).
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2.4 Maximum Likelihood Parameter Estimation

Another interesting estimation problem that can be formulated as an aver-
age consensus problem, at least approximately, is the maximum likelihood
parameter estimation (MLPE). In many applications where a probabilis-
tic model is available, it is desired to compute the parameters that maxi-
mize the likelihood of given a set of observations. Let zi, i = 1, . . . , N be
the observation available to node i of a network. We assume that these
data are sampled from independent probability density hi(·|θ), parameter-
ized by the same unknown parameter vector θ. The likelihood is de�ned as
Γ(θ) = h(z1, . . . , zN |θ) =

∏N
i=1 hi(zi|θ) and the MLPE is de�ned as

θ̂ML = arg max
θ

Γ(θ) = arg max
θ

log Γ(θ) = arg max
θ

N∑
i=1

log hi(zi|θ).

A common practice to �nd at least a local maximum of the previous function
is to use the centralized gradient descent:

θc(k + 1) = θc(k) + εξc(k), ξc(k) =
∂ log Γ

∂θ

∣∣∣∣
θ=θ(k)

=
N∑
i=1

∂ log hi(zi|θ)
∂θ

∣∣∣∣
θ=θ(k)

where ε > 0 is a small positive number. The gradient can be computed in a
distributed fashion using Proposition 5, as follows:

θi(k + 1) = θi(k) + εξi(k), i = 1, . . . , N

ξi(k) = lim
t→∞

ηi(t)

where

xi(0) =
∂ log hi(zi|θ)

∂θ

∣∣∣∣
θ=θi(k)

and ηi(t) = Nxi(t).

Note that knowing N is not so relevant in this context, since what it is
important is to compute the direction of the gradient. It is su�cient to have
a rough idea of the value of N to adjusted the step length by properly tuning
the parameter ε, therefore we could simply use

ηi(t) = xi(t).

As for the distributed Kalman �lter, this is a two-stage strategy. In the �rst
stage a local update of the parameter θi(k) is performed at time k in each
node, and in the second stage, before the next update at time k + 1, the
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gradient of the centralized log-likelihood log Γ(θ) is computed by running
t iterations of the consensus algorithm. Also in this case the equivalence
between the centralized algorithm and the decentralized consensus-based al-
gorithm is based on an asymptotic result, therefore it is not clear what is the
behavior of the algorithm for �nite number of iterations t. We are not aware
of any work in this direction.

2.5 Least Square Parameter Estimation

We now introduce the problem of Least Square Parameter Estimation (LSPE).
This problem arises when we have a data set D = {(am, bm),m = 1, . . . ,M}
where am ∈ R` and bm ∈ R. The data set is generated according to the
model aTmθ = bm + vm, where θ ∈ R` is a parameter vector to be estimated
and vm ∈ R is an unknown error. Let us de�ne the matrix A ∈ RM×`, A =
[a1 . . . aM ]T and the vectors b, v ∈ RM , b = [b1 . . . bM ]T , v = [v1 . . . vM ]T .
The least square estimation of the parameter θ is de�ned as follows:

θ̂LS = arg min
θ
‖v‖ = arg min

θ
‖Aθ − b‖ = A†b

where the symbol † represents the pseudo-inverse of a matrix, namely, if AAT

is invertible, A† = (ATA)−1AT . We now present a proposition showing how
the centralized least square parameter estimation can be performed over a
sensor network.

Proposition 7. Let G = (V , E) be the connectivity graph associated to a
sensor network with N nodes, i.e. N = |V|. Let us denote with D(i) =
{(am, bm)} the partition of the whole data set D available to i-th node. We
suppose that

D(i) ∩ D(j) = ∅, i 6= j , ∪i∈VD(i) = D.

Let us moreover de�ne |D(i)| = Mi and |D| = M =
∑

i∈VMi.
Consider a consensus algorithm {P (t)}, namely a sequence of stochastic

matrices compatible with the graph P (t) ∼ G ∀t which solves the (probabilis-
tic) average consensus problem and set:

xAi (0) =
∑

m∈D(i)

ama
T
m,

xbi(0) =
∑

m∈D(i)

ambm ∀i ∈ V
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Run then two consensus algorithms, one having as in initial condition xAi (0)
and the other having as initial condition xbi(0):

xki (t+ 1) = pii(t)x
k
i (t) +

∑
j∈V(i)

pij(t)x
k
j (t), k = A, b

where pij(t) = [P (t)]ij and compute at each time instant

ηi(t) =
(
xAi (t)

)†
xbi(t)

One has that:
lim
t→∞

ηi(t) = θ̂LS, ∀i ∈ V

Proof.

The proof is very similar in to the one of Proposition 5. The key point is to
note thau the matrix

S = ATA =
M∑
i=1

aia
T
i

and the vector

q = AT b =
M∑
i=1

aibi,

therefore θ̂LS = S†q. By construction we have that

lim
t→∞

xAi (t) =
1

N

N∑
i=1

xAi (0) =
1

N

M∑
i=1

aia
T
i =

1

N
S

and similarly

lim
t→∞

xbi(t) =
1

N

N∑
i=1

xbi(0) =
1

N

M∑
i=1

aibi =
1

N
q.

By continuity

lim
t→∞

ηi(t) = (
1

N
S)†

1

N
q = S†q = θ̂LS.

�

This proposition shows that LSPE can be computed as the solution of a dis-
tributed algorithm which does not require the knowledge of the total number
of nodes N or the total number of data M available. Moreover, the data
can be arbitrarily partitioned among the nodes. Since the matrix S = ATA
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is symmetric, it is not necessary to compute all its `2 entries, therefore the
xAi can be reduced to a vector of size (`2 + `)/2. Nonetheless the complexity
in terms of communication, i.e. the dimension of the vector of parameters
to be averaged, is O(`2) which can be impractical if the dimension ` of the
unknown parameter θ is large.

We will show in the next section that there are strategies that trade-o�
accuracy in the estimation of θ̂LS for a decrease in communication complexity
to O(`).

2.6 Final Comments and Open Issues

In this chapter we considered one of the key problems in distributed estima-
tion and more generally of multi�agent systems: the problem of fusing sensor
data to compute global quantities.

A special class of global quantities has been introduced: those quantities
can be computed in a distributed manner using average consensus algorithms.

We have then shown that many relevant problems, such as Kalman �l-
tering, maximum likelihood and least squares parameters estimation, �t in
this class. This fact makes the consensus algorithms one of the basic tools
for distributed data fusion.

The equivalence between the centralized algorithm and the decentralized
consensus-based algorithm is based on an asymptotic result. It is not clear
what is the behavior of these algorithms for �nite number of iterations. This
certainly relevant issue has not yet been addressed, at the best of our knowl-
edges.

The fact that consensus has to be reached for the algorithm to work, has
its most relevant impact in the Kalman �ler case. Indeed, in this example the
algorithm prescribes to perform a whole consensus algorithm run during two
subsequent measurements. Therefore, the time available to the consensus
algorithm depends on the application and if it is not su�cient to reach con-
sensus, then the strategy is not guaranteed to achieve the centralized Kalman
�lter estimate.

For this reason, when the time between two subsequent measurements is
small, other strategies might be preferable. One of the possible alternative
strategies is presented and analyzed in Chapter 5: it minimizes the steady
state estimation variance assuming that only a given amount m of consensus
iterations is exploitable.





3
Distributed Sensor Calibration for

Localization and Tracking

In this chapter we focus on wireless sensor networks, WSNs from now on,
and we address some of the modeling and algorithmic aspects of one their
popular application, namely localization and target tracking, which has been
widely studied in the last few years.

Figure 3.1: Pictorial representation of one popular application for WSNs:
localization and target tracking of a moving object.
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(a) Map based approach (b) Range based approach

Figure 3.2: The two most common techniques used for localization and track-
ing: map based and range based approach.

A commonly used method to perform the localization and tracking task is
to equip network nodes with a sensor that measures the time-of-�ight di�er-
ences between an acoustic wave and an electromagnetic wave emitted by the
moving object. From this quantity a very accurate estimate of the distance
between the moving object and the sensor can be obtained. Unfortunately,
those sensors increase signi�cantly the overall network cost. It is currently
under study an alternative to such a solution. The idea is to use the radio
signal strength, that, being a function of the locations of transmitter and
receiver, can be used to estimate their relative positions. In fact, the wire-
less radio in each node of the WSN can be used not only to communicate
but also to measure the radio signal strength associated with the received
packet, making available a zero-cost sensor that can be used for localization
purposes.

There are two main approaches to target tracking: map-based and range-
based. In the map-based approach the position of the moving target is ob-
tained by �nding the most likely location which matches the recorded signal
strengths, based on previously learned maps [41, 42]. This strategy can be a
good solution but it requires an extensive work to learn the maps. Di�erently,
the range-based algorithms �rst try to estimate relative distances based on a
simple model of the wireless channel and then they estimate the positions by
triangulation, similarly to the GPS system where the satellites correspond
to the static nodes of the WSN [43]. This approach requires a higher nodes
density than the map-based one, but it does not require extensive learning
phase. We focus on this last approach.
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Unfortunately, the radio signal strength is a rather poor indicator of the
distance, being very noisy and in�uenced by many other e�ects, such as
presence of moving obstacles, re�ections, and so on. Moreover, the radio
signal strength indicator provided by the radio chips of the sensor nodes is
a�ected by uncalibrated o�sets in the receiving nodes. As a consequence, the
estimated distance can be constantly biased in some nodes, thus degrading
tracking performance. Therefore, it is necessary to devise some strategies to
compensate these o�sets [44].

Furthermore most of the previous work on range-based tracking proposed
in the literature focuses on triangulation algorithms where the wireless chan-
nel model parameters are assumed to be known or are identi�ed o�-line by
collecting all data in some centralized location [45]. Unfortunately, these
parameters are strongly dependent on the environment [46], in particular
indoor, therefore it is desirable to identify them in-situ, possibly using dis-
tributed algorithms suitable for the WSN node computational resources.
Moreover, the same environment can present a hourly or daily variation
of these parameters due to the periodic presence of people populating the
indoor spaces.

This facts make localization based on radio signal strength an issue that
is still open and that calls for a way to cope with the above reported e�ects.

The main contribution presented in this chapter goes in this direction.
We propose in fact the use of consensus algorithms for automatically cali-
brating the sensors, without the use of a reference node, and for least�square�
estimating the optimal channel parameters with a distributed algorithm.

Although we present these algorithms applied to localization and tracking
for WSNs, they are very general since they can be applied in any context
where there is a need to calibrate sensors and to solve a global least square
identi�cation problem.

Another contribution reported in this chapter is to mathematically model
the wireless channel and the communication protocols of typical WSN based
on experimental data, which is an aspect that it is often overlooked, leading
to models which are unrealistic. For example, due to packet loss or time
synchronization, it is rather problematic in WSNs to enforce convergence to
the mean of initial condition, i.e. to enforce average consensus. Therefore, in
our work we posed particular care in exploring the trade o�s between perfect
average consensus and use of simpler algorithms.

Chapter organization

The chapter is organized as follows. In Section 3.1 we provide a mathemati-
cal model for the wireless channel in WSNs. In Section 3.2 we describe the
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experimental testbed used to collect data and, based on these data, we �nd
the numerical values for the model parameters given in the previous Section.
This allows us to show that various terms in the previously presented model
are negligible and therefore to propose an experimentally�validated simpli�ed
model. In Section 3.3 we propose a consensus-based strategy for calibrating
sensors with unknown measurement o�set readings and we apply it to ex-
perimental data. In Section 2.5 we use the previously introduced consensus-
based least square algorithm for identifying the wireless channel parameters
under di�erent communication strategies and we highlight trade-o�s between
performance, speed of convergence and computation complexity, based on ex-
perimental data. Finally, in Section 3.5 we summarize the results presented
in this chapter and discuss some open questions.

3.1 Wireless Channel Model

Here we model the behavior of the wireless channel between two nodes in
terms of received power Prx (in dBm). We start by considering the most
general model and then we highlight which are the most relevant elements
based on experimental data. The Radio Signal Strength Indicator (RSSI)
measured by a generic node i after having successfully received a packet,
sent by the generic node j, can be modeled in the most general form as:

P ij
rx = f

(
P j
tx, xi, xj, i, j, t

)
where P j

tx (in dBm) is the nominal transmitted power, i and j are the IDs
representing the receiver and the transmitter node, respectively, xi, xj ∈
R3 are their spatial positions and t is the time when the communication
occurs. The previous equation can be decomposed into simpler elements
which takes into accounts di�erent e�ects. Combining the models of each
element, described in [47] and [46], and adding parts due to o�sets in the
RSSI measurements and in the power transmission, we obtain the following
model:

P ij
rx = P j

tx + rj + fpl(‖xi − xj‖) + fsf (xi, xj) + fa(xi, xj) + vff (t) + oi (3.1)

where:

• P j
tx is the nominal transmitted power and rj is the transmission o�set

between the nominal and the e�ectively transmitted power. This factor
is due to fabrication mismatches and it is assumed to be constant in
time;
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• fpl(·) represents the Path Loss e�ect, modeled as (see [46]):

fpl(d) = β − 10γ log10 (d) (3.2)

where d = ‖xi − xj‖ is the euclidean distance between the nodes i
and j, β represents the radio receiver gain at a nominal distance of
d = 1m, and γ is the loss factor (in an ideal outdoor setting γ ≈ 2).
The parameters β and γ are in general unknown since they depend on
the speci�c environment where the WSN is placed;

• fsf (·) takes into account the Shadow Fading and other slow fading
components. It is assumed (see [47]) to be symmetric (i.e. fsf (xi, xj) =
fsf (xj, xi)) and Gaussian, with a spatial correlation dependent on the
di�erence between the distances of the various points. More precisely,
Ex[fsf (xi, xj)] = 0 and Ex[(fsf (xi, xj))2] = σ2

sf are the spatial mean and
variance where the expectation is performed w.r.t. to the random node
positions. Moreover, let xi, x

a
j and xi, x

b
j two di�erent con�gurations

s.t. δ = ‖xaj − xbj‖, then the spatial correlation is:

Ex
[(
fsf (xi, x

a
j )
) (
fsf (xi, x

b
j)
)]

= σ2
sfρ

δ/D
D

where ρD is a parameter and D is the typical correlation distance. Note
that the expected value of fsf is assumed to be zero;

• fa(·) represents the channel asymmetry factor. It is due to non sym-
metric re�ections and we model it as a Gaussian r.v. with zero-mean
and covariance Ex[f 2

a (xi, xj)] = σ2
a;

• vff (·) represents the fast fading component that can be modeled (see [46])
as a white temporal noise with covariance Et[v2

ff (t)] = σ2
ff ;

• oi(·) represents the o�set that a�ects the measured received strength of
the receiving node due to fabrication mismatches in the radio chip. For
example, in the case of the nodes used in our experimental testbed the
RSSI sensor has a tolerance of ±6 dB (see [48]).

Eqn. (3.1) is a general model for the wireless channel, in which parameters
depend on the physical environment where the WSN is placed and on the
sensors under consideration. It is important to remark that these parameters
are not known in advance but they need to be estimated on-site. This is
the objective of the rest of the paper. In the next section we describe the
experimental testbed used to collect experimental data, we determine some
of the numerical values for the terms in Eqn. (3.1) and we show that some
of them are negligible. Then, in Section 3.3 we estimate the o�sets oi, and
in Section 3.4 we identify β and γ.
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3.2 Experimental Testbed and Model Valida-

tion

The experimental data used in the simulations consist in a series of mea-
surements relative to packet transmissions and receptions performed by a
net of 25 Tmote-Sky nodes [49], equipped with the Chipcon CC2420 RF
Transceiver [48] and powered by alkaline batteries. These nodes were ran-
domly placed inside a single conference room of 15m × 10m, depicted in
Figure 3.3, at about 50cm from the ground. The relative position of the
nodes is shown in Figure 3.4.

Figure 3.3: Picture of the experimental testbed room: Aula Magna �A. Lep-
schy�, Dept. of Information Engineering, University of Padova.

Each node implemented the randomized broadcast communication using
the same transmission power Ptx and intercommunication interval τ = 15s
so that the event of a packet collision was negligible. Each node sent a �xed
number of packets, M = 500, each one including the sender node ID, and
also stored a table with the total number of messages received from their
neighbors and the corresponding RSSI measures P ij

rx.
1

These tables were then collected for o�-line data processing. In particular,
from these data we constructed the connectivity graph. Given the short
distance among nodes, each node received at least one packet from any other
node, however the empirical packet reception probability was di�erent. In
fact, the c-connectivity graph Gc obtained for c = 0.75 (i.e. removing poor
links with showed an empirical packet loss probability greater than 25%) is
not the complete graph, even if it is still connected, as shown in Figure 3.4.

In the following we explain how it is possible to estimate the various pa-
rameters of the wireless channel model (3.1) using the various P ij

rx(t) collected

1We would like to thank to G. Zanca and F. Zorzi, that collected all the measurement
used in this chapter. See [50].
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Figure 3.4: Network topology and node displacement of experimental
testbed. Only edges with empirical packet loss smaller than 25% are dis-
played.

from the nodes.

The transmission power o�sets rj of Eqn. (3.1) can be directly measured
substituting the antenna of the nodes with a probe connected to a power
measurer. Measurements made on the set of the nodes used for the exper-
imental data showed that these o�sets are negligible (see [50]), so in the
following we will ignore them, i.e. we set ri = 0, ∀i.

Then, for every link (i, j) ∈ E in the connectivity graph, we compute the
empirical mean of the received power

P̄ ij
rx =

1

Mij

∑
t

P ij
rx(t)

and the empirical variance

(σ̂ijff )
2 =

1

Mij − 1

∑
t

(P ij
rx(t)− P̄ ij

rx)
2,

where Mij is the total number of messages received. The empirical variance
around each link is due to fast fading, therefore, a good estimate for the fast
fading variance is:

σ2
ff =

1

|E|
∑

(i,j)∈E

(σijff )
2.
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The measurements P̄ ij
rx include the e�ects of path loss, shadow-fading, chan-

nel asymmetry and reception o�sets. We can try to isolate �rst the contribu-
tion of the channel asymmetry and reception o�set by noting that the path
loss and the shadow fading are symmetric, therefore the quantity

∆P̄ ij
rx = P̄ ij

rx − P̄ ji
rx = f ija − f jia + oi − oj,

where for ease of notation f ija = fa(xi, xj), depends only on the asymmetry
component and on the o�sets. We can also remove the e�ects of the o�sets
considering a closed path over three nodes i, j, k and noting that

∆P̄ ijk
rx = ∆P̄ ij

rx + ∆P̄ jk
rx + ∆P̄ ki

rx = f ija − f jia + f jka − fkja + fkia − f ika .

We experimentally observed that ∆P̄ ijk
rx has approximately zero-mean over

the set of all the independent feasible cycles (i, j, k), set that we denote
with C. Since the nodes are su�ciently far from each other and we have
experimentally observed that the shadow fading correlation distance D ≈
10cm, all f ija can be considered uncorrelated, therefore we can compute the
covariance of the channel asymmetry as:

σ2
a =

1

6 |C|
∑

(i,j,k)∈C

(
∆P̄ ijk

rx

)2
.

If we also assume independence between channel asymmetry components f ija
and the o�sets oi, we can estimate the o�set variance σ2

o from the following
formula:

2σ2
o + 2σ2

a =
1

|E|
∑

(i,j)∈E

(
∆P̄ ij

rx

)2
.

Finally, we can estimate the parameters θ = [β γ]T of the path loss channel.
As it will be shown in the next section, it is possible to calibrate sensors by
adding a compensating o�set ôi such that oi+ ôi = α for all nodes. Averaging
all sensor readings received from the same node removes the e�ect of fast-
fading, therefore the calibrated average received power P̂ ij

rx = P̄ ij
rx+ ôi is given

by:
P̂ ij
rx = Ptx + β − 10γ log (dij) + f ijsf + f ija + α

where f ijsf = fsf (xi, xj). Since β needs to be estimated and α is constant, we
can assume w.l.o.g. that α = 0, since its contribution will be included in the
estimated β. Shadow fading f ijsf and channel asymmetry f ija are unknown but
they can be assumed to be independent zero-mean disturbances, therefore it
is possible to �nd the best mean square estimate of the unknown parameters
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as θ̂LS = (ATA)−1AT b, where A = [a1 . . . aM ]T , b = [b1 . . . bM ], andM = |E|.
The generic elements of matrix A and vector b are am = [1 − 10log(dij)]

T

and bm = (P̂ ij
rx − Ptx), where dij = ‖xi − xj‖ and P̂ ij

rx are known. Figure 3.5

shows the identi�ed path-loss model and all collected pairs (P̂ ij
rx, dij). The

residues obtained from the path-loss model correspond to the variance due
to the shadow fading and channel asymmetry, i.e.:

σ2
a + σ2

sf =
1

|E|
∥∥∥Aθ̂LS − b∥∥∥2

.

Table 3.1 summarizes the estimated parameters of the model (3.1) based on
the experimental data collected. Note that the terms due to the asymmetry
in the channel, f ija , can be safely neglected when compared to the slow fading
terms, f ijsf , i.e. the wireless channel is indeed symmetric.

β [dBm] γ [dBm] σsf [dBm] σa [dBm] σff [dBm] σo [dBm] ri [dBm]

-45.7 1.76 3.78 0.16 1.31 1.01 ≈0

Table 3.1: Results of the estimation of the channels parameters of the
model (3.1) via the centralized estimation strategies presented in Section 3.2.
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Figure 3.5: Estimated path-loss model for the wireless channel of the exper-
imental environment using the standard centralized mean square estimate.
The continuous line represents the path-loss function, while the dots are the
measures experimentally collected.

3.3 Consensus-Based Sensors Calibration

Experimental evidence indicates that sensor o�sets oi in the nodes are not
negligible and can be substantially large for some nodes (up to 6dB). The
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e�ect of this o�set is to bias the estimate of the distance between two nodes,
which is particularly harmful in tracking application. In fact, if one node has
a high o�set oi, then its estimated distance from a moving node is smaller
than the true distance. Since unknown location of a moving target is ob-
tained, similarly to the GPS, by triangulating its position from three or
more static nodes whose position is known, the estimated position will be
closer to the node with high o�set oi than it should be. This is particularly
clear in Figure 3.6, which reports a tracking experiment where the moving
node to be tracked is following a straight line (the basketball court center-
line) between two rows of nodes of a WSN. However, its estimated trajectory
is not straight but it is bent to the left (left panel). When the two central
nodes on one side are swapped with the other side, the estimated trajectory
is now bent to the right, thus clearly showing a problem due to uncalibrated
o�sets. Here we present a fully distributed and simple strategy which aims
at estimating and removing the o�sets oi from each node, and we show its
bene�ts on experimental data.

Figure 3.6: Experiment inside a basketball court showing the e�ects of re-
ception o�sets in WSN tracking when nodes are swapped. True trajectory
in both panels is the court cenerline. Courtesy of ST Microelectronics [51].

3.3.1 O�set calibration algorithm

Ideally, we would like to add to the reading of received power a compensation
o�set ôi such that oi− ôi = 0, and then use the compensated received power
P̂ ij
rx = P ij

rx − ôi to estimate the relative distance. However, we do not have
the possibility to directly measure oi of each node, nonetheless we would like
to, at least partially, compensate it. More precisely, we would like to have,
for all nodes,

oi − ôi = α ∀i ∈ V , α ≈ 0.
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If α 6= 0 such strategy does not compensate the o�set, but at least all nodes
either underestimate or overestimate the relative distance similarly, therefore
after a GPS-like triangulation stage these errors should partially cancel out.
We now show how this strategy can be casted as a consensus problem. Let
us consider a static WSN where the nodes are at �xed positions and transmit
at the same power Ptx. Let us introduce the variable yij:

yij = fij + oi.

Note that yij is closely approximated by the average received signal strength
by node i from node j:

P̄ ij
rx =

1

T

T∑
t=1

P ij
rx

(
Ptx, xi, xj, i, j, t

)
=

= fij + oi + faij + rj +
1

T

T∑
t=1

vff (t) ≈ fij + oi = yij (3.3)

where P ij
rx is modeled as in Eqn. (3.1), fij = Ptx + fpl(‖xj−xi‖) + fsf (xj, xi),

and faij = fa(xi, xj). The approximation is based on parameters in Table 3.1
which imply that

|faij + rj +
1

T

T∑
t=1

vff (t)| � |oi|

for T su�ciently large, vff (t) being white noise. Note that fij is symmetric,
i.e. fij = fji. The next theorem shows how the problem of compensating the
o�set oi can be casted as a consensus problem:

Theorem 8. Let us consider the connectivity graph G = (V , E) of a WSN,
and let {Q(t)} ∼ G be a sequence of stochastic matrices that solves the (prob-
abilistic) consensus problem. Assume that yij = fij + oi where fij = fji.
Consider the following algorithm:

ôi(0) = 0, ∀i ∈ V
ôi(t+ 1) = ôi(t) +

∑
j∈V(i)

qij(t)
(
yij − yji + ôj(t)− ôi(t)

)
(3.4)

where qij(t) = [Q(t)]ij. Then

lim
t→∞

oi − ôi(t) = α ∀i ∈ V
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where α ∈ [mini(oi),maxi(oi)].
If in addition Q(t) is doubly stochastic ∀t, then

α =
1

N

∑
i∈V

oi.

Proof.

Let us de�ne the new variables xi(t) = ôi(t) − oi. From this de�nition it
follows that xi(0) = ôi(0)− oi = −oi. Moreover, Eqn. (3.4) can be rewritten
as follows:

ôi(t+ 1)− oi = ôi(t)− oi +
∑
j∈V(i)

qij(t)
(
fij + oi − fji − oj + ôj(t)− ôi(t)

)
xi(t+ 1) = xi(t) +

∑
j∈V(i)

qij(t)
(
xj(t)− xi(t)

)
=

(
1−

∑
j∈V(i)

qij(t)
)
xi(t) +

∑
j∈V(i)

qij(t)xj(t)

= qii(t)xi(t) +
∑
j∈V(i)

qij(t)xj(t)

The last equation can be written in compact form as x(t + 1) = Q(t)x(t).
Since Q(t) solves the (probabilistic) consensus problem, then

lim
t→∞

xi(t) = α ∀i ∈ V .

The claim that α ∈ [mini(oi),maxi(oi)] follows from the property that if Q is
a stochastic matrix, then max(Qx) ≤ maxi(x) and min(Qx) ≥ min(x) [52].
�

The previous theorem indicates how we can compensate the o�sets oi without
knowing their values. Also, it is not necessary to know the exact value of fij
since, being symmetric, it cancels out.

In practice the assumption yij is not available but, since yij ≈ P̄ ij
rx, we can

use P̄ ij
rx in place of yij . As we will show shortly, the fact that P̄ ij

rx = fij + oi
is not exact leads to an oscillating steady state behavior in the consensus
algorithm.

We might wonder whether there is an appropriate choice of Q(t) to have
α ≈ 0, which is the ideal solution. We can argue that the o�sets oi of the radio
chips are on average 0, have some dispersion due to imperfect fabrication and
are independent, i.e.

E[oi] = µo = 0, E[o2
i ] = σ2

o , and E[oioj] = E[oi]E[oj] = 0.
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It is well known that the best estimate of the mean µo given a set of o�sets
is

E[µo | o1, . . . , oN ] =
1

N

∑
i∈V

oi = α∗

which has the property that

E[α∗] = µo = 0

and

E[(α∗)2] =
σ2
o

N
,

i.e. the average consensus is the strategy for which α is closer to zero in
mean square sense and its error becomes smaller and smaller as the number
of nodes N increases.

Although the best choice for the compensation of o�sets oi is to choose
doubly stochastic matrices Q(t), this can be di�cult to be enforced in a
WSN, since it requires synchronization among the nodes and compensation
for packet loss. However, it is not necessary to enforce the average consensus
since the nonzero o�set α reached after the calibration phase is completely
absorbed during the identi�cation of the path loss model parameter β.

3.3.2 Simulations based on experimental data

The proposed algorithm for distributed o�set calibration has been tested o��
line on the same set of data collected during the experimental setup described
in Section 3.2. Here we considered the c-connectivity graph Gc with c = 0.1,
i.e. we considered all links which received at least 10% of the packets. Di�er-
ently from the graph with c = 0.75 shown in Figure 3.4, the resulting graph
with c = 0.1 reported in Figure 3.7 is complete, i.e. all edges exist. The set of
all the edges has been divided into two subsets: the �rst subset of edges (60%
of the total edges, in black in Figure 3.7) has been used for the estimation
of the node o�sets. Therefore the proposed distributed sensor calibration
algorithm has been executed on the data collected on these edges. In partic-
ular, the calibration algorithm was set with yij = P̄ ij

rx corresponding to these
edges. The second subset (40% of the total edges, in grey in Figure 3.7) has
been used in a second stage for validation purposes: we evaluated the asym-
metric di�erence (P̄ ij − ôi)− (P̄ ji − ôj) on the data collected on this subset.
This approach allows us to both evaluate the e�ect of the o�set removal in
a rigorous way, and to validate at the same time the model we proposed.

We simulated the randomized broadcast consensus described in Section 1.2
on the graph Gc using the experimental data and including i.i.d. packet loss
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Figure 3.7: Network topology and node displacement for c-connectivity graph
for c = 0.1. Nodes' grey intensity represents the estimated o�set ôi after
calibration. Black and grey edges represent the edges used for training and
validation data sets, respectively.

failure set by the connectivity matrix C. Figure 3.8 shows the behavior of the
consensus algorithm for a speci�c realization with two di�erent values of the
weight parameter in matrices Q(t). The steady state compensation o�sets
ôi(∞) are displayed in Figure 3.7 where the gray intensity of the nodes is
proportional to ôi(∞). Since the true node o�sets oi are unknown it is not
possible to plot the behavior of xi(t) = ôi(t)−oi which are the variables that
should converge to a common value, however the fact that all ôi converge
to a steady state is an indication of correct functioning. It is also interest-
ing to note the e�ect of unmodeled measurement noise arising from having
neglected channel asymmetry and fast fading. In fact for larger w, i.e. for
larger weight on the o�-diagonal terms in the consensus matrix, the oscilla-
tion at steady state is not negligible, i.e. a large w tends to amplify noise.
On the other hand, a small w leads to slower rate of convergence, thus indi-
cating a tradeo� between convergence rate and noise sensitivity. Note also
that the magnitude of steady state values of ôi is consistent with the a-priori
dispersion indicated by the standard deviation σo reported in Table 3.1.

In order to evaluate the e�ectiveness of the o�set calibration, we tested
the channel asymmetry after calibration on a validation set di�erent from the



3.4. Distributed Wireless Channel Parameter Estimation 55

set used for computing the o�sets ôi. The results of this second stage has been
plotted in Figure 3.9. The white bars represent the distribution of |P̄ ij− P̄ ji|
on the validation edges, before the distributed sensor calibration algorithm is
executed. The black bars, instead, show the distribution of |(P̄ ij−ôi)−(P̄ ji−
ôj)| after the algorithm has run. The o�set reduction clearly appears. After
the calibration, 56% of the validation edges have an asymmetric di�erence
smaller than 0.5dBm (it was 24% before calibration), while 88% of them
have an absolute error smaller than 1dBm (it was 50% before calibration).
After the o�set removal algorithm, almost all the measurements (99.4% of
them) are a�ected by an asymmetric error smaller than 2dBm.

The importance of o�set removal in the received power measurements is
evident when these measurements are used for wireless�based localization. In
fact, relative distance is estimated by inverting the path-loss function based

on the calibrated measured power P̂ ij
rx, i.e. d̂ij = 10

P
j
tx−P̂

ij
rx+β

10γ = 10
P
j
tx−P

ij
rx−ôi+β
10γ .

If the calibration o�set ôi is not included in the previous formula, there can
be measurements errors up to 6dBm due to uncalibrated o�sets, as Figure 3.9
suggests. In fact, a systematic calibration error of 6dBm corresponds to an
uncertainty range from 0.9m to 4.4m when estimating the relative position
of a node at 2m, and to a practically useless estimation when the node is
farther. An error of 1dBm, on the other hand, corresponds to a error in the
distance of only 28cm for a 2m long link, and to a 1.4m error when the node
is at 10m distance.

3.4 Consensus�Based Least-Squares Wireless Chan-

nel Parameter Estimation

In this section we apply the algorithm presented in Section 2.5 to estimate in a
distributed manner the unknown path-loss channel parameters (β, γ) given in
equation (3.2) using di�erent communication strategies. As mentioned above
these two parameters are used in localization and target tracking algorithms
in order to estimate relative distances between the moving node and the nodes
of the static WSN. Therefore, it is critical to be able to identify the path-loss
parameters in a distributed way, in a manner that is robust to node failure,
with minimal exchange of data and low computational power, and without
a central unit. It has to be noted that an accurate a-priori model for power
loss in di�erent indoor environments is almost unavailable (for example γ
can vary from 1 to 6 according to the room sizes, the amount of furniture
and people and the number of walls that the signal has to cross in average).
Furthermore, the same environment can present a hourly or daily variation
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ô
i
[d

B
m

]

(a) w = 0.05

0 1000 2000 3000 4000 5000 6000 7000
−2

−1

0

1

2

3

Number of consensus iterations
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Figure 3.8: O�set estimation ôi for each node of the considered WSN using
randomized broadcast consensus for di�erent values of the consensus weight
w.
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of these parameters due to the periodic presence of people populating the
indoor spaces [53]. Fortunately, distributed algorithms with these features
can be used to periodically or adaptively identify the channel parameters in
a changing environment.

Based on these considerations, the focus of this section is to compare the
performances of three di�erent communication strategies which have di�er-
ent characteristics in terms of rate of convergence, communication complexity
and parameter identi�cation accuracy. The �rst and the second strategies
are based on the implementation of the distributed least square identi�ca-
tion described in Proposition 7 using the randomized broadcast and the ran-
domized symmetric gossip, respectively. The third strategy performs the
randomized symmetric gossip consensus on local estimates θ̂i of the channel
parameters vector θ, rather than on the local least-square su�cient statis-
tics

(
xA, xb

)
relative to

(
ATA, AT b

)
of Proposition 7. Each strategy has

its own advantages. In fact, the randomized symmetric gossip guarantees
average consensus, therefore it is guaranteed to provide the best identi�ca-
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tion accuracy since it satis�es the hypotheses of Proposition 7. Randomized
broadcast does not guarantee average consensus, and consequently the best
performance, however it is very easy to implement since it needs no coordi-
nation between nodes. Moreover it is faster than the symmetric gossip since,
on average, there are d(i) updates per iteration compared with only 2 up-
dates for the symmetric gossip. Finally, the strategy based on the average
consensus of the local least-square estimates does not guarantee optimal per-
formance nor best speed of convergence, however the number of parameters
to be exchanged among nodes is equal to the size ` of the parameter vector
θ, while for the �rst two strategies it is proportional to `2.

3.4.1 Simulations based on experimental data

We now describe in detail how the simulations are obtained. We considered
the c-connectivity graph Gc = (V , Ec) for c = 0.75 shown in Figure 3.4. The
data setD(i) available to each node i is given byD(i) = {(P̄ ij

rx, dij) | j ∈ V(i)},
i.e. all the averaged received power measurements from each neighbor cou-
pled with the corresponding relative distance (note that the distances are
assumed to be known by the nodes). The data set of all measurements is
indicated with D = ∪i∈VD(i). We also assume that the o�set calibration
procedure of Section 3.3 has been performed in order to obtain the compen-
sating o�sets ôi, and that the e�ect of fast-fading can be neglected since the
measurements have been averaged over a large number of packets. Therefore,
as shown at the end of Section 3.2, the channel parameters θ = [β γ]T can be
identi�ed using a least square minimization by setting am = [1 −10 log(dij)],
bm = P̄ ij

rx − ôi − Ptx, where m = 1, . . . ,M indicates a generic data element,
and M = |D| = |Ec|. Using the same terminology of Proposition 7 we indi-
cate with θ̂LS the centralized least-square estimate using the complete data
set D. We also indicate with θ̂iLS the least-square estimate performed by the
i-th node using only its data set D(i), which is the best estimate a node can
have without communicating with the others. The performance (in terms of
identi�cation accuracy) is based on the residues of the estimate θ̂ given by:

J(θ̂) =
∥∥∥Aθ̂ − b∥∥∥ .

Note that A and b are constructed using the whole data set, and therefore
J(θ̂) represents the global residual. Since θ̂LS = arg minθ J(θ̂), it is obvious
that J(θ̂LS) ≤ J(θ̂iLS), ∀i from which it follows J(θ̂LS) ≤ 1

N

∑
i∈V J(θ̂iLS).

Being ηi(0) = θ̂iLS, if all Q(t)'s are doubly stochastic then from Proposition 7
it follows that

lim
t→∞

J(ηi(t)) = J(θ̂LS),∀i,
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Figure 3.10: Convergence of parameter estimates βi, γi using randomized
broadcast least-square consensus and consensus weight w = 0.5. The dashed
lines are the centralized least squares estimates β̂LS, γ̂LS.

and so

lim
t→∞

1

N

∑
i∈V

J(ηi(t)) = J(θ̂LS).

In the �rst simulation, we tested the randomized broadcast least-square
strategy using the connectivity matrix C de�ned in Section 1.1 for the link
failure probabilities. Figure 3.10 shows the identi�ed channel parameters of
all nodes ηi(t) = [β̂i(t) γ̂i(t)]

T as a function of the number of iterations for a
typical realization of the system (thought as the stochastic process of infor-
mation exchange). It can be seen that the identi�ed parameters of all nodes
converge to a common value, however, since broadcast does not guarantee
average consensus, identi�ed parameters do not necessarily coincide with the
optimal estimate θ̂LS. It is also interesting to note that most of the nodes
have already good estimates of the parameters without communicating with
the others, since most of them have lots of links and there are only two pa-
rameters to estimate. However, there are some nodes which have poor initial
estimates, especially the ones on the perimeter of the graph which have few
links. Nonetheless, thanks to the consensus algorithm, they rapidly converge
to a good value.

In the second set of simulations, shown in Figure 3.11, we compared the
rate of convergence and the steady state identi�cation error for the three
di�erent strategies described above. More precisely, we compared the aver-
age estimation residual J̄(k) = 1

N

∑
i∈V J(θ̂i(k)) of all nodes as a function of

iteration error. To reduce the randomness due to the choice of a particular re-
alization of {P (t)}t∈N we actually depicted E[J̄(k)], approximately computed
as the average of 50 independent extractions of the sequence {P (t)}t∈N. In
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Consensus Algorithm E[J̄(∞)] max J̄(∞) min J̄(∞)

Broadcast w = 0.5 3.9816 4.1477 3.9320
Broadcast w = 0.25 3.9615 4.0919 3.9318
Symmetric Gossip 3.9307 3.9307 3.9307
Ave. of local estim. 3.9635 3.9635 3.9635

JCent.L.S.

Centralized LS 3.9307

Table 3.2: Comparison of the mean estimation residual.

Table 3.2 it is reported also the steady state dispersion of J̄(k) around its
mean value, obtained by recording the maximum and the minimum value of
J̄(k) over the 50 extractions. In the bottom line the residual of the centralized
optimal estimate is also reported for comparison.

Initially we tested the randomized broadcast least square algorithm for
two di�erent weights w. As already mentioned, larger w leads to faster
convergence rates, however it also leads, in mean, to a larger steady state
identi�cation error (see [34, 54]). We also have that the steady state value
is strongly realization dependent, as it can be noticed from to the large
dispersion interval. This is due to the fact the �rst communications tend to
bias the �nal value toward the initial condition of that node. Di�erently, if w
is reduced, then this bias is smoothed out and E[J̄(k)] end up closer to exact
average consensus. Also the dispersion of the single realization with respect
to E[J̄(k)] reduces. Moreover it has been proved in [34] that the distance of
E[J̄(k)] form the average consensus decreases by increasing the number of
nodes in the network, thus suggesting fast convergence rate with negligible
performance degradation as compared, for example, to random symmetric
gossip.

The same Figure 3.11 also shows the performance of the randomized sym-
metric gossip least square algorithm. As expected, the rate of convergence
is slower, but the �nal value converges to the minimum identi�cation error
given by the centralized least-square estimate J(θ̂LS). We remark that all
the single realizations tend to the exact optimal value, as shown by the fact
that there is no dispersion around the mean value (Table 3.2), not only that
E[J̄(k)] tends to optimal value.

Finally, we tested also a randomized gossip algorithm that directly aver-
ages the local least-square estimates. As shown in Figure 3.11, this strategy
has the same rate of convergence of the randomized symmetric gossip (which
computes the exact centralized least-square solution), but a slightly worse
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Figure 3.11: Comparison of the mean estimation residual E[J̄(k)] for di�erent
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performance. However, in terms of communication complexity this algorithm
only requires the exchange of 2 parameters while the exact distributed least
square one requires in this example the exchange of 4 parameters. It has to
be noticed, though, that if the initial estimates were less reliable (for instance
because the graph topology were much less connected) then the distributed
least square would behave far better that the simple solution of an average
of the local least squares estimations.

3.5 Final Comments and Open Issues

In this chapter we proposed consensus-based algorithms for wireless sensor
networks and we successfully applied them to experimental data collected
from a real WSN. In particular, we applied these algorithms to remove un-
known o�sets from the sensor measurements and to identify the parameters
of the wireless channel for localization and tracking purposes.

However, these algorithms are rather general and can be applied in other
�elds and research areas. Indeed, we showed how it is possible to cast a wide
class of problems into the consensus framework, such as problems in which
the agents have to actually agree on a common estimate of few parameters
(like in the least-square �tting), and problems in which every agent has to es-
timate its own parameter (like in the o�set-removal algorithm). This duality
deserves further investigation, possibly leading to a tighter relation between
consensus algorithms [14] and asynchronous parallel iterative methods for
the solution of system of linear equations [55].

The �eld of application of the proposed solution is de�nitely wider than
the few applications presented in this work. For example, the o�set removal
algorithm could also be used to detect malfunctioning sensors by observing
the magnitude of the compensation o�set ôi, while the least square square pa-
rameter identi�cation algorithm can be used to identify any model parameter
which is linear in the data.

Many issues remain to be explored, in particular in terms of correctly
modeling real WSNs. For example we showed that, although the optimal so-
lution to some problems depends on the average of the initial conditions, there
are algorithms which do not guarantee convergence to the average, nonethe-
less providing good performances. Therefore, there is a de�nite need to better
understand the trade-o�s between performance, rate of convergence, commu-
nication complexity and noise sensitivity for di�erent consensus strategies on
real WSNs. Another important research avenue is the formulation of possi-
bly nonlinear or non-standard problems into standard consensus problems,
which is by no mean trivial.
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A majorization Inequality result

In this chapter we will present a novel linear algebra result that will play a
key role in the analysis carried out in Chapter 5.

Indeed, the proposed results can be more generally applied to the analysis
of a jump Markov linear system, namely a linear time�varying systems for
which it is available a statistical characterization of the transition matrix
Q(t), [27]. In a jump Markov linear system, in fact, the matrix Q(t) is
selected as a function of a Markov random process r(t), Q(r(t)), becoming
therefore itself a matrix-valued Markov random process. Jump Markov linear
systems arise naturally in many applications and in particular in the sensor
networks area, where, as we discussed in Section 1.2, very often the system
under study is well modeled assuming that Q(t) is drown at each time instant
form an alphabet of matrices, according to a known probability law.

More precisely, assume we have a Markov random process Q(t), t =
0, 1, 2, . . ., taking values in the set RN×N of N × N matrices and a jump
Markov linear system described by equation

x(t+ 1) = Q(t)x(t) (4.1)

where x(t) is the state random vector.
It is natural to try to evaluate how "big" is the positive semide�nite

matrix

P (t) := E[Q(t− 1) . . .Q(1)Q(0)QT (0)QT (1) . . .QT (t− 1)] (4.2)

Indeed, it is easy to see that

E[||x(t)||2] = x(0)TP (t)x(0)

where || · || means the Euclidean norm. Therefore, the evolution of the state
x(t) is well described by the evolution of the positive semide�nite matrix P (t).
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One way to evaluate how big is P (t) is through its 2-norm, which coincides
with the largest eigenvalue of P (t). An alternative way is to consider the
trace of P (t), which coincides with the sum of all the eigenvalues of P (t).
In this chapter we propose an upper bound on P (t) in terms of the matrix
[P (t)]t for the particular case in which Q(t) are independent.

We will see an application of the proposed result to distributed estimation
in Chapter 5

Chapter Organization

The chapter is structured as follows. In section 4.1 we recall some basic
concepts and some known results in majorizarion theory. In section 4.2 the
main result is stated, we comment on the possibility to extend the obtained
result and we formulate a conjecture. In section 4.3 the proof of the previ-
ously presented result is presented and commented. Finally, in section 4.4
we recapitulate the proposed results.

A Notation Note

In this chapter we will use lower case letters, a, b, c, . . . , to denote scalars
or vectors, capital letters, A,B,C, . . . , to denote matrices and bold letters,
a,A,b,B,c,C, . . . , to denote random variables. We hope, in this way, to
point out more clearly when we are dealing with a random variable x and
when with its realization x.

Moreover, it might be worth to recall brie�y to the reader some notations
de�ned Section 2 and in particular that, given a matrix M ∈ RN×N , we
will denote with σ(M) the vector in RN formed by the singular values of
M , decreasingly ordered, and with λ(M) the vector in CN formed by the
eigenvalues of M , ordered so that |λ0(M)| ≥ · · · ≥ |λN−1(M)|, where each
eigenvalue appears as many times as its algebraic multiplicity. Moreover, to
improve readability, we will write σij(M) to denote (σj(M))i.

Recall �nally that we say that the matrix N is normal if NNT = NTN.
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4.1 Some Preliminary Results in Majorization

Theory

Let us begin by reviewing some basic concepts about majorization.

De�nition 2. Given two vector x, y ∈ RN whose components are ordered
decreasingly, i.e. x1 ≥ x2 ≥ · · · ≥ xN , we say that x submajorize y and we
write y ≺w x if

k∑
i=1

yi ≤
k∑
i=1

xi ∀k = 1, . . . , N

If moreover the inequality for k = N holds as an equality, then we say that x
majorize y and we write y ≺ x

A broad literature on majorization theory and its applications is available.
An introduction to the topic can be found, for instance, in [56, 57]. Majoriza-
tion theory is extensively treated in [58] and in [59], a book fully devoted to
this topic.

In particular, recall that the following lemma holds

Lemma 9.

Let x, y, and z be real, non�negative decreasingly ordered vectors. Then

y ≺w x ⇒ y � z ≺w x� z.

Proof.

See [59, page 92, H.2.c]. An alternative proof can be found in the appendix
of this chapter, 4.A. �

Recall moreover an important result on the singular values of the product of
two matrices

Lemma 10. Given any two matrices M1 and M2

σ(M1M2) ≺w σ(M1)� σ(M2). (4.3)

Proof.

See [57, 58]. �

Furthermore there is an important result specifying the relation between
eigenvalues and singular values of a matrix

Lemma 11. Given any matrix M

|λ(M)| ≺w σ(M). (4.4)
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Proof.

See [57, 58]. �

Combining the previous two results, we get that, given any two normal ma-
trices N1 and N2,

|λ(N1N2)| ≺w σ(N1)� σ(N2) = |λ(N1)| � |λ(N2)|. (4.5)

We will use this inequality in the following, together with the fact that for
any matrix M

λj(M
i) = λij(M)

and, therefore, for any normal matrix N , NNT = NTN

σj(N
i) = σij(N).

4.2 A Majorization Inequality

Let us introduce a �nite indexes set A and consider a �nite alphabet of
normal matrices

{Qα α ∈ A}, QαQ
T
α = QT

αQα ∀α ∈ A

from which we assume to randomly draw a matrix. Denote with P the prob-
ability measure on the alphabet. We will refer to P as selection probability
and we will denote pα the probability that Qα is drawn. Consider then the
random process {Q(t)}t∈N of independent and identically distributed random
variables P[Q(t) = Qα] = pα ∀t that describes independent extractions form
the alphabet {Qα α ∈ A}.

We want to study the matrix

E
[
Q(i− 1) . . .Q(0)Q(0)T . . .Q(i− 1)T

]
.

We present now a result that relates the spectrum of this positive semidef-

inite matrix to the spectrum of E
[
Q(0)Q(0)T

]i
. The proof is reported in

Section 4.3.

Theorem 12. Given any �nite normal matrix alphabet {Qα α ∈ A}, ∀i ∈ N
we have that

σ
(
E
[
Q(i− 1) . . .Q(0)Q(0)T . . .Q(i− 1)T

] )
≺w σ

(
E
[
Q(0)Q(0)T

]i)
.

(4.6)
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that is

k∑
j=1

σj

(
E
[
Q(i− 1) . . .Q(0)Q(0)T . . .Q(i− 1)T

] )
≤

k∑
j=1

σj

(
E
[
Q(0)Q(0)T

]i)
(4.7)

∀k = 1, . . . , N and ∀i ∈ N.
The above result, for k = n, gives the following trace inequality

Corollary 13. Given any �nite normal matrix alphabet {Qα α ∈ A}, ∀i ∈ N
we have that

tr
(
E
[
Q(i− 1) . . .Q(0)Q(0)T . . .Q(i− 1)T

] )
≤ tr

(
E
[
Q(0)Q(0)T

]i)
.

Moreover, again as a trivial corollary of the above result, we get an inequality
on the largest eigenvalue λmax, already proved in [20]

Corollary 14. Given any �nite normal matrix alphabet {Qα α ∈ A},

λmax

(
E
[
Q(i− 1) . . .Q(0)Q(0)T . . .Q(i− 1)T

] )
≤ λimax

(
E
[
Q(0)Q(0)T

])
.

Remark 1. Since any symmetric matrix is also normal, the proposed theorem
covers the special case of symmetric matrix alphabet.

4.2.1 Comments on the result

One might wonder if it is possible to relax the hypothesis of normality of the
matrices Qα of the alphabet. The answer is no, as the following counterex-
ample shows.
Counterexample.

Let A = {1, 2}, let pA = {p1 = 1
3
, p2 = 2

3
} and let

{Qα α ∈ A} =

{
Q1 =

[
0 1
0 0

]
, Q2 =

[
0 0
0 1

]}
.

Note that Q1 is not normal since

Q1Q
T
1 =

[
1 0
0 0

]
6=
[

0 0
0 1

]
= QT

1Q1

We get that

E
[
Q(1)Q(0)Q(0)TQ(1)T

]
=

1

9

[
2 0
0 4

]
E
[
Q(0)Q(0)T

]2
=

1

9

[
1 0
0 4

]
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Therefore it does not hold that σ(E
[
Q(1)Q(0)Q(0)TQ(1)T

]
) ≺w σ(E

[
Q(0)Q(0)T

]2
)

since

σ0(E
[
Q(1)Q(0)Q(0)TQ(1)T

]
) + σ1(E

[
Q(1)Q(0)Q(0)TQ(1)T

]
) =

6

9
>

>
5

9
= σ0(E

[
Q(0)Q(0)T

]2
) + σ1(E

[
Q(0)Q(0)T

]2
)

�

Many numerical experiments instead supported the conjecture that the state-
ment of Theorem 12 is still holds true in the case of stochastic, possibly
non-normal, matrices.

Conjecture. Given any �nite stochastic, possibly non�normal, matrix al-
phabet, it holds the following

σ
(
E
[
Q(i− 1) . . .Q(0)Q(0)T . . .Q(i− 1)T

] )
≺w σ

(
E
[
Q(0)Q(0)T

]i) ∀i ∈ N.
The conjecture has been veri�ed for i ≤ 10, for matrices of size N < 10

and for alphabet's cardinality |A| < 20. In total, we randomly generate more
than 60 · 106 stochastic matrix alphabets and probability measures on them.
In all these cases we veri�ed that the conjecture holds.

The proposed conjecture have relevant applications in distributed esti-
mation over wireless sensors network, since in that case the matrices of the
alphabet are known to be always stochastic.

4.3 Proof of Theorem 12

The proof is based on the following lemma

Lemma 15. Given any normal matrix alphabet {Qα α ∈ A}, and any sym-
metric positive semi-de�nite matrix P ≥ 0, we have that

σ
(
E
[
Q(0)PQ(0)T

] )
≺w σ (P )� σ

(
E
[
Q(0)Q(0)T

])
. (4.8)

Proof.

Note that the thesis (4.8) is equivalent to prove that, ∀k = 1, . . . , N

k∑
j=1

σj

(∑
α∈A

pαQαPQ
T
α

)
≤

k∑
j=1

σj (P )σj

(∑
α∈A

pαQαQ
T
α

)
. (4.9)
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To this aim recall ([57, 58]) that for any matrix M

k∑
j=1

σj (M) = max
UTU=Ik

tr
(
UTMU

)
, (4.10)

therefore

k∑
j=1

σj

(∑
α∈A

pαQαPQ
T
α

)
= max

UTU=Ik
tr

(
UT

(∑
α∈A

pαQαPQ
T
α

)
U

)
.

Note, moreover, that

P = V Tdiag{[σ1(P ), . . . , σk−1(P ), σk(P ), . . . , σN(P )]}V
≤ V Tdiag{[σ1(P )− σk(P ), . . . , σk−1(P )− σk(P ), 0, . . . , 0]}V + σk(P )I

= P̄ + σk(P )I,

where

P̄ = V Tdiag{[σ1(P )− σk(P ), . . . , σk−1(P )− σk(P ), 0, . . . , 0]}V.

Therefore

max
UTU=Ik

trUT

(∑
α∈A

pαQαPQ
T
α

)
U ≤ max

UTU=Ik
trUT

(∑
α∈A

pαQαP̄Q
T
α

)
U+

+ σk(P )trUT

(∑
α∈A

pαQαQ
T
α

)
U.

(4.11)

One has, again for (4.10),

σk(P )tr

(
UT

(∑
α∈A

pαQαQ
T
α

)
U

)
≤ σk(P )

k∑
j=1

σj

(∑
α∈A

pαQαQ
T
α

)
. (4.12)

The other term of the sum in (4.11) can be upper�bounded by noting that

tr

(
UT

(∑
α∈A

pαQαP̄Q
T
α

)
U

)
=
∑
α∈A

pαtr
(
UTQαP̄

1
2 P̄

1
2QT

αU
)

=
∑
α∈A

pαtr
(
P̄

1
2QT

αUU
TQαP̄

1
2

)
. (4.13)
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Noting that

UUT ≤ I

in the sense of the positive semide�nite matrices and recalling that, given
two positive semide�nite matrices A and B, such that A ≤ B, it holds that

trXTAX ≤ trXTBX,

form (4.13), one gets

∑
α∈A

pαtr
(
P̄

1
2QT

αUU
TQαP̄

1
2

)
≤
∑
α∈A

pαtr
(
P̄

1
2QT

αQαP̄
1
2

)
= tr

(
P̄

1
2

(∑
α∈A

pαQ
T
αQα

)
P̄

1
2

)

=
N∑
j=1

λj

(
P̄

1
2

(∑
α∈A

pαQ
T
αQα

)
P̄

1
2

)
.

Using (4.5) and recalling that, for any semi�positive de�nite matrix A ≥ 0,
λ(A) ∈ RN and λ(A) ≥ 0 one gets

N∑
j=1

λj

(
P̄

1
2

(∑
α∈A

pαQ
T
αQα

)
P̄

1
2

)
≤

N∑
j=1

λj

(
P̄

1
2

)
λj

(∑
α∈A

pαQ
T
αQα

)
λj

(
P̄

1
2

)
.

Therefore

∑
α∈A

pαtr
(
P̄

1
2QT

αUU
TQαP̄

1
2

)
≤

N∑
j=1

λj
(
P̄
)
λj

(∑
α∈A

pαQ
T
αQα

)

=
k−1∑
j=1

(σj(P )− σk(P ))σj

(∑
α∈A

pαQ
T
αQα

)
.

(4.14)

Recall that, since we are considering a normal matrix alphabet,

QT
αQα = QαQ

T
α ,
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combining (4.11), (4.12) and (4.14) one gets

k∑
j=1

σj

(∑
α∈A

pαQαPQ
T
α

)
= max

UTU=Ik
tr

(
UT

(∑
α∈A

pαQαPQ
T
α

)
U

)

≤
k−1∑
j=1

(σj(P )− σk(P ))σj

(∑
α∈A

pαQαQ
T
α

)
+ σk(P )

k∑
j=1

σj

(∑
α∈A

pαQαQ
T
α

)

=
k−1∑
j=1

σj(P )σj

(∑
α∈A

pαQαQ
T
α

)
−

k−1∑
j=1

σk(P )σj

(∑
α∈A

pαQαQ
T
α

)
+

+ σk(P )
k∑
j=1

σj

(∑
α∈A

pαQαQ
T
α

)

=
k−1∑
j=1

σj(P )σj

(∑
α∈A

pαQαQ
T
α

)
+ σk(P )σk

(∑
α∈A

pαQαQ
T
α

)

=
k∑
j=1

σj(P )σj

(∑
α∈A

pαQαQ
T
α

)
.

which concludes the proof of the lemma. �

Proof of the theorem.

We will prove the theorem by induction.
It is trivially true for i = 1.
Suppose that the thesis (4.6) holds true for i and let us prove that this implies
it holds true for i+ 1. Let us de�ne

P (i) = E
[
Q(i− 1) . . .Q(0)Q(0)T . . .Q(i− 1)T

]
Note that P (i) is symmetric and positive semide�nite P (i) ≥ 0 ∀i.
Recalling that Q(0) . . .Q(i) are independent and identically distributed, one
gets

P (i+ 1) = E
[
Q(i)Q(i− 1) . . .Q(0)Q(0)T . . .Q(i− 1)TQ(i)T

]
= E

[
E
[
Q(i)Q(i− 1) . . .Q(0)Q(0)T . . .Q(i− 1)TQ(i)T |Q(i)

]]
= E

[
Q(i)E

[
Q(i− 1) . . .Q(0)Q(0)T . . .Q(i− 1)T |Q(i)

]
Q(i)T

]
= E

[
Q(i)E

[
Q(i− 1) . . .Q(0)Q(0)T . . .Q(i− 1)T

]
Q(i)T

]
= E

[
Q(i)P (i)Q(i)T

]
= E

[
Q(0)P (i)Q(0)T

]
We want therefore to prove that

k∑
j=1

σj
(
E
[
Q(0)P (i)Q(0)T

])
≤

k∑
j=1

σi+1
j

(
E
[
Q(0)Q(0)T

]
)
)
∀k = 1, . . . , N
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that is, ∀k = 1, . . . , N

k∑
j=1

σj

(∑
α∈A

pαQαP (i)QT
α

)
≤

k∑
j=1

σi+1
j

(∑
α∈A

pαQαQ
T
α

)
.

From lemma 15 we know that

k∑
j=1

σj

(
E
[
Q(0)P (i)Q(0)T

] )
≤

k∑
j=1

σj (P (i))σj
(
E
[
Q(0)Q(0)T

])
.

Moreover, by inductive hypothesis, we have that

k∑
j=1

σj (P (i)) ≤
k∑
j=1

σij
(
E
[
Q(0)Q(0)T

])
.

Therefore, using lemma 9, we get

k∑
j=1

σj
(
E
[
Q(0)P (i)Q(0)T

])
≤

k∑
j=1

σij
(
E
[
Q(0)Q(0)T

])
σj
(
E
[
Q(0)Q(0)T

])
=

=
k∑
j=1

σi+1
j

(
E
[
Q(0)Q(0)T

])
,

that completes the proof. �

Remark 2. The proposed theorem holds true also in the case of in�nite al-
phabet sets, both countable and uncountable. In fact, the assumption of
�niteness of the alphabet does not play a central role in the proof and can be
dropped, taking care to guarantee the boundedness of the expectations that
appear in the proof. To this aim it is su�cient to add the further assumption
of boundedness of E

[
Q(0)Q(0)T

]
.

To state precisely and clearly the theorem in the case of non-�nite al-
phabet some care has to be used in the de�nition of the random variable Q.
Consider then a measurable space (A ⊆ R,A) endowed with a probability
measure P. Consider then a random variable

Q : A ⊆ R −→ {N ∈ RN×N : NNT = NTN}
α 7−→ Q(α).
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We have then that

E[Q] =

∫
Q(α)dP(α) =

∫
A

 q11(α) . . . q1N(α)
...

...
qN1(α) . . . qNN(α)

 dP(α) =

=


∫

A q11(α)dP(α) . . .
∫

A q12(α)dP(α)
...

...∫
A q21(α)dP(α) . . .

∫
A q22(α)dP(α)

 .
In particular, if the measure P is purely discrete

E[Q] =
∑
α∈A

Q(α)P[{α}],

while, if the measure P is absolutely continuous with respect to the Lebesgue
measure, dP = p(α)dα

E[Q] =


∫

A q11(α)p(α)dα . . .
∫

A q12(α)p(α)dα
...

...∫
A q21(α)p(α)dα . . .

∫
A q22(α)p(α)dα

 .
When using a non-�nite alphabet A, the existence and the boundedness

of the expectation is an issue. Nevertheless, to guarantee �niteness of the
expectations that appear in the proof of Theorem 12 it is su�cient to assume
that E[Q(0)TQ(0)] exists �nite. In fact, using the normality assumption of
Theorem 12, we have that

trE[Q(0)TMQ(0)] = trME[Q(0)Q(0)T ]

= trME[Q(0)TQ(0)]

≤ trMtrE[Q(0)TQ(0)].

Therefore, if E[Q(0)TQ(0)] exists �nite then E[Q(0)TMQ(0)] exists �nite for
any matrixM and hence there always exists �nite E[Q(i) . . .Q(0)TQ(0) . . .Q(i)].

Once the existence issues has been addressed, (4.6) still holds also for
in�nite alphabets of normal matrices as it can be seen easily going through
the proof and noting that it is still true that tr(E[Q]) = E[trQ] and that, for
any matrices A,B, E[AQB] = AE[Q]B.

Therefore Theorem 12 can be generalized as follows

Theorem 16 (Genralization of Theorem 12). Given any normal matrix alpha-
bet {Q(α), α ∈ A} and any i.i.d. random process {Q(t)}t∈N taking values in
this alphabet such that trE[Q(0)TQ(0)] ≤ +∞ is �nite, it holds the following

σ
(
E
[
Q(i− 1) . . .Q(0)Q(0)T . . .Q(i− 1)T

] )
≺w σ

(
E
[
Q(0)Q(0)T

]i) ∀i ∈ N.
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Remark 3. Note moreover that in the proposed proof it has never been used
the fact that P(α) is such that

∑
α∈A pα = 1. The presented result holds

therefore for any non�negative weight function, p(α) ≥ 0 ∀α ∈ A, even if∑
α∈A pα 6= 1 (

∫
A p(α)dα 6= 1).

4.4 Final Comments and Open Issues

In this chapter we presented a majorization inequality on the singular values
of the expectation of matrix�valued random variables' product. It is shown
that, if the alphabet is made of normal matrices, then the singular values of
the matrix E[Qi . . .Q0Q

T
0 . . .Q

T
i ] are submajorized by the singular values of

E[Q0Q
T
0 ]i.

As a straightforward corollary of this result, we proposed a novel trace
inequality.

The proposed result applies to the analysis of jump�Markov linear sys-
tems where the transition matrix is an i.i.d. random process. A relevant
example of application in this framework is the case of a linear plant con-
trolled by a linear time�varying feedback, in which at each time instant a
feedback matrix K(t) is drawn from a �xed set of matrices K1, . . . , KN and
in which the designer only chose the probability that the various feedback
matrices are applied.

Many numerical experiments support the conjecture that the statement
of Theorem 12 holds true also in the case of stochastic, possibly non-normal,
matrices. We expect an eventual proof of such a conjecture to leverage on
arguments di�erent from the ones we used here. In fact, normality is a
key assumption in our proof and we do not see how to take advantage of
stochasticity in our arguments.
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4.A Appendix: Proof of Lemma 9

In this appendix we proof Lemma 9.
Consider two vectors x, y ∈ RN , x = [x1 . . . xN ]T and y = [y1 . . . yN ]T and

de�ne x0 = y0 = 0. As it can easily veri�ed by direct computation, it holds
that, ∀i = 1 . . . n:

xiyi − xi−1yi−1 = (xi − xi−1) yi + xi−1 (yi − yi−1) . (4.15)

We have moreover that

k∑
j=1

((xi − xi−1) yi) = xkyk − x0y0 −
k∑
j=1

(xi−1 (yi − yi−1)) . (4.16)

In fact, using (4.15), we have

xkyk − x0y0 =
k∑
j=1

(xiyi − xi−1yi−1) =

k∑
j=1

((xi − xi−1) yi) +
k∑
j=1

(xi−1 (yi − yi−1))

.

We are now ready to proof Lemma 9. Note that it can be restated as

Lemma 17 (Restatement of Lemma 9.). Let x, y, and z be real, non�negative
decreasingly ordered vectors. Then if

k∑
i=1

yi ≤
k∑
i=1

xi

for all k = 1, . . . , N , then

k∑
i=1

yizi ≤
k∑
i=1

xizi

k = 1, . . . , N .

Proof.

De�ne

Xk =
k∑
i=1

xi Yk =
k∑
i=1

yi.
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De�ne moreover X0 = Y0 = 0 and z0 = z1. One has than that

Xi −Xi−1 = xi Yi − Yi−1 = yi ∀i = 1 . . . N.

Consider then

k∑
i=1

xizi −
k∑
i=1

yizi =
k∑
i=1

(xi − yi)zi

=
k∑
i=1

((Xi −Xi−1)− (Yi − Yi−1)) zi

=
k∑
i=1

((Xi − Yi)− (Xi−1 − Yi−1)) zi =
[
see (4.16)

]
=

= (Xk − Yk) zk − (X0 − Y0)︸ ︷︷ ︸
0

z0 −
k∑
i=1

(Xi − Yi) (zi − zi−1)

= (Xk − Yk)︸ ︷︷ ︸
≥0

zk︸︷︷︸
≥0

−
k∑
i=1

(Xi − Yi)︸ ︷︷ ︸
≥0

(zi − zi−1)︸ ︷︷ ︸
≤0︸ ︷︷ ︸

≥0

≥ 0.

That is
k∑
i=1

xizi ≥
k∑
i=1

yizi,

or equivalently the thesis. �



5
Randomized Gossip Kalman Filter

In this chapter we consider the problem of estimating a random process from
noisy measurements, collected by a sensor network. More precisely, as in [40],
we consider a prototypical problem of estimation in sensor networks, namely
the problem of estimating the state of a scalar random process. We will
analyze a distributed two�staged algorithm: the �rst stage is a Kalman�like
estimate update, in which each agent makes use only of its own measure-
ments, while the second phase is devoted to the estimates exchange between
neighbor nodes and to the estimates fusion.

To �nd an optimal way to fuse local estimates is a very di�cult problem,
that can hardly be handled if the communication graph has cycles. Never-
theless,as we reported in Section 2.3, the problem of �nding a distributed
algorithm that achieves the same performance of the centralized Kalman �l-
ter has been solved when communication are much faster than measurements,
[60, 61]. To this aim the estimate fusion problem has been formulated as a
consensus problem. In fact, as remarked in [40], since the local estimates
mean is a su�cient statistic to compute the optimal estimate, the optimal
fusion problem can be solved with consensus techniques. Unluckily, the so-
lution proposed in [60, 61] strongly relies on the assumption that commu-
nications are much faster than measurements, so that one can assume that
consensus is be reached during two consecutive measurements. Under this
assumption, the choice of the Kalman gain to be used at each node is not an
issue: the centralized gain has to be used. Obviously, the assumption of fast
communications does not hold in all practical cases and the proposed scheme
becomes suboptimal.

In [40] and in [62] it has been studied the case of �nite number of commu-
nications between two subsequent measurements. In both works, inspired by
the fact that the mean of the local estimates is a su�cient statistic to compute
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the centralized estimate, estimate fusion was implemented as m consensus
steps. In [62] and in the subsequent improvement [63], Kalman gain and
consensus weights are selected at each time step in order to minimize the es-
timate error variance at each node in the next step. In [40] the steady state
error variance was minimized, for the case of a scalar random walk. Both
of the approaches consider a �xed communication scheme, i.e. it is assumed
that all the information exchanges prescribed by the communication graph
happen between 2 subsequent measurements.

However, in many practical cases this is just a rough model of communica-
tions of a sensor network, valid if the time between two subsequent measure-
ments is su�ciently large. In fact, communications in a sensor network often
happen according to randomized protocols, such as broadcast [20] or symmet-
ric gossip strategies [33], described in Section 1.3.3. The use of randomized
protocols avoids the need of cumbersome communication scheduling, reduces
the need of time-synchronization and may allow to reduce power consump-
tion. A further cause of randomness in the communication is the potential
unpredictably of the environment where these protocols are implemented:
packet losses and collisions are in fact rather common in a sensor network.
Moreover nodes failures, arrivals and departures are common events in the
large networks under study.

To take these randomnesses into account, in this chapter the estimate
fusion will be implemented as m randomized consensus steps. This means
to assume that the consensus matrix, rather than being constant as in [40],
is drawn at each time instant form an alphabet of matrices compatible with
the graph G. For this reason, the performance analysis carried out in [40]
does not apply any longer.

This chapter is therefore devoted to the analysis of a distributed Kalman
�ltering algorithm that makes use of randomized communication strategies,
focusing in particular on symmetric gossip. A mean square performance
analysis is carried out and an upper�bound on the estimation error variance
is derived. This upper�bound is a good performance assessment index and
it is assumed therefore as a cost function to be minimized. We will moreover
show that problem of minimizing this cost function by choosing the Kalman
gain and the selection probability is convex in each of the two variables
separately although it is not jointly convex.

Before to move on, we would like to point out that Distributed Kalman
�lter has attracted the attention of many researchers. Besides the already
cited ones, we mention also the works [64], [65] and [66] where a belief prop-
agation approach to distributed Kalman �ltering has been proposed.
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Chapter organization

The chapter is organized as follows: In Section 5.1 we give a detailed formu-
lation of the estimation problem under consideration and in Section 5.2 we
introduce the estimation algorithm under analysis, namely a randomized ver-
sion of the algorithm proposed in [40]. In Section 5.3.1 a worst case analysis
is performed while in Section 5.3.2 the more relevant mean square analysis is
carried out. In particular, we give an upper bound on the steady state error
variance of the proposed �lter, based on the result proposed in Chapter 4.
In Section 5.4 we discuss the optimization problem of �nding a Kalman gain
and a randomized communication strategy, i.e. a selection probability, that
minimize a suitable cost function, namely the proposed upper�bound the
trace of the steady state error variance. In particular, we show that the opti-
mization problem is convex in each of the two variables separately although
it is not jointly convex. In Section 5.5 some simulation results are presented.
Finally in Section 5.6 we summarize the results presented in this chapter and
discuss some open questions.
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5.1 Problem Formulation

Consider a sensor network of N agents, labeled with the elements of the set
V = {1 . . . N}. Let us describe the communication constraints of the network
with a directed graph G = (V , E), where the edge (i, j) ∈ E if and only if i
can transmit information to j.

Our goal is to estimate, by means of such a sensor network, a discrete-time
scalar random process of the form:

x(t+ 1) = x(t) + w(t)

where w(t), known as model noise, is a white noise with variance q. Each
node i of the network can collect noisy measurements the state x(t):

yi(t) = x(t) + vi(t) (5.1)

where the measurement noise, vi(t), is a white noise with variance ri. It is
reasonable to assume that sensors are a�ected by N independent measure-
ment noises, all independent also from the model noise w(t). Moreover, for
simplicity, we consider a network of identical devices, with all nodes having
equally reliable sensors, that is, we restrict our analysis to the case ri = r
∀i ∈ V .
For ease of notation collect all the N measurements in a vector y(t) =
[y1(t), . . . , yN(t)]T and all measurement noises in a vector v(t) = [v1(t), . . . , vN(t)]T .
Then (5.1) can then be rewritten as:

y(t) = 1x(t) + v(t).

Since we assumed that all measurement noises are independent and identi-
cally distributed E[v(t)vT (t)] = rIN .

5.2 Proposed Algorithm

The estimation algorithm we analyze in this work is a randomized version of
the one that has been analyzed in [40]. It consists of 2 stages. The �rst stage
is a Kalman�like estimate update. At each time instant, each node collects
its own measurement yi(t) and updates its estimate x̂i(t):

x̂loci (t+ 1) = lx̂i(t) + (1− l)yi(t).

where l ∈ (0, 1) is the Kalman gain. Since x̂loci (t) has been updated using
only local information, it is called local estimate. Again, for ease of notation,
we collect all the local estimate in the vector x̂loc(t) = [x̂loc1 (t), . . . , x̂locN (t)].
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The second phase of the algorithm prescribes that during two consecutive
measurements, nodes exchange information with their neighbors to improve
their local estimates. In contrast with the previous phase, the outcome of
this second phase is called regional estimate, x̂regi (t), or simply x̂i(t). Once
again, we de�ne the vector x̂(t) = [x̂reg1 (t), . . . , x̂regN (t)].

Inspired by the fact that the mean of the local estimates is a su�cient
statistic to compute the centralized estimate, we implement the estimate
fusion phase with m consensus steps, analogously to what it has been done
[40] and [62].

x̂(t+ 1) = Qm−1(t) . . . Q0(t)x̂loc(t+ 1) = P (t)x̂loc

where P (t) = Qm−1(t) . . . Q1(t), being product of stochastic matrices, is
stochastic.

In [40], it has been analyzed the case of a �xed communication strategy,
i.e. Q1(t) = · · · = Qm−1(t) = Q ∀t and therefore P (t) = P = Qm ∀t. On the
contrary, in this work, to take into account the randomness introduced by the
use of random protocols and by unpredictable environments, we assume that
for all t and i, Qi(t) is drawn from an alphabet {Qα, α ∈ A} of stochastic
matrices compatible with the graph G. We will call selection probability,
pA = {pα, α ∈ A}, the probability measure on the set {Qα, α ∈ A}, where
pα is the probability that Qα is drawn. Therefore Qi(t) and consequently
P (t) are i.i.d. random (matrix�valued) processes.

It is reasonable to assume that ∀i Qi(t) is independent form w(s) and
v(r) ∀t, s, r.

In this chapter we will focus on the case of symmetric matrices alphabets:
Qα = QT

α ∀α ∈ A and in particular on the symmetric gossip case.

5.3 Algorithm Analysis

Let us de�ne the local and the regional estimation error:

x̃loc(t) = 1x(t)− x̂loc(t) and x̃(t) = 1x(t)− x̂(t).

After simple computations one gets the following description of the error time
evolution:

x̃loc(t+ 1) = (1− l)x̃(t) + lw(t) + 1v(t)

x̃(t+ 1) = P (t)x̃loc(t+ 1)

= (1− l)P (t)x̃(t) + lP (t)w(t) + 1v(t).
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First of all, we will show that the error mean tends to zero when t goes to in-
�nity, for all possible sequence of extracted communication matrix

{
P (t)

}
t=1,2,...

.

To this aim de�ne the local and regional mean error to be

µloc(t) = E [x̃loc(t)|{P (s)}s=1...t] µ(t) = E [x̃(t)|{P (s)}s=1...t] .

Recalling that w and v are white zero�mean noises, one gets that

µloc(t+ 1) = E [(1− l)x̃(t) + lw(t) + 1v(t)|{P (s)}s=1...t] = (1− l)µ(t)

µ(t+ 1) = E [P (t)x̃loc(t+ 1)|{P (s)}s=1...t] (5.2)

= P (t)µloc(t+ 1) = (1− l)P (t)(t).

Proposition 18.

If |1− l| < 1, for any sequence
{
P (t)

}
t=1,2,...

,

lim
t→+∞

µloc(t) = 0 and lim
t→+∞

µ(t) = 0.

Proof.

Let us study ||µ(t)||∞, where we recall that, given a vector µ ∈ RN ,

||µ||∞ = max{|µ1|, . . . , |µN |}.

Given a matrix M ∈ RN×N we consider the induced norm

||M ||∞ = max
||x||∞=1

{
||Mx||∞

}
.

From the de�nition it follows immediately that ||Mx||∞ ≤ ||M ||∞||x||∞.
Note moreover that, for any stochastic matrix P ,

||P ||∞ = 1.

In fact, for any x such that ||x||∞ = 1, i.e. such that |xi| ≤ 1, we have that

|(Px)j| = |
N∑
j=1

Pijxj| ≤
N∑
j=1

|Pij||xj| ≤
N∑
j=1

|Pij| =
N∑
j=1

Pij = 1.

Therefore ||Px||∞ ≤ 1. Moreover, since ||1||∞ = 1 and P1 = 1, we have
that ||P ||∞ = 1.

From this fact it follows that

||µ(t)||∞ = ||(1− l)tP (t)P (t− 1) . . . P (0)µ(0)||∞
≤ |1− l|t||P (t)P (t− 1) . . . P (0)||∞||µ(0)||∞
= |1− l|t||µ(0)||∞.
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If |1− l| < 1, ||µ(t)||∞ → 0. We have moreover that

||µloc(t+ 1)||∞ = (1− l)||µ(t)||∞ < ||µ(t)||∞.
Hence ||µ(t)||∞ → 0 implies ||µloc(t)||∞ → 0. �

One has then to wonder about the behavior of the estimation error variance.
A �rst question one could ask is if the estimation error variance re-

mains always bounded, independently on sequence of communication ma-
trices

{
P (t)

}
t=1,2,...

.

One might wonder then if communications always reduce the error vari-
ance, that is, if for any outcome of the sequence of communication matrices{
P (t)

}
t=1,2,...

the error variance is reduced with respect to the no communi-

cation case: P (t) = I ∀t.
Both these two questions, concerned with the worst case performances, are
treated in Section 5.3.1. Nevertheless, to consider the worst of all possible
realizations of the communication matrices leads to a very pessimistic char-
acterization of the algorithm. For this reason, it is more signi�cant to analyze
of the mean estimation error variance . We will consider such a problem in
Section 5.3.2, where we will give an upper bound on the steady state value
of the expected error variance.

5.3.1 Worst Case Analysis

Let us de�ne the local and regional error variance, conditional to the fact
that a certain sequence of matrices {P (t)} occurred:

Σc
loc(t|{P (s)}s=1,2,...) = E

[
x̃loc(t)x̃

T
loc(t)

∣∣ {P (s)}s=1...t]

Σc(t|{P (s)}s=1,2,...) = E
[
x̃(t)x̃T (t)

∣∣ {P (s)}s=1...t].

where the superscript c stands for conditional. For ease of notation, in the
following we will refer to the above matrices simply as Σc

loc(t) and Σc(t). Note
that the elements Σc

locii
and Σc

ii represent the local and regional estimation
error variances of the j-th node.

The analysis is carried out deriving two upper-bounds valid for any pos-
sible sequence of matrices {P (t)}, even the worst possible case.

In the �rst result we will consider the node with the largest estimation
error, maxi=1,...,N Σi,i, and we will show that communication improves the
quality of its estimation. To this aim we will study ||Σc(t)||max, de�ned as

||Σc(t)||max = max
i,j=1,...,N

|Σc
ij(t)|.
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In fact, for any symmetric positive matrix Σ > 0 the largest element in
absolute value is always on the diagonal1,

||Σ||max = max
i,j=1,...,N

|Σi,j| = max
i=1,...,N

|Σi,i|.

In the second result we will consider the average quality of the estimation
among the nodes:

1

N

N∑
i=1

Σc
ii = trΣc.

We will prove that this parameter is always improved by communication
if the matrices P (t) are doubly stochastic, while, if the matrices are only
stochastic, it might occasionally get worsen by communication.

First of all, let us derive a recursive formula for Σc
loc(t) and Σc(t). Recall-

ing that w and v are independent for all t and noting that x̃(t) is independent
on w(t) and v(t), since in depends only on w(s), v(s) for s = 1 . . . t− 1, one
can easily see that

Σc
loc(t+ 1) = (1− l)2Σc(t) + l2R + q11T

= (1− l)2P (t)Σc
loc(t)P

T (t) + l2R + q11T (5.3)

Σc(t+ 1) = P (t)Σc
loc(t+ 1)P T (t) (5.4)

= (1− l)2P (t)Σc(t)P (t) + l2P (t)RP T (t) + q11T . (5.5)

The two previous matrices have to be compared with Σnc, the estimation
error variance when no communications occur:

Σnc = Σc(t|{P (s) = I ∀s}) = Σc
loc(t|{P (s) = I ∀s}).

Σnc is described by the following recursive equation

Σnc(t+ 1) = (1− l)2Σnc(t) + l2R + q11T (5.6)

with initial condition Σnc(0) = Σc(0) = Σc
loc(0).

Equation (5.6) describes the evolution of a linear time invarying system,
which is stable if l < 1. From (5.6) it can be easily computed a steady state
value for Σnc,

Σnc(∞) =
l2R + q11T

1− (1− l)2
.

1Otherwise there would exist an entries Σi,j , i 6= j such that |Σi,j | > |Σi,i| and |Σi,j | >
|Σj,j |. But in this case the minor Σi,iΣj,j − Σ2

i,j = |Σi,i||Σj,j | − |Σi,j |2 < 0, which is
impossible since Σ > 0 by hypothesis.
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On the contrary equations (5.3) and (5.5) represent the evolution of two time
varying systems for which it is not even meaningful to speak about steady
state.
Nevertheless, it holds the following result, that links Σc(t) and Σc

loc(t),Σnc(t):

Proposition 19. For any sequence
{
P (t)

}
t=1,2,...

,

||Σc(t)||max ≤ ||Σc
loc(t)||max ≤ ||Σnc(t)||max

Proof.

Note, �rst of all, that for any stochastic matrix P and for any matrix M :

||PM ||max ≤ ||M ||max

In fact, since Mzj ≤ ||M ||max ∀z, j, we have that:

||PM ||max = max
i,j

{
N∑
z=1

PizMzj

}
≤ max

i,j

{
N∑
z=1

Piz||M ||max

}

= max
i,j

{
N∑
z=1

Piz

}
||M ||max

but, since P is stochastic,
∑N

z=1 Piz = 1 ∀i .
Moreover, since ||M ||max = ||MT ||max ,

||MP T ||max = ||PMT ||max ≤ ||MT ||max = ||M ||max

therefore

||PMP T ||max ≤ ||M ||max, (5.7)

The fact that ||Σc(t)||max ≤ ||Σc
loc(t)||max follows then directly form (5.4) and

(5.7).

We will prove that ||Σc
loc(t)||max ≤ ||Σnc(t)||max by induction.

The initial step is trivial since,by de�nition, Σc(0) = Σc
loc(0) = Σnc(0) .

Note furthermore that Σc
loc(t) and Σnc(t), being variance matrices, are both
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symmetric and positive de�nite.

||Σc
loc(t)||max ≤ ||Σnc(t)||max

⇔ max
ij

{
[Σc

loc(t)]i,j

}
≤ max

ij

{
[Σnc(t)]i,j

}
⇔ max

i

{
[Σc

loc(t)]i,i

}
≤ max

i

{
[Σnc(t)]i,i

}
⇔ max

i

{
(1− l)2

[
P (t− 1)Σc

loc(t− 1)P (t− 1)
]
i,i

+ l2r + q
}
≤

≤ max
i

{
(1− l)2 [Σnc(t− 1)]i,i + l2r + q

}
⇔ max

i

{
[P (t− 1)Σc

loc(t− 1)P (t− 1)]i,i

}
≤ max

i

{
[Σnc(t− 1)]i,i

}
⇔ ||P (t− 1)Σc

loc(t− 1)P (t− 1)||max ≤ ||Σnc(t− 1)||max.

Which is true by inductive hypothesis, since

||P (t− 1)Σc
loc(t− 1)P (t− 1)||max ≤ ||Σc

loc(t− 1)||max ≤ ||Σnc(t− 1)||max.

�

Proposition 19 shows that the error variance is always bounded, since it is
upper�bounded, in a proper norm, by the output of a linear time�invarying
stable system. Proposition 19 shows, moreover, that communication always
improves the quality of the estimate, in the sense that by communicating we
can at least reduce the variance of the worst estimator.

If we restrict our analysis to the case of P (t) doubly stochastic matrix ∀t,
it holds true the following result:

Proposition 20. If we restrict to the case of doubly stochastic matrices P (t)
it holds the following

1

N
tr (Σc(t)) ≤ 1

N
tr (Σc

loc(t)) ≤
1

N
tr (Σnc(t)) .

Proof.

The proof relies on the following lemma

Lemma 21. Given any positive semi�de�nite matrix A ≥ 0 and any doubly
stochastic matrix P one has that

tr(PAP T ) ≤ tr(A).
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Proof of Lemma 21.

Since A is positive semi�de�nite, we have that λi(A) = σi(A), and therefore

tr(A) =
N−1∑
i=0

λi(A) =
N−1∑
i=0

σi(A).

Analogously, since also PAP T is positive semi�de�nite, λi(PAP
T ) = σi(PAP

T )
and

tr(PAP T ) =
N−1∑
i=0

λi(PAP
T ) =

N−1∑
i=0

σi(QAQ
T ).

Using (4.3), we get

tr(PAP T ) =
N−1∑
i=0

σi(PAP
T ) ≤

N−1∑
i=0

σi(P )σi(A)σi(P
T ).

Note that, for a doubly stochastic matrix σmax(P ) ≤ 1. In fact, σmax(P ) =
λmax(PP T ) and since PP T is stochastic λmax(PP T ) = 1. Hence

tr(PAP T ) =
N−1∑
i=0

σi(PAP
T ) ≤

N−1∑
i=0

σi(P )σi(A)σi(P
T ) ≤

N−1∑
i=0

σi(A) = tr(A)

�

Proof of Proposition 20:

The fact that 1
N

tr (Σc(t)) ≤ 1
N

tr (Σc
loc(t)) follows directly from (5.4) and the

above lemma 21.
We will prove that 1

N
tr (Σc

loc(t)) ≤ 1
N

tr (Σnc(t)) by induction.
The initial step is trivial since,by de�nition , Σc(0) = Σc

loc(0) = Σnc(0) .
Recall that tr is a linear operator, therefore:

1

N
tr (Σc

loc(t)) ≤
1

N
tr (Σnc(t))

⇔ 1

N
tr
(
(1− l)2P (t− 1)Σc

loc(t− 1)P (t− 1) + l2rI + q11T
)
≤

≤ 1

N
tr
(
(1− l)2Σnc(t− 1) + l2rI + q11T

)
⇔ (1− l)2 1

N
tr (P (t− 1)Σc

loc(t− 1)P (t− 1)) +
(l2r + q)N

N
≤

≤ 1

N
(1− l)2tr (Σnc(t− 1)) +

(l2r + q)N

N

⇔ 1

N
tr (P (t− 1)Σc

loc(t− 1)P (t− 1)) ≤ 1

N
tr (Σnc(t− 1))
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Which is true by inductive hypothesis. In fact, using lemma 21:

1

N
tr (P (t− 1)Σc

loc(t− 1)P (t− 1)) ≤ 1

N
tr (Σc

loc(t− 1)) ≤ 1

N
tr (Σnc(t− 1))

�

Note that the hypothesis of doubly stochastic matrices is crucial for Lemma 21
to hold, as it can be easily shown considering the following counterexample:
Counterexample.

Let

A =

[
10 0
0 1

]
and P =

[
1 0

1/2 1/2

]
where P is stochastic but not doubly stochastic. In this case we have

tr(A) = 11 ≤ tr(PAP T ) = tr

([
10 5
5 11

4

])
= 12.75

�

Lemma 21 and Proposition 20 show that the average estimate quality
in the network is guaranteed to be improved at each communication if the
consensus matrices are doubly stochastic. Such a guarantee can not be given
if the algorithm is only stochastic. This means that using a stochastic but
not doubly stochastic consensus matrices, the average estimate quality may
occasionally decrease.

As we said, the worst case analysis gives a too pessimistic performance
assessment. We proceed therefore in the next section with a mean square
analysis.

5.3.2 Mean Square Analysis

Let us study then the variance of the (local and regional) estimation error:

Σloc(t) = E
[
x̃loc(t)x̃

T
loc(t)

]
Σ(t) = E

[
x̃(t)x̃T (t)

]
,

Where in the case the expectation is taken also with respect to the random-
ness introduced by the random extraction of P (t).
Note that

Σloc(t) = EP
[
E
[
x̃loc(t)x̃

T
loc(t)|{P (s)}s=1,2,...

]]
= EP [Σwc

loc(t)]

Σ(t) = EP
[
E
[
x̃(t)x̃T (t)|{P (s)}s=1,2,...

]]
= EP [Σwc(t)] .
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To compute a recursive formula for the evolution of these two matrices, recall
that P (t), w(s), v(u) are independent ∀t, s, u. Note moreover that x̃(t) is
independent from P (t), w(t) and v(t), since it depends only on P (s), w(s)
and v(s) for s = 1, . . . , t− 1. One can easily see then that

Σloc(t+ 1) = E
[
x̃loc(t+ 1)x̃Tloc(t+ 1)

]
= (1− l)2E

[
P (t)x̃loc(t)x̃

T
loc(t)P

T (t)
]

+ l2rI + q11T .

Since

E
[
P (t)x̃loc(t)x̃

T
loc(t)P

T (t)
]

=

= E
[
E
[
P (t)x̃loc(t)x̃

T
loc(t)P

T (t)|P (t)
]]

= E
[
P (t)E

[
x̃loc(t)x̃

T
loc(t)|P (t)

]
P T (t)

]
= E

[
P (t)Σloc(t)P

T (t)
]

we have that

Σloc(t+ 1) = (1− l)2E
[
P (t)Σloc(t)P

T (t)
]

+ l2rI + q11T . (5.8)

Similarly, one gets

Σ(t + 1) = (1 − l)2E
[
P (t)Σ(t)P T (t)

]
+ l2rE

[
P (t)P T (t)

]
+ q11T . (5.9)

Equations (5.8) and (5.9) represent a linear time�invariant system, as it
can be more clearly recognized de�ning vect(Σ(t)) = s(t) and recalling that
vect(ABC) = (CT ⊗ A)vect(B). Equation (5.9) can in fact be rewritten as:

vect(Σ(t+ 1)) = s(t+ 1) = (1− l)2E[P (t)⊗ P (t)]s(t)+

l2rE[P (t)⊗ P (t)]vect(I) + q1N2

that is precisely a linear time�invariant system forced by a constant input.
Note that

E[P (t)⊗ P (t)]1N2 = E[(P (t)1N)⊗ (P (t)1N)] = 1N2 .

Since E[P (t)⊗P (t)] is stochastic we have that (1− l)2E[P (t)⊗P (t)] is stable.
For ease of notation let us de�ne the linear operator L(M) = E[Qi(t)MQT

i (t)].
Note that vect

(
L(M)

)
= E[Q(t)⊗Q(t)]vect(M) and that

E[P (t)MP T (t)] =

E[Qm−1(t) . . . Q0(t)MQT
0 (t) . . . QT

m−1(t)] = Lm(M)
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Equation (5.9) can then be rewritten as

Σ(t+ 1) = (1− l)2Lm(Σ(t)) + l2rLm(I) + q11T

Note moreover that L(11T ) = E(Q11TQT ) = 11T .
We have therefore that, for every initial condition, the system reaches an

asymptotically stable equilibrium

s(∞) = vectΣ(∞)

=
(
I − (1− l)2E[P (t)⊗ P (t)]

)−1(
l2rE[P (t)⊗ P (t)]vect(I) + q1N2

)
=

(
+∞∑
i=0

(
(1− l)2E[P (t)⊗ P (t)]

)i)
l2rE[P (t)⊗ P (t)]vect(I)+

+

(
+∞∑
i=0

((1− l)2E[P (t)⊗ P (t)]i

)
q1N2

= l2r
+∞∑
i=0

(1− l)2iE[P (t)⊗ P (t)]i+1vect(I) + q
+∞∑
i=0

(1− l)2i1N2

= l2r
+∞∑
i=0

(1− l)2iE[P (t)⊗ P (t)]i+1vect(I) +
q

1− (1− l)2
1N2 , (5.10)

that is,

Σ(∞) = l2r
+∞∑
i=0

(1− l)2iLm(i+1)(I) +
q

1− (1− l)2
11T . (5.11)

We are in particular interested in computing trΣ(∞).

trΣ(∞) = l2r

+∞∑
i=0

(1− l)2itrLm(i+1)(I) +
qN

1− (1− l)2
(5.12)

Unluckily, we did not manage to �nd a closed form for

+∞∑
i=0

(1− l)2iLm(i+1)(I)

but the result we proposed in Chapter 4 can be used to obtain an upper�
bound for trLm(i+1)(I) that allows to compute an upper�bound on trΣ(∞).
In fact, Corollary 13 gives immediately the following
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Proposition 22. Given any symmetric matrix alphabet {Qα α ∈ A}, then,
for all i ∈ N,

trLi(I) ≤ tr
(
E
[
Q2(t)

]i)
. (5.13)

This upper bound allows us to analyze the N ×N matrix E[Q2(t)] rather
then the linear operator L, described by the N2×N2 matrix E[Q(t)⊗Q(t)].
Note, moreover, that E[Q2(t)] can be computed quite easily given a commu-
nication strategy and a graph while this is not the case for E[Q(t) ⊗ Q(t)],
as it has been remarked in [33].

Using the above mentioned upper�bound we get

trΣ(∞) = l2r
+∞∑
i=0

(1− l)2itrLm(i+1)(I) +
qN

1− (1− l)2

≤ l2r
+∞∑
i=0

(1− l)2itrE
[
Q2(t)

]m(i+1)
+

qN

1− (1− l)2

= l2r
+∞∑
i=0

(1− l)2i

N−1∑
j=0

λj

(
E
[
Q2(t)

]m(i+1)
)

+
qN

1− (1− l)2

=
N−1∑
j=0

l2r
+∞∑
i=1

(1− l)2i−2λmij
(
E
[
Q2(t)

])
+

qN

1− (1− l)2

=
N−1∑
j=0

l2r
λmj (E [Q2(t)])

1− (1− l)2λmj (E [Q2(t)])
+

qN

1− (1− l)2
.

5.4 Optimization

Let us start by studying the optimization problem of �nding l ∈ (0, 1) and the
probability distribution pα = P [Q(t) = Qα] such that 1

N
trΣ(∞) is minimized.

Numerical experiments show that this optimization problem is not convex.
Indeed, it is not convex even the problem of optimizing 1

N
trΣ(∞) only with

respect to pα and with l �xed. This fact is shown in �gure 5.1. Since the
problem of optimizing trΣ(∞) in not convex we rather consider the problem
of minimizing the proposed upper�bound on trΣ(∞)

1

N
trΣ(∞) ≤ J({pα}α∈A, l)
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Figure 5.1: Illustration that shows how to �nd {pα}α∈A that minimize
1
N

trΣ(∞, {pα}α∈A) is not a convex optimization problem while, on the con-
trary, the proposed upper-bound J(pα) is convex (proposition 23). To Both
the functions have been represented along the direction connecting two ran-
domly chosen points in the optimization space pA and pB.
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where

J({pα}α∈A, l) =
1

N

N−1∑
j=0

l2r
λmj (E [Q2(t)])

1− (1− l)2λmj (E [Q2(t)])
+

+
q

1− (1− l)2
. (5.14)

The above de�ned function J will be therefore taken as cost function while l
and {pα}α∈A, being the design parameters, are going to be our optimization
variables. It holds the following result.

Proposition 23. The problem of minimizing the cost functional J({pα}α∈A, l)
in the variables l and {pα}α∈A is convex in l and in {pα}α∈A separately but
it is not jointly convex.

Proof.

It can be easily veri�ed computing the second derivate, the optimization of
the above functional for l ∈ (0, 1) and M �xed is a convex.

In [40] it has been shown that the problem of minimizing the cost function:

J̃(M, l) =
1

N

N−1∑
j=0

l2r
λmj (M)

1− (1− l)2λmj (M)
+

q

1− (1− l)2
(5.15)

over the set of symmetric stochastic matrices, compatible with the graph G,
is convex in M for l �xed.

Our cost functional J in (5.14) is the result of the composition of the cost
functional J̃ in (5.15) with the map M(pA):

pA 7−→M(pA) = EpA [Q(t)2] =
∑
α∈A

pαQ
2
α.

that goes from R|A| the set of stochastic matrices. Note that M(pA) is linear.
Therefore if J̃ in (5.15) is convex, so it is the composed map J = J̃(l,M(pA)).
We have therefore that the problem of minimizing (5.14) is convex for l ∈
(0, 1) �xed.

To prove that the optimization problem is not jointly convex in l and
{pα}α∈A consider the following counterexample.
Set process parameters as r = 10, q = 1 and set N = 2, m = 1.
Let A = {1, 2} and consider the following alphabet {Qα α ∈ A} of symmetric
and stochastic matrices:

{Qα α ∈ A} =

{
Q1 =

[
1 0
0 1

]
, Q2 =

1

2

[
1 1
1 1

]}



94 5. Randomized Gossip Kalman Filter

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
7.46

7.48

7.5

7.52

7.54

7.56

7.58

7.6

ξ

J
( 

l,
p

α
 )

 

 

J( l,p
α
 )

ξ J
A
+ (1−ξ)J

B

Figure 5.2: Representation of the counterexample presented in the proof of
proposition 23. It is depicted the cost function along the direct connecting
xA and xB: J(ξxA + (1− ξ)xB). Clearly the function is not convex.

Consider the following two points in the optimization space:

xA = ({pAα}α∈A, l1) = ([0.1 0.9], 0.75)

xB = ({pBα}α∈A, l2) = ([0.9 0.1], 0.5)

The computation of the cost functional gives us that

J(
1

2
xA +

1

2
xB) = 7.53 � 7.51 =

1

2
J(xA) +

1

2
J(xB).

This shows that the cost function is not jointly convex in ({pα}α∈A, l), as
depicted also in �gure 5.2. �

Therefore, Proposition 23 shows that minimizing J with respect to pα is
an intrinsically easy problem and can be solved using any standard convex
optimization technique. Even on a numerical point of view, one can make
use of one of the many convex optimization software available.
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Figure 5.3: Topology of the network under study

On the contrary the non convex problems of minimizing the cost func-
tional J({pα}α∈A, l) jointly in the variables l and {pα}α∈A and of minimizing
1
N

trΣ(∞) are far less simple, the main problem being the fact that an opti-
mization algorithm may end up on a local minimum or present a very low
convergence rate.

5.5 Simulation Results

As an example to illustrate the results proposed in the previous sections, we
consider a network of N = 15 agents. To simulate the behavior of a wire-
less sensor network, we choose as communication graph a geometric random
graph. More precisely, nodes are randomly deployed in a square with side
length 1m and we assume that two nodes can exchange information if their
distance d is less than a visibility radius rv = 0.4m. The topology of the
network we obtained is depicted in �gure 5.3.

The model noise variance of the process to be estimated is chosen q = 10
while the measurement noise variance is chosen r = 100.

We consider the symmetric gossip strategy: if the link (i, j) is selected,
the corresponding consensus matrix Qij is:

Qij = I − 1

2
(ei − ej)(ei − ej)T
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Figure 5.4: Cost function for various selection probabilities

where ei is the vector having all entries equal to 0 except a 1 in position i. In
�gure 5.4 it is reported the comparison of three di�erent selection strategies.
More precisely it is depicted the value of the cost function (5.14) for l =
0.5 and for di�erent values of m, the number of communications between
two subsequent measurements. The three di�erent selection strategies we
compare are:

• UPoE, Uniform Probability over the Edges: All links are selected with
the same probability, puij = 1

|E| .

• UNUNN Uniform Node Uniform Neighbor Node: At each time instant
one node randomly wakes up, with uniform probably among all nodes.
This node picks up randomly one node with uniform probability among
all its neighbor nodes. Therefore the selection probability of the link
(i, j) is: pij = 1

N
1

degree(i)
.

• Optimal: popt is the probability that minimize the cost function (5.14).
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Figure 5.4 shows that, at least in this example, optimization does not seem to
give a signi�cant improvement in the estimation performance and the easily
implementable strategy UNUNN gives performance which is quite close to
the optimal selection strategy. Moreover, it can be noted that, over a certain
value of m, m̄ ∼= 300, there is no more performance di�erence between the
three strategies. This is due to the fact that whenm is large there are enough
communications to reach consensus between two subsequent measurements
independently of the selection strategy. No further estimation improvement
can therefore be obtained. Analogously, if only very few communications
are allowed between 2 measurements, the impact of the optimization is very
little.

However, it has to be noted that for m in the range N < m < 10N , op-
timization may play an important role. In fact, the same estimation perfor-
mance is reach by the optimized strategy with a signi�cantly smaller amount
of communications with respect to UNUNN. For instance, �gure 5.4 shows
that the performance achieved by the optimal strategy form = 150 is reached
by UNUNN only for m = 300.

Finally, we one could wonder if the optimized selection strategy still per-
forms better that UNUNN and UPoE also with respect to the original per-
formance assessment criterion, 1

N
trΣ(∞). All we can say on this issue is that

the answer was a�rmative in all the simulations we have performed. In �g-
ure 5.5 we depict the assessment functions J (thick line) and 1

N
trΣ(∞) (thin

line) for the three strategies presented.

5.6 Final Comments and Open Issues

In this chapter we analyzed a randomized version of the distributed Kalman
�lter proposed in [40]. We carried out a worst-case analysis, that leaded to
an over�pessimistic characterization of the algorithm, and a more signi�cant
mean�square analysis, proving that the error variance remains bounded and
providing an upper�bound for this quantity.

Moreover, we studied the problem of minimizing the proposed upper�
bound and we showed that this problem is convex in the selection probabili-
ties and in the Kalman gain separately, but not jointly convex.

Simulations are �nally presented. They seem to show that optimiza-
tion does not give a signi�cant improvement in the estimation performance.
Whether or not this is a general fact for the proposed algorithm is an is-
sue that deserves to be explored in detail and that will be object of further
investigations.
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6
A distributed Kalman Smoother for spatially

distributed processes

In chapter 5 we considered the problem of estimating, in a distributed fash-
ion, a random process from noisy measurements collected by the nodes of a
network. The process to be estimated, x(t), was common for every sensor,
that is all the network is trying to compute the same signal. An application
that �ts in this scenario is, for instance, localization and tracking, where
all the network is cooperating to estimate the position of the same moving
object.

Yet, many applications involving sensor networks monitoring vast areas
do not �t in this framework but rather the set up in which each node i has to
estimate a state xi(t) which is di�erent from the states that other nodes are
assigned to estimate, xj(t) 6= xi(t) j 6= i. Nevertheless there is a correlation
between them, V(xi, xj) 6= 0, that is exploitable to improve the estimate
quality.

As an example, consider a sensor network that has been deployed to
monitor rooms' temperature in a building. In this case we are not interested
in estimating a common variable, say the average rooms' temperature, but
rather we want each node to evaluate the temperature of the zone where it
has been placed. The temperature of a room is a�ected by the temperature
of neighbor rooms and one would like to take advantage of this correlation.

Other examples range from environmental and scienti�c monitoring, where
one might spread out in the sea or in the atmosphere cheap sensors to mon-
itor polluting substances' di�usion or environmental changes, to pro�ling of
voltage drop along electrical lines and evaluation sea wave strength. More
generally, this framework comes into play whenever it is required to monitor
with a sensor network a physical quantity described by partial di�erential
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equations.
The distributed estimation problem in this scenario is rather hard and

many works in the literature deals only with the simpler case in which all
nodes measure the same quantity, as we did in chapter 5. It is clear that in
this new set up we can not use consensus as straightforwardly as we did in
chapter 5, since we do not want all nodes to agree upon a common value. We
mention here [67], where it is given a remarkable contribution to the scenario
of nodes cooperating to estimate di�erent but correlated quantities.

In this chapter we will consider this former scenario of nodes cooperat-
ing to estimate di�erent but correlated quantities and, as a �rst step in the
analysis of this challenging set-up, we focus on a simpli�ed case: rather then
considering time�varying states xi(t), we restrict to constant ones: xi(t) = xi.
We have therefore that every node has to estimate xi from a noisy measure-
ment of it, zi, and taking advantage of the measure zj of correlates states xj,
performed by other nodes. This could be for instance the case of a sensor
network deployed to estimate the temperature pro�le of a region.

Moreover we consider the simplest correlation structure between the pro-
cess at the nodes: xi is assumed to be independent from xj conditionally
to xi−1, xi+1. This is equivalent to assume that our process is Markov �eld
having as a graphical model a line.

Inference on graphical models such as Markov or Bayesian networks is an
important subject of research in many scienti�c �elds such as bioinformatics
and signal processing [68, 69]. Some popular methods for inference on such
structures include e.g. junction tree algorithms and variational methods as
described in [70] as well as Markov chain Monte Carlo methods [71, 72].

In this chapter we focus on simple graphical models de�ned by state space
models underlying Kalman smoothing. Our aim is to reconstruct the state
of a Gauss-Markov linear system by means of a decentralized optimization
scheme.

The aim of each node is to compute the minimum variance estimate of
its own state conditional on all the data acquired by the network. The
problem could be solved by using the well known Mayne-Fraser two-�lter or
the Rauch-Tung-Striebel smoothing algorithm. However, these approaches
are essentially serial in nature [73]. An interesting parallel smoothing scheme
is instead described in [74]. However, this approach has some important
limitations in the scenario of the sensor networks. In fact, after a series of
parallel processing of data in subintervals, it calls for a serial and expensive
exchange of information between all the nodes of the network.

In this chapter, we present a di�erent distributed smoother since it con-
sists of an iterative scheme where information exchange is limited to nodes
which are close to each other.
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Chapter organization

The chapter is organized as follows. In section 6.1, the estimation problem
is stated and in section 6.2 it is introduced an important notation that will
allow us to present the distributed smoothing algorithm, in section 6.3. In
section 6.4, we provide a convergence analysis of the algorithm by deriv-
ing explicitly the matrix which regulates the dynamics of the error, i.e. the
di�erence between the current estimate and the minimum variance one. In
section 6.5, a numerical example regarding the reconstruction of a function
and its derivative via cubic smoothing splines is used to test the new al-
gorithm and the theoretical �ndings. In the case where the state evolves
according to a random walk, the convergence rate is explicitly derived as a
function of the design parameters of the algorithm, as reported in section 6.6.
Interestingly, it is shown that a modest increase in the amount of communi-
cations performed at each iteration may lead to an exponential improvement
of the performance of the numerical scheme.
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x1 x2 x3 x4 x5 x6 x7 x8 x9

z1 z2 z3 z4 z5 z6 z7 z8 z9

Figure 6.1: Graphical model of the process under study, (6.1) and (6.2), for
N = 9.

6.1 Problem Description

Consider the graphical model depicted in �gure 6.1 where theN non-observable
states are denoted by {xk}, while {zk} are the noisy measurements. For in-
stance, in the scenario of sensor networks, zk can be thought of a measure-
ment vector collected by the k-th node whose aim is to estimate xk. The
joint density of {xk} is de�ned by the following recursive equation:

xk = Gkxk−1 + wk, wk ∼ N [0, Qk],
x0 ∼ N [x0, Q0]

k = 1, . . . , N (6.1)

where Gk ∈ Rn×n and wk ∈ Rn is zero-mean white Gaussian noise with
autocovariance Qk ∈ Rn×n. The measurements model is

zk = Hkxk + vk, vk ∼ N [0, Rk], (6.2)

where Hk ∈ Rm(k)×n and vk is zero-mean white normal noise of autocovari-
ance Rk ∈ Rm(k)×m(k). We also assume that {vk} and {wk} are all mutually
independent.

We would like to obtain an e�cient smoothing algorithm where the node
in charge of estimating xk is constrained to exchange information only with
its adjacent nodes (i.e. with the nodes handling the states xk−1 and xk+1) so
as to obtain a high level of parallelism.
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K(1) L(1) K(2) L(2) K(3)

x1 x2 x3 x4 x5 x6 x7 x8 x9

z1 z2 z3 z4 z5 z6 z7 z8 z9

1st group 2nd group 3rd group

1st group 2nd group

Figure 6.2: Example of the two nodes partitions prescribed by the algorithm.
In this case N = 9, p = 2 and J = 4. The �rst partition (red solid line) is
delimited by nodesK(j) j = 1, . . . , p while the second partition (green dashed
line) is delimited by nodes L(j) j = 1, . . . , p.

6.2 Notation

Let us introduce an important notation that will allow us to present the
smoothing algorithm.

As described in detail in the next section, the proposed algorithm pre-
scribes to divide the N nodes in two types of overlapping groups working in
parallel.
The �rst partition consists of p groups which, just for ease of notation, are
assumed to contain the same number of nodes, J + 1, with J an even integer
so that

N = Jp+ 1.

These assumptions can be easily removed without impact on the presented
results.

An example is given in Figure 6.2 with N = 9, p = 2 and J = 4.

The indices

K(j) = 1 + (j − 1)J (j = 1, · · · , p+ 1).

de�ne the boundaries of these �rst kind of groups and K(j) is a pointer to
the �rst node of the j-th group that is also the last node of the (j − 1)-th
group. This is graphically shown in of �gure 6.2.
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K(1) L(1) K(2) L(2) K(3)

x1 x2 x3 x4 x5 x6 x7 x8 x9

z1 z2 z3 z4 z5 z6 z7 z8 z9

1st group 2nd group

(a) The �rst partition, delimited by nodes K(j) j = 1, . . . , p.

K(1) L(1) K(2) L(2) K(3)

x1 x2 x3 x4 x5 x6 x7 x8 x9

z1 z2 z3 z4 z5 z6 z7 z8 z9

1st group 2nd group 3rd group

(b) The second partition, delimited by nodes L(j) j = 1, . . . , p.

Figure 6.3: Example of the two nodes partitions prescribed by the algorithm.
In this case N = 9, p = 2 and J = 4.
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XK(1) XK(2) XK(3)

x1 x2 x3 x4 x5 x6 x7 x8 x9

z1 z2 z3 z4 z5 z6 z7 z8 z9

ZK(1,2) ZK(2,3)

XK(1,2) XK(2,3)

(a)

XL(1) XL(2)

x1 x2 x3 x4 x5 x6 x7 x8 x9

z1 z2 z3 z4 z5 z6 z7 z8 z9

XL(1,2)XL(0,1) XL(p,p+1)

ZL(1,2)ZL(0,1) ZL(p,p+1)

(b)

Figure 6.4: Example of the notation introduced. In this case N = 9, p = 2
and J = 4.

Let X denote the entire state sequence {xk : k = 1, . . . , N}. We de�ne

XK = {xK(1), xK(2), . . . , xK(p+1)}
XK(j,j+1) = {xK(j), xK(j+1)} j = 1, · · · , p

as illustrated in �gure 6.4.
The second partition contains p+ 1 groups whose boundaries are de�ned by

L(j) = 1 + J/2 + (j − 1)J (j = 2, · · · , p)
that are also the middle nodes of the groups present in the previous partition,
see �gure 6.2. Also in this case, it is useful to de�ne

XL = {xL(1), xL(2), . . . , xL(p)}
XL(j,j+1) = {xL(j), xL(j+1)} j = 1, · · · , p− 1
XL(0,1) = {xL(1)}

XL(p,p+1) = {xL(p+1)}
as illustrated in �gure 6.4.
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Now, let Z = {zk : k = 1, . . . , N}. As it will be clear in the sequel, it
is useful to de�ne the following subsets of Z `contained' between, and not
including, the indexes j and k

ZK(j,j+1) = {zK(j)+1, · · · , zK(j+1)−1} j = 1, · · · , p
ZL(j,j+1) = {zL(j)+1, · · · , zL(j+1)−1} j = 1, · · · , p− 1
ZL(0,1) = {z1, z2, · · · , zL(1)−1}

ZL(p,p+1) = {zL(p)+1, · · · , zN−1, zN}

as shown in �gure 6.4.
We conclude this section dedicated to the notation recalling that vectors

are column vectors, E[·] denotes the expectation operator, given the random
vectors Y and W , V[Y,W ] is their covariance; i.e.,

V[Y,W ] = E
[
(Y − E[Y ])(W − E[W ])T

]
and we use the notation V[Y ] = V[Y, Y ].
Also we denote compactly V[Y |W ] = E[(Y −E[Y |W ])(Y −E[Y |W ])T ] the a
posteriori estimation�error variance.
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x1 x2 x3 x4 x5 x6 x7 x8 x9

z1 z2 z3 z4 z5 z6 z7 z8 z9

x3 x7

(a) Step 2: X`
3 and X`

3 are updated as if x1,x5 and x9 were exactly X`
1,X

`
5,X

`
9.

x1 x2 x3 x4 x5 x6 x7 x8 x9

z1 z2 z3 z4 z5 z6 z7 z8 z9

x1 x5 x9

(b) Step 3:X`
1, X`

5 and X`
9 are updated as if x3 and x7 were exactly X`+1

3 , X`+1
7 .

Figure 6.5: Graphical representation the key steps of the proposed algorithm

6.3 Algorithm

The smoothing algorithm is described below.

Step 1. Initialization:

At iteration ` = 0 the second partition is active. Let us consider the
j − th group, whose boundaries are nodes L(j − 1) and L(j). Node K(j),
the middle node of the group, computes an estimate of its state based only
the measurements collected by the nodes of its group ZL(j−1,j).

x0
K(j) = E[xK(j) | ZL(j−1,j)] for j = 1, . . . , p+ 1.

Therefore node K(j) is initialized with the best estimate computable using
the local measurements.

Step 2:

The �rst partition is active. Let us consider the j − th group, whose
boundaries are nodes K(j) and K(j+ 1). Node L(j), the middle node of the
group, updates the estimate X`

L(j) of its state xL(j). In doing so it uses only
the measurements collected by the nodes of its group ZK(j,j+1) and assumes
that the states xK(j) and xK(j+1) have been exactly estimated at the previous
step by nodes K(j) and K(j + 1). Namely, it computes its estimate as if
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xK(j) and xK(j+1) were exactly X
`
K(j) and X

`
K(j+1). Hence,

X`+1
L(j) = E[xL(j) | ZK(j,j+1) , XK(j,j+1) = X`

K(j,j+1)],

Step 3:

The second partition is active. Let us consider the j − th group, whose
boundaries are nodes L(j − 1) and L(j). Analogously to the previous step,
node K(j), the middle node of the group, updates the estimate X`

K(j) of its
state xK(j). In doing so it uses only the measurements collected by the nodes
of its group ZL(j−1,j) and assumes that the states xL(j−1) and xL(j) have been
exactly estimated at the previous step by nodes L(j−1) and L(j). Namely, it
computes its estimate as if xL(j−1) and xL(j) were exactly X

`+1
L(j−1) and X

`+1
L(j+1).

Hence,

X`+2
K(j) = E[xK(j) | ZL(j−1,j) , XL(j−1,j) = X`+1

L(j−1,j)],

Step 4:

The iteration between step 2 and step 3 leads to an improvement of the
estimate quality, as we will see more precisely in section 6.4.
Then, �x the exit parameter ε and
if there has been a signi�cant improvement in the estimate

|x`+2
K(j) − x`K(j)| ≥ ε

then set ` = `+ 2 and go to step 2.
Otherwise one can assume that the optimal estimate is achieved X`+2

K(j) =

E[xK(j) | Z] and the algorithm can move to Step 5.

Step 5. Final Step:

To conclude, note that from Markov property we have

E[xi | Z] = E[xi | ZK(j,j+1), XK(j,j+1)].

for any node i of the j-th group.
Therefore, compute all the other estimates of the j-th group as

E[xi | ZK(j,j+1) , XK(j,j+1) = X`+2
K(j,j+1)].

This concludes the algorithm. �

We point out that in order to perform step 2 node L(j) needs only local
informations, ZK(j,j+1) and X

`
K(j,j+1), which can be retrieved from neighbor
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nodes. Moreover, once L(j) has received ZK(j,j+1), the node can store it in
memory, so that at each iteration only X`

K(j,j+1) is need. Analogous consid-
erations hold for step 3.

To rewrite compactly the algorithm, note that, from the Markov property
for the state sequence, it follows

E[xL(j) | Z , XK ] = E[xL(j) | ZK(j,j+1) , XK(j,j+1)] (6.3)

E[xK(j) | Z , XL ] = E[xK(j) | ZL(j−1,j) , XL(j−1,j)] (6.4)

The algorithm becomes then

Algorithm 1. Given an algorithm convergence criteria ε, perform

1. Initialization: Set ` = 0 and X0
K

x0
K(j) = E[xK(j) | ZL(j−1,j)] for j = 1, . . . , p+ 1.

2. Compute X`+1
L = E[XL | Z , XK = X`

K ],

i.e., X`
L is updated as if XK was exactly X`

1, X
`
K .

3. Compute X`+2
K = E[XK | Z , XL = X`+1

L ],

i.e., X`
K is updated as if XL was exactly X`+1

L .

4. If |x`+2
K(j) − x`K(j)| ≤ ε for all j = 1, . . . , p+ 1

Return E[xk | Z , XK = X`+2
K ],

as the state estimate for k = 1, . . . , N .

5. Set ` = `+ 2 and go to step 2

In view of the above equations, the expectation in Step 2 can be com-
puted using p parallel procedures. Each of these parallel procedures solves a
smoothing problem over a set of J nodes where the state at the boundaries of
the set of nodes is given, as discussed in [75]. The computational complexity
of each of these parallel procedures is O(Jn3). A similar conclusion holds for
the expectations in Step 3 and Step 4.
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6.4 Convergence analysis

It is worth to recall �rst of all a well known formula about joint Gaussian
vectors (see e.g. [76]), reported in the following lemma.

Lemma 24. If Y,W are jointly Gaussian random variates, it holds that

E(Y |W ) = E(Y ) + V(Y,W )V(W )−1[W − E(W )] (6.5)

V(Y |W ) = E[(Y − E[Y |W ])(Y − E[Y |W ])T ] (6.6)

= V(Y )− V(Y,W )V(W )−1V(W,Y ) (6.7)

In the sequel, it is useful to de�ne the following notation for j = 1, . . . , p

Ξj = V
(
xK(j), XL(j−1,j) | ZL(j−1,j)

)
× V

(
XL(j−1,j) | ZL(j−1,j)

)−1

Πj = V
(
xL(j), XK(j,j+1) | ZK(j,j+1)

)
× V

(
XK(j,j+1) | ZK(j,j+1)

)−1

These matrices can be computed using (6.7) (for large values of J it may be
more e�cient and computationally stable to use [77, corollary 7]).

We use δ`K = X`
K −E[XK |Z] to denote the error for even values of `. We

also use δ`K(j,k) for the column vector

δ`K(j,k) := (δ`K(j), δ
`
K(k))

T

We use a similar notation for δ`L.

In the following we introduce the matrices E1, E2, . . . , Ep, where Ej ∈
Rn×2n if j ∈ {1, p} and Ej ∈ Rn×3n otherwise, where

E1 = Ξ1Π1

Ej = Ξj

(
Πj 0n×n

0n×n Πi+1

)
i = 2, . . . , p

Ep+1 = Ξp+1Πp,
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Then, we de�ne the block-tridiagonal matrix R associated with {Ei} to be


. . . . . . . . .

E2

Ep

E1

Ep+1

R =

, (6.8)

hence E0 speci�es the nonzero-entries in the �rst n rows, E1 the nonzero-
entries in the second n rows and so on. The next proposition characterizes
the error dynamics of the distributed smoothing algorithm.

Theorem 25. Let R be the block-tridiagonal matrix associated with the blocks
{Ei}, as above de�ned.

Then, it holds that

1. the error dynamics of the distributed smoothing algorithm at the nodes
{K(j)} are regulated by the equation

δ`+2
K = Rδ`K (6.9)

2. R is asymptotically stable, i.e. all its eigenvalues are inside the open
complex unit circle
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Proof.

Let's start focusing on the error propagation at a generic node K(j), with
1 < j < p, when ` is 0 or an even number. Step 2 of the algorithm computes

X`+1
L = E[XL | Z , XK = X`

K ]

by means of local computations; see (6.3). Exploiting (6.5), with Y = xL(j)

and W = XK(j,j+1) and both conditional on ZK(j,j+1), the linear projection
(6.3) admits the following decomposition

E[xL(j) | ZK(j,j+1) , XK(j,j+1)] = E[xL(j) | ZK(j,j+1)]
+V(xL(j), XK(j,j+1) | ZK(j,j+1))
×V−1(XK(j,j+1) | ZK(j,j+1))
×
(
XK(j,j+1) − E[XK(j,j+1) | ZK(j,j+1)]

)
Using our de�nition for Πj, this becomes

E[xL(j) | ZK(j,j+1) , XK(j,j+1)] = E[xL(j) | ZK(j,j+1)]
+Πj

(
XK(j,j+1) − E[XK(j,j+1) | ZK(j,j+1)]

) (6.10)

Taking the expected value E[·|Z] of both sides of the equation above, we
obtain

E[xL(j) | Z] = E[xL(j) | ZK(j,j+1)]
+Πj

(
E[XK(j,j+1) | Z]− E[XK(j,j+1) | ZK(j,j+1)]

) (6.11)

In the places where XK(j,j+1) is a �xed value, substitute xK(j) = x`K(j), and

xK(j+1) = x`K(j+1). Note that for these choices,

x`+1
L(j) = E[xL(j) | ZK(j,j+1) , XK(j,j+1)]

Now, with this choice, subtracting equation (6.11) from (6.10), we obtain

x`+1
L(j) − E[xL(j) | Z] = Πj

(
X`
K(j,j+1) − E[XK(j,j+1) | Z]

)
δ`+1
L(j) = Πjδ

`
K(j,j+1) (6.12)

We now move to consider Step 3 of the algorithm given by (6.4). We have

E[xK(j) | ZL(j−1,j) , XL(j−1,j)] = E[xK(j) | ZL(j−1,j)]
+V(xK(j), XL(j−1,j) | ZL(j−1,j))
×V−1(XL(j−1,j) | ZL(j−1,j))
×
(
XL(j−1,j) − E[XL(j−1,j) | ZL(j−1,j))

)
Using our de�nition for Ξj, this becomes

E[xK(j) | ZL(j−1,j) , XL(j−1,j)] = E[xK(j) | ZL(j−1,j)]
+Ξj

(
XL(j−1,j) − E[XL(j−1,j) | ZL(j−1,j))

) (6.13)
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Taking the expected value E[·|Z] of both sides of the equation above, we
obtain

E[xK(j) | Z] = E[xK(j) | ZL(j−1,j)]
+Ξj

(
E[XL(j−1,j) | Z]− E[XL(j−1,j) | ZL(j−1,j)]

) (6.14)

In the places where XL(j−1,j) is a �xed value, substitute xL(j−1) = x`+1
L(j−1),

and xL(j) = x`+1
L(j). Note that now for these choices,

x`+2
K(j) = E[xK(j) | ZL(j−1,j) , XL(j−1,j)]

Now, with this choice, subtracting equation (6.14) from (6.13), we obtain

x`+2
K(j) − E[xK(j) | Z] = Ξj

(
X`+1
L(j−1,j) − E[XL(j−1,j) | Z]

)
δ`+2
K(j) = Ξjδ

`+1
L(j−1,j)

Thus, using equation (6.12), we conclude that

δ`+2
K(j) = Ξj

(
Πj−1 0

0 Πj

)(
δ`K(j−1,j)

δ`K(j,j+1)

)
Note that, for 1 < j < N , the block matrix above is size n × 4n. But since
the values δ`K(j) are repeated, one can replace the block matrix by a n × 3n

matrix (as is done in the de�nition of Ej). Considering j = 1 and j = N as
special cases (where the matrix above is n×2n) equation (6.9) is immediately
obtained.
Viewing the algorithm as maximizing the likelihood function, it is a special
version of coordinated gradient method, see e.g. [78, 79], which is guaranteed
to converge to E[X|Z] for any initial point. Hence, all the eigenvalues of R
must be less than one [80]. �

6.5 Numerical example

We consider the problem of estimating in a distributed way the derivative of
an unknown function f from a �nite set of noisy measurements of f . Each
measurement is taken by distinct nodes. In particular, let X1(t) denote the
derivative of the unknown function while X2(t) is its value. Our prior model
for f is given by the stochastic di�erential equation (see [81] or [82])

dX(t) = SX(t) dt+ T dB(t) (6.15)
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where B(t) is Brownian motion (its derivative is white noise) and

S =

(
0 0
1 0

)
, T =

(
10−3

0

)
This model provides the basis for a Bayesian interpretation of cubic smooth-
ing splines [83].
For s ≤ t, we use V(t|s) to indicate the covariance of X(t) given the value of
X(s) which, prior to knowing the system output measurements, satis�es the
di�erential Lyapunov equation (see [84, page 133 equation 4.138])

V(s|s) = 0

∂tV(t|s) = SV(t|s) + V(t|s)ST + TTT.

For our particular choice of S and T , we have

V(t|s) = 10−3

(
(t− s) (t−s)2

2
(t−s)2

2
(t−s)3

3

)
.

The distance between sampling points where each sensor is located is denoted
by ∆t. Thus, the transition model for k > 1 is represented by Gk ∈ R2×2

and Qk ∈ R2×2 where

Gk =

[
1 0

∆t 1

]
Qk = 10−3

(
∆t ∆t2

2
∆t2

2
∆t3

3

)
.

The initial state is given by x0 ∼ N [x0, Q0], where

x0 = X(t1), Q0 =

(
100 0
0 10

)
The measurement variance σ2 is known and direct measurements of X2(t)
are represented by Hk ∈ R2×2 and Rk ∈ R1×1 where

Hk = [0 1] , Rk = σ2 .

The speci�cations for the example are completed by the following choices:

N = 480 number of measurements
∆t = 1 spacing between nodes
σ2 = 1 measurement noise variance
vk ∼ N (0, Rk) simulated measurement noise
zk = hk[X(tk)] + vk simulated measurement value
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Figure 6.6: Cubic smoothing spline example: maximum absolute value of
the eigenvalues {λi} of matrix Γ regulating error dynamics as a function of
J de�ning the blocks size.

Given such speci�cations, Fig. 6.6 reports the maximum absolute value
of the eigenvalues {λi} of the matrix R as a function of J which de�nes
the size of the sensor blocks working in parallel. As a matter of fact, the
developed analysis makes available a clear picture on the error dynamics also
pointing out the importance of establishing a good trade o� between level
of parallelism and convergence rate of the iterative algorithm. For instance,
when the value of J is low, say J ≤ 8, a node is stressed with very high
frequency to produce a new estimate of its own state and to send it to its
adjacent node. However, even if this choice leads to a high level of parallelism,
Fig. 6.6 suggests the need of a very large number of iterations for obtaining an
acceptable level of accuracy in the estimate. In fact, the maximum modulus
of the eigenvalue is very close to 1. The situation changes when J increases
and a good trade-o� appears between 16 and 30 where eigenvalues vary from
0.7 to 0.2.
To corroborate the theoretical analysis, let's consider a realization of f drawn
from the prior and plotted in Fig. 6.7 (solid line). The aim is to reconstruct
the derivative of such function from the noisy measurements displayed as
circles in the same �gure. Fig. 6.8 reports the estimates of the derivative of
f obtained by the distributed Kalman smoother when J is 2 (top panels),
16 (middle) or 30 (bottom), for ` equal to 0,2 and 4. It is apparent that,
in practice, when J = 2 the algorithm will never converge to the minimum
variance estimate in reasonable time. On the other hand, when J = 16,
already for ` = 2 the algorithm returns an estimate su�ciently close to the
optimum.
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Figure 6.7: Cubic smoothing spline example: true function f (solid line) and
noisy measurements (circles).
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Figure 6.8: Reconstruction of the �rst derivative of f : minimum variance
estimate (thick line), estimates from the distributed smoother (thin line) as
a function of iteration number ` and size of nodes working in parallel (de�ned
by J).
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6.6 Analysis of λmax(R) in a special case

The curve reported in �gure 6.6 is particularly interesting since, being non-
linear, it suggests that a small increment in the block size J leads to a drastic
increment in the speed of convergence of the algorithm. This section is de-
voted therefore to the analysis of λmax(R) as a function of J . We restrict to
a special, yet signi�cant, case of the model (6.1), (6.2), the scalar random
walk. We derive an analytical expression for Πi(J), that tells how much an
error in the estimate of xK(j,j+1) a�ects the estimate of xL(j). This expression
is rather cumbersome and instead of handle it exactly, we study its asymp-
totic behavior in J showing that Πj(J) decreases as const · ν−J/2 as J goes
to in�nity, where ν > 1 depends on the process parameters.

We will then show that λmax(R(J)) asymptotically decreases as const·ν−J
as J goes to in�nity. For large vales of J the behavior of the curve of �g-
ure 6.6 is therefore theoretically characterized in this simple case.

Remark 4 (Notation). As we said, in this section we will often deal with
asymptotic analysis of functions in J . Recall that we write that f(J) ∼
g(J) i� lim f(J)/g(J) = 1 for J → +∞. Moreover we will denote with
C a generic constant whose exact amount is not of interest. To avoid
cumbersome notations, we allow C to represent di�erent constants, even
in the same formula.Some care has to be payed by the reader, since this
choice might be a little confusing in some cases: for instance [C C ]T might
represent any vector in R2, not only vectors of the form C [1 1]T . Whenever
it is necessary to emphasize the fact that two constants might take di�erent
value, we will denote them as C1 and C2 rather then with C .

Consider, as a special case of the model (6.1) and (6.2), the scalar random
walk:

xk+1 = xk + wk

x0 = x0

zk = xk + vk

k = 1, . . . N (6.16)

where the model noise wk is a white noise with variance λ, the initial condition
x0 is a zero mean Gaussian random variable having variance V(x0) and we
have access to noisy measurements of the state, zk. We assume that the
measurement noise, vk, is a white noise with variance σ mutually independent
of wk.

Consider then the projectors Πj and Ξj,

Πj = V
(
XL(j), XK(j,j+1) | ZK(j,j+1)

)
V
(
XK(j,j+1) | ZK(j,j+1)

)
.
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Πj tells us how much an error in the estimate of xK(j) and xK(j+1) a�ects
the estimate of xL(j) given Z and an analogous role is played by Ξj. In ap-
pendix 6.A we compute them exactly but we report here, in the following
proposition, an asymptotic results that describes the behavior of the projec-
tor Πj and Ξj a J goes to in�nity.

Proposition 26. Let us de�ne

ν = 1 +
λ

2σ
+

1

2

√
4λ

σ
+
λ2

σ2
≥ 1

Then, for all j = 1, ..., p,

Πj ∼ C ν−2J
[

C ν
3
2
J C ν

3
2
J
]
∼ ν−

J
2

[
C1 C2

]
Analogously j = 2, ..., p Ξj ∼ ν−

J
2

[
C1 C2

]
and moreover Ξ1 ∼ Ξp+1 ∼ C ν−

J
2 .

Proof.

See appendix 6.A. �

From the above mentioned result, we have therefore that

Ej = Ξj

[
Πj−1 0

0 Πj

]
∼ ν−

J
2

[
C C

]
ν−

J
2

[
C C 0
0 C C

]
∼ ν−J

[
C C C

]
∀j = 2, . . . , p

and analogously

E1 = Ξ1Π1 ∼ ν−J
[

C C
]

Ep+1 = Ξp+1Πp ∼ ν−J
[

C C
]

The matrix R de�ned in (6.8) is then a tridiagonal matrix having all entries
ri,j ∼ C ν−J , which leads to the following result:

Proposition 27. All the eigenvalues of R have the same asymptotic behav-
ior,

λ(R(J)) ∼ C ν−J ,

in particular λmax(R(J)) ∼ C ν−J .

Proof.

The proof follow directly form the following, more general, linear algebra
fact:
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Lemma 28. Consider a matrix A whose entries are function of J ai,j(J). If
all the entries are asymptotically equivalent to a function f(J) as J goes to
in�nity, ai,j(J) ∼ Ci,jf(J) then also λ(A(J)) ∼ C ν−J

Proof of lemma 28.

ai,j(J) ∼ f(J) ⇔ lim
J→+∞

ai,j(J)

f(J)
= Ci,j

therefore

lim
J→+∞

1

f(J)
A = [Ci,j]

Recall moreover that the roots of a polynomial are continuous function of its
coe�cients. This implies that the eigenvalues of a matrix, being the roots of
the characteristic polynomial, are a continuous function of the matrix entries.
We have hence that

lim
J→+∞

1

f(J)
λ(A) = λ([Ci,j])

or equivalently the thesis. �

�

In �gure 6.9 we depict λmax(R) (solid thick line) and its asymptotic ap-
proximation C ν−J(dashed thin line) versus J , for various values of σ. In
the right panel a semilog scale is used, to highlight the good the matching
between the true function and its asymptotic approximation.

6.7 Final Comments and Open Issues

We have considered smoothing of Gauss-Markov linear systems via distributed
optimization. In the context of a sensor network, our problem amounts to
assuming that any node has access to noisy measurements of di�erent but
correlated states. Then, the aim is to reconstruct the overall state sequence
in a cooperative way, by taking advantage of all the data obtained by the
network. A parallel smoothing scheme has been presented together with a
convergence analysis. The latter points out the importance, in the algo-
rithm design, of �nding the right trade o� between parallelism and rate of
convergence toward the optimal estimate.

The algorithm presented in this chapter represents the very �rst step to-
ward more complex algorithms for the estimation of di�erent but correlated
time-varying quantities, such as variables that depends both on time and
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Figure 6.9: λmax(R) (solid thick line) and its asymptotic approximation
C νJ(dashed thin line) versus J , for various values of the parameter σ. In
the lower panel the same �gure is depicted in a semilog scale. Obtained for
λ = σ0 = 1.
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on space. E�ective distributed estimation techniques for quantities varying
both in time and in space could have relevant impact in many applications,
ranging form environmental or scienti�c monitoring, temperature pro�ling,
estimation of polluting agent di�usion, voltage drop along electrical lines or
evaluation sea wave strength. More generally, whenever a sensor network
is required to monitor a physical quantity described by partial di�erential
equations these techniques come into play.

Further steps along this research should start from the extension of the
proposed method, and its convergence analysis, to more general and complex
graphical models. Afterwards the case of a time-varying signal needs to be
addressed.
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6.A Appendix

This appendix is devoted to the computation of the projectors Πj and Ξj

Πj = V
(
xL(j), XK(j,j+1) | ZK(j,j+1)

)
V
(
XK(j,j+1) | ZK(j,j+1)

)
in the case of noisy measurements of a scalar random walk, (6.16).

6.A.a Exploiting random walk structure

To compute Πj let us consider the j-th block of nodes.
Let us introduce a new node index, h, such that k = K(j) + h. Hence h
describes the position of a node of the j�th block with respect to the initial
node K(j). The model for the states of the j�th block becomes then

xjh+1 = xjh + wjh

xj1 = xK(j)

zh = xjh + vjh

h = 1, . . . , J + 1. (6.17)

In this way the dependence on j is all contained in the initial condition xj1.
For this reason we will use the indexing h from now on. Let us collect all the
J + 1 states associated with the j�th block nodes in the vector

Xj = [xj1, . . . , x
j
J+1]

and the associated measurements in the vector Zj. Recall that V(wh) = λ,
V(vh) = σ and denote with λ0 = V(xK(j)) = V(x0) +K(j)λ.

It is easy to see that:

V(Xj) = λ011
T + λ


1 1 . . . 1
1 2 . . . 2
...

...
. . .

...
1 2 . . . N


and

V(Zj) = V(Xj) + σI.

Note moreover that V(XjZj) = V(Xj).
Alternatively one can note that (6.17) can be rewritten as

Xj =


0
1 0

1 0
. . . . . .

1 0

Xj +


1
0
...

0

x1 +Wj,
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where Wj is the vector having entries wjh. Therefore,

BXj = e1x0 +Wj,

where e1 = [1, 0, . . . , 0]T and

B =


1
−1 1

−1 1
. . . . . .

−1 1

 .
It can easily be veri�ed that

B−1 =


1
1 1
...

. . . . . .

1 . . . 1 1


and hence, noting that B−1e1 = 1, we get

V(Xj) = λ0B
−1e1e

T
1B
−T + λB−1BT (6.18)

= λ011 + λB−1BT

The evaluation of the projector Πj requires the knowledge of some elements
of the a�posteriori estimation error variance

V(Xj|Zj) = V(Xj)− V(XjZj)V(Zj)
−1V(XjZj)

T ,

speci�cally of those in positions:

(1, 1), (J + 1, J + 1), (J + 1, 1), (1, J/2), (J/2, J + 1), (J/2, J/2)


Note that

V(Xj|Zj) =
(
V(Xj)− V(XjZj)V(Zj)

−1V(XjZj)
)

=
(
V(Xj)− V(Xj)

(
V(Xj) + σI

)−1V(Xj)
)

=
(
V(Xj)

−1 +
1

σ
I
)−1

,
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where in the last equality we used the matrix inversion lemma.
Using (6.18) we obtain

V(Xj)
−1 = (B−1(λ0e1e

T
1 + λI)B−T )−1 = BT (λ0e1e

T
1 + λI)−1B.

Since (λ0e1e
T
1 + λI) is a diagonal matrix its inverse can be easily computed

to be
1

λ
I −

(
λ0

λ(λ0 + λ)

)
e1e

T
1 .

Therefore

V(Xj)
−1 = −

(
λ0

λ(λ0 + λ)

)
e1e

T
1 +

1

λ
BTB

=
1

λ


2− λ0

λ0+λ
−1

−1 2 −1
. . . . . . . . .

−1 2 −1
−1 1

 ,

where we used the fact that BT e1 = e1. The a�posteriori error variance
becomes hence:

ΣX̃ = (Σ−1
X +

1

σ
I)−1

= λ



2− λ0

λ0+λ
+ λ

σ
−1

−1 2 + λ
σ
−1

−1 2 + λ
σ
−1

. . . . . . . . .

−1 2 + λ
σ
−1

−1 1 + λ
σ



−1

Thus we are interested to compute some elements of the inverse of a tridiag-
onal matrix of the form:

a −1
−1 b −1

−1 b −1
. . . . . . . . .

−1 b −1
−1 c



−1

(6.19)

where b ≥ 2.
The next section of this appendix is devoted to this aim.
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6.A.b Inversion of a tridiagonal matrix in the form (6.19)

We use the formula:

(A−1)i,j = (−1)j+i
Aj,i

det(A)

i.e.

A−1 =
1

det(A)

 A1,1 . . . (−1)1+J+1A1,J+1
...

...
(−1)J+1+1AJ+1,1 . . . (−1)J+1+J+1AJ+1,J+1


T

where Aji, known as adjugate, is the determinant of the square J×J matrix
obtained from A removing the row i and the column j.

As we will see, the computation of the elements of interest of A−1 reduces
to the computation of the determinant of tree special tridiagonal matrices
de�ned below

Mn =



a −1
−1 b −1

−1 b −1
. . . . . . . . .

−1 b −1
−1 c


(6.20)

Mn =



b −1
−1 b −1

−1 b −1
. . . . . . . . .

−1 b −1
−1 c


(6.21)

M̃n =



a −1
−1 b −1

−1 b −1
. . . . . . . . .

−1 b −1
−1 b


(6.22)

where the subscript n speci�es the dimension of the matrix: Mn,Mn, M̃n ∈
Rn×n
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Let us start, therefore, by determining the determinant of these matrices.
Note that:

detMn = b det

b −1 0

−1 b −1

−1 b −1

. . . . . . . . .

−1 b −1

0 −1 c




+

+ (−1)2+1(−1) det

b −1 0

−1 b −1

−1 b −1

. . . . . . . . .

−1 b −1

0 −1 c





= b det(Mn−1) + det

b −1 0

−1 b −1 0

−1 b −1

. . . . . . . . .

−1 b −1

0 −1 c




= b det(Mn−1)− det(Mn−2).

We have therefore a very simple second�order recursive relation that describes
detMn as n varies. The initial conditions are

detM1 = c (6.23)

detM2 = bc− 1 (6.24)

As it can be easily veri�ed, the recursive relation can be solved to obtain an
explicit form for det(Mn) as a function of n. De�ne

ν =
1

2
b+

1

2

√
b2 − 4
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and µ = 1
ν
, we get:

det(Mn) = c1ν
n + c2µ

n (6.25)

where c1 and c2 are two constants that can be easily determined by forcing
(6.25) to match the initial conditions (6.23). Note moreover that

ν ≥ 1

while µ ≤ 1.
Since we are interested in the asymptotic behavior of det(MJ) as J goes

to in�nity, we note that
det(Mn) ∼ c1ν

n.

Moreover, to our proposes, we are not interested to the exact value of the
the const c1, but rather to the fact that it is a constant. We will therefore
write

det(Mn) ∼ C νn,

according to the notation introduced in the remark 4 of section 6.6 .
Consider then detMn:

detMn = a det

a −1 0

−1 b −1

−1 b −1

. . . . . . . . .

−1 b −1

0 −1 c




+

+ (−1)2+1(−1) det

a −1 0

−1 b −1

−1 b −1

. . . . . . . . .

−1 b −1

0 −1 c




= a det(Mn−1)− det(Mn−2)

therefore
detMn ∼ C νn,
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in fact,

detMn ∼ ac1ν
n−1 − c1ν

n−2 = (aν − 1)
c1

ν2
kn.

Note that in this case the symbol C stands for the constant (aν − 1) c1
ν2 .

Analogously one notices that det M̃n obeys to the following recursion

det M̃n = b det M̃n−1 − det M̃n−2 (6.26)

det M̃1 = a (6.27)

det M̃2 = ab− 1 (6.28)

therefore
det M̃n = c3ν

n + c4µ
n

with c1 6= c3, c2 6= c4, since the initial conditions are di�erent. Also in this
case it holds that:

det(M̃n) ∼ C νn.

Finally we evaluate the elements of interest in A−1. To this aim, �rst of
all, note that

detA = detMJ+1 ∼ C νJ

and

A1,1 = det

a −1 0

−1 b −1

−1 b −1

. . . . . . . . .

−1 b −1

0 −1 c




= detMJ ∼ C νJ .

Moreover

AJ+1,J+1 = det

a −1 0

−1 b −1

−1 b −1

. . . . . . . . .

−1 b −1

0 −1 c




= det M̃J ∼ C νJ
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while

AJ
2

+1,J
2

+1 = det

a −1 0

−1 b −1

. . . . . . . . .

−1 b −1

0 −1 b −1 0

−1 b −1

. . . . . . . . .

−1 b −1

0 0 −1 c




= det M̃J

2
detMJ

2

∼ C νJ/2νJ/2 ∼ C νJ .

We get than that

A1,J+1 = det

a −1 0

−1 b −1

−1 b −1

. . . . . . . . .

−1 b −1

0 −1 c




= det

[
Upper�triangular Matrix

]
= (−1)J = 1
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Is is just a little more complex to determine A1,J
2

+1:

A1,J
2

+1 = det

a −1 0 0

−1 b −1

. . . . . . . . .

−1 b −1

−1 b −1

−1 b −1

. . . . . . . . .

−1 b −1

0 −1 c





= (−1)(−1)
J
2

+J
2 det

a −1 0 0

−1 b −1

. . . . . . . . .

−1 b −1

−1 b −1

−1 b −1

. . . . . . . . .

−1 b −1

0 −1 c




+

+ (−1)(−1)
J
2

+J
2

+1 det

a −1 0 0

−1 b −1

. . . . . . . . .

−1 b −1

−1 b −1

−1 b −1

. . . . . . . . .

−1 b −1

0 −1 c




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A1,J
2

+1 = (−1)J+1 det



−1 b −1
. . . . . . . . .

−1 b −1
−1 b

−1
b −1
−1 b −1

. . . . . . . . .

−1 b −1
−1 c


+

(−1)J+2 det



−1 b −1
. . . . . . . . .

−1 b −1
−1 b −1

−1 b
0 −1
0 b −1
0 −1 b −1
...

. . . . . . . . .

−1 b −1
0 −1 c


= − det

[
Upper Triangular

MJ
2

]
+ det

[
Upper Triangular ∗

Singular Matrix

]
= (−1)(−1)

J
2
−1 det(MJ

2
) + (−1)

J
2
−10

= (−1)
J
2 det(MJ

2
) ∼ C (−1)

J
2 νJ/2
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Analogously one gets

AJ
2
,J+1 = det

a −1 0

−1 b −1

. . . . . . . . .

−1 b −1

0 −1 b −1 0

−1 b −1

. . . . . . . . .

−1 b −1

−1 c





= (−1)(−1)
J
2

+J
2
−1 det

a −1 0

−1 b −1

. . . . . . . . .

−1 b −1

0 −1 b −1 0

−1 b −1

. . . . . . . . .

−1 b −1

−1 c




+

+ (−1)(−1)
J
2

+J
2
−1 det

a −1 0

−1 b −1

. . . . . . . . .

−1 b −1

0 −1 b −1 0

−1 b −1

. . . . . . . . .

−1 b −1

−1 c




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AJ
2
,J+1 = (−1)J det



a −1
−1 b −1

. . . . . . . . .

−1 b −1
0 b −1
0 −1 b −1
...

. . . . . . . . .

0 −1 b
0 −1


+

+ (−1)J+2 det



a −1
−1 b −1

. . . . . . . . .

−1 b
−1 b −1

. . . . . . . . .

−1 b
−1


= det

[
Upper Triangular ∗

Singular Matrix

]
− det

[
M J

2

Upper Triangular

]
= (−1)J/2−10 + (−1)J/2 det(M̃J

2
)

∼ C (−1)J/2νJ/2−1
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Summarizing we get

(A−1)1,1 =
detMJ

det(MJ+1)
∼ C

(A−1)J+1,J+1 =
det M̃J

det(MJ+1)
∼ C

(A−1)J/2+1,J/2+1 =
(−1)

J
2

+J
2AJ/2,J,2

det(A)
=

det M̃J/2 detMJ/2

det(MJ+1)
∼ C

(A−1)1,J+1 = (A−1)J+1,1 =
(−1)1+J+1A1,J+1

det(A)
=

1

det(MJ+1)
∼ C ν−J

(A−1)J/2+1,1 = (A−1)1,J/21 =
(−1)

J
2

+1A1,J
2

+1

det(A)
=

detMJ/2

det(MJ+1)
∼ C ν−J/2

(A−1)J/2+1,J+1 = (A−1)J+1,J/2+1 =
(−1)

J
2

+J+1A1,J
2

+1

det(A)
=

det M̃J/2

det(MJ+1)
∼ C ν−J/2

6.A.c Computing Πj

Using the results obtained so far we get

Πj = V([x1 xJ+1], xJ/2+1|Z)V−1([x1 xJ+1]|Z)

=

[
detMJ/2

detMJ+1

det M̃J/2

detMJ+1

]
·
[

detMJ

detMJ+1

1
detMJ+1

1
detMJ+1

det M̃J

detMJ+1

]−1

=
1

detMJ+1

[
detMJ/2 det M̃J/2

]
·
(

1

detMJ+1

[
detMJ 1

1 det M̃J

])−1

=
[
detMJ/2 det M̃J/2

]
· 1

detMJ det M̃J − 1

[
det M̃J −1
−1 detMJ

]

=
1

detMJ det M̃J − 1

[
detMJ/2 det M̃J − det M̃J/2

det M̃J/2 detMJ − detMJ/2

]T
which has the asymptotic behavior reported in Proposition 26:

Πj ∼ C ν−2N

[
C ν

3
2
J

C ν
3
2
J

]T
∼ ν−

J
2

[
C1

C2

]T
.

Since the asymptotic behavior of Πj is independent on the variance of the
initial condition, it is also independent on j and therefore on the index of the
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�rst node of the group K(j). We have also that

Ξj ∼ Πj ∀j = 2, . . . , p.

It is easy to see moreover that

Ξ1 = V(xJ/2+1, x1|Z)V−1(xJ/2+1|ZL(1,2)) ∼ C ν−
J
2

and that, analogously, Ξp+1 ∼ C ν−
J
2 .





7
Conclusions

Recently, we have assisted to a great technological improvement that has
made available, at very contained prices, microsensors with embedded com-
munication and processing functions. Networks of a number of these mi-
crosensors, interacting with each other and cooperating to reach a given
common objective, can be used in a great variety of applications and promise
to revolutionize our daily life. Some of the most promising applications for
sensor networks are monitoring of vast areas, cooperative estimation and
detection.

Nevertheless, these sensors have usually simple hardware, low computa-
tional power, little communication capabilities and they often have to work
making a careful usage of energy, which in turn is a very critical resource
in battery powered devices. For this reason, the development of e�cient
distributed estimation and data fusion algorithms becomes crucial to avoid
unmanageable computational and communicational burden on network bot-
tleneck nodes.

In this thesis we addressed some issues in this emerging �eld, both pre-
senting new algorithms and carrying out the analysis of solutions recently
appeared in literature. Most of the algorithms considered leverage on consen-
sus steps to distribute the computation among nodes. Consensus algorithms
are therefore used as a key module to build new estimation algorithms and
the rich consensus theory becomes a precious and pro�table toolbox for our
analysis.

For this reason we opened the thesis by reviewing, in Chapter 1, some
material on graph theory and consensus theory. In particular, we summa-
rize some convergence results both for the time-invariant and time-varying
case, with special attention to the important class of randomized algorithms.
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Probabilistic convergence results are presented and two important examples,
namely symmetric gossip and broadcast, are discussed and compared.

In Chapter 2 we considered the problem of computing global quantities,
i.e. quantities that are function of all the data collected in the network.
We reported a result that characterizes a class of global functions that can
be computed by means of consensus algorithms and we showed that many
problems of interest �t this class. In particular we describe how to cast into a
consensus problem the problem of computing generalized means, least square
estimate, maximum likelihood estimate and also Kalman estimate.

Nevertheless, the equivalence between the centralized algorithm and the
decentralized consensus-based algorithm relies on an asymptotic result. It
is not clear what is the behavior of these algorithms for �nite number of
iterations t.

The fact that consensus has to be reached for the algorithm to work, has
its most relevant impact in the Kalman �ler case. Indeed, in this example
the algorithm prescribes to perform a whole consensus algorithm run within
two subsequent measurements. Hence, the time available to the consensus
algorithm depends on the application and if it is not su�cient to reach con-
sensus, then the strategy is not guaranteed to achieve the centralized Kalman
�lter estimate.

For this reason, when the time between two subsequent measurements is
small, other strategies might be preferable. One of the possible alternative
strategies has been presented and analyzed in Chapter 5: it minimizes the
steady state estimation variance assuming that only a given amount m of
consensus iterations is exploitable.

In Chapter 3 we focused on one of the most important applications
of wireless sensor networks: localization and tracking. In particular, we
studied two problems arising when localization is based on the strength of the
radio signal received. Speci�cally, we �rst proposed a distributed strategy to
minimize the e�ects of unknown constant o�sets in the reading of the Radio
Strength Signal Indicator (RSSI), due to uncalibrated sensors.

The �eld of application of the proposed solution is de�nitely wider than
the few applications presented in this work. For example, the o�set removal
algorithm could also be used to detect malfunctioning sensors by observing
the magnitude of the compensation o�set ôi.

Then, we considered the problem of estimating the channel parameters
for a generic wireless sensor network in a distributed manner. To do so,
we formulated the estimation problem as global least-square problem, that
we solved using the distributed algorithm presented in Chapter 2. The pro-
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posed algorithms do not require any knowledge on the global topology of the
network nor on the total number of nodes.

Finally, we applied these algorithms to experimental data collected from
an indoor wireless sensor network.

In Chapter 4 we presented a new majorization inequality on the singular
values of the expectation of matrix�valued random variables' product. This
inequality, devised during the analysis the algorithm presented in Chapter 5,
is a general linear algebra result that can be useful in the analysis of the
convergence rate of general jump�Markov linear systems.

It is shown that, if the alphabet is made of normal matrices, then the
singular values of the matrix E[Qi . . .Q0Q

T
0 . . .Q

T
i ] are submajorized by the

singular values of E[Q0Q
T
0 ]i.

As a straightforward corollary of this result, we proposed a novel trace
inequality.

In Chapter 5 we considered the problem of estimating a random process
from noisy measurements, collected by a sensor network.

We analyzed a randomized version of the distributed Kalman �lter pro-
posed in [40]. In fact, in [40] it has been considered only the case of �xed com-
munication strategies, with constant consensus matrix. However, in many
practical cases this is just a rough model of communication in a sensor net-
work, that usually happens according to a randomized strategy. This strat-
egy is more properly modeled by assuming that the consensus matrices are
drawn, according to a selection probability, from an alphabet of matrices
compatible with the communication graph, at each time instant.

We carried out a worst-case analysis, that leaded to an over�pessimistic
characterization of the algorithm, and a more signi�cant mean�square analy-
sis, proving that the error variance remains bounded and providing an upper�
bound for this quantity.

This upper�bound is a good performance assessment index and therefore
it is assumed as a cost function to be minimized. Moreover we show that
the problem of minimizing this cost function by choosing the Kalman gain
and the selection probability is convex in each of the two variables separately
although it is not jointly convex. On the contrary, even the problem of
minimizing the trace of the estimation-error variance with respect to selection
probability is not convex.

Finally simulations were presented and the results discussed.

In Chapter 6 we considered the set up of a network of nodes cooperating
to estimate di�erent but correlated quantities. We assumed these quantities
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to be constant in time. We presented a cooperative smoothing algorithm for
Gauss-Markov linear models whose aim is to reconstruct the overall state
sequence in a cooperative way, by taking advantage of all the data obtained
by the network.

A convergence analysis was carried out, fully characterizing the gap be-
tween distributed and optimal estimate. This points out the importance, in
the algorithm design, of �nding the right trade-o� between parallelism and
rate of convergence toward the optimal estimate. In the simple yet signif-
icant case of a random walk, this issue has been further investigated. The
convergence rate has been studied as a function of J and we derived a simple
approximation of it for large values of J , suggesting that the it increases
exponentially with J .

We presented also some illustrative simulations. Even if the process was
more complicated than a random walk, simulations showed an exponential
improvement in rate of convergence as J increases, very similar to the one
we characterized in the simpler case.

7.1 Open Issues

Many intriguing issues still deserve to be explored and the material presented
here suggests, we hope, some further stimulating questions. We would like to
conclude this dissertation summarizing the issues we believe to be the most
interesting and relevant.

A �rst remark is that, although the optimal solution to many estima-
tion problems depends on the average of the initial conditions, there are
algorithms which do not guarantee convergence to the average, nonetheless
providing good performances. Therefore, there is a de�nite need to better
understand the trade-o�s between performance, rate of convergence, commu-
nication complexity and noise sensitivity for di�erent consensus strategies on
real wireless sensor networks.

Indeed, we showed how it is possible to cast a wide class of problems into
the consensus framework, including problems in which the agents have to
actually agree on a common estimate of few parameters (like in the least-
square �tting), and problems in which every agent has to estimate its own
parameter (like in the o�set-removal algorithm). This duality deserves fur-
ther investigation, possibly leading to a tighter relation between consensus
algorithms [14] and asynchronous parallel iterative methods for the solution
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of system of linear equations [55].

There is also an intriguing issue on a pure linear algebra point of view:
many numerical experiments support the conjecture that the majorization
inequality proposed in Theorem 12 holds true also in the case of stochastic,
possibly non-normal, matrices. Nevertheless, we expect an possible proof of
such a conjecture to leverage on arguments di�erent from the ones we used
here. In fact, normality is a key assumption in our proof and we do not see
how to take advantage of stochasticity in our arguments.

Moreover the analysis of the distributed Kalman Filter algorithm pro-
posed in Chapter 5 is restricted to the case of a random walk and an exten-
sion to more complicated models would certainly be of interest, although by
no mean trivial.

Simulations presented in Chapter 5 show that optimization of the selec-
tion probabilities does not give a signi�cant improvement in the estimation
performance. Whether or not this is a general fact for the proposed algorithm
is an issue that deserves to be explored in detail.

More on a long-term perspective, a systematic answer to the previous
question would represent a �rst important step toward the understanding
of a crucial issue: is optimization an e�ective and meaningful approach to
complex networks of thousands of interacting devices?

The algorithm presented in Chapter 6 represents the very �rst step toward
more complex algorithms for the estimation of di�erent but correlated time-
varying quantities, such as variables that depends both on time and on space.
The tremendous practical relevance of this set-up makes its investigation an
intriguing challenge. In fact, e�ective distributed estimation techniques for
quantities varying both in time and in space could have relevant impact in
many applications, ranging form environmental or scienti�c monitoring, tem-
perature pro�ling, estimation of polluting agent di�usion, voltage drop along
electrical lines or evaluation sea wave strength. More generally, whenever a
sensor network is required to monitor a physical quantity described by par-
tial di�erential equations these techniques come into play.

Further steps along this research should start from the extension of the
proposed method, and its convergence analysis, to more general and complex
graphical models. Afterwards the case of a time-varying signal needs to be
addressed.
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