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Abstract

Robotics systems are now increasingly widespread in our day-life. For instance, robots
have been successfully used in several fields, like, agriculture, construction, defense,
aerospace, and hospitality. However, there are still several issues to be addressed for
allowing the large scale deployment of robots. Issues related to security, and manufac-
turing and operating costs are particularly relevant. Indeed, differently from industrial
applications, service robots should be cheap and capable of operating in unknown, or
partially-unknown environments, possibly with minimal human intervention.

To deal with these challenges, in the last years the research community focused
on deriving learning algorithms capable of providing flexibility and adaptability to the
robots. In this context, the application of Machine Learning and Reinforcement Learning
techniques turns out to be especially useful.

In this manuscript, we propose different learning algorithms for robotics systems. In
Chapter 2, we propose a solution for learning the geometrical model of a robot directly
from data, combining proprioceptive measures with data collected with a 2D camera.
Besides testing the accuracy of the kinematic models derived with real experiments, we
validate the possibility of deriving a kinematic controller based on the model identified.

Instead, in Chapter 3, we address the robot inverse dynamics problem. Our strategy
relies on the fact that the robot inverse dynamics is a polynomial function in a particular
input space. Besides characterizing the input space, we propose a data-driven solution
based on Gaussian Process Regression (GPR). Given the type of each joint, we define
a kernel named Geometrically Inspired Polynomial (GIP) kernel, which is given by the
product of several polynomial kernels. To cope with the dimensionality of the resulting
polynomial, we use a variation of the standard polynomial kernel, named Multiplicative
Polynomial kernel, further discussed in Chapter 6. Tests performed on simulated and real
environments show that, compared to other data-driven solutions, the GIP kernel-based
estimator is more accurate and data-efficient.

In Chapter 4, we propose a proprioceptive collision detection algorithm based on GPR.
Compared to other proprioceptive approaches, we closely inspect the robot behaviors in
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quasi-static configurations, namely, configurations in which joint velocities are null or
close to zero. Such configurations are particularly relevant in the Collaborative Robotics
context, where humans and robots work side-by-side sharing the same environment.
Experimental results performed with a UR10 robot confirm the relevance of the problem
and the effectiveness of the proposed solution.

Finally, in Chapter 5, we present MC-PILCO, a model-based policy search algorithm
inspired by the PILCO algorithm. As the original PILCO algorithm, MC-PILCO models
the system evolution relying on GPR, and improves the control policy minimizing the
expected value of a cost function. However, instead of approximating the expected cost
by moment matching, MC-PILCO approximates the expected cost with a Monte Carlo
particle-based approach; no assumption about the type of GPR model is necessary. Thus,
MC-PILCO allows more freedom in designing the GPR models, possibly leading to better
models of the system dynamics. Results obtained in a simulated environment show
consistent improvements with respect to the original algorithm, both in terms of speed
and success rate.



Sommario

I robot sono sempre più diffusi nella nostra vita di ogni giorno, e sono stati utilizzati
con successo in diversi campi, come l’agricoltura, l’edilizia, la difesa, l’aerospaziale e
l’hospitality. Tuttavia, ci sono ancora diversi problemi che devono essere risolti per
consentire la distribuzione su larga scala dei robot. Particolarmente rilevanti sono le
questioni relative a costi di produzione e costi operativi, nonché le questioni relative
alla sicurezza. Infatti, diversamente dalle applicazioni industriali, i robot di servizio
dovrebbero essere economici e in grado di funzionare in ambienti sconosciuti o parzialmente
sconosciuti, possibilmente il con minimo intervento umano.

Per far fronte a queste sfide, negli ultimi anni la comunità di ricerca si è concentrata
sulla derivazione di algoritmi di apprendimento in grado di fornire flessibilità e adatta-
bilità ai robot. In questo contesto, l’applicazione delle tecniche di Machine Learning e
Reinforcement Learning risulta particolarmente promettente.

In questo manoscritto, proponiamo diversi algoritmi di apprendimento per sistemi
robotici. Nel Capitolo 2 proponiamo una soluzione data-driven per l’apprendimento del
modello geometrico del robot, combinando misure propriocettive con dati provenienti da
una videocamera 2D. Oltre a testare l’accuratezza dei modelli cinematici derivati con
esperimenti reali, abbiamo verificato la possibilità di derivare un controller cinematico
basato sul modello identificato.

Nel Capitolo 3 consideriamo il problema della dinamica inversa. La strategia proposta
si basa sul fatto che la dinamica inversa è una funzione polinomiale in un partiolare spazio
di input. Oltre che caratterizzare questo spazio degli input, proponiamo una soluzione
data-driven basata su Gaussian Process Regression (GPR). Dato il tipo di ciascun giunto,
abbiamo definito un kernel chiamato Geometrically Inspired Polynomial (GIP) kernel,
dato dal prodotto di diversi kernel polinomiali. Per far fronte alla dimensionalità del
polinomio risultante, abbiamo utilizzato una variante del kernel polinomiale standard,
chiamato Multiplicative Polynomial kernel, e analizzato in dettaglio nel Capitolo 6. Test
effettuati su ambienti simulati e reali mostrano che, rispetto ad altre soluzioni data-driven,
lo stimatore basato sul kernel GIP è più preciso e più data-efficient.
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Nel Capitolo 4, proponiamo un algoritmo propriocettivo di rilevamento delle collisioni
basato su GPR. Rispetto ad altre soluzioni propriocettive, abbiamo posto l’attenzione sui
comportamenti dei robot in configurazioni quasi statiche, vale a dire configurazioni in cui
le velocità dei giunti sono nulle o quasi nulle. Tali configurazioni sono particolarmente
rilevanti nel contesto della robotica collaborativa, in cui umani e robot lavorano fianco
a fianco condividendo lo stesss ambiente. I risultati sperimentali ottenuti con un robot
UR10 confermano la rilevanza del problema e l’efficacia della soluzione proposta.

Infine, nel Capitolo 5, presentiamo MC-PILCO, il nostro algoritmo di model-based
policy search, ispirato all’algoritmo PILCO. Come l’originale algoritmo PILCO, MC-
PILCO modella l’evoluzione del sistema basandosi su GPR, e migliora la policy di
controllo minimizzando il valore atteso di una certa funzione di costo. Tuttavia, PILCO
approssima il valore atteso del costo utilizzando moment matching. Al contratio, in
MC-PILCO l’aspettazione del costo è calcolata con un approccio Monte Carlo particle-
based, senza considerare alcuna ipotesi sul tipo di modello GPR utilizzato. In questo
modo, MC-PILCO consente una maggiore libertà nella progettazione dei modelli GPR. I
risultati ottenuti in simulazione mostrano miglioramenti consistenti rispetto all’algoritmo
originale, sia in termini di velocità che di percentuale di successo.
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1
Introduction

1.1 New challenges in Robotics

Robotic systems are becoming always more autonomous and reconfigurable, as well
as increasingly used in applications "out of the cage". Semi-autonomous and fully
autonomous robots have been successfully adopted to accomplish physically intensive and
dangerous tasks, in fields like aerospace, defense, agriculture, and construction Hajjaj and
Sahari (2016); Augugliaro, Lupashin, Hamer, Male, Hehn, Mueller, Willmann, Gramazio,
Kohler, and D’Andrea (2014); Longo and Muscato (2006); Hanjong Joo, ChiSu Son,
Kyunghun Kim, Kyunghwan Kim, and Jaejun Kim (2007). Other relevant examples are
collaborative applications, in which robots are intended to work side-by-side with humans,
possibly entailing also physical interactions Haddadin, De Luca, and Albu-Schäffer (2017).
The development of collaborative robots might have a great impact on several domains,
like hospitality, health-care and industry. For instance, in the medical field robots might
assist humans in rehabilitation from injuries Gelderblom, Wilt, Cremers, and Rensma
(2009), or in industrial applications, the robot working with a human being might relieve
him from the most physically demanding activities, Masinga, Campbell, and Trimble
(2015).

The large-scale use of robots entails also new challenges. A first aspect to be considered
is the reduction of manufacturing and setup costs. Indeed, in order to guarantee precision
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and repeatability, traditional industrial robots are made with high-quality components,
entailing manufacturing costs that prevent the large-scale deployment of robots. Moreover,
considerable additional costs are due to the employment of high-qualified personnel in
setup activities, like calibration and programming. On the other hand, the use of
low-quality components augments measurement noise, wear, and uncertainty about the
parameters of the robot, possibly leading to consistent discrepancies between the real and
the expected behaviors of the robot. In this context, standard identification techniques
based on first-principles of physic and prior knowledge about the robot parameters might
be not enough robust to deal with unmodeled behaviors and model bias. Consequently,
several black-box solutions for deriving estimators of the robot kinematics and dynamics
models have been proposed in recent years, relying on the use of tools like Gaussian
Process Regression and Neural Networks Rasmussen and Williams (2006); Schölkopf
and Smola (2001); Hinton (1988); Goodfellow, Bengio, and Courville (2016). Besides
limiting the human-intervention, such techniques allow modeling complex behaviors and
reducing effects due to model bias. On the other hand, learning a model purely from
data is a challenging task as concerns generalization, namely, the estimation accuracy
might decrease significantly when testing the estimator in input locations that are far
from the distribution of the training samples. The difficulties of guaranteeing good out of
sample performance pose serious questions about the applicability of such techniques in
real applications, and motivate the interest in hybrid solutions, merging prior knowledge
about the model with information coming from data.

Bringing robots "out of the cage" entails also several issues related to safety, in
particular when robots work side-by-side with humans. In the last decade, several efforts
have been made to derive planning algorithms that enable robots and humans to share
the same workspace. Traditional planning strategies have been modified to minimize
the risk and the intensity of collisions. The solutions proposed are based on the use of
proximity sensors and 2D cameras, as well as on a probabilistic characterization of human
behaviors Ebert and Henrich (2002); Landi, Ferraguti, Costi, Bonfè, and Secchi (2019).
However, due to the unpredictability of human behaviors, it is impossible to reduce the
collision risk to zero. Moreover, there are applications in which humans and robots need
to interact physically. Consequently, it is fundamental that robots are provided with
tools for detecting collisions, as well as for estimating their intensity. The strategies
proposed can be broadly divided into two sets. The first set accounts for solutions that
use ad-hoc sensors to detect collisions, like six-axis force sensors and artificial skins Cirillo,
Ficuciello, Natale, Pirozzi, and Villani (2016). The second set instead, groups all the
algorithms that detect collisions combining the knowledge of the robot dynamics with
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proprioceptive measures, such as position, velocities, accelerations, and torques of the
joints Haddadin et al. (2017). The main limitations of using ad-hoc sensors are related
to the costs and sensitivity of the sensors. For instance, consider a standard manipulator
with six degrees of freedom. The cost of providing each joint of the manipulator with a
six-axis force sensors might be higher than the cost of the whole manipulator. From this
point of view, the second class of solutions seems to be more convenient and has attracted
the attention of the research community. The most performing strategies are based on
first-principles models of the robot dynamics described by the Lagrangian equations,
and on the possibility of measuring joints torques. However, it is worth mentioning
that, when considering low costs hardware, typically, robots are not equipped with joints
torque sensors. Moreover, as mentioned before, traditional modeling techniques might
not be sufficiently accurate, compromising significantly the performance of proprioceptive
techniques.

Finally, in recent years, the application of Reinforcement Learning techniques to
robotic systems has attracted the attention of the Robotics community. This emphasis is
motivated by the impact that Reinforcement Learning could have on the deployment of
robotic systems. Indeed, several studies show that a considerable amount of the operating
costs are due to setup and programming activities. As well as requiring high-qualified
personnel, such activities could be needed frequently, due to several aspects, like, wear,
setup changes, or variation of the task to be accomplished. Differently than in industrial
applications, the costs due to such activities are not sustainable in the context of service
robotics, where setup and task variations are more frequent. Reinforcement Learning
techniques could decrease significantly such costs, providing to the robots the capabilities
of adapting to tasks and setup variations. Indeed, Reinforcement Learning algorithms
have been able to reach and exceed human-level performance in several benchmark
problems, such as playing chess, go and shogi Silver, Hubert, Schrittwieser, Antonoglou,
Lai, Guez, Lanctot, Sifre, Kumaran, Graepel, Lillicrap, Simonyan, and Hassabis (2018).
Despite these remarkable results, the application of Reinforcement Learning to robotic
systems is still a challenge, because of the large amount of experience required and
the safety risks associated with random exploration. Partial improvements have been
obtained relying on Model-Based Reinforcement Learning techniques, see for instance
Deisenroth and Rasmussen (2011); Todorov and Li (2005); Levine and Abbeel (2014).
Experimental results show that providing an explicit model of the physical system allows
considerable decreases of the experience time required to converge to good solutions,
while also reducing the risk of damage to the hardware during exploration and policy
improvement. However, several improvements are still needed to derive safe and robust
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algorithms.

1.2 Manuscript overview

This manuscript collects several learning algorithms useful to deal with part of the
aforementioned problems. In chapters 2 and 3 we present two black-box solutions for
the identification of the robot kinematics and dynamics. In particular, in Chapter 2
we propose a framework to learn the robots’ geometrical model from time-series of
visual observations, collected with a 2D camera. The framework is particularly useful
in contexts where the prior knowledge about the robot geometry is partial, or null.
An example is Modular Robotics Hornby, Lipson, and Pollack (2003); Gilpin and Rus
(2010); Yim, Duff, and Roufas (2000); Yim, Shen, Salemi, Rus, Moll, Lipson, Klavins,
and Chirikjian (2007); Brodbeck and Iida (2012); Guan, Jiang, Zhangy, Zhang, and
Zhou (2009); Sprowitz, Pouya, Bonardi, Den Kieboom, Mockel, Billard, Dillenbourg, and
Ijspeert (2010). Modular robots are composed of different elementary building blocks,
and, interchanging, adding or subtracting these elementary modules, modular robots can
variate their geometry. Firstly, the algorithm identifies the robot kinematic structure,
namely, a high-level description of the robot that defines the connections between links
and joints, as well as the type of each joint. Secondly, a model of the forward kinematics
is identified relying on Gaussian Process Regression techniques. The effectiveness of the
proposed solution is evaluated with tests in simulated and real environments. Part of the
contributions reporter in Chapter 2 are based on Dalla Libera, Terzi, Rossi, Susto, and
Carli (2019a)

The inverse dynamics identification problem is considered in Chapter 3. After
discussing the different solutions proposed in the literature, we describe our black-box
strategy based on Gaussian Process Regression. The main idea supporting our approach
relies on the fact that the inverse dynamics is a polynomial function in an augmented
space of the inputs traditionally considered in inverse dynamics identification, namely,
positions, velocities, and accelerations of the joints. Besides characterizing the polynomial
function in terms of the maximum relative degree of each variable, we propose a kernel
that encodes all the monomials of the polynomial space containing the inverse dynamics.
We named the proposed kernel Geometrically Inspired Polynomial kernel because it is
fully defined by the robot kinematic structure. Tests performed in simulated and real
environments show that, compared to other black-box solutions, the proposed approach is
more data-efficient, and performs better in out of sample estimation. Finally, in Chapter
3 we briefly introduce the Multiplicative Polynomial kernel a refinement of the standard
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polynomial kernel, used to derive the Geometrically Inspired Polynomial kernel. The
properties of the Multiplicative Polynomial kernel are investigated in depth in Chapter 6.
The contributions of Chapter 3 are based on Dalla Libera and Carli (2020)

Chapter 4 is about proprioceptive collision detection. In this chapter, we propose
a collision detection strategy based on Gaussian Process Regression. Considerable
attention is devoted to problems raising in quasi-static configurations, namely when
joints velocities are small or null. Such configurations are particularly relevant in
collaborative applications, give that, when robots work side-by-side with humans, joints
velocities are limited due to safety reasons. In quasi-static configurations behaviors due
to friction become particularly relevant and hard to be modeled. Inaccuracies of the
inverse dynamics model could compromise also the performance of the collision detection
algorithm. Analyzing examples of these singular behaviors in a real setup, we show
how traditional identification strategies can not model similar behaviors. Driven by this
consideration, we propose a collision detection algorithm based on a modification of
Gaussian Process Regression models typically used for identifying the inverse dynamics.
Experiments performed with a real robot show the effectiveness of our approach. Part of
the contributions presented in Chapter 4 are based on Dalla Libera, Tosello, Pillonetto,
Ghidoni, and Carli (2019b)

In Chapter 5 we introduce MC-PILCO (Monte Carlo Probabilistic Inference for
Learning Control), a model-based policy gradient algorithm that relies on Gaussian
Process Regression and Monte Carlo sampling. The algorithm is inspired by the PILCO
(Probabilistic Inference for Learning Control) algorithm and tries to cope with two
possible limitations of the original algorithm. In PILCO, the system evolution is modeled
with a Gaussian process. The algorithm updates the policy parameters, i.e., the control
function, minimizing the expected value of a cost function, computed w.r.t. the probability
distribution induced by the Bayesian model learned from data collected during interactions.
The cost function is a map of the system states, incorporating information about the
task to be solved, e.g., reach a particular state. However, the exact computation of
this expectation is not feasible, due to the impossibility of deriving a closed form of
the long-term state-distribution. In PILCO, an approximation of the objective function
is derived in closed form, relying on moment matching, and assuming that long-term
state predictions are Gaussian-distributed. Firstly, to compute the moments in closed
form, PILCO requires the use of Radial Basis Functions kernels, preventing the adoption
of more structured kernels. Secondly, approximating the expected state distributions
with Gaussian variables allows modeling only unimodal distribution, possibly leading
to considerable discrepancies between the predicted states and the predicted behaviors.
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In our work, we approximate the expectation of the cost function relying on Monte
Carlo simulation. In this manner, as well as allowing the freedom of choosing any kernel
function to model the system, we do not introduce constraints on the distribution of the
long-term predictions. Results obtained in a simulated carpole system prove that the
combination of these two aspects leads to consistent performance improvement.

Finally, as mentioned before, in Chapter 6 we further inspect the properties of the
Multiplicative Polynomial Kernel. The proposed kernel is applied to the identification of
Volterra Series, a class of models used in System Identification to represent nonlinear sys-
tems. Volterra series are strictly connected with the Taylor expansion of the input-output
impulse response, and, when working in discrete time, they are polynomial functions
in the lagged inputs. With such models, the problem is the course of dimensionality.
The number of coefficients to be identified is proportional to the number of possible
monomials, namely, it grows exponentially with the system memory and the polynomial
degree. This fact makes the Volterra series identification a particularly challenging task.
After providing a formal definition of the proposed kernel, in Chapter 6 we compare its
regularization properties with the ones of the standard polynomial kernel. The Multiplica-
tive Polynomial Kernel is equipped with a richer set of hyperparameters that provides
more flexibility in penalizing the monomials that really influence the system output. This
fact leads to better performance in terms of data-efficiency and out of sample accuracy,
as confirmed by experimental results. Part of the contributions presented in Chapter 6
are based on Dalla Libera, Carli, and Pillonetto (2019c)

1.3 Background on Gaussian Process Regression

We conclude this chapter providing background notions about Gaussian Process Re-
gression (GPR), given that we will use this tool in all the next chapters. GPR is a
Bayesian estimation tool successfully used in different fields, thanks to its capability
of representing a wide range of models, as well as providing information about the
uncertainty of the estimate. For a detailed discussion about GPR, we refer the interested
reader to Rasmussen and Williams (2006) , in particular, Chapter 2.

Let y ∈ RN be a vector of N observations, and denote by X the set of the corre-
sponding n-dimensional input vectors, namely,

y =
[
y1 . . . yN

]T
, X = {x1, . . . ,xN} .

Then, when modeling the input-output relation with a Gaussian process (GP), the
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following probabilistic model is assumed

y =


f(x1)

...
f(xN )

+


e1
...
eN

 = f(X) + e ,

where e is Gaussian i.i.d. noise with standard deviation σn, while f is an unknown
function of the inputs, modeled as a GP, namely, we have f(X) ∼ N(mf ,K(X,X)); mf

and K(X,X) define the prior probability distribution of f . The matrix K(X,X), also
named kernel matrix, is defined through a kernel function, i.e., a function mapping a
couple of inputs vector in R. Denote the kernel by k(·, ·) : Rn × Rn → R. Then, E[yi, yj ],
the K(X,X) entry at row i and column j, is equal to k(xi,xj). To be a valid kernel, i.e.,
to generate valid covariance matrices, k(·, ·) must be symmetric and positive semi-definite:

• k(xi,xj) = k(xj ,xi);

• vTK(X,X)v ≥ 0 ∀N ∈ N and ∀v ∈ RN .

Remarkably, starting from the Bayes rule, and exploiting the properties of the Gaussian
distribution (see Rasmussen and Williams (2006) for details), we obtain that the posterior
probability of f given the training samples (X,y) is Gaussian, with mean and covariance
that can be computed in closed form. Let x∗ be a generic input location, and denote by
p (f (x∗) |X,y) the posterior probability of f(x∗) given the training samples X and y.
Then, we have

p (f (x∗) |X,y) ∼ N
(
f̂(x∗), cov

(
f̂(x∗)

))
, (1.1a)

f̂(x∗) = K(x∗, X)α = K(x∗, X) (K(X,X) + σnI)−1 y , (1.1b)

cov
(
f̂(x∗)

)
= k(x∗,x∗)−K(x∗, X) (K(X,X) + σnI)−1K(x∗, X)T , (1.1c)

where K(x∗, X) = [k(x∗,x1) . . . k(x∗,xN )], and α = (K(X,X) + σnI)−1 y. Notice that
f̂(x∗) corresponds to the maximum a posteriori (MAP) estimates. As far as computational
complexity is concerned, the number of operation needed to compute (1.1b) scales with
the cube of N , due to the matrix inversion required by the computation of alpha. However,
notice that α can be computed off-line, given that it is independent on x∗. Assuming
that α is known, we have that the number of operations required to compute a single
estimation scales linearly with the number of samples N , reducing considerably the
computational burden.

A crucial aspect of GPR is the definition of the prior distribution. In particular, we
focus on the kernel selection. The kernel allows encoding eventual prior information about
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the behaviors of the process, e.g., stationarity w.r.t. the input locations, smoothness,
or linearity. Several options can be considered. We introduce two kernels particularly
relevant in this manuscript. We start with the linear kernel. Let φ : Rn → Rp be a
function mapping an input vector in a given p-dimensional feature space. We define the
linear kernel with the following expression,

kφ(xi,xj) = φT (xi)Σφ(xj) , (1.2)

where the matrix Σ ≥ 0 ∈ Rp×p contains the kernel hyperparameters. A standard choice
consists in assuming Σ is a diagonal matrix, with distinct diagonal elements. In this
case, the diagonal elements define the relevance of each feature. The linear kernel is
particularly useful because it allows exploiting eventual prior information about the
system, namely, the feature space φ(x) can be defined starting from a physical model of
the system. Examples of this strategy are reported in Chapter 3 and 4.

The second kernel that we describe is the Radial Basis Functions (RBF) kernel. The
RBF kernel belongs to the family of stationary kernels, and it is defined by the following
expression

kRBF (xi,xj) = λe
− 1

2 ||xi−xj ||
2
Σ−1 , (1.3)

where the scaling factor λ > 0 and the matrix Σ > 0 are kernel hyperparameters. A
standard choice consists in assuming that Σ has diagonal structure. In this case, the
diagonal elements are named lengthscales, and they determine the variability of the
function w.r.t. the relative input dimension. However, it is worth mentioning that
there are also other options. For instance, Σ can be parametrized w.r.t. its Cholesky
decomposition Σ = LLT , where L ∈ Rn×n is a lower triangular matrix. In this case, the
set of hyperparameters is composed by λ and all the lower triangular elements of L, with
the elements along the diagonal constrained to be positive.

Moreover, we mention three important properties of kernel functions, that allow
generating new kernels starting from valid kernel functions:

• The sum of kernels is a valid kernel.

• The product of kernels is a valid kernel.

• Let a(x) : Rn → R be a deterministic function mapping an input vector in R, and
consider a valid kernel function k(·, ·), then g(x,x′) = a(x)k(x,x′)a(x′) is a valid
kernel function. This property is also named vertical rescaling property.

We refer the interested reader to Rasmussen and Williams (2006), Chapter 4.2.4 for the
proofs.



1.3 Background on Gaussian Process Regression 9

Finally, we conclude the GPR background discussing the training procedure. The
training of a GP model is composed of two steps. The first step consists in tuning σn
and the kernel hyperparameters, while the second step consists in deriving the estimator
computing α in (1.1b). The main strategies proposed to tune the hyperparameters
are marginal likelihood optimization and cross-validation. Cross-validation algorithms
select the hyperparameters based on the performance obtained in a validation set. The
limitation of such approaches is that the number of configurations to be tested grows
extremely fast with the number of parameters. Due to this fact, in this work we rely on
marginal likelihood maximization, hereafter equivalently named evidence maximization.
The marginal likelihood is the integral of the product between the prior probability and
the likelihood,

p (y|X) =
∫
p(y|f , X)p(f |X)df .

Recalling that p(y|f , X) ∼ N(f , σ2
nI) and p(f |X) ∼ N(mf ,K(X,X)), it can be proved

that the logarithm of the previous integral corresponds to

− 1
2y

T
(
K(X,X) + σ2

nI
)−1

y − 1
2 log

(
|K(X,X) + σ2

nI|
)
− N

2 log(2π) . (1.4)

Then, to optimize the hyperparameters we maximize the previous expression w.r.t. the
kernel hyperparameters. Notice that the resulting optimization problem is not convex.

As far as the implementation is concerned, we implemented all the GPR algorithms
in Python. We rely on PyTorch Paszke, Gross, Chintala, Chanan, Yang, DeVito, Lin,
Desmaison, Antiga, and Lerer (2017) to enable GPU support, as well as to exploit
its auto-differentiation functionalities, for computing the gradient of (1.4) w.r.t. the
hyperparameters by backpropagation. The library is publicly available1.

1https://bitbucket.org/AlbertoDallaLibera/gpr-pytorch/src
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2
Autonomous learning of

the robot kinematics model

2.1 Introduction

Kinematics models are fundamental in Robotics. Several control strategies and trajectory
planning algorithms are designed assuming to know a forward kinematics model, see for
instance Siciliano, Sciavicco, Villani, and Oriolo (2009), Latombe (2012)

Forward kinematics models describe the map between joints configurations and links
poses. When the geometrical parameters of the robot are known, first principles models
of this map are derived defining a proper sequence of consecutive roto-translations. A
standard way to define and parametrize a suitable sequence of roto-translations is given
by the Denavit-Hartenberg (DH) convention.

Typically, precise prior knowledge about the robot geometry is available, since most of
the times CAD models are available, and direct measurements of the robot parameters are
possible. However, robots are becoming more and more autonomous and re-configurable,
and there might be cases in which such information about geometry is not available
a priori. Consider for instance Modular Robotics Yim et al. (2000, 2007); Brodbeck
and Iida (2012); Guan et al. (2009); Sprowitz et al. (2010), where robots are composed
of different elementary building blocks, that can be interchanged, added or removed.



12 Autonomous learning of the robot kinematics model

Changing their geometry, modular robots adapt to different environments and tasks.
Another relevant application where robot’s geometry might change during the execution
of a task is automatic adaptation to hardware failures. Hardware failures could result in
an unexpected variation of the robot kinematics; consider, for instance, the extreme case
of a robot joint getting stuck. However, in some cases, the robot might still be able to
accomplish the task, by updating its model and, in turn, adapting its controller.

In the aforementioned situations, where prior knowledge about robot geometry is
partial, or null, standard solutions can not be applied to derive kinematics models.
In particular, the design of algorithms able to learn a geometrical model of a robot
autonomously is essential to reduce set up times and human intervention, together with
the associated costs.

In such context, the identification of the forward kinematics is only a subtask of
the derivation of a robot geometrical model. The first step consists in identifying the
kinematic structure, namely, an high level description of the robot that defines how the
different components are connected. More precisely, when considering a manipulator
with open kinematic chain, kinematic structure determines the order by which links and
joints occur in the kinematic chain, as well as the type of each joint, e.g., if a joint is
revolute or prismatic. This high level description is particularly useful in several research
topics related to robotics, like, task and motion planning, transfer learning, and meta
learning Finn, Yu, Zhang, Abbeel, and Levine (2017). Interestingly, it is also strictly
connected with the body structure learning problem, well known in Computer Vision
Dantone (2014), but also in other fields like cognitive Neuroscience.

The kinematic structure and forward kinematics identification problem has been
already addressed in the robotics community. The proposed approaches can be roughly
divided based on the kind of sensors adopted to collect data. In Zhou and Shi (2016),
points cloud data have been used. Firstly, links are identified and ordered by clustering
points according to their relative distances and by assuming that each cluster corresponds
to one link. After that, a forward kinematics model is identified, optimizing the DH
parameters with standard gradient descent. A more convenient setup has been considered
in Hersch, L. Sauser, and Billard (2008); Lin, Rojas, and Guan (2017); Rühr, Sturm,
Pangercic, Beetz, and Cremers (2012); Sturm, Plagemann, and Burgard (2008), where
a distinct fiducial marker is attached to each link, making clustering operations not
necessary. In particular, in Sturm et al. (2008), the kinematic structure and the forward
kinematics are learned simultaneously. The solution is based on the identification of a
Bayesian network. The nodes of the network are random variables associated to markers
poses and joints signals, while the edges represent the relative transformations between
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markers. Firstly, a score to all the possible edges is assigned, relying on Gaussian Process
Regression (GPR). Then, the kinematic model is learned by looking for the path that
connects all the markers and minimizes a cost function suitably defined.

In this paper, we consider the same setup of Sturm et al. (2008) but, instead of
learning simultaneously the kinematic structure and the forward kinematics, we propose
a two steps procedure. Firstly, the kinematic structure is identified. Secondly, based on
the kinematic models identified, we derive a learning algorithm for the forward kinematics
based on GPR.

As far as the first step is concerned, the proposed solution is based on checking the
feasibility of three systems of equations, which are obtained starting from elementary
kinematic relations between pairs of subsequent links and using information extracted
from time series of visual data. More precisely, given the measured poses of a couple of
markers attached to subsequent links, and the corresponding joint input signal, a linear
system of equations holds true if the three elements define a prismatic transformation;
instead, a linear and a non linear systems are satisfied if the transformation is revolute.
In general, it is possible to exhibit sets of observations for which the systems of equations
hold true though the pair of markers and the joint signal considered are not in relation
among them. However, by extensive Monte Carlo simulations we show that this false-
positive fact is very unlikely to appear. To ensure that the feasibility of the introduced
systems of equations is a necessary and sufficient condition, we need to apply our strategy
with data obtained from fully informative sets of observations; in the paper we exhibit a
class of trajectories from which it is possible to properly select observation sets which
are fully informative. Compared to the state of the art, the proposed approach is less
expensive as regards the computational costs, since it is based on the solution of linear
and non linear systems of equations with low dimensionality. Moreover, differently from
Sturm et al. (2008), the proposed algorithm fully reconstructs the kinematic structure,
including the joint type sequence.

Regarding the derivation of a forward kinematics model, we do not rely on the
knowledge of a prior model. As mentioned before, the standard procedure consists in
deriving a first principles model based on the nominal parameters, and then improving
the accuracy of the model through calibration procedures, see for instance Gao, Wang,
Lin, and Chen (2009) Lin, Zhao, Ye, and Ding (2017). Typically, due to the non linearity
of kinematic models, calibration procedures are effective only when deviations of the
geometrical parameters are small. Unfortunately, as described before, it might happen
that prior knowledge is not available. In this chapter, we propose a grey-box solution
based on GPR. Starting from the knowledge of the kinematic structure, the standard
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inputs are mapped in a augmented space where the forward kinematics derived with
DH is a polynomial function. Then, each element of the output, namely, the pose of the
marker attached to the last link, are modeled as a distinct GPR with a proper polynomial
kernel. Experimental results show the effectiveness of our solution. Moreover, to further
test the accuracy of the derived model, we implemented a simple kinematic controller
based on the model learned.

It is worth mentioning that our work significantly extends the seminal intuitions
explored in Nguyen, Patel, and Khorasani (1990), where the authors have experimented
the use of neural networks, comparing performance of different architectures via experi-
ments performed on a simulated manipulator. Interestingly, results highlight that data
efficiency and out of sample accuracy can be significantly improved considering as input
space an augmented space built starting from the standard inputs, that are the positions
of the joints.

The chapter is organized as follows. In Section 2.2, we describe the setup we
consider, and we formally define the problem of interest. In Section 2.3, we provide some
background about robot kinematics, and, assuming noiseless measurements, we derive the
three systems of equations which represent the theoretical core of the proposed solution.
We start Section 2.4 with some considerations about the measurement noises affecting
our setup, and then we describe our strategy for kinematic structure identification. In
Section 2.5, resorting on the identified kinematic structure, we propose our data-driven
algorithm for forward kinematics estimation, as well as designing a simple kinematic
controller based on the learned model. Finally, in Section 2.6, we report experimental
results.

2.2 Setup description and problem formulation

In this section, we formally describe the setup and the problem we aim at solving. The
framework is the same one adopted in Sturm et al. (2008), and it consists in a camera
and a robotic arm, composed of n links and n − 1 joints, forming an open kinematic
chain.
Measurements of joints positions are available, and we point out with qk(t), k = 1, . . . , n−1,
the k-th component of q(t), the vector of joints positions at time t. In this work only
two types of joint are considered, revolute and prismatic. More complex connections can
be derived combining these two types.
As far as the camera placement is concerned, we adopt an eyes-to-hand configuration,
i.e., the camera is fixed and it is observing the robot; the camera reference frame (RF)
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Figure 2.1: Symbolic representation
of the setup. C, L and M point out
respectively the camera, the link and
the markers RF, while joint signals are

pointed with q.

Figure 2.2: A frame collected from the
camera with the robot and the fiducial

markers visible.

coincides with the world RF. A distinct fiducial marker Mi, i = 1, . . . , n, is attached to
each of the Lj , j = 1, . . . , n, links, where the subscript j denotes the position of the link
in the kinematic chain; namely L1 and Ln are, respectively, the first and the last link.
Examples of fiducial markers are Fiala (2010); Olson (2011); Wang and Olson (2016).
In Figure 2.2, we have reported a frame collected with the camera in our experimental
setup, with the markers and the robot visible. A pictorial representation of the overall
setup is reported in Figure 2.1. Notice that, in describing the setup of interest, we have
used different subscripts for links, markers and joints. This is to stress that we do not
know a priori the order with which joints and markers occur in the kinematic chain. For
example, given link Lj , we do not know the index i of the corresponding marker Mi, as
well as the index k of the joint connecting Lj and Lj+1.

We conclude the setup description discussing information obtained processing frames
acquired from the camera. Measurements of the markers’ poses in the camera RF are
obtained applying solutions described in Fiala (2010); Olson (2011); Wang and Olson
(2016). Let pcMi

(t) be the pose of marker Mi at time t, denoted with respect to the
camera RF, hereafter indicated by c; then we have

pcMi
(t) =

[
lcMi

(t)T ocMi
(t)T

]T
,

where lcMi
is the vector collecting the three Cartesian coordinates xcMi

, ycMi
and zcMi

of
the relative translation, while ocMi

expresses the relative orientation in yaw-pitch-roll



16 Autonomous learning of the robot kinematics model

convention; namely, ocMi
=
[
γcMi

(t), βcMi
(t), αcMi

(t)
]
where γcMi

(t), βcMi
(t) and αcMi

(t),
denote, respectively, the yaw, pitch and roll angles. For future use, we introduce also
an alternative expression of relative orientations, based on rotation matrices. Consider
marker Mi, its orientation in the camera RF is described by the rotation matrix RcMi

.
The relation between the two notations is given by

RcMi
= Rz(γcMi

)Ry(βcMi
)Rx(αcMi

),

where Rz, Ry and Rx are the elementary rotation matrices around the z, y and x axes.
To sum up, given T observations, measurements collected are

D = {(P (t1), q(t1)), . . . , (P (tT ), q(tT ))}, (2.1)

where P (t) = {pcM1
(t), · · · ,pcMn

(t)}. For future use, we introduce also the following sets,

Pi = {pcMi
(t), t = t1, . . . , tT },

qk = {qk(t), t = t1, . . . , tT }.

From now on, to keep the notation compact, we point out explicitly the dependency on
time only when necessary.

The main goal of this work is deriving a forward kinematics model of the manipulator,
namely, to reconstruct the relation existing between the RF of the last link and the camera
RF as a function of the joints variables. The solution we propose consists in performing the
following two steps. First, based on D, we apply a procedure able to identify the kinematic
structure of the manipulator (see Sections 2.3 and 2.4). More precisely, the kinematic
structure identification problem consists in a classification problem, decomposable into
three subtasks:

• Identifying SM = {Mi1 , . . . ,Min}, namely, the sequence of markers associated to
the kinematic chain L1, . . . , Ln;

• Identifying SQ = {Qk1 , . . . , Qkn−1}, i.e., the sequence of joint types connecting
consecutive links along the kinematic chain, starting from the couple (L1, L2), up
to the couple (Ln−1, Ln); more precisely, Qkj is a binary variable assuming value 0
(resp. 1) when the joint between Lj and Lj+1 is prismatic (resp. revolute);

• Identifying Sq = {qk1 , . . . , qkn−1}, i.e., the sequence of joint signals associated to
the sequence of joint types in SQ.
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As second step, based on the knowledge of SQ, we run a data-driven algorithm based on
GPR to derive a model of the forward kinematics (see Section 2.5).

2.3 Relations between couples of subsequent markers

In this section, we derive the theoretical building blocks of our kinematic structure
identification algorithm. We consider ideal conditions, in particular to access to the real
values of q and pcMi

. We start considering the case that markersMi1 andMi2 are attached
to the consecutive links Lj1 , Lj2 , connected through joint qk. Without loss of generality
we can assume j2 = j1 + 1. Elaborating the elementary kinematic relations involved
by such assumption, and distinguishing between the case qk is prismatic or revolute,
we derive three systems of equations that are verified when the triplet (Mi1 ,Mi2 , qk)
is connected. In the remaining part of the section instead, we consider the opposite
problem, investigating if the aforementioned systems are verified if and only if the triplet
(Mi1 ,Mi2 , qk) is connected.

2.3.1 Background

To provide a mathematical description of the transformations occurring along the kine-
matic chain we need to define a RF for each link and for each maker. As far as the links
are concerned, we adopt the Denavit-Hartenberg (DH) convention; for details we refer
the interested reader to Siciliano et al. (2009), chapter 2.8.2. Once the RFs of the links
have been assigned, the expression of RLjLj−1

, i.e., the relative orientation between the
consecutive links Lj−1 and Lj , is given by

R
Lj−1
Lj

= Rz(θj)Rx(αj), (2.2)

where αj a constant parameter (see Figure 2.16 on page 62 of Siciliano et al. (2009) for a
pictorial description of αj and θj). In case the joint connecting Lj−1 and Lj is prismatic,
then θj is constant and equal to θ0

j , while, if the joint is revolute and controlled by qk,
it holds θj = θ0

j + qk. The relation between the relative positions of Lj−1 and Lj is
described by lLj−1

Lj
, i.e., the expression of the origin of Lj-RF with respect to the origin

of Lj−1-RF; we have that

l
Lj−1
Lj

=


0
0
dj

+Rz(θj)


aj

0
0

 , (2.3)
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where Rz(θj) is defined as before, and aj is a constant parameter of the kinematic (again
see Figure 2.16 on page 62 of Siciliano et al. (2009) for a pictorial description of aj and
dj). If the joint connecting Lj−1 and Lj is revolute then dj is constant and equal to d0

j ,
while, if it is prismatic and parametrized by qk, then it holds dj = d0

j + qk.
Additionally, we need to describe the pose of each marker with respect to the RF

of the link it is attached to. For example, suppose that Mi1 is attached to Lj1 , then
position and orientation of Mi1 w.r.t. Lj1 are described, respectively, by lLj1Mi1

and RLj1Mi1
.

Observe that, since the markers are assume to be rigidly attached to the corresponding
links, lLj1Mi1

and RLj1Mi1
are constant and independent of the joint signals. For later use, it

is convenient introducing also RMi1
Lj1

= (RLj1Mi1
)T and lMi1

Lj1
. Similar definitions hold for Mi2

and Lj2 , assuming Mi2 is attached to Lj2 .
We stress that lLj1Mi1

and R
Lj1
Mi1

are unknown, and that we do not introduce any
limitation on the way the markers are attached to links. From a practical point of view,
this fact is very interesting, since it allows adopting the proposed algorithm even in
setups different from the one we described in Section 2.2. For instance, it might happen
that fiducial markers are not available and the use of ad-hoc computer-vision algorithms
is required to detect and track fictitious markers Kim and Yoon (2017); Yun, Lee, Lee,
and Kim (2017); Kim, Lee, Kim, Kim, and Han (2012). In this context the markers
placement is not controllable, but it still holds that lLj1Mi1

and RLj1Mi1
are constant.

Based on the quantities above introduced, and exploiting standard algebraic proper-
ties of rotation matrices, we derive two relations describing the relative pose between
consecutive markers. Let lMi1

Mi2
and RMi1

Mi2
be, respectively, the Cartesian coordinates of

the origin of Mi2-RF w.r.t. Mi1-RF, and the relative orientation between Mi2-RF and
Mi1-RF. Then we have

l
Mi1
Mi2

= l
Mi1
Lj1

+R
Mi1
Lj1
l
Lj1
Lj2

+R
Mi1
Mi2

(
−lMi2

Lj2

)
. (2.4)

and
R
Mi1
Mi2

= R
Mi1
Lj1

R
Lj1
Lj2

(θj2)RLj2Mi2
. (2.5)

Before investigating the above relations distinguishing the case where the joint connecting
two successive links is prismatic from the case where the joint is revolute, we remark that,
in the described setup, we measure indirectly the relative translation and orientation
between markers, since

l
Mi1
Mi2

= (RcMi1
)T (lcMi2

− lcMi1
),

and
R
Mi1
Mi2

= (RcMi1
)TRcMi2

,
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where RcMi1
, RcMi2

, lcMi1
and lcMi2

are obtained processing the data coming from the
camera.

2.3.2 Prismatic joint

Assume that the joint connecting Lj1 and Lj2 is prismatic and let qk be the corresponding
joint variable. Since in this case the angle θj is constant, it follows that the relative
orientation between Lj1 and Lj2 is not affected by variations of the joint variable, that is,
the matrix RMi1

Mi2
is also constant over the time. By substituting the expression of lLj1Lj2

given in (2.3) into (2.4), the following equation holds

l
Mi1
Mi2

=lMi1
Lj1

+R
Mi1
Lj1




0
0

d0
j + qk

+Rz(θ0
j )


a0
j

0
0


+R

Mi1
Mi2

(
−lMi2

Lj2

)

=lMi1
Lj1

+R
Mi1
Lj1




0
0
d0
j

+Rz(θ0
j )


a0
j

0
0


+R

Mi1
Mi2

(
−lMi2

Lj2

)
+R

Mi1
Lj1


0
0
qk

 , (2.6)

where the first three addenda of the right hand side of the last equation are constant,
and they can be compacted in the vector li1i2 , while the last term has constant direction
and module that depends on the joint coordinate qk. In addition, observe that (2.6) is
linear w.r.t. li1i2 and the third column of RMi1

Lj1
, that we denote hereafter by zMi1

Lj1
. Then,

we can write

l
Mi1
Mi2

=
[
I3 qkI3

] 
li1i2(
z
Mi1
Lj1

)
 = A(qk)bi2i1 , (2.7)

where
A(qk) =

[
I3 qkI3

]
is the vector of regressors, and

bi2i1 =


li1i2

z
Mi1
Lj1


is the vector collecting the parameters of the linear system. Since the last three elements
of bi2i1 are the column of a rotation matrix, we have that the following constraint must be
satisfied (

z
Mi1
Lj1

)T
z
Mi1
Lj1

= 1.
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It is easy to see that, by introducing the block diagonal matrix H = block diag (03×3, I3),
where 03×3 is a 3× 3 matrix of zeros, the last equation can be written in terms of bi2i1 , as(

bi2i1

)T
Hbi2i1 = 1. (2.8)

If, instead of considering a single observation, we consider the T observations in the set
D defined in (2.1), we obtain the following linear system of 3T equations,

l (Pi1 , Pi2) =


A (qk(t1))

...
A (qk(tT ))

 bi2i1 = A(qk)bi2i1 , (2.9)

where l (Pi1 , Pi2) is the vector collecting the relative translations between markers Mi1

and Mi2 , namely

l (Pi1 , Pi2) =
[
(lMi1
Mi2

(t1))T , . . . , (lMi1
Mi2

(tT ))T
]T

.

We remark that l (Pi1 , Pi2) contains information that can be indirectly measured, also
A(qk) is known, while bi2i1 is the vector of the unknown variables. We have the following
Proposition.

Proposition 2.3.1. Consider two markers Mi1 and Mi2, attached to consecutive links
connected through a prismatic joint, whose corresponding joint signal is qk. Then, given
a set of observations D, the relative orientation between markers is constant, i.e., RMi1

Mi2
is constant, and the linear system in (2.9) admits solution in bi2i1 satisfying the constraint
in (2.8).

2.3.3 Revolute joint

Now assume that the joint connecting Lj1 and Lj2 is revolute and that qk is the corre-
sponding joint variable. Starting from (2.4), and substituting lLj1Lj2

with the expression in
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(2.3), we have

l
Mi1
Mi2

=lMi1
Lj1

+R
Mi1
Lj1




0
0
dj2

+R
Lj1
Lj2

(θj2)


aj2

0
0


+R

Mi1
Mi2

(
−lMi2

Lj2

)

=lMi1
Lj1

+R
Mi1
Lj1


0
0
dj2

+R
Mi1
Mi2

R
Mi2
Lj2


aj2

0
0

+R
Mi1
Mi2

(
−lMi2

Lj2

)
, (2.10)

where, as before, the different contributions have been grouped conveniently. In particular
the first two terms are constant, while the last two are linear w.r.t. RMj1

Mj2
. As consequence,

(2.10) is linear w.r.t. the vector of variables

b̄
i1
i2 =



l
Mi1
Lj1

+R
Mi1
Lj1


0
0
dj2


R
Mi1
Lj2


aj2

0
0

− lMi2
Lj2


,

given that

l
Mi1
Mi2

=
[
I3 R

Mi1
Mi2

]


l
Mi1
Lj1

+R
Mi1
Lj1


0
0
dj2


R
Mi1
Lj2


aj2

0
0

− lMi2
Lj2


= Ā(pcMi1

,pcMi2
)b̄i1i2 . (2.11)

The last equation decomposes lMi1
Mi2

in the sum of two vectors, one that is constant, and

one with constant module and direction that depends on the RMi1
Lj1

.

When considering the set of observations D, we obtain the following 3T linear
equations

l (Pi1 , Pi2) =


Ā
(
pcMi1

(t1),pcMi2
(t1)

)
...

Ā
(
pcMi1

(tT ),pcMi2
(tT )

)
 b̄i1i2 = Ā(Pi1 , Pi2)b̄i1i2 , (2.12)
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where l (Pi1 , Pi2) and Ā(Pi1 , Pi2) are known, while b̄i1i2 is the vector of unknown variables.
We have the following Proposition.

Proposition 2.3.2. Let Mi1 and Mi2 be two markers attached to consecutive links,
and assume that the joint between the two links is revolute. Then, the linear system of
equations defined by the set of observations D in (2.12) admits solution in b̄i1i2.

Observe that in (2.12) the dependence on the joint signal is not made explicit, being
incorporated into RMi1

Mi2
. To derive an expression involving the joint signal qk we analyze

the relative orientation between markers Mi1 and Mi2 . Notice that, differently from the
prismatic case, matrix RMi1

Mi2
depends on qk. Expanding R

Lj1
Lj2

with the expression in (2.2),
we rewrite (2.5), i.e., the relative orientation between markers as

R
Mi1
Mi2

= R
Mi1
Lj1

Rz(qk + θ0
j2)Rx(αj2)RLj2Mi2

= R
Mi1
Lj1

Rz(qk)R
L̄j2
Mi2

, (2.13)

where, exploiting the properties of elementary rotation matrices, we have R
L̄j2
Mi2

=

Rz(θ0
j2)Rx(αj2)RLj2Mi2

. The matrix equation in (2.13) defines nine non linear equations

in the elements of the unknown matrices RL̄j2Mi2
and RMi1

Lj1
. Additionally, since RL̄j2Mi2

and

R
Mi1
Lj1

are rotation matrices, the following constraints must be satisfied

R
Mi1
Lj1

(
R
Mi1
Lj1

)T
= I3 , RL̄j2Mi2

(
R
L̄j2
Mi2

)T
= I3.

A more compact description can be obtained relying on the use of rotation angles. Firstly,
instead of considering as unknowns the elements of RL̄j2Mi2

and RMi1
Lj1

, we describe both
rotation matrices using the yaw, pitch and roll angles, collected, in the two vectors

o
Mi1
Lj1

= [γMi1
Lj1

, β
Mi1
Lj1

, α
Mi1
Lj1

]T , oLj2Mi2
= [γLj2Mi2

, β
Lj2
Mi2

, α
Lj2
Mi2

]T .

Then we have

R
Mi1
Lj1

= Rz(γ
Mi1
Lj1

)Ry(β
Mi1
Lj1

)Rx(αMi1
Lj1

) , RL̄j2Mi2
= Rz(γ

Lj2
Mi2

)Ry(β
Lj2
Mi2

)Rx(αLj2Mi2
). (2.14)

In this way, we enforce orthogonality, while reducing the number of unknowns of the
system. Secondly, also (2.13) can be rewritten w.r.t. the yaw pitch and roll angles,
obtaining

o
Mi1
Mi2

= fo

(
R
Mi1
Lj1

Rz(qk)R
L̄j2
Mi2

)
,

where fo is a function that convert a rotation matrix in yaw, pitch and roll angles.
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If, instead of considering a single observation, we consider a set of observations D, we
obtain 3T non linear equations,


o
Mi1
Mi2

(t1)
...

o
Mi1
Mi2

(tT )

 =


fo

(
R
Mi1
Lj1

Rz (qk(t1))RL̄j2Mi2

)
...

fo

(
R
Mi1
Lj1

Rz (qk(tT ))RL̄j2Mi2

)
 .

In the following, for compactness, we denote the left and the right hand side of the
previous equation by, respectively, o (Pi1 , Pi2) and fo(qk, R

Mi1
Lj1

, R
L̄j2
Mi2

), obtaining

o (Pi1 , Pi2) = fo(qk, R
Mi1
Lj1

, R
L̄j2
Mi2

). (2.15)

We have the following proposition.

Proposition 2.3.3. Let Mi1 and Mi2 be two markers attached to consecutive links con-
nected through the revolute joint qk. Then, given a set of observations D, the corresponding
non linear system of equations defined by (2.14) and (2.15) admits a solution, i.e., there
exist two triplets of yaw, pitch and roll angles defining RMi1

Lj1
and RL̄j2Mi2

satisfying (2.15).

2.3.4 Fully informative trajectories

In the previous Section we have stated three propositions defining conditions that are
verified when Mi1 and Mi2 are attached to consecutive links. In general, the reverse
relations are not true since it is possible to exhibit sets of observations D such that the
conditions of the previous Propositions are satisfied even if the markers are not attached
to subsequent links; in the following we will refer to such cases as false positives.

False positive observations are strictly related to the sequences of joint configurations
which have generated the set of observations D. In the following, we denote by fully
informative observations a set of observations D such that conditions defined in Proposi-
tions 1, for the prismatic joint, and in Propositions 2 and 3, for the revolute joint, are
necessary and sufficient to verify if two markers are attached to consecutive links. A full
characterization of this class is not trivial. However, in this chapter, we provide a class
of input trajectories from which it is possible to properly select a set of fully informative
observations.

Definition 2.3.4. Consider a collection of n − 1 joints trajectories, where in each
trajectory only one joint is actuated while all the others are kept stuck. For k = 1, . . . , n−1,
assume that the k-th trajectory is obtained varying the joint signal qk, and that there
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exist at least two time instants t1,k and t2,k such that

mod (qk(t1,k)) 6= mod (qk(t2,k)) (2.16)

and qw(t1,k) = qw(t2,k), w 6= k, where mod(·) is the 2π module operator. Then, we define
the set D̄, as the collection of the pairs (P (t1,k), q(t1,k)), (P (t2,k), q(t2,k)), k = 1, . . . , n−1,
that is,

D̄ = {(P (t1,k), q(t1,k)), (P (t2,k), q(t2,k))}k=0,...,n−1

Notice that D̄ has 2(n− 1) observations, which for typical robots (i.e., n = 3, 4, 5, 6, 7)
represents a limited number of observations. It is possible to show that D̄ is a fully
informative set, and, in particular, we have the following results.

Proposition 2.3.5. Let (Mi1 ,Mi2 , qk) be a triplet satisfying conditions of Proposition
2.3.1, for the set of observations D̄ defined in Definition 2.3.4. Then, the corresponding
links Lj1 and Lj2 are subsequent in the kinematic chain, and the joint connecting them is
prismatic with input signal qk.

Proposition 2.3.6. Let (Mi1 ,Mi2 , qk) be a triplet satisfying equations in Proposition
2.3.2 and Proposition 2.3.3, for the set of observations D̄ defined in Definition 2.3.4.
Then, the corresponding links Lj1 and Lj2 are subsequent in the kinematic chain, and the
joint connecting them is revolute with input signal qk.

The proofs of the above Propositions are reported in the Appendix.
We conclude this section with a remark about Propositions 2.3.5 and 2.3.6. The

two propositions require suitable excitation assumptions, that might not be verified for
general input trajectories. As consequence, in order to apply the results of the two
propositions, an ad-hoc actuation strategy should be designed to collect observations
satisfying conditions in Definition 2.3.4. However, we would like to point out that the set
of observations in (2.3.4) represents just a small subset of the class of fully informative
observations. Indeed, through extensive Monte Carlo simulations, reported in Section
2.6.1, we show that selecting a set of observations not fully informative from generic
trajectories seems to be a very unlikely event. In order to not interrupt the flow of the
presentation, we leave this discussion to Section 2.6.1. In the next section, we describe
our kinematic structure classification algorithm, assuming that the observations collected
are fully informative, regardless of whether trajectories belong to the class in Definition
2.3.4 or not.
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2.4 Proposed approach for kinematic structure
identification

In this section, we describe the algorithm we propose to deal with the robot kinematic
structure classification problem. Firstly, driven by Proposition 2.3.5 and 2.3.6, we propose
an iterative algorithm for the noiseless case. Assuming these ideal conditions, as well as
that the set of observations D is fully informative, we can prove the convergence of the
algorithm to the correct solution. Then, after discussing the sources of noise present in
our setup, we modify the algorithm to deal with the non-ideal conditions.

2.4.1 Kinematic structure classification with ideal conditions

Results of Proposition 2.3.5 and 2.3.6, suggest that to determine if a triplet (Mi1 ,Mi2 , qk)
is connected, and, in case, if qk is revolute or prismatic, we can check the feasibility of the
conditions defined by Propositions 2.3.1, 2.3.2 and 2.3.3. From the computational point
of view, a convenient strategy is proposed in Figure 2.3. Specifically, given the pair of
markers (Mi1 ,Mi2) and a joint signal qk, we firstly evaluate if the markers are connected
through a prismatic joint and, in case this test is negative, we secondly evaluates if they
are connected through a revolute joint. The first test consists in checking the feasibility
of the linear equations defined in Proposition 2.3.1. The second test, instead, is composed
by two steps; the first step verifies if the linear equations of Proposition 2.3.2 admit
solution, and, in such case, also the second step is performed, which consists in solving
the system of non-linear equations of Proposition 2.3.3. Observe that, in this way, the
last step is performed only when it is necessary, thus, minimizing its executions. This
fact is particularly relevant from the computational point of view, since the non linear
test is the most expensive.

Then, to identify the kinematic structure of the robot, we propose an algorithm
that applies iteratively the procedure described in the flow chart in Figure 2.3. The
algorithm returns ŜM , ŜQ and Ŝq, the estimates of SM , SQ and Sq, namely, the sequences
of markers, joint types and joint signals defining the kinematic structure of the robot.
ŜM , ŜQ and Ŝq are initialized as empty sets. First, the algorithm identifies the marker
associated to the base link, appends it to ŜM , and set it as the current marker. The
identification of this marker is trivial, given that its pose in the camera RF is constant.
After that, the algorithm selects a triplet, adding to the current marker a marker and
a joint signal randomly picked among the ones that are not in ŜM and Ŝq. Then, the
algorithm checks if data associated with the triplet satisfy conditions of Proposition 2.3.1,
2.3.2 and 2.3.3, as described in Figure 2.3. Based on the results obtained, ŜM , ŜQ and
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Figure 2.3: Flow chart of an iteration of the proposed algorithm. Ending conditions are
highlighted in red.

Ŝq, are updated. In case that conditions are verified, the marker previously selected is
set as current marker, and the procedure iterated over a new triplet.

2.4.2 Sources of noise

The algorithm proposed in the previous subsection can not be applied directly to ob-
servations acquired in a real setup, since, due to the presence of noise, the systems of
equations defined by Proposition 2.3.1, 2.3.2 and 2.3.3 are, in general, not satisfied even
if the triplet considered is connected.

In our setup, the presence of noise is related to several aspects. A significant
contribution is due to noise in markers’ poses. Markers’ poses are computed processing
images coming from the camera, that are corrupted by quantization errors due to the
digitization of signal. The effects of such errors in the estimated pose depend on different
aspects, like the distance between the camera and the marker, or the angles between the
camera optical axis and the axes perpendicular to the marker. The dependence on several
variables, together with the non linearity of the quantization error, make difficult to derive
a rigorous mathematical description of the errors. Nonetheless, several experimental
studies have been performed, see for instance Olson (2011), Wang and Olson (2016)
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and López-Cerón (2016); beside confirming the non linear behavior of the errors, the
obtained results show that, for a considerable range of distances and inclination angles,
markers’ poses are estimated very accurately. For instance, in López-Cerón (2016), when
the distance marker-camera is smaller than 4 meters, position errors are in the order of
millimeters, while errors on the yaw, pitch and roll angles are less than 10−2 radiants.
Experimental evidence shows that to obtain similar performance when the distance is
higher, a certain inclination angle between the marker and the camera is needed, i.e., the
marker must be quite far from being parallel to the camera. Moreover, results show also
that outside the angular and distance ranges providing accurate estimates, errors grows
rapidly, possibly resulting in the presence of outliers.

We conclude the characterization of noise sources mentioning other two contributions.
The first one is the measurement noise of joint positions. Typically, compared to the
errors in markers poses, these errors are smaller since encoders measure angular positions
with high precision. The second contribution is due to synchronization errors between
the camera and the robot, in particular when acquisition is not regulated with an ad-hoc
board. Notice that these errors could be particularly evident when the robot is moving
at high velocities, and then their effects can be mitigated moving the robot at small
velocities.

2.4.3 Kinematic structure classification with non-ideal conditions

In this subsection, we modify the algorithm described in Subsection 2.4.1, to deal with
the presence of noise. Our solution is based on the following idea. To exploit results of
Proposition 2.3.5 and 2.3.6 even with noisy observations, instead of looking for the exact
solutions of the systems defined in Proposition 2.3.1, 2.3.2 and 2.3.3, we solve a least
squares problem for each of the three systems, minimizing the residuals. Assuming that
observations with outliers can be removed, i.e., that the observations’ noises are small, it
is reasonable to expect a small residual for a system of equations that would be verified
in absence of noise, and, on the contrary, a high residual when not verified. Based on
this idea, we introduce a threshold ξ, and a function fr(·) depending on the residuals:
the test on (Mi1 ,Mi2 , qk) is assumed to be positive if the value of fr is lower than ξ, and
negative otherwise.

Before formulating the three optimization problems related to Proposition 2.3.1, 2.3.2
and 2.3.3, it is worth providing some more details about fr and the thresholds. As far as
fr is concerned, we consider the same function for all the three tests. In particular, given
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a vector of residuals r ∈ RN , in our algorithm, fr is defined as

fr(r) =

√
rTr

N
.

The function fr corresponds to the root of the mean squared residuals, and provides a
statistics about the magnitude of the residuals. This value is compared with a threshold
that characterizes the expected magnitude of the residuals caused by measurement noises.
Notice that the outputs in (2.9) and (2.12) are distances, while in (2.15) angles. Then,
also due to the different type of uncertainties with which translation and orientation are
estimated, we introduce two thresholds, ξt and ξo. The first provides a bound on the
uncertainties about distances, and it is used to test (2.9) and (2.12), while the second
refers to the uncertainty about angles, and it is used to test (2.15). In the remaining part
of this section, we describe the optimization problems that the modified algorithm solves
for each of the three tests.

Prismatic joint

Given b ∈ R6, let ri2i1(b) be the vector collecting the residuals of linear system in (2.9),
namely,

ri2i1(b) = l(Pi1 , Pi2)−A(qk)b.

Let b̂i2i1 be a solution of the following constrained linear least squared problem,

b̂
i2
i1 = arg min

b∈H

(
ri2i1(b)

)T
ri2i1(b), (2.17)

where H = {b ∈ R6 s.t. bTHb = 1}. Then, the test is assumed to be positive if
fr
(
ri2i1(b̂i2i1)

)
is lower than ξt, and negative otherwise.

Notice that Proposition 2.3.5 defines also a condition on the relative orientation
between markers, that must be constant. As a consequence, when considering noisy
observations, we expect that the elements of RMi1

Mi2
have small variances. Based on this

observation, in addition to testing the value of fr, we compute the variances of the
measures of RMi1

Mi2
, and check if the maximum value is below a given threshold.

Revolute joint - linear test

Given b ∈ R6, let r̄i2i1(b) be the vector collecting the residuals of the linear system (2.12),
that is

r̄i2i1(b) = l(Pi1 , Pi2)− Ā(Pi1 , Pi2)b.
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Then we solve the following unconstrained linear least squared problem,

ˆ̄b
i2

i1 := arg min
b

(
r̄i2i1(b)

)T
r̄i2i1(b). (2.18)

Observe that, under the assumption that Ā(Pi1 , Pi2) is full rank, ˆ̄b
i2

i1 can be computed in
closed form as

ˆ̄b
i2

i1 =
(
ĀT (Pi1 , Pi2)Ā(Pi1 , Pi2)

)−1
ĀT (Pi1 , Pi2) l(Pi1 , Pi2).

By a close inspection of (2.12), one can see that Ā(Pi1 , Pi2) is full rank, as soon as there
are two observations for which the matrix RMi1

Mi2
assumes different values; this condition

is easily verified in practice1. The test is assumed to be positive if fr(ˆ̄b
i2

i1) < ξt, negative
otherwise.

Revolute joint - non-linear test

In case that the previous test is positive, the algorithm checks conditions defined by
the non linear system in (2.15), to determine if Mi1 and Mi2 are connected through the
revolute joint qk. Differently from the previous case, the output of the non linear system
is a vector of angles. To account for periodicity effects, the residuals are defined as

r̃i2i1(o1,o2) = mod (o (Pi1 , Pi2)− fo(qk,o1,o2) + π)− π,

where we recall that mod(·) is the 2π module operator. With a slight abuse of notation,
vectors o1 and o2 ∈ R3 are directly inputted to fo(·), instead of computing the relative
rotation matrices with (2.14). Then, the algorithm computes ôMi1

Lj1
ô
Lj2
Mi2

solving the
following non linear least squares problem,(

ô
Mi1
Lj1

, ô
Lj2
Mi2

)
= arg min

(o1,o2)

(
r̃i2i1(o1,o2)

)T
r̃i2i1(o1,o2). (2.19)

The test is assumed to be positive if fr
(
r̃i2i1(ôMi1

Lj1
, ô

Lj2
Mi2

)
)
is lower than ξo, negative

otherwise.

1If not verified, we might compute ˆ̄b
i2
i1 resorting to the pseudo inverse of ĀT (Pi1 , Pi2 )Ā(Pi1 , Pi2 ).
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2.5 A polynomial-based approach for forward kinematics
identification

In this section, we describe the strategy we propose to identify the forward kinematics.
Our solution is a grey-box solution based on GPR, in particular, on the design of a
suitable polynomial kernel. Minimal prior knowledge about the model is required, since to
derive the GPR model we assume to know only the kinematic structure, more specifically,
the sequence SQ; no knowledge about the kinematic parameters is required. The section
is organized as follows. First, we formally formulate the forward kinematics identification
problem. Second, we state a proposition that shows how the forward kinematics can be
described by a polynomial function defined over a suitable input space derived from the
standard inputs, that are joints positions. Third, driven by this proposition, we derive
a proper GPR model. Finally, we conclude the section proposing a simple kinematic
controller based on the models derived.

2.5.1 Forward kinematics and polynomial functions

The forward kinematics identification problem consists in identifying the map that relates
the position of the joints with the pose of the last link with respect to the camera RF. In
the following, to keep the notation compact, we denote with the subscript M the marker
attached to the last link of the robot. Accordingly, the output of the forward kinematics
is given by the vector pcM = [(lcM )T , (ocM )T ]T , or, equivalently, by the pair (lcM , RcM ), if
we express orientations using rotation matrices. For future use, we introduce also the
function relating the yaw pitch and roll angles collected in ocM with the elements of RcM ,

αcM = tan−1
(
RcM(2,1)

/RcM(1,1)

)
,

βcM = tan−1
(
−RcM(3,1)

/
√

(RcM(3,2)
)2 + (RcM(3,3)

)2
)
,

γcM = tan−1
(
RcM(3,2)

/RcM(3,3)

)
, (2.20)

where RcM(i,j)
is the element of RcM in the i-th row i and j-th column (see Siciliano et al.

(2009) for the details).
We show how the forward kinematics can be properly described by a polynomial

function over a input vector x which depends on q and is formally described as follows.
Let Nr and Np be, respectively, the number of revolute and prismatic joints, and let
Ir = {r1, . . . , rNr} and Ip = {p1, . . . , pNp} be the indices of the revolute and prismatic
joints. Then, x is defined as

x =
[
qc, qs, qp

]
, (2.21)
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where,

qc =
[
cos(qr1), . . . , cos(qrNr )

]
∈ RNr ,

qs =
[
sin(qr1), . . . , sin(qrNr )

]
∈ RNr ,

qp =
[
qp1 , . . . , qpNp

]
∈ RNp .

Moreover, in the following, we denote by qcb , qsb and qpb the b-th component of qc, qs
and qp, respectively, and by X the set collecting all the x(t1), . . . ,x(tT ). We have the
following result.

Proposition 2.5.1. Consider a manipulator with Nr revolute joints and Np prismatic
joints, and let Ir and Ip be, respectively, the indices of the revolute and prismatic joints.
Then, the elements of vector lcM and matrix RcM are polynomial functions in the input
vector x, defined in (2.21). More specifically,

(i) the elements of RcM are polynomial functions in the elements of [qc, qs], with
maximum degree Nr and where each monomial satisfies the conditions

deg(qcb) + deg(qsb) ≤ 1 b = 1, . . . , Nr;

(ii) the elements of lcM are polynomial functions in the elements of x with maximum
degree Nr +Np, and where each monomial satisfies the conditions

deg(qpb) ≤ 1 b = 1, . . . , Np,

deg(qcb) + deg(qsb) ≤ 1 b = 1, . . . , Nr.

The proof is reported in the appendix.

2.5.2 GPR based on polynomial kernel

To achieve robustness with respect to noisy observations, we rely on Bayesian techniques,
in particular on GPR, that we have reviewed in Section 1.3. For completeness, we briefly
review here the main concepts. In the GPR framework the outputs are modeled as a
Gaussian process. Let x(t) and y(t) be, respectively, the input and noisy outputs of
function f at time t. Then we have

y =


y(t1)
...

y(tT )

 =


f(x(t1))

...
f(x(tT ))

+


e(t1)
...

e(tT )

 = f(X) + e,
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where e is Gaussian i.i.d. noise with zero mean and standard deviation σ, while f(X) ∼
N(0,K(X,X)), with K(X,X) denoting the kernel matrix, whose elements are defined
thorough the kernel function k(·, ·); in particular the element of K at row i and column
j is equal to k(x(ti),x(tj)). Given a set of training samples (X,y), the maximum a
posteriori probability (MAP) estimator of f is given in closed form. Let x(t∗) be the
value of the input location at a general time instant t∗. Then, the MAP estimate of
f(x(t∗)) is given by

f̂(q(t∗)) =
NTR∑
h=1

αik(q(t∗), q(th)),

where αi is the i-th element of the vector α, defined as

α =
(
K(X,X) + σ2I

)−1
y.

From a functional analysis point of view, the previous Proposition 2.5.1 states that
the outputs of the forward kinematics are polynomial functions in the augmented space
x. Through the GPR framework, adopting suitable kernel functions, we can define a
regression problem in the Reproducing Kernel Hilbert Space (RKHS) identified by the
the previous proposition Schölkopf and Smola (2001). In particular, we recall two notions
that will be used in the next part of this section. The first is the definition of linear
kernel, which is given by the following expression,

k(x(ti),x(tj)) = φT (x(ti))Σφ(x(tj)),

where φ(x) = [φ1(x), . . . , φp(x)] ∈ Rp is a function mapping x in a given feature
space, and Σ > 0 ∈ Rp×p is a diagonal matrix, whose diagonal elements are the kernel
hyperparameters. The RKHS associated to this kernel is the one generated by the
functions in φ.

Secondly, we recall that the point-wise product of two kernels is still a kernel. In
particular, consider two linear kernels, and denote by φ1 and φ2 the corresponding basis
functions sets. Then, the basis functions of the RKHS associated to the the product of
this two kernels are obtained by considering all the possible products between an element
in φ1 and an element in φ2, Schölkopf and Smola (2001) (chapter 13.1).

2.5.3 Proposed approach for forward kinematics identification

In our work we model each element of lcM and RcM by a distinct Gaussian process. For
each model we consider different values of the hyperparameters, as well as different types
of kernels.
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Driven by Proposition 2.5.1, and the point-wise product property discussed before, we
define kR(·, ·), that is, the kernel function modeling the elements of RcM , as the product
of several elementary building blocks. In particular, each building block is a linear kernel
in the b-th component of qc and qs, with b = 1, . . . , Nr, accounting for the contributions
of cos(qrb) and sin(qrb). Formally kR is defined as,

kR(x(ti),x(tj)) =
Nr∏
b=1
qTcsb(ti)ΣRbqcsb(tj), (2.22)

where qcsb = [1, qcb , qsb ], and ΣRb ∈ R3×3, b = 1, . . . , Nr, are diagonal matrices, whose
elements are the hyperparameters of the kernel2.

Next, we define kl(·, ·), that is, the kernel function modeling the elements of lcM .
Proposition 2.5.1 suggests that, in addition to qc, qs, we need to account also for the
contributions linear w.r.t. qp. To do that, we multiply kR(·, ·) by an additional kernel,
obtaining,

kl (x(ti),x(tj)) = kR (x(ti),x(tj)) q̄Tp (ti)Σlq̄p(tj), (2.23)

where q̄p is the vector obtained concatenating 1 with qp; the matrix Σl ∈ R(Np+1)×(Np+1)

is a diagonal matrix, whose diagonal elements are additional hyperparameters.
We conclude the description of the proposed learning strategy with the following ob-

servation. As discussed before, RcM is an redundant description of the relative orientation
ocM . To limit the number of models to be learned, in our work we learn only the models
of RcM(1,1)

, RcM(2,1)
, RcM(3,1)

, RcM(3,2)
and RcM(3,3)

, and we obtain ocM applying (2.20).

2.5.4 Kinematic controller based on the GPR model

In this subsection, we introduce a naive kinematic controller based on the forward
kinematics model previously described. It is worth stressing that the proposed controller
implementation is meant only to test the accuracy of the model obtained, and not
to developed a novel control strategy. For this reason we have not addressed several
important issues that, instead, should be considered when proposing highly performing
control strategies.

We assume that each joint motor is equipped with a low level controller able to follow
a desired reference trajectory qdes, and we denote by δ the sampling time. Typically,
when considering trajectories with sufficiently small differences between the desired values
at time t and t+ δ, the low level controllers are able to follow accurately the reference

2Notice that the presence of 1 in qcsb
is needed to consider the monomials with degree zero and one

in the RKHS defined by kR(·, ·).
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trajectory. Our strategy is based on the fact that the model derived in the previous
section is differentiable with respect to q. Then, given p∗, a target pose of the last
marker, we implement an open loop controller that computes a suitable qdes trajectory
driving the robot from the initial pose pcM (0) to p∗. The proposed controller is defined
by the following expression,

qdes(t+ δT ) = qdes(t)− ν∇ep(t), (2.24)

where ep(t) = ||p∗ − p̂cM (t)||, with p̂cM (t) equals to the estimated pose at time t, ∇ep is
the gradient of ep computed w.r.t. q, and ν is a parameter that allows to tune the velocity
with which the target pose is reached. It is worth stressing that the objective function
minimized by the controller is not linear w.r.t. q. As a consequence, the performance of
this simple gradient-based controller could be limited by the presence of local minima,
and not only by inaccuracies of the GPR model.

2.6 Experimental results

We describe the experiments that we performed to test the effectiveness of our solutions.
We considered tests both in simulated and real environments. The simulated environments
are implemented in MATLAB. Given the robot DH parameters, and the markers poses
expressed w.r.t. the links RF, the observations are computed evaluating iteratively (2.2)
and (2.3). In the simulated environments we do not consider the presence of noise.
Experiments in a real setup were performed with a UR10 robot, which is a collaborative
manipulator with six revolute joint (n = 7). As far as the camera is concerned, we used
a Microsoft Kinect One (Kinect 2) RGB-D sensor, positioned in front of the robot, at
a distance approximately equal to 2[m]. Instead, as regards the fiducial markers, we
considered the AprilTags 36h11 family, proposed in Olson (2011). The frames collected
were processed using IAI Kinect2 ROS package that is a collection of tools and libraries
for a ROS Interface to the Kinect One, and the ROS wrapper of the AprilTag 3 visual
detector Wang and Olson (2016); Brommer, Malyuta, Hentzen, and Brockers (2018);
Malyuta, Brommer, Hentzen, Stastny, Siegwart, and Brockers (2019). The interface with
the robot and the camera are implemented in ROS Quigley, Conley, Gerkey, Faust, Foote,
Leibs, Wheeler, and Ng (2009). In particular, we used the URModernDriver Andersen
(2015), which allows collecting the joint positions at 125[Hz]. The system collects a new
sample after finishing processing the previous frame. The time required to process a
frame is approximately equal to 1[sec]. In the real setup we collected two dataset. The
first dataset, hereafter denoted by Dtr, consists in the collection of 2103 samples, acquired
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while the robot follows a trajectory defined by 25 way-points randomly distributed in
the available region of the robot workspace. The second dataset instead, denoted by
Dtest, is the collection of 2121 samples, collected requiring the robot to reach the same
way-points, but with a different order; by doing so, the trajectories followed by the robot
in the two dataset are different.

2.6.1 Empirical results for general trajectories

In this experiment we investigate the effectiveness of the proposed algorithm for gen-
eral input trajectories, performing a Monte Carlo study in the simulated environment,
composed of 64 experiments. In each experiment we simulated a different robot (with
n = 6), obtaining a dataset of the type defined in (2.1), with T = 50. Among the
different simulations we let vary several parameters, like the joint type order SQ, the
DH parameters, the relative pose between the camera and the robot, and the markers
attachment, namely, RLjMi

and lLjMi
. As far as the input trajectories are concerned, each

joint trajectory is given by the sum of 10 sinusoids, with amplitudes and frequencies
randomly selected in each simulation. For each dataset we considered all the possible
triplets, i.e., all the pairs of markers and joint signal, for a total number of 4800 triplets,
and we checked the feasibility of the conditions defined by Proposition 2.3.1, 2.3.2 and
2.3.3. We assigned class 1 in case that conditions are satisfied, an class 2 otherwise. The
triplets are labeled accordingly, namely, we assigned the triplet (M1,M2, qk) to class 1
when the elements of the triplet are connected and qk is a prismatic (resp. revolute) joint,
when evaluating conditions defined by Proposition 2.3.1 (resp. Proposition 2.3.2 and
2.3.3). Results are reported in Figure 2.4 in the form of confusion matrix and shows that
the probability of selecting non fully informative input trajectories is close to zero, since
in each simulations all the triplets have been labeled correctly. Moreover, results evidence
that equations defined by Proposition 2.3.2 and 2.3.3 identify only a necessary condition
when considered alone, since several false positives occurred. However, considering them
together, as done in Proposition 2.3.6, the number of false positives goes to zero, allowing
always a correct classification.

2.6.2 UR10: kinematic structure classification

In this experiment we test the effectiveness of our kinematic structure classification
algorithm with data acquired in the real setup. As done in the previous experiment, we
test all the possible triples of markers with the observations in Dtr. As concerns the
values of the thresholds defined in Section 2.4.3, we set the following values, ξt = 0.02
and ξo = 0.1. In Figure 2.5 we reported the confusion matrix obtained. Results confirm
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Figure 2.4: Confusion matrices of the Monte Carlo Simulations described in Section 2.6.1.
When considering Eq. Prop. 2.3.1, a sample is assigned to Class 1 if its markers and joint
identify a prismatic transformation, while in the cases of Eq. Prop. 2.3.2 and 2.3.3 the elements

in Class 1 identify revolute transformations.
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Table 2.1: RMSEs of the estimation errors obtained in Dtest. The RMSEs of x, y, and z are
expressed in meters, while the RMSEs of γ, beta, and α are in radiant.

x y z γ β α

0.0052 0.0051 0.0069 0.0169 0.0265 0.0358

the effectiveness of the adaptation proposed to deal with the presence of noise, given that
all the triplets are classified correctly.

To check how the number of observations influences the performance of the proposed
approach, we analyzed the evolution of the fr, obtained solving the optimization problems
in (2.18) and (2.19), as function of the training samples. In Figure 2.6 we plotted the
evolution of the number of misclassified triplets, together with fr1 and fr2 , where fr1
(resp. fr2) corresponds to the mean of the the fr values associated to triplets that are
connected (resp. not connected). In transparency we plotted the intervals between the
minimum and the maximum value of fr1 and fr2 . Observe that in the initial phases
the values of fr1 and fr2 are close, and, consequently, several triplets are not classified
correctly. We argue that, due to the small variability of the observations, the residuals due
to false assumptions are not significantly different from the residuals due to noise. The
values of fr2 increase significantly with the number of samples, i.e., with the variability
of the observations, allowing the correct classification of all the triplets. In particular,
in the test performed, the gap between the values of fr1 and fr2 become sufficiently
different after 1300 samples. However, it is worth mentioning that the number of samples
required is strictly connected to several aspects, in particular, the variability of the joints
trajectories and the measurement noise.

2.6.3 UR10: forward kinematics identification

In this experiment we test our forward kinematics identification algorithm with data
acquired in the real setup. We trained the proposed estimator using the observations in
Dtr. In order to further stress the generalization properties, we used just 100 samples,
randomly selected among the 2103 samples in Dtr. The training consists in computing
(2.5.2), after optimizing the hyperparameters by Marginal Likelihood maximization (see
Section 1.3). In Table 2.1 we reported the out of sample performance, measured in terms
of Root Mean Squared Error (RMSE) in Dtest. Results prove the effectiveness of the
proposed solution. The RMSEs of the relative translations are in the order of millimeters,
while, the RMSEs of the relative orientation are in the order of 0.01 radiants. These
values are of the same order of magnitude of the measurement noise present in our setup.
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Figure 2.5: Confusion matrices obtained processing all the triplets in Dtr. When considering
Eq. Prop. 2.3.1, a sample is assigned to Class 1 if its markers and joint identify a prismatic
transformation, while in the cases of Eq. Prop. 2.3.2 and 2.3.3 the elements in Class 1 identify

revolute transformations.
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Table 2.2: RMSEs of the positioning errors obtained deriving the controller with Dtr and
Dt̄r. The RMSEs of x, y, and z are expressed in meters, while the RMSEs of γ, beta, and α

are in radiant.

Dataset x y z γ β α

Dtr 0.0065 0.0111 0.0228 0.1853 0.0853 0.1167
Dt̄r 0.0017 0.0016 0.0020 0.0988 0.0269 0.0419

2.6.4 UR10: control performance

In this set of experiments we test the kinematic controller described in (2.24), based on
the model learned in the previous experiment with our polynomial-based approach. In
particular, to derive the estimator, we used all the observations in Dtr. Given a fixed
initial configuration of the robot, we computed offline the reference trajectories to be
inputted to the low level controller to reach 5 target poses randomly distributed in the
robot workspace. After applying the computed control actions, we collected the final
poses measured by the camera; the video of the experiment is publicly available3. In
Table 2.2 we reported the RMSEs of the positioning errors. Results prove that the control
actions computed with the naive controller drive the robot close to the target poses. As
concerns the relative translations, errors are in the order of centimeters, while orientation
errors are in the order of 0.1 radiants.

To evaluate the possibility of improving the accuracy of the controller in an online
framework, we performed a second experiment, in which we derive the forward kinematics
estimator using D̄tr, the dataset obtained adding to Dtr the observations of the poses
reached with the control actions computed with the previous controller. Results show a
consistent improvement, likely due to the higher accuracy of the estimator. This fact
highlights the importance of defining strategies to sufficiently exciting strategies.

Finally, we point out that the RMSEs obtained do not depend only on the accuracy
of forward kinematics model. Significant contributions to the errors are also due to
intrinsic limitations of the control strategy implemented, in particular, the presence of
local minima in the error function ep. These errors might be removed implementing more
complex control strategies, that, however, are out of the scope of this chapter.

2.7 Conclusions

In this chapter we have introduced a autonomous algorithm for kinematics model
identification. In the framework presented, we assume that a distinct marker is attached

3https://youtu.be/PgjvfxMArtQ
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to each link of the robot, as well as that joint variables are measurable; no prior about
the robot geometry is assumed. Starting from a time series of such observations, the
proposed algorithm firstly identifies the robot kinematic structure. Secondly, based on
the kinematic structure identified, it derives an estimator of the forward kinematics based
of GPR, in particular on polynomial kernels. We proved the effectiveness of our approach
in several simulated environments, as well as in a real setup, with experiments performed
with a UR10 robot.
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3
Polynomial-based inverse dynamics identification

3.1 Introduction

Learning the inverse dynamics model of a robot directly from data is still a challenging
task in robotics, worth of investigation, as demonstrated by several important applications.
For instance, by learning such a model, it is possible to design robot controllers based on
feed-forward strategies Khosla and Kanade (1988) and on more complex Model Predictive
Control approaches Poignet and Gautier (2000), or to provide robots with proprioceptive
sensing capabilities Haddadin et al. (2017), Siciliano and Villani (2000).

Learning models directly from data has several advantages. Firstly, the derivation
of a model is not always an easy task, and, even when a model is available, its use
introduces a bias, due to uncertainties on the values of parameters which are assumed
known, or to assumptions which are just a rough approximation of the real behavior
of the robot. Secondly, data-driven approaches are not platform-dependent, namely,
the same learning technique can be applied to different physical platforms, leading to
considerable advantages in terms of design time and costs.

Several data-driven strategies to learn inverse dynamics have been developed. In
Vijayakumar and Schaal (2000), the authors proposed a locally weighted projection of
different linear models. A significant number of approaches rely on neural networks;
for instance, the authors in Polydoros, Nalpantidis, and Krüger (2015) resort to the
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use of a recurrent neural network, while in Rueckert, Nakatenus, Tosatto, and Peters
(2017) an LSTM network has been proposed. Another wide class of solutions is based on
Gaussian Process Regression (GPR), Nguyen-Tuong, Peters, Seeger, and Schölkopf (2008),
Romeres, Zorzi, Camoriano, and Chiuso (2016), Camoriano, Traversaro, Rosasco, Metta,
and Nori (2016) and Nguyen-Tuong, Seeger, and Peters (2009). Differently, from neural
networks, GPR provides also a bound on the uncertainty of the estimates; this additional
information can be exploited in different ways, see for instance in Reinforcement Learning
the PILCO algorithm Deisenroth and Rasmussen (2011).

Although data-driven modeling techniques have been applied successfully in several
control applications, see for example Deisenroth and Rasmussen (2011), Levine and
Abbeel (2014), Hewing, Liniger, and Zeilinger (2018), they are still not able to guarantee
the same generalization properties of model-based learning techniques. Indeed, data-
driven approaches capture only similarity between data, without exploiting important
features, like causality or the presence of constraints imposed by physics and geometry.
This fact results in a considerable data inefficiency, which is particularly evident in
systems with a high number of degrees of freedom (DOF). The typical huge amount
of data required by standard data-driven approaches poses serious limitations on their
applicability, mainly due to the high computational burden needed to process all the
available information, in addition to the difficulty of guaranteeing good generalization
properties.

In this chapter, we investigate the possibility of developing data-driven estimators of
robot inverse dynamics exhibiting good generalization properties and high data efficiency.
The main contribution of this work is the design of a data-driven inverse dynamics
estimator based on GPR, more precisely on a novel kernel function, named Geometrically
Inspired Polynomial Kernel (GIP). The main idea supporting our approach is related
to the existence of a suitable transformation of the standard inputs, that are, positions,
velocities, and accelerations, of the generalized coordinates, into an augmented space,
where the inverse dynamics map derived with the Lagrangian equations is a polynomial
function. Inspired by this property, we propose a model based on the Multiplicative
Polynomial Kernel (MPK), recently introduced in Dalla Libera et al. (2019c), which
is a re-parameterization of the standard polynomial kernel. As shown in Dalla Libera
et al. (2019c), and also in Chapter 6, compared to the standard polynomial kernel, MPK
parametrization allows for greater flexibility in neglecting eventual unnecessary basis
functions of the corresponding Reproducing Kernel Hilbert Space (RKHS), leading to
higher generalization performance.

The idea of mapping the standard inputs in a space where the inverse dynamics
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is a polynomial function has been explored also in Ge and Hang (1998). In Ge and
Hang (1998), the authors have introduced the same augmented space we consider in this
work but have modeled only the elements of the inertia matrix and the potential energy
as polynomials in this augmented space. However, instead of exploiting the encoding
properties of polynomial kernels, they have designed a structural network inspired by the
Lagrangian equations, where each element of the inertia matrix and the potential energy
are a linear combination of monomials belonging to a particular class of polynomials. As
consequence, compared to our approach, in the model proposed in Ge and Hang (1998)
the number of parameters to be identified grows quickly w.r.t. the robot DOF, i.e., w.r.t.
the number of possible monomials, increasing the risk of overfitting.

The polynomial-based strategy we introduce is tested both in a simulated environment
and with data acquired from real experiments on a UR10 robot. Despite the GIP estimator
requires minimal prior information compared to model-based estimators, the obtained
results show that the proposed approach exhibits comparable performance in terms of
accuracy and generalization. Additionally, w.r.t. to data-driven approaches, our learning
algorithm is more data-efficient and exhibits better generalization properties.

The chapter is organized as follows. In Section 3.2, we provide an overview of the
main strategies based on GPR adopted in inverse dynamics learning. In Section 3.3 we
describe the approach we propose. Firstly, we identify an input transformation that leads
to a description of the rigid body dynamics equations in terms of polynomial functions.
Secondly, we briefly review MPK. Thirdly, we define the GIP kernel. Finally, in Section
3.4, we test the proposed estimator in a simulated environment, representing a SCARA
robot, and on data coming from real experiments performed with a UR10 robot.

3.2 Robot Inverse Dynamics: Learning Strategies

In this section, we briefly review the dynamics model of robot manipulators and the main
approaches proposed to deal with the inverse dynamics problem.

Consider a robot manipulator with n+1 links and n joints, and let q = [q1, . . . , qn]T ∈
Rn be the vector collecting the generalized coordinates associated to the joints; accordingly,
let q̇ and q̈ be the velocity and acceleration vectors, respectively. The inverse dynamics
problem consists in estimating the function mapping the triple (q, q̇, q̈) into the vector of
generalized torques, denoted by τ ∈ Rn. The estimation is typically performed starting
from a set of input-output observations, which is composed by the set of input locations
X = {x(t1), . . . ,x(tNTR)}, where x(t) = [q(t) q̇(t) q̈(t)], and the set of noisy outputs Y
associated to {τ (t), t = t1, . . . , tNTR}, being NTR the total number of observations. In
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the following, when there is no risk of confusion, we will omit the dependence on time t.

3.2.1 Rigid body dynamics estimators

Several approaches which have been proposed to deal with the inverse dynamics problem
are based on the rigid body dynamics (RBD) assumption. Under this assumption, the
robot dynamics is described as

τ = B (q) q̈ + C (q, q̇) q̇ + g (q) , (3.1)

where B (q) ∈ Rn×n and C (q, q̇) ∈ Rn×n are, respectively, the inertia matrix and the
Coriolis matrix, and g (q) is the vector accounting for the gravitational contributions,
see Siciliano et al. (2009). The previous equation depends on two sets of parameters, the
kinematic and dynamics parameters. The first set is composed by geometric quantities
(i.e., lengths, angles) that, together with q, define the forward kinematic. The second
set, instead, contains the masses, centers of mass, and inertia components of the links.
Remarkably, it is possible to show that (3.1) is linear w.r.t. the dynamics parameters, see
Siciliano et al. (2009). Specifically, denoting by wd the vector collecting all the dynamics
parameters, (3.1) can be rewritten as

τ = Φd (q, q̇, q̈)wd = Φd (x)wd =
[
φd1 (x) . . . φdn (x)

]T
wd, (3.2)

for a suitable matrix Φd ∈ Rn×Npar , which depends only on the kinematic parameters.
Then, assuming the kinematic parameters to be known, the inverse dynamics problem
boils down to the computation of ŵd, an estimate of wd.

In several solutions, ŵd is computed relying on Fisherian techniques, see for example
Sousa and Cortesão (2014). When the model is accurate, and the signal to noise ratio
is sufficiently high, these estimators achieve accurate estimates, together with good
generalization properties. However, besides the presence of noise, several aspects could
limit the performance of such approaches. Indeed, it is worth stressing that errors in
the knowledge of the kinematic parameters introduce model bias. Moreover, there are
situations where it is hard to derive (3.2), or where the rigid body assumption is a too
rough approximation of the real robot behaviors.

3.2.2 Gaussian Process Regression for robot inverse dynamics

To overcome the limitations characterizing estimators based on the RBD assumption,
several Bayesian approaches have been proposed in the last decade. Most techniques
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are based on GPR, see Section 1.3. Typically, in GPR approaches, each joint is treated
individually and modeled as a single Gaussian process (GP). More precisely, referring to
the notions introduced in Section 1.3, when considering the i-th joint, it is assumed that
yi, the vector collecting the measure associated τi (t) with t = t1, . . . , tNTR , is generated
by the following probabilistic model

yi =


fi (x (t1))

...
fi (x (tNTR))

+


ei (t1)

...
ei (tNTR)

 = f i (X) + ei, (3.3)

where ei is i.i.d. Gaussian noise with standard deviation σni , and fi is an unknown
function defined as a GP, namely, f i (X) ∼ N (mi (X) ,Ki (X,X)), being mi and
Ki (X,X), respectively, mean and covariance. In particular, the matrix Ki (X,X), called
also kernel matrix, is defined through a kernel function ki (·, ·), i.e., the element in h-th
row and j-th column is equal to ki (x (th) ,x (tj)).

We recall that in this probabilistic framework the maximum a posteriori probability
(MAP) estimator of fi is given in close form. Let x(t∗) be a general input location. Then,
as proved in Rasmussen and Williams (2006) (see Chapter 2), the MAP estimate of
fi(x(t∗)) is given by

f̂i(x(t∗)) =
NTR∑
h=1

αiki(x(t∗),x(th)), (3.4)

where αi is the i-th element of the vector α, defined as

α =
(
K(X,X) + σ2

niI
)−1

yi. (3.5)

Before providing a brief overview about GPR based solutions, we comment about the
computational cost of (3.4) and (3.5). Due to the matrix inversion in (3.5), the number
of operations required to derive the fi estimator is proportional to the cube of NTR.
However, observe that α depends only on the training data, and then its computation
can be performed offline. As consequence, once α is computed, the cost of evaluating
(3.4), grows linearly w.r.t. NTR, thus allowing the use of GPR estimators in real time
applications, see for example Hewing et al. (2018) and Nguyen-Tuong et al. (2009).

Non-Parametric prior: RBF Kernel

When no prior knowledge about the model is available, the GPR prior can be defined in a
data-driven way, relaying on the so called Non-Parametric prior (NP) kernels. An option
consists in assuming that the distribution of the outputs is stationary w.r.t. the input
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locations, and then, considering mi (·) = 0, and adopting a Radial Basis Function (RBF)
as kernel. For sake of clarity we recall the RBF kernel definition previously provided in
Section 1.3,

kRBF (x (th) ,x (tj)) = λRBF e
− 1

2 ||x(th)−x(tj)||2
Σ−1
RBF ,

where λRBF and ΣRBF are the kernel hyperparameters, which are typically tuned from
data by Marginal Likelihood (ML) maximization.

It is well known that RBF kernels can approximate any continuous functions, thus
providing a valid tool to obtain accurate estimates of τi directly from data. The RBF
kernel has been successfully applied in several robotics applications, see for example
Deisenroth and Rasmussen (2011). However, estimators based on RBF kernels well
approximate the inverse dynamics only in a neighborhood of the training input locations,
exhibiting poor performance in terms of generalization. Several strategies have been
designed in order to limit the computational complexity and increase the generalization,
see for example Nguyen-Tuong et al. (2009). However, when considering robots with
considerable degrees of freedom, it is still hard to design inverse dynamics estimators
with remarkable generalization properties directly from data, i.e., without exploiting
a-priori knowledge.

Parametric prior

In case a RBD model is given, starting from (3.2), and modeling wd as a Gaussian
variable, with mean w̄d and covariance Σw, it is possible to derive a linear kernel that
inherits all the positive aspects of the RBD estimators, but acts in a Bayesian framework.
Consider the measures of the i-th joint torques, we have that

yi = f (X) + e = Φd
i (X)wd + e ,

where Φd
i (X) is the matrix with rows equal to φdi (x (tj)), j = 1, . . . , NTR. Assuming

wd ∼ N
(
wd,Σwd

)
, we have that the prior mean and the prior covariance are defined by

the following expressions,

mi(X) = Φd
i (X)w̄d ,

ki(x (th) ,x (tj)) =
(
φdi (x (th))

)T
Σwdφ

d
i (x (tj)) , (3.6)

where w̄d and Σwd are the kernel hyperparameters. When the above kernel is used alone,
we obtain the so called Parametric Prior (PP) estimators.
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Semi-Parametric prior

Instead, when the kernel in (3.6) is used together with a NP kernel, we obtain the so
called Semi-Parametric Prior (SP) estimators. Adopting an RBF kernel as data-driven
kernel, we have

ki(x (th) ,x (tj)) =
(
φdi (x (th))

)T
Σwdφ

d
i (x (tj)) + kRBF (x (th) ,x (tj)) , (3.7)

see for example Romeres et al. (2016), Camoriano et al. (2016) and Nguyen-Tuong
and Peters (2010). The rationale behind the use of kernel in (3.7) is the following:
the first term allows to exploit the prior knowledge coming from the RBD, providing
generalization, while kRBF (·, ·) improves estimate in a neighborhood of the training
locations, compensating for model bias or un-modeled behaviors. We remark that
estimators based on (3.6) and (3.7) are model-based estimators, since their kernel functions
are derived starting from (3.2).

3.3 Proposed Approach: Geometrically Inspired
Polynomial Kernel

In this section, we propose a novel kernel that allows estimating the inverse dynamics
without requiring prior knowledge of the model, preserving the fact of having a good
generalization and high accuracy. This section is organized as follows. Firstly, we state
Proposition 3.3.1, which characterizes the inverse dynamics from the functional analysis
point of view. Given the type of each joint, i.e., prismatic or revolute, Proposition 3.3.1
defines a transformation of the input x where the inverse dynamics is a polynomial
function. Then, we briefly review the Multiplicative Polinomial Kernel, and finally, we
define the proposed kernel function, named Geometrically Inspired Polynomial kernel.

3.3.1 Polynomial characterization of the rigid-body model

In the following, we restrict our study to manipulators where each joint is either revolute
or prismatic. Let Nr and Np be the number of revolute and prismatic joints, respectively,
where Nr +Np = n, and let us denote by Ir =

{
ir1 , . . . , irNr

}
and Ip =

{
ip1 , . . . , ipNp

}
the sets containing, respectively, the revolute and prismatic joints indexes. We start our
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analysis by defining

qc =
[
cos

(
qir1

)
, . . . , cos

(
qirNr

)]
∈ RNr ,

qs =
[
sin
(
qir1

)
, . . . , sin

(
qirNr

)]
∈ RNr ,

qp =
[
qip1 , . . . , qipNp

]
∈ RNp .

In the following, we denote by qcb the element in qc associated to joint irb , i.e., cos(qirb )
(similar definitions hold for qsb and qpb). For later convenience we define also qcs ∈ R2Nr ,
the vector obtained concatenating qc and qs. In addition, we denote by q̇v the vector
collecting the elements of the set

{q̇iq̇j , 1 ≤ i ≤ n , i ≤ j ≤ n} ,

that is the set containing all the possible pairwise products of components of q̇. Notice
that q̇v ∈ Rn(n+1)/2.

Finally, we introduce a compact notation to identify a particular set of inhomogeneous
polynomial functions. Let a be the vector containing the m variables a1, . . . , am. We
denote by P[p]

(
a[p1]

)
the set of polynomial functions of degree not greater than p defined

over the variables in a, such that each variable ai appears with degree not greater than
p1. Similar definitions hold in case the inputs set accounts for more input vectors.

Now we consider the transformation F : R3n → Rγ , with γ = 2Nr+Np+n(n+1)/2+n,
which maps the input location x into the element x̄ ∈ Rγ , defined as

x̄ =
[
qc, qs, qp, q̇v, q̈

]
. (3.8)

We have the following result.

Proposition 3.3.1. Consider a manipulator with n + 1 links and n joints, divided
in Nr revolute joints and Np prismatic joints, subject to n = Nr + Np. Then, the
inverse dynamics of each joint obtained through the rigid body model in (3.1) belongs to
P(2n+1)

(
qc(2), qs(2), qp(2), q̇v(1), q̈(1)

)
. Namely, each τi (·) is a polynomial function in x̄,

of degree not greater than 2n+ 1, such that: (i) each element of qc, qs and qp appear
with degree not greater than 2, and (ii) each element of q̇v and q̈ appear with degree not
greater than 1. Moreover, for any monomial of the aforementioned polynomial, the sum
of the qcb and qsb degrees is equal or lower than two, namely, it holds

deg (qcb) + deg (qsb) ≤ 2 .
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The proof is reported in the Appendix.

Remark 3.3.2. The result stated in Proposition 3.3.1 is related to the modeling property
used in Ge and Hang (1998), though some important differences are present. Indeed, in
Ge and Hang (1998), the authors have modeled with polynomial functions the potential
energy and the elements of the inertia matrix, while Proposition 3.3.1 establishes that
the whole inverse dynamics is a polynomial function in the augmented space. Moreover,
Proposition 3.3.1 provides more strict constraints on the degrees of cos(qi), sin(qi), thus
better characterizing the maximum degree with which each variable can appear in the
different monomials, and, in turn, decreasing the number of possible monomials.

3.3.2 Multiplicative Polynomial Kernel

From a functional analysis point of view, Proposition 3.3.1 states that the inverse dynamics
derived through the RBD belongs to the finite dimensional space of polynomial functions.
A suitable set of basis functions for this space is given by the set of all the monomials in
P(2n+1)

(
qc(2), qs(2), qp(2), q̇v(1), q̈(1)

)
, heareafter denoted by vector φP (x) ∈ RNP , being

NP its cardinality. Unfortunately, NP grows rapidly with the number of joints. To
provide a couple of examples, when considering a SCARA robot, i.e., n = 4, we have
that NP = 1647, while, for a standard six DOF robot, like the UR10, we have that
NP = 302615. Clearly, when considering GPR based approaches, the computational
and memory requirements induced by the dimension of φP (x) prevent the possibility
of adopting the linear kernel k (x (tk) ,x (tj)) = (φP (x (tj)))T ΣwφP (x (tj)), as done in
(3.6).

A compact solution that allows to overcome this problem consists in assuming that
the target function fi (·) belongs to the Reproducing Kernel Hilbert Space (RKHS)
associated to a polynomial kernel, see Rasmussen and Williams (2006). More precisely,
when considering the space of inhomogeneus polynomials defined on the components of
x ∈ Rd, with maximum degree p, the polynomial kernel is classically defined as

k
(p)
pl (x (th) ,x (tj)) =

(
σ2
p + xT (th) Σpx (tj)

)p
, (3.9)

where σ2
p > 0 and Σp > 0 are the kernel hyperparameters, see Rasmussen and Williams

(2006). Unfortunately, as highlighted in Rasmussen and Williams (2006) (chapter 4.2.2),
the kernel function in (3.9) is not widely used in regression problems, since it is prone to
overfitting, in particular when considering high dimensional inputs and p > 2, that is
exactly the situation identified in Proposition 3.3.1.

A valid alternative to (3.9) is represented by MPK, recently introduced in Dalla
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Figure 3.1: Schematic representation of the GIP kernel.

Libera et al. (2019c), and further discuss in Chapter 6. When considering the space of
inhomogeneous polynomial with maximum degree p, the MPK is defined as the product
of p linear kernels,

k
(p)
mpk (x (th) ,x (tj)) =

s=p∏
s=1

(
σ2
s + xT (th) Σsx (tj)

)
, (3.10)

where the Σs ∈ Rd×d matrices are distinct diagonal matrices. The diagonal elements,
together with the parameters σ2

s , compose the hyperparameters set of the MPK.
Observe that the RKHSs identified by (3.10) and (3.9) contain the same basis

functions. However, as discussed in Chapter 6, (3.10) is equipped with a richer set of
hyperparameters, that can be tuned by ML maximization, and allows to better select
the monomials that really influence the system output.

3.3.3 Geometrically inspired polynomial kernel for robot inverse
dynamics

In this subsection, we describe the GIP kernel we propose to model the robot inverse
dynamics. Our approach requires minimal information since we assume to know only the
joints type. We model each joint torque with a zero-mean GP, and, driven by Proposition
3.3.1, we assume that the inverse dynamics is a polynomial in the input space x̄, defined
in (3.8). To comply with the constraints on the maximum degree of each term, we adopt



3.4 Experimental Results 53

a kernel function given by the product of Nr + Np + 1 kernels of the type defined in
equation (3.10), where

• Nr kernels have p = 2 and each of them is defined on a 2-dimensional input space
given by qcsb = [qcb , qsb ], with b ∈ Ir;

• Np kernels have p = 2 and each of them is defined on a 1-dimensional input, given
by one of the qp components;

• a single kernel with p = 1 defined on the input vector qav = [q̈ , q̇v].

The resulting kernel for the i-th joint is

ki (x̄ (th) , x̄ (tj)) = kcs (qcs (th) , qcs (tj))

kp
(
qp (th) , qp (tj)

)
k

(1)
mpk (qav (th) , qav (tj)) , (3.11)

with

kcs (qcs (th) , qcs (tj)) =
Nr∏
b=1

k
(2)
mpk

(
qcsb (th) , qcsb (tj)

)
,

kp
(
qp (th) , qp (tj)

)
=

Np∏
b=1

k
(2)
mpk (qpb (th) , qpb (tj)) .

In Figure 3.1 we reported a schematic representation of the GIP kernel.

3.4 Experimental Results

We tested the proposed approach both in a simulated environment and in a real envi-
ronment. Regarding technical aspects, we implemented all the considered algorithms
in Python. To speed up algebraic operations, we largely exploited the functionalities
provided by Pytorch Paszke et al. (2017). The code1 and the datasets2 are publicly
available.

3.4.1 Simulated SCARA robot

To evaluate the benefits of the GIP kernel, we first tested the proposed approach in a
simulated environment. We considered a SCARA robot, more precisely an AdeptOne

1https://bitbucket.org/AlbertoDallaLibera/gip_kernel
2https://mega.nz/#F!fbBBSCCK!NwRs60ace05mTe2Ot5fz-Q
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Robot. The SCARA is a 4 DOF robot manipulator, with three revolute joints (joint
1, 2 and 4) and a prismatic joint (joint 3). As far as data generation is concerned,
joint torques were computed through (3.1), assuming complete knowledge of the joint
trajectories. Equation (3.1) was derived using the python package Sympybotics3.

Estimation accuracy

In the first experiment, we tested the estimators’ accuracy. The proposed approach
is compared with both model-based and data-driven estimators.As far as model-based
estimators are concerned, we implemented three solutions. The first estimator is a classical
Fisherian estimator (FE), based on (3.2); in particular we considered the implementation
provided by Sympybotics, see Sousa and Cortesão (2014) for details. The other two model-
based estimators are the PP and SP kernel-based estimators, where the model-based
component is defined as in (3.6). In all the three solutions, we computed the Φd matrix
in (3.2) assuming the nominal kinematic parameters provided by the manufacturer. To
account for behaviors due to model bias, we varied the values of the kinematic parameters
of the model generating data around the nominal values, so that the Φd matrix used by
the FE and the PP and SP kernels is different from the one generating data. Parameters
perturbations are uniform random variables, ranging [−0.05, 0.05]m for lengths, and
[−5, 5] deg for angles. Instead, as far as data-driven approaches are concerned, we tested
an RBF kernel-based estimator and a neural network. The neural network is a fully
connected network with two hidden layers, each of which is composed of 400 sigmoids.
Recurrent architectures have not been considered since typically they are applied to deal
with the on-line adaptation problem, which is out of the scope of this work.

To obtain statistically significant results, we performed a Monte Carlo analysis, com-
posed of 20 experiments. A single experiment consists in sampling a model perturbation
and performing two simulations, one for the training set and one for the test set. In each
simulation, joints follow a distinct random trajectory, given by the sum of 200 sinusoids
with random amplitudes and angular velocities sampled in the range [−2, 2] rad/sec. A
zero-mean Gaussian noise with standard deviation 0.01Nm was added to the output of
(3.1), resulting in a high signal to noise ratio. Both the training and test dataset are
composed of 2000 samples.

The hyperparameters of the GPR based estimators were trained by ML maximization
(see Section 1.3). As concerns w̄d and Σwd , i.e., the prior distribution of the model-based
kernels, we considered w̄d = 0, and Σwd equals to a diagonal matrix with distinct diagonal
elements. Instead, as concerns the optimization of neural network parameters, the Mean

3https://github.com/cdsousa/SymPyBotics
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Squared Error (MSE) was considered as loss function, defined as

MSE(yi, ŷi) =
N∑
j=1

(yi(tj)− ŷi(tj))2 /N ,

with N equals to the number of samples. Both for GPRs and the neural network, we
used Adam as optimizer Kingma and Ba (2015). Further details about the optimization,
size of the batch and number of epochs, are provided in the source code.

Performance are compared by Normalized Mean Squared Error (nMSE) in the test
set, defined as

nMSE(τ i, ŷi) = MSE(τ i, ŷi)/V ar (τ i) .

In Figure 3.2, we have plotted the obtained nMSEs through a boxplot. Results
show that the proposed approach outperforms other data-driven estimators, which are
not able to learn accurately the inverse dynamics of the SCARA robot using just 2000
samples. Indeed, except for joint 4, the nMSEs of RBF kernel-based estimator and
neural network estimator are in most of the trials higher than 10%. Instead, the GIP
kernel-based estimator provides accurate estimates, as proven by nMSEs values, that are
always below 1%, with the exception of joint 4, where two outliers are present, probably
due to training inputs not sufficiently exciting. Moreover, the GIP kernel-based estimator
performs similarly to the model-based approaches. Actually, in joint 2 and 3, the proposed
approach outperforms FE and the PP kernel-based estimator, whose performances are
affected by model bias. Results confirm also the validity of semiparametric schemes,
proving that the addition of a data-driven component can compensate for model bias,
given that SP kernel-based estimator outperforms PP. Anyway, we highlight that in
hybrid schemes the RBF component might not be effective in compensating for model
bias, in particular when the performance of the data-driven estimator is low, as proven by
the nMSEs in joint 3, where the GIP kernel-based estimator is more accurate than SP.
Finally, a comparison of the FE and PP performance suggests that Fisherian approaches
are more sensitive to model bias; notice, in particular, the nMSEs obtained in joint 1
and 4.

Data efficiency

In the second experiment, we tested the data efficiency of different estimators. Since our
focus is on comparing data-driven approaches, model bias was not considered, in favor of
greater results interpretability. The GIP kernel-based estimator is compared with the
other data-driven estimators, and also with the PP kernel-based approach. In this ideal
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Figure 3.2: Boxplot of the nMSEs obtained in 20 experiments. Model-based estimators
(FE, PP, and SP) are on the left, while the data-driven estimators (GIP, RBF, and NN, the
fully connected neural network) are on the right.The upper and the lower vertical edge of the
box represent the first and the third quartile, while the median is pointed out by the orange
line. The black vertical lines indicate variability outside the first and third quartile; circles

point out outliers. Results are plotted in logarithmic scale.
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scenario, where data are generated with the robot nominal parameters, the performance
of PP might be considered as the baseline of an optimal solution.
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Figure 3.3: Comparison of the neural network (NN) and the PP, RBF and GIP estimators
in terms of accuracy and data efficiency. The plot shows the evolution of GMSE in the test
set, as a function of the training samples available. Results are plotted in logarithmic scale.

The experiment is composed of training and test simulation, with joints trajectories
generated as in the previous experiment; each dataset accounts for 4000 samples. Results
are reported in Figure 3.3, where we have plotted the evolution of the Global Mean
Squared Error (GMSE), i.e., the sum of the MSE(τ i, ŷi)s of the four joints, as function
of the number of training samples used to train and derive estimators. The evolutions of
the errors show that the proposed solution outperforms the other data-driven estimators,
both in terms of accuracy and data efficiency, given that its GMSE is lower and decreases
faster. As in the previous experiment, the GIP kernel-based estimator behaves more
similarly to the model-based approach than to the other data-driven solutions, proving
its data efficiency.
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3.4.2 UR10 robot

We used a Universal Robots UR10 to test the proposed approach in a real setup. The
UR10 robot is a 6 DOF collaborative manipulator, where all the joints are revolute. This
robot is not equipped with joint torque sensors, but one can directly measure the motor
currents i. Assuming that the behaviors due to elasticity are negligible, i.e., θ = Krq,
where θ contains the motor angles and Kr is the diagonal matrix of the gear reduction
ratio, the inverse dynamics in (3.1) can be rewritten as

Keqi = Beq (q) q̈ + C (q, q̇) q̇ + g (q) + Fvq̇ + Fcsign (q̇) ,

where Fv + Fcsign (q̇) accounts for the motors frictions and Beq (q) = B (q) + K2
rBm,

with Bm equals to the diagonal matrix of the rotor inertias; the Keq matrix is defined as
KiKr, where Ki is the diagonal matrix containing the torque-current coefficients of the
motors.

The interface with the robot is based on ROS Quigley et al. (2009), through the
ur_modern_driver4, and data are acquired with a sampling time of 8 · 10−3 sec. The
driver provides joints positions, velocities, and currents, while accelerations are computed
through causal numerical differentiation. The collected dataset is publicly available, and
it has been designed to stress generalization properties. The training set accounts for
40000 samples, collected through a random exploration of the robot workspace, requiring
the end-effector to reach a series of random points with variable velocity. Instead, the test
dataset is composed of two types of trajectories, for a total number of 25312 points. 22324
points have been collected through a random exploration, similar to the one described for
the training dataset. The remaining samples come from the trajectory obtained requiring
the end-effector to track a circle of radius 30 cm at a tool speed of 30mm/s.

The optimization procedures and the considered estimators are the same of the
previous experiment. Due to space constraints, we neglect the FE, which performs
similarly to PP. Given the higher complexity of the UR10 inverse dynamics, the number
of hidden units of the neural network was increased to 600. Concerning the derivation
of the GPR based estimators, i.e., the computation of (3.4) and (3.5), we used a subset
of the training data, in order to reduce the computational burden induced by (3.5); in
particular, we selected 4000 samples, downsampling with constant step the 40000 training
samples. The kinematic parameters considered in the derivation of the model-driven
components are the nominal values provided by the manufactures.

The results obtained in the real setup, and reported in Figure 3.4, confirm the

4https://github.com/ThomasTimm/ur_modern_driver
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behaviors obtained in the simulative setup. The proposed approach outperforms the
other data-driven estimators in all the joints, confirming that data efficiency is crucial to
derive inverse dynamics estimators with good generalization properties. GIP performance
is close to the ones of the model-based estimators, and in joints 5 and 6 the proposed
approach slightly outperforms the PP estimator, that, as explained before, might be
affected by model errors. SP performance confirms that model errors can be compensated
by the data-driven component, even though, as proven by the nMSE in joint 6, the
improvement might not be so significant when data-driven estimates are not accurate.
Finally, we remark that the nMSEs obtained by the PP, SP and GIP estimators are close
to the limit imposed by the signal to noise ratio. Indeed, we quantified a noise variance
approximately equal to 0.03[A2], leading to a ratio between the noise variance and the
output variance equal to

[0.0125, 0.0018, 0.0037, 0.1607, 0.2528, 0.2637 ]

These values are close to the nMSEs obtained, except for the first link. This issue
has already been observed in Dalla Libera et al. (2019b) and also in Chapter 4, where
experiments in a similar set up showed that currents at low velocities are corrupted by
non-Gaussian noise, limiting significantly estimation performance in the first joint.
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Figure 3.4: Comparison of the neural network (NN) and the PP, RBF and GIP kernel based
estimators in the UR10 inverse dynamics prediction.
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3.5 Conclusion

In this chapter, we introduced a novel polynomial kernel to deal with the data-driven
inverse dynamics identification. Compared to other data-driven approaches, the proposed
kernel-based estimator, called GIP kernel, is more data-efficient. As proven by experiments
in a simulated environment and a real system, this property allows deriving accurate
inverse dynamics estimators directly from data, without the need of prior knowledge
about the model and using a small amount of data. Indeed, numerical results show that
the GIP kernel-based estimator exhibits behaviors similar to the ones of model-based
approaches, in terms of accuracy, generalization and data efficiency. However, compared
to model-based solutions, the proposed approach has two main advantages. The first
is that, since our algorithm estimates the inverse dynamics directly from data, it is not
affected by model bias. Secondly, our algorithm is convenient from an implementation
point of view, given its generality and hence the possibility of applying the same approach
to different physical systems.
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4
Proprioceptive collision detection
via Gaussian Process Regression

4.1 Introduction

Collaborative Robotics has attracted increasing interest over the last decade in the
research community, mainly due to the fact that the design of robots able to collaborate
with humans might have a great impact on several domains. For instance, in the medical
field robots might assist humans in rehabilitation from injuries Gelderblom et al. (2009),
or in industrial applications, the robot working with a human being might relieve him
from the most physically demanding activities, Masinga et al. (2015).

Human-robot collaboration is a challenging topic under different points of view but,
likely, the most critical aspects are related to safety. Indeed, when robots and humans
work side-by-side, they need to share their workspace, and, in these circumstances,
robots should avoid dangerous and unexpected collisions with humans. When camera and
proximity sensors are available, one might develop motion planning algorithms minimizing
the collision probability Ebert and Henrich (2002). However, it is impossible to reduce the
collision risk to zero. Clearly, in this context, it is fundamental that robots are provided
with robust strategies that can promptly detect collisions. Moreover, once a collision
has been detected, the robot has to classify such collision, in particular discriminating
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between intended and unintended contacts, and it has to react accordingly.

In order to detect the interaction with the external environment, robots might be
endowed with specific sensors, like artificial skins or force-sensors. However, this approach
might have some limitations. Indeed artificial skins do not provide information about
the collision intensity Cirillo et al. (2016), while six-axis force-sensors are expensive and
highly sensitive to environmental parameters like temperature and humidity.

A solution alternative to the use of additional sensors is proprioceptive collision
detection (CD) Haddadin et al. (2017). Proprioceptive collision detection algorithms
identify when an external force is applied using only proprioceptive sensors, namely
joint torque sensors and current sensors, besides the joint coordinates. We refer the
interested reader to Haddadin et al. (2017) for an overview of the main state of the art
collision detection algorithms. All the proposed approaches require the definition of a
monitoring signal s(t) and a threshold σCD. The algorithms assume that a collision
occurred when s exceeds σCD, see Le, Choi, and Kang (2013),Villagrossi, Beschi, Simoni,
and Pedrocchi (2018), De Luca, Albu-Schaffer, Haddadin, and Hirzinger (2006) and
De Luca and Mattone (2003). The different strategies can be classified based on the
way the monitoring signal is defined. The most direct and intuitive technique is to
define s as the estimate of the external torques Le et al. (2013),Villagrossi et al. (2018).
Instead, in De Luca et al. (2006) s is defined as the estimate of the power due to external
forces. Another solution is proposed in De Luca and Mattone (2003), where the authors
define a monitoring signal based on the generalized momentum. It is worth remarking
that this class of solutions requires accurate knowledge of the robot dynamics model
since they assume to know both the kinetics and dynamics parameters. Typically the
former parameters are known, while the latter ones are estimated resorting to Fisherian
estimators Sousa and Cortesão (2014).

In this work, to detect if an interaction has occurred, we propose a novel approach
based on the Gaussian Process Regression (GPR) framework. This approach has minimal
sensing requirements since it needs only to measure the joint coordinates and the motor
currents. In this work, we extend the GPR algorithms based on semi-parametric priors
(i.e., composed by the sum of a parametric component and a non-parametric component)
developed to learn the robot inverse dynamics, see Section 3.2.2. Compared to the
standard approach, our algorithm can efficiently deal also with quasi-static configurations,
namely, when the robot is stuck or the joints’ velocities are very low. Specifically, relying
on an enlarged set of input features and designing proper kernel structure, our estimator
can model the complex behaviors due to static frictions and kinetic frictions at low
velocities.
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The main contribution of this chapter is the derivation of a GPR-based learning
algorithm able to estimate the currents due to external forces. As showed by our numerical
results, the estimator can detect when an interaction with the external environment has
occurred.

The chapter is organized as follows: in Section 4.2 we briefly review the state of the art
proprioceptive collision detection algorithms that are based on external torques estimation.
In Section 4.3 we present our collision detection strategy based on Gaussian Regression.
In Section 4.4 we briefly recall standard GPR techniques adopted in the learning of the
robot inverse dynamics, highlighting via a numerical example the limitations of these
approaches when used to detect collision in quasi-static configurations. Then, in Section
4.5 we formally describe our learning algorithm and in Section 4.6 we show numerical
results obtained using a UR10 robot.

4.2 CD via direct estimation of external torques

In this section, we describe a collision detection strategy based on the monitoring of the
external torques estimates, also named direct estimation, see Haddadin et al. (2017), Le
et al. (2013) and Villagrossi et al. (2018). When a collision occurs, an external force F e(t)
is applied to the robot, and, consequently, the joints are subject to an additional external
torque τ e(t). Consider an n joints manipulator and let q(t), q̇(t), q̈(t) and τ (t) ∈ Rn be,
respectively, the vectors of joints positions, velocities, accelerations and joint torques at
time t; in the following, to keep the notation compact, we point out explicitly the time
dependence only when it is necessary. Then we have

τ = M (q) q̈ + C (q, q̇) q̇ + g (q)− τ ε − τ e, (4.1)

where M (q) ∈ Rn×n is the generalized inertia matrix, C (q, q̇) ∈ Rn×n is the Coriolis
matrix, g (q) ∈ Rn models the effects due to the gravitational force, and τ ε ∈ Rn describes
the torques related to the unmodeled dynamic behaviors, mainly frictions Siciliano et al.
(2009).

Collision detection through direct monitoring of τ e defines the monitoring signals
s(q, q̇, q̈, τ ) equal to τ̂ e(q, q̇, q̈, τ ), the estimate of τ e obtained from equation (4.1). Let
M̂ (q), Ĉ (q, q̇), ĝ (q) and τ̂ ε be, respectively, the estimates of M (q), C (q, q̇), g (q) and
τ ε, and denote by y a noisy measure of τ , then we have

τ̂ e = M̂ (q) q̈ + Ĉ (q, q̇) q̇ + ĝ (q)− τ̂ ε − y. (4.2)
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Ideally, we should have s(·) = 0 when τ e = 0; in practice, due to the model inaccuracies
and the measurement noise, it happens that the monitoring signal is different from zero
even when no external forces are applied. Consequently, the introduction of a threshold
σCD to be compared with the value of s is necessary. Then, we define the binary collision
function fCD(·) as

fCD(s) =

TRUE, if |s| ≥ σCD

FALSE, if |s| < σCD

,

where | · |, ≥ and < are element-wise operators and |s| ≥ σCD if the relation holds at
least for one component. The value of σCD is set by cross-validation with the purpose of
limiting the number of false positives and false negatives. Typically the identification
of σCD is done observing the evolution of s(·) obtained while the robot is moving with
τ e = 0 for a time interval sufficiently large from the statistical point of view, see for
examples Haddadin et al. (2017).

Finally observe that in (4.2), to compute τ̂ e, the model of the robotic arm is assumed
known. This model depends on the kinematic parameters and dynamics parameters.
Typically, kinematic parameters are known quite accurately, while dynamics parameters
are estimated by resorting to some Fisherian approach Sousa and Cortesão (2014).

4.3 GPR for Proprioceptive collision detection

In this work, we propose an approach based on the GPR framework to solve the CD
problem. GPR is used to build the monitoring signal s. In the following, instead of
measuring directly the joint torque τ , we assume to measure i, the currents of the joints
motors; this is due to the fact that in our experimental setup we have access to i, and
not to τ . However, it is worth stressing that a current-based approach has minimal
requirements as far as the number of sensors employed is concerned.

To consider the motor currents i instead of τ , we need to include the mechanical
equations of the motors in the robotic arm model, as well as to assume that behaviors
due to elasticity are negligible. Let θ(t), θ̇(t) and θ̈(t) be the angular position, velocity,
and acceleration of the motors. Then the mechanical equations of the motors are

Jmθ̈ +Bmθ̇ + τ l = Kτ i, (4.3)

where τ l are the torques due to the load, and Jm, Bm and Kτ ∈ Rn×n are diagonal
matrices containing respectively the rotors inertia, the motors damping coefficients and
the torques-current ratios. When the behaviors due to the elasticity of the gears are
negligible, it holds θ̇ = Krq̇, θ̈ = Krq̈, and τ l = K−1

r τ , with Kr ∈ Rn×n equals to the
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diagonal matrix containing the gear reduction ratios. Substituting these equations in
(4.3), we can express τ as function of q, q̇, q̈ and i, and equation (4.1) becomes:

Meq (q) q̈ + C (q, q̇) q̇ + g (q)− τ ε − τ e +Beqq̇ = Keqi, (4.4)

where, for compactness, we defined Meq(q) = M(q) +K2
rJm, Beq = K2

rBm and Keq =
KτKr.

Instead of estimating τ e from (4.2), we propose to learn a GPR model that provides
an estimate of i, denoted as î, when τ e = 0; more specifically we train a suitable GPR
model for i, over a sufficiently rich dataset containing only collision-free trajectories.
Then, the monitoring signal s is defined as the difference between the measured current
i and î. Clearly, if no collision has occurred, i.e., τ e is effectively null, we expect î to be
close to i, and, in turn, s to be small; viceversa if a collision has happened, i.e, τ e 6= 0,
then î should be significantly different from i, and s should become sufficiently large to
detect the contact.

We stress the fact that in this work we focus only on the development of GPR
models able to produce proper monitoring signals, and we do not discuss any strategy
to design the threshold σCD; σCD might be set using standard rules Haddadin et al.
(2017), like cross-validation. It is worth mentioning that GPR techniques return also the
confidence intervals of the computed estimates. This fact might be exploited to define
input dependent thresholds less prone to false positive. We let the discussion about the
definition of σCD as future works.

4.4 GPR for robot inverse dynamics: critical issues

In the first part of this section, we briefly review standard GPR based solutions adopted
to identify the robot inverse dynamics, already presented in Section 3.2.2. Moreover, we
discuss possible improvements of solutions based on Parametric Prior. Finally, through a
numerical example, we highlight some critical issues that emerge when these standard
models are used to solve the CD problem.

4.4.1 GPR for inverse dynamics: compensation of kinetic friction

We recall that, when modeling the inverse dynamics relying on GPR, a typical strategy
consists in modeling each joint torque output with an independent Gaussian process
(GP). Let (X,yi) be an input-output dataset relative to the i-th joint torque, where
X = {x(t1), . . . ,x(tNTR)}, with x(t) = [q(t) q̇(t) q̈(t)], and yi is the vector collecting
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the noisy measure of the i-th joint torque, τi(t) with t = t1, . . . , tNTR . Then, as described
in Section 3.3, yi is modeled as the sum of an unknown function fi, representing the
i-th torque, and Gaussian i.i.d. noise, with zero mean and standard deviation σn. The
unknown function fi is a GP, with prior mean mi and prior covariance defined through a
kernel function ki(·, ·). Remarkably, the posterior distribution of the target function can
be computed in closed form. In particular, we have that, given a general input vector
x(t∗), the maximum a posteriori estimate of fi(t∗), i.e., the estimate of τi(x(t∗)), is given
in closed form by (3.4).

The crucial aspect in GPR is the definition of the fi prior distribution. In Section
3.2.2, we have seen that the different solutions proposed for inverse dynamics can be
grouped into three classes:

• Non-Parametric prior (NP), like the RBF kernel;

• Parametric prior (PP);

• Semi-Parametric prior (SP).

PP and SP solutions are based on the linear model of the inverse dynamics w.r.t.
wd ∈ RNpar , the vector collecting the dynamics parameters, i.e., masses, centers of mass
and inertia of the links. In particular, recalling (3.2), we have

τi(t) =
(
φdi (x(t))

)T
wd ,

where φdi (xt) ∈ RNpar is a given vector that depends on the kinematics parameters, see
Siciliano et al. (2009). The previous equation has been derived assuming τ ε equal to
zero. A refinement of this model can be obtained including also some terms modeling
the frictions effects, namely, considering τ ε = τ f , with τ f equals to the torques due to
frictions. The simplest and most used model to describe the torque applied to the i-th
joint by frictions, denoted as τ fi , is given by

τ fi (t) =

τi(t) if q̇i(t) = 0 , τi(t) ≤ F si
F ki sign(q̇i(t)) + F vi q̇i(t) if |q̇i(t)| > 0

, (4.5)

where F si , F ki and F vi are, respectively, the static friction coefficient, the kinetic friction
coefficient and the viscous friction coefficient of the i-th joint Dupont (1990). Notice
that, when q̇i is not null, τ fi is linear w.r.t. F ki and F vi , and hence the behaviors due to
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the kinetic frictions can be easily merged in (3.2), leading to the augmented equation

τi(x(t)) =
[(
φdi (x(t))

)T (
φfi (x(t))

)T ] [ wd

wf
i

]
:= φTi (x(t))wi (4.6)

where φfi (x(t)) = [sign(q̇i) q̇i] andwf
i =

[
F ki F vi

]T
. Finally, as done in (3.6), assuming

wi ∼ N(w̄i,Σwi), we obtain the following prior

mi(x(t)) = φTi (x(t))w̄i ,

ki(x (th) ,x (tj)) = φTi (x (th)) Σwiφi (x (tj)) (4.7)

4.4.2 Limitations of proprioceptive CD with standard GPR approach

In this subsection we describe a simple experiment that highlights the limitations of
the GPR models previously introduced when working in the quasi-static configurations,
namely configurations with joints velocity close to zero. The experiment has been
performed with a UR10 robot and consists of a succession of rest phases (all the joints
stuck and parallel to the ground) and moving phases. In the moving phases, only the
first joint is actuated. The values of q1 in the rest phase are sequentially π

2 , 2.09, π2 , 0.52
[rad]. The evolution of q1 and q̇1, together with the current i1, are reported in Figure 4.1.

It is particularly interesting analyzing the value of i1 during the rest phases. Firstly,
notice that i1 is significantly different from zero. However, due to the UR10 geometry,
during the rest phases, the torque applied to the first joint should be null, given that
the robot is not moving, and gravitational contribution are null. Second, observe that
in the rest phases with q1 = π/2, highlighted by the grey bars, despite the robot is in
the same configuration x, the current i1 assumes three different values. Referring to the
GPR notation, the function f1(·) attains different values in the same input location x.
The differences among these values are so significant that they can not be explained by
only the presence of noise in the measurements.

These two unexpected behaviors are due to the complexity of joint frictions in quasi-
static configurations, Dupont (1990). Indeed, as described by (4.5), when the joint
velocity is close to zero, torques generated by frictions are highly non-linear, as well as
dependent on τ . Similar behaviors have been highlighted also in Vuong and Jr (2007).
The authors observed that the friction model in (4.5) is accurate only when the module of
joint velocity is greater than a certain threshold σv. The value of σv depends on several
aspects, like the type of motors used, or the materials the joint is made. This fact results
in the difficulty of characterizing a priori σv. As suggested also in Vuong and Jr (2007),
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Figure 4.1: Cyclic actuation of the UR10 first joint (all the other joint are not moving). q1,
q̇1 and i1 denote, respectively, the position, the velocity and the motor current of the first
joint. The grey bars highlights the rest phases associated to the same robot configuration.

σv can be identified by cross-validation, measuring the out of sample performance. In
our setup we have found σv = 10−2[rad/sec].

As confirmed by experimental results reported in Section 4.6.1, the two aspects
previously highlighted could compromise significantly the performance of standard GPR
models proposed to identify the inverse dynamics, leading to a high value of σCD. In
particular, PP-based estimators could suffer due to the inaccuracy of the friction model
introduced in (4.6). Instead, NP approaches could not be effective due to the significantly
different values assumed by the target function f1 in the same input location x.

4.5 Semi-Parametric GP with NP friction compensation

The proposed solution for learning the motor currents is motivated by the following
observations. (i) Experimental results in Section 4.6.1 show that, when working in a
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dynamic configuration, standard GPR approaches provide accurate estimates. (ii) When
dealing with the quasi-static configuration, we need to include additional features in the
input space, to avoid that the same input is mapped into different outputs. (iii) We need
to model the discontinuity due to the different behaviors of static frictions and kinetic
frictions, i.e., we need to provide a unified framework capturing the behaviors in both
scenarios, dynamic and quasi-static.

Based on the above observations, we propose to model the function fi adopting an
SP-based GP, with the PP-based component fPPi that includes also the effects of the
friction, and the NP-based component fNPi specifically thought to capture the behaviors
generated by the frictions in quasi-static configurations. Before formally describing the
model we consider, we provide some more details about the second and third observations
above.

4.5.1 Additional features

Notice, from Equation (4.5), that when the velocity is null, important contributions
are given by τ , that is a term related to the action of the controller. Consequently, in
quasi-static configurations, it might be necessary to add to the GPR inputs some features
related to the control actions. We stress the fact that, from a control point of view,
we are operating in a black box context since we do not have access to the low-level
controller of the UR robot that we used in our experiments.

Driven by such consideration, we defined the following augmented input vector to
model the complex behaviors happening in quasi-static,

x̄(t) =
[
q(t), q̇(t), q̈(t), eq(t), ėq(t), ic(t)

]
, (4.8)

where eq(t) and ėq(t) denote, respectively, the joint position and velocity errors at time
t, while ic(t) are the currents required by the controllers of the motors at the instant t.

The rationale behind the choice of adopting this set of features is the following: the
variables eq and ėq allow to model proportional and derivative contributions, while the
ic bring information about non linear control actions (i.e., saturation) and dynamic
contribution (i.e., integral contribution).

4.5.2 Modeling friction discontinuity through GPR

In our approach, the discontinuity of the behaviors due to static and kinematic frictions
is modeled through an ad-hoc NP kernel. In particular, we exploited the vertical rescaling
property of the kernels, introduced in Section 1.3. The NP-based component fNPi of our
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model is scaled by the function

ai(x(t)) =

0 if |q̇i(t)| ≥ σv
1 if |q̇i(t)| < σv

.

Then, it turns out that

fNPi(x̄(t)) = ai(x(t))f sNPi(x̄(t)), (4.9)

where f sNPi is a GP with zero mean and covariance defined through an RBF kernel.
Observe that, in this way, the NP-based component acts only when the i-th link is
in quasi-static configurations, with the specific task of capturing the behaviors due to
frictions at low velocity.

4.5.3 Proposed Algorithm: SP GPR with friction compensation

To sum up, we model each joint torque with the following expression

fi(x̄(t)) =fPPi(x(t)) + ai(x(t))fsNPi(x̄(t))

=φTi (x(t))wi + ai(x(t))fsNPi(x̄(t)) (4.10)

where fPPi and fsNPi are independent GPs with zero mean. Then, assuming wi ∼
N(0,Σwi), and defining the fsNPi covariance through an RBF kernel, we obtain

ki(x(tk),x(tj)) = φTi (x(tk))Σwiφi(x(tj)) + ai(x(tk))kRBF (x̄(tk), x̄(tj))ai(x(tj)).

4.6 Experiments

A Universal Robots UR101 is used for the experiments. It is a collaborative industrial
robot with 6-degrees of freedom. The interface with the UR10 is based on ROS (Robot
Operating System, Quigley et al. (2009)), through the ur_modern_driver2. Data are
acquired with a sampling time of 8 · 10−3sec. The data processing and the derivation of
the physical model are implemented in MATLAB, while the GPR in Python, to exploit
the PyTorch computational advantages during the model optimization Paszke et al.
(2017).

1www.universal-robots.com/UR10
2https://github.com/ThomasTimm/ur_modern_driver
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The root mean squared error (RMSE) between i and î has been considered in order
to evaluate the algorithms accuracy. Given N samples we have

RMSE(X) =

√∑N
k=1(ii(x(tk))− îi(x(tk)))2

N
.

We tested three GPR models, the PP-based estimator with linear features modeling
kinetic frictions defined in (4.7), the SP-based estimator defined in (3.7), except for the
PP component, that is defined as in (4.7), and finally the proposed approach defined in
Section 4.5.3, hereafter denoted by FC.

We performed two experiments. The first one compare the accuracy of the aforemen-
tioned GP models in quasi-static and dynamic configurations. Instead, the second one
validates the possibility of using the GPR models of the currents to detect collisions due
to human-robot interaction.

4.6.1 Random exploration of the workspace

In this experiment, we compare estimation performance. We collected two datasets. The
first, used as the training dataset, consists of a set of trajectories collected requiring to
the end-effector to reach 200 random points (for a total of 80000 samples) randomly
distributed within a hemisphere of the robot workspace. Instead, the second dataset is
composed by 22000 samples collected requiring the robot to reach 50 random points inside
the previous hemisphere, and to track a circle of radius 30[cm] at a tool speed of 30[mm/s].
The hyperparameters of the three estimators have been trained by marginal likelihood
maximization, see Section 1.3. As far as the practical derivation of the estimators, i.e.,
the computation of the posterior distribution, we computed (1.1) after downsampling
the training dataset with constant step, obtaining 5000 samples.

In Figure (4.2) we reported the RMSEs obtained in the test dataset, distinguishing
between quasi-static and dynamic configurations. Results show the effectiveness of the
proposed learning strategy in improving the model accuracy in quasi-static configurations,
given that, for all the joints, the FC’s RMSE is lower than the one obtained with the
other standard GPR models. Moreover, observe that the RMSEs of SP are higher than
the ones obtained with PP, namely, the addition of the RBF kernel with standard inputs
decreases the performance when q̇ < σv. This is probably due to the behavior showed
in Figure 4.1, i.e., the presence of significantly different values of the target function
associated with the same input location. This fact further underlines the importance of
considering the augmented state introduced in this work.

As concerns performance when |q̇| > 0, the RMSEs obtained with PP and SP are
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similar. This fact suggests that the parametric kernel proposed in (4.7) and the friction
model in (4.5) are quite accurate when |q̇| > σv. Finally, observe that joint 1 RMSE
of the FC-based estimator is significantly smaller than that of the PP-based estimator.
This fact highlights another interesting fact. The addition of the NP-based friction
compensation can improve also the accuracy of the PP-based component.
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Figure 4.2: Comparison of the out of sample RMSEs obtained with the different GPR
models; performance in quasi-static configurations are in the bottom graph, while dynamic

configuration are in the top graph.

4.6.2 Detection of human-robot interaction

In order to validate the CD strategy proposed, we used the estimators derived in the
previous experiment on a real test case: the detection of human-robot interaction. We
tested the algorithms both in dynamic and quasi-static configurations. Due to the
similarity of PP and SP performance, we reported only the SP performance. In the first
part of the experiment, the end-effector of the robot is tracking a circle, while in the last
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Figure 4.3: Detection of human-robot interaction. The grey bars highlight the intervals
in which a human user apply a force to the first joint of the robot. In the top graph we
represented the evolution of i1, together with the estimates returned by SP and FC. In the
middle graph (resp. bottom) we represented the monitoring signal obtained with the SP

estimator (resp. FC estimator), together with the relative σCD.

part it stays in the final configuration. A human user applies an external force to the first
robot joint five times, three during the moving phase, and two during the quasi-static
phase3. Results are reported in Figure 4.3, where we plotted the evolution of i1, together
with the estimates obtained with SP and FC, the monitoring signals sSP and sFC , and
the thresholds σCD; the σCD values have been set equal to the maximum value of the
estimation error in the test set of the previous experiment. The gray bar highlights the
time intervals in which the interactions occurred.

The results show that the monitoring signal derived with the FC estimator allows
detecting all the interactions. Instead, using the monitoring signal and the σCD obtained
with the SP estimator the first contact is not detected. This is mainly due to the higher

3The experiment is visible at https://youtu.be/2jJS8ajXhEw
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value of σCD. With the proposed approach, we have σCD = 1.28[A], while with the SP
estimator we obtained σCD = 2.10[A]; for completeness we report also the value obtained
with the PP estimator, that, as expected, is similar to the one of SP, and equal to 2.09[A].

4.7 Conclusions

In this work we validated the use of GPR to solve the proprioceptive collision detection
problem, focusing on the definition of a good monitoring signal. The proposed approach
has minimal requirements in terms of sensors since only joint coordinates and motor
currents are needed. The proposed monitoring signal corresponds to the estimate of the
currents due to external torques. In particular, we focused on quasi-static configurations,
that are particularly relevant in collaborative robotics. To deal with the non-linear effects
and the unmodeled behaviors due to static frictions, we modified the standard GPR
SP-based estimators used in the robot inverse dynamics, considering an augmented set
of input features, as well as designing an ad-hoc NP-component ables to model the
discontinuity between static and kinetic frictions. The proposed approach has been tested
in a UR10. The experimental results show the effectiveness of the proposed solution.



5
MC-PILCO: policy-search using

Monte Carlo sampling

5.1 Introduction

Reinforcement Learning (RL) has seen explosive growth in recent years. RL algorithms
have been able to reach and exceed human-level performance in several benchmark
problems, such as playing chess, go and shogi Silver et al. (2018). Despite these remarkable
results, the application of RL to real physical systems (e.g., robotic systems) is still a
challenge, because of the large amount of experience required and the safety risks during
exploration. To overcome these limitations, Model-Based RL (MBRL) techniques have
been developed Deisenroth and Rasmussen (2011); Todorov and Li (2005); Levine and
Abbeel (2014). Providing an explicit model of the physical system allows drastic decreases
in the experience time required to converge to good solutions, while also reducing the
risk of damage to the hardware during exploration and policy improvement.

MBRL methods are effective as much as their models resemble accurately the real sys-
tems. Hence, deterministic models suffer dramatically from this kind of issue, and the use
of stochastic models becomes necessary to capture model uncertainty. Gaussian processes
(GPs) Rasmussen and Williams (2006) are a class of Bayesian models commonly used
in RL methods precisely for their intrinsic capability to handle uncertainty and provide
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principled stochastic predictions Rasmussen and Kuss (2004)Berkenkamp, Turchetta,
Schoellig, and Krause (2017). GPs are not the only model structure that has been used
to build uncertainty-aware models. Other possibilities are ensembles of probabilistic deep
neural networks Chua, Calandra, McAllister, and Levine (2018)Kurutach, Clavera, Duan,
Tamar, and Abbeel (2018).

In this chapter, we propose MC-PILCO, a Monte Carlo particle-based version of
the algorithm PILCO (Probabilistic Inference for Learning Control) Deisenroth and
Rasmussen (2011). PILCO is a model-based policy search algorithm that uses GP
models to approximate the expected long-term cost, a function of the system state
incorporating the task to be solved. The policy parameters are optimized relying on a
gradient-basted strategy, with the aim of finding the policy that minimizes an assigned
cost. PILCO manages to achieve substantial data-efficiency in solving different control
problems Durrant-Whyte, Roy, and Abbeel (2012), but it comes with two main limitations
due to the method used to generate long-term predictions. In PILCO predicted state
distributions are approximated with a Gaussian distribution by moment matching.
However, this kind of approximation allows modeling only unimodal distributions, which
might be a too rough approximation of the real system behavior. Remarkably, the first
and the second moments, and the policy gradient are computed in closed form. However,
the computation of the moments is tractable only when considering the Radial Basis
Function (RBF) kernel. This might not be the most convenient choice, being that this
kind of kernel shows poor generalization properties.

In this work, we tackled these two limitations. Adopting a Monte Carlo sampling
approach, we approximate the expected cost simulating the evolution of several state
particles, based on the learned model. The policy gradient is obtained by backpropagation
of the associated stochastic computational graph. This approach does not make any
assumption on prediction probability distributions, and it does not require a specific type
of kernel function, providing more flexibility in the design of the GP models.

Similar particle-based approaches have been tried before in the context of PILCO,
obtaining poor performance. Mchutchon and College (2014) sees the cause in the presence
of various local minima in the optimization process, while in Parmas, Rasmussen, Peters,
and Doya (2018) poor performances are attributed to a hopelessly large gradient variance
when using particles. In both cases, they still keep RBF kernels. On the contrary, the
method we propose gives the possibility to choose any kind of kernel function. For
many systems, the principal dynamic behaviors can be described by polynomial relations.
Hence, in our method, we combine RBF with polynomial kernels to obtain a more effective
representation of the system dynamics. Experimental results performed in a simulated
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environment proved the effectiveness of the solution, and the importance of using also
structured kernels, like the polynomial kernel, to model the system.

This chapter is structured as follows. In Section 5.2 we state the general setting of
model-based policy gradient methods. In Section 5.3 we present modeling approaches
with GPs. In Section 5.4 we present MC-PILCO, our proposed algorithm. Finally, in
Section 5.5 we present experimental results.

5.2 Model-Based Policy Gradient

In this section, we introduce the standard framework considered in MBRL algorithms.
Consider the discrete-time system described by the unknown transition function f ,

xt+1 = f(xt,ut) +w,

where xt ∈ Rdx and ut ∈ Rdu are, respectively, the state and the inputs at time step t,
while w ∼ N (0,Σw) is a Gaussian random variable modeling system noise. It is also
defined an instantaneous cost function c(xt,ut) that measures the penalty for being in
state xt and choosing input ut. The cost function must incorporate all the information
needed to fulfill the desired task (for example, drive the system to a particular state).
The objective is to find a deterministic control policy π : x 7→ u = π(x) that minimizes
the expected long-term cost over a fixed finite time horizon N , i.e.,

J =
N∑
t=0

Ext [c(xt, π(xt))] , (5.1)

with the initial state distributed according to x0 ∼ N (µ0,Σ0). We consider the control
policy as a parametric function, and so we indicate it by πθ, being θ the parameters
vector. Hence, the expected long-term cost will depend on θ too, and we refer to it by
J(θ) to make explicit this dependency.

A model-based approach for learning a policy that successfully controls the system
consists, generally, in three main phases, which are repeated until the task is fulfilled:

• Model Learning: the data collected from all the previous interactions are used to
build a model of the system dynamics (at the first iteration data are collected
applying random exploratory controls to build an initial model);

• Policy Update: policy is updated in order to minimize J(θ) according to the current
model;
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• Apply Policy: the actual policy is applied to the system and the measures are stored
for improving the model.

Model-based policy gradient methods exploit the learned model to predict the state
evolution when applying current policy. These predictions are used to estimate J(θ)
and its gradient OθJ , in order to update policy parameters θ with a gradient-descent
approach.

5.3 GPR and dynamics model

In this section, we describe the standard model learning framework based on Gaussian
process regression considered in MBRL. Firstly, we describe the model for one-step-ahead
prediction, as well as recalling background notions about GPR (see Section 1.3). Finally,
we discuss long term predictions, focusing, in particular, on the strategy used in PILCO
for propagating the uncertainty.

5.3.1 GPR and one-step-ahead predictions

The state of a mechanical system is typically defined as xt = [qTt , q̇Tt ]T , where qt ∈ R
dx
2

is the vector collecting the generalized coordinates of the system at time step t, and,
as usual, q̇t represents the derivative of qt w.r.t. time. A common strategy with GPR-
based approaches consists in modeling the evolution of each state dimension with a
distinct GP. Denote by ∆(i)

t = x
(i)
t+1 − x

(i)
t the difference between the value of the i-th

component at time t+ 1 and t, and by y(i)
t the noisy measure of ∆(i)

t , with i ∈ {1, . . . , dx}.
Moreover, let x̃t = [xt,ut] be the vector collecting the state and the input at time t.
Then, given a vector of n output measures yi = [y(i)

t1 , . . . , y
(i)
tn ]T , and the set of relative

inputs X̃ = {x̃t1 , . . . , x̃tn}, GPR assumes the following probabilistic model,

yi =


∆(i)
t1
...

∆(i)
tn

+


e

(i)
t1
...
e

(i)
tn

 =


hi(x̃t1)

...
hi(x̃tn)

+


e

(i)
t1
...
e

(i)
tn

 = hi(X̃) + ei,

where e(i) is Gaussian i.i.d. noise with standard deviation σi, and hi(x̃t) = ∆(i)
t is a

unknown function modeled a priori as a zero-mean Gaussian process. In particular,
we have hi ∼ N (0,Ki(X̃, X̃)), with the covariance Ki(X̃, X̃) defined through a kernel
function ki(·, ·), namely, the element in j-th row and k-th column is given by ki(x̃j , x̃k). A
crucial aspect of GPR is the kernel choice. The kernel function encodes prior assumptions
about the process. A convenient option for modeling continuous functions is the Radial
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Basis Function (RBF) kernel, used also in PILCO, and defined as

kRBF (x̃j , x̃k) := λ2e
−||x̃j−x̃k||2Λ−1 , (5.2)

where the scaling factor λ and the matrix Λ are kernel hyperparameters which can be
estimated by marginal likelihood maximization. Typically, Λ is assumed to be diagonal,
with the diagonal elements named length-scales.

Remarkably, as discussed in Section 1.3, the posterior distribution of hi(·) can be
computed in closed form. Let x̃t be a general augmented state at time t. Then, the
distribution of ∆̂(i)

t , the estimate of ∆(i)
t , is Gaussian, with mean and variance given by

E[∆̂(i)
t ] = ki(x̃t, X̃)Γ−1

i yi, (5.3)

var[∆̂(i)
t ] = ki(x̃t, x̃t)− kiΓ−1

i kTi (x̃t, X̃), (5.4)

with Γi and ki(x̃t, X̃) defined as

Γi = (Ki(X̃, X̃) + σ2
i I),

ki(x̃t, X̃) = [ki(x̃t, x̃t1), . . . , ki(x̃t, x̃tn)].

Consequently, we have the following posterior distribution for the estimated state at time
t+ 1

p(x̂t+1|x̃t, X̃,y) ∼ N (µt+1,Σt+1), (5.5)

where

µt+1 = xt +
[
E[∆̂(1)

t ] . . .E[∆̂(dx)
t ]

]T
, (5.6)

Σt+1 = blkdiag
([
var[∆̂(0)

t ] . . . var[∆̂(dx)
t ]

])
. (5.7)

5.3.2 Long-term predictions: Moment Matching

In MBRL the policy πθ is evaluated and improved based on p(x̂1) . . . p(x̂N ). To compute
p(x̂1) we have to marginalize (5.5) over the initial state distribution N (µ0,Σ0), and
then iterate the procedure to obtain the subsequent distributions. However, the exact
computation of the resulting integrals is not tractable. In PILCO, the predicted state
distributions are approximated relying on moment matching. Specifically, assuming as
kernel function the RBF kernel, the first and the second moment of p(x̂1) are computed
in closed form. Then the p(x̂1) distribution is approximated with a Gaussian distribu-
tion, with mean and variance equal to the moments computed previously. Finally, the
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subsequent probability distributions are computed iterating the procedure. For details,
we refer the reader to Deisenroth, Fox, and Rasmussen (2015).

We conclude this section by discussing two possible limitations of this approach.
Firstly, to make the computation of the first and second moment tractable, the authors
assumed to use only the RBF kernel. It is well known that such kernel can approximate
accurately the target function only in a neighborhood of the training input locations; poor
generalization properties might slow down significantly the learning process. Secondly,
approximating each p(x̂t) with a Gaussian distribution allows modeling only unimodal
distributions. This might be a too rough approximation of the real system behaviors.

5.4 MC-PILCO

In this section, we present the proposed approach. As far as model learning is concerned,
we rely on GPR. However, compared to PILCO, we consider a different strategy to
approximate the distribution of long-term predictions. In our algorithm, the expected
value of the long-term cost is approximated using particles-based methods. Besides
avoiding behaviors due to the unimodality of Gaussian approximation, this strategy
allows using any kind of kernel, providing more freedom as concerns modeling.

MC-PILCO is summed up in pseudo-code in Algorithm 1, and consists in the iteration
of three main steps, namely, update the GP models, update the policy parameters, and
apply the policy. In its turn, the policy update is composed of three steps, iterated Nopt

times:

• simulate the evolution of M particles, based on the current πθ and on the GP
models learned from the previously observed data;

• compute Ĵ(θ), an approximation of the expected-long-term cost, based on the
evolution of the M particles;

• update the policy parameters θ based on OθĴ(θ), the gradient of Ĵ(θ) w.r.t. θ,
computed by backpropagation.

In the next two subsections, we describe the particles-based strategy adopted to
approximate J(θ), and we discuss the technique used to compute OθĴ(θ). Finally, in
the last subsection, we describe the GP models considered in our algorithm.

5.4.1 Particles-based Policy Evaluation

We start describing the particles based strategy adopted to approximate the expected
long-term-cost. We assume that a one-step-ahead prediction model of the type described
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Algorithm 1: MC-PILCO
init policy πθ(·), cost c(·), kernel k(·, ·), policy optimization steps Nopt, number of
particles M

Apply random control to system and collect data
while task not learned do

Learn GP model from sampled data;
for i = 1...Nopt do

predict M particles rollouts from GP model when applying current policy;
compute Ĵ(θ) from particles (5.8);
compute OθĴ through backpropagation;
gradient-based policy update (e.g., using Adam);

end
apply updated policy to system and collect data

end
return final policy πθ∗(·), learned GP model;

in Section 5.3 is available. Namely, given a current state xt and the input selected by
the policy ut = πθ(xt), p(x̂t+1|xt,ut), the distribution of the predicted state at the next
time-step is Gaussian, with the mean and the variance defined by (5.6) and (5.7). No
assumptions about the kernel function used are necessary.

Monte Carlo sampling Caflisch (1998) provides a simple method to approximate
the integrals in (5.1). The basic idea consists in simulating the evolution of a sufficient
number of particles, and approximating each Ext [c(xt, π(xt))] with the sample mean
of the costs associated to the states and the inputs assumed by the particles at time t.
Specifically, we sample M particles from the initial state distribution N (µ0,Σ0). Each
one of the M particles is propagated using the GP dynamics (5.5). Let x(m)

t be the state
of the m-th particle at time t, with m = 1, . . . ,M . At time step t, the actual policy πθ
is evaluated to compute the associated control. The GP model provides the Gaussian
distribution p(x(m)

t+1|x
(m)
t , πθ(x(m)

t )) from which x(m)
t+1, the state of the particle at the next

time step, is sampled. This process is iterated until N samples are generated for each
particle. The process is illustrated in Figure 5.1 for sake of clarity. Finally, the estimate
of the expected long-term cost is computed with the following expression,

Ĵ(θ) =
N∑
t=0

(
1
M

M∑
m=1

c(x(m)
t , πθ(x

(m)
t ))

)
. (5.8)
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Figure 5.1: Example of two particles propagating through the stochastic model (Gaussian
distributions represented as ellipses).

5.4.2 Policy Gradient through Backpropagation

To compute the gradient of (5.8) w.r.t. the policy parameters we rely on techniques based
on stochastic computational graphs. We used the reparameterization trick to propagate
the gradient through the stochastic nodes; for details we refer the reader to Kingma and
Welling (2013). Then, OθĴ is computed simply applying the chain rule.

5.4.3 Proposed GP models

In this subsection, we describe a general framework that we propose to model the
evolution of mechanical systems. Following ideas presented in Romeres, Jha, Dalla
Libera, Yerazunis, and Nikovski (2019), instead of modeling the evolution of each state
dimension independently, we halved the number of GPs to be learned, exploiting the
intrinsic correlations between the state components q and q̇. Indeed, when considering
a sufficiently small sampling time Ts (small w.r.t. the application), it is reasonable
assuming constant accelerations between two consecutive time-steps, obtaining the
following evolution of qt,

qt+1 = qt + Tsq̇t + Ts
2 (q̇t+1 − q̇t). (5.9)

Let Iq (respectively Iq̇) be the ordered set of the state dimensions indices associated to
q (respectively q̇ ). In our framework, we learn only dx/2 GPs, each of which models the
evolution of a distinct ∆(ik)

t , with ik ∈ Iq̇. The predicted change in velocity, ∆(ik)
t , will

be sampled from GPs, while the position change is computed according to (5.9) and the
sampled ∆(ik)

t . Besides limiting the number of GPs to be learned, this strategy allows
considering correlations between q and q̇.

One of the advantages of the policy update framework described in Section 5.4.1-5.4.2
is that it is independent of the structure of the GP models. Consequently, w.r.t. PILCO,
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several different options can be considered to model the evolution of the systems, for
example, adopting more kernel structures, e.g., the polynomial kernel, or model-based
kernels, like the ones proposed in Romeres et al. (2019); for the sake of generality, we
do not rely on model-based kernels in this work. In the proposed algorithm, the kernel
of each GP is given by the sum of two kernels. The first is an RBF kernel of the type
defined in (5.2), while the second is a Multiplicative Polynomial Kernel (MP kernel),
already introduced in Chapter 3, and further discussed in Chapter 6. For sake of clarity,
we recall the definition of the MP kernel of degree d,

k
(d)
MP (x̃j , x̃k) :=

d∏
r=1

(
σ2
MPr + x̃Tj ΣMPr x̃k

)
,

where the ΣMPr ≥ 0 matrices are distinct diagonal matrices. The diagonal elements of
the ΣMPr , together with the σ2

MPr
elements are the kernel hyperparameters. Then, we

have that each kik is defined by the following expression

kik(x̃j , x̃k) = kRBF (x̃j , x̃k) + k
(d)
MP (x̃j , x̃k). (5.10)

The idea motivating the aforementioned kernel is the following. MP kernel allows
capturing eventual modes of the system that are polynomial functions in x̃, while the
RBF kernel models more complex behaviors not captured by the polynomial kernel.

5.5 Experimental Results

We tested the proposed algorithm in a simulated cartpole swing-up task, a standard
benchmark for control and RL. MC-PILCO is compared with the original PILCO
algorithm. For this reason, we kept the same system settings indicated in the PILCO
code1. We implemented MC-PILCO in python, exploiting the PyTorch functionalities to
compute gradients, while we run PILCO with the original MATLAB code. This section
is structured in two parts, the first compares the policy learning performance of the two
algorithms, while the second regards an analysis of the modeling results.

5.5.1 Cartpole Swing-up Policy Learning

The objective of the task is to complete a swing-up of the system: bring and balance the
pendulum in the vertical upright position. The cartpole state is x := [q1, q̇1, q2, q̇2], where
q1 is the position of the cart along the horizontal axis, and q2 is the angle of the pendulum.

1Code available at http://mlg.eng.cam.ac.uk/pilco/



86 MC-PILCO: policy-search using Monte Carlo sampling

We have that q2 = 0 when the pendulum is hanging downwards, and q2 = π when it
is upright. The system input is the horizontal force applied to the cart, the maximum
applicable force is 10 [N]. The control horizon considered is 3 [s], with a sampling time of
0.1 [s]. As far as the policy is concerned, we adopted a single-layered RBF network of size
100 as control policy. The policy πθ takes as input xext := [q1, q̇1, q̇2, cos(q2), sin(q2)],
where the cos and sin transformations are considered due to the periodicity of the angles.
Policy output is limited in the range [-10,10] [N] using an hyperbolic tangent function,
properly scaled, i.e., u(xext) = 10 · tanh(πθ(xext)). The cost function is given by

c(x) = 1− e
−
(
q1
l1

)2
−
(
|q2|−π
l2

)2

.

Cost values are bounded between 1 and 0, and c = 0 when the pendulum is in equilibrium
at q2 = π (or q2 = −π) and the cart is positioned in q1 = 0. The cost function depends
upon two parameters, fixed as l1 = 1.5 and l2 = 1. We considered M = 100 particles to
approximate the expected cost, and we updated the policy using Adam Kingma and Ba
(2015). The learning rate is decreased gradually as the model becomes more accurate
with new data from experience, in this way, during the first iterations we have more
exploration in the policy parameters, while towards the end we learn more finely the
optimal policy. On the other hand, the number of optimization steps increases with the
amount of experience; at the beginning, the model is not trustworthy, and there is no
reason to heavily optimize the policy w.r.t. its predictions.

The performance of the algorithms is measured by considering the evolution of two
indicators as functions of the experienced time. First, we consider the amount of time in
which the pole is balanced in the vertical upright position, considering a tolerance of 10
degrees. Second, we consider the average distance of the cart from the center position in
the horizontal axis. Experiments were repeated for 30 different random seeds. The results
comparing the proposed MC-PILCO with PILCO are reported in Figure 5.2. After 4
interactions (a total experience of 12 [s]) MC-PILCO manages to balance the pendulum
upright for an average time of 1.69 [s], while PILCO for 1,45 [s]. Both algorithms reach a
similar average distance of the cart from zero, 0.16 [m] for MC-PILCO, and 0.19 [m] for
PILCO (detailed results in Figure 5.2).

We consider a trial successful when the policy maintains the pendulum in the upright
for at least the last 1 [s]. In Table 5.1 the evolution of the success rates is reported.
MC-PILCO reaches a success rate of 88.5% outperforming PILCO which obtains 76.7%.
Notice also the considerable discrepancies between the success rate obtained after 6
[s]. Probably due to the greater data-efficiency of the kernels used by MC-PILCO, its
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success rate is twice the PILCO success rate. Finally, in Figure 5.3 we show the trajectory
obtained with a successful policy learned by MC-PILCO after 12[s] of experience, together
with the predicted particles evolution.

We tested the proposed algorithm also using the cartpole environment of MuJoCo,
Todorov, Erez, and Tassa (2012). Results obtained are similar to ones obtained in the
PILCO environment. The video of the experiment is publicly available2.

0
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]

Average time in equilibrium
PILCO
MC-PILCO

3 6 9 12
Experienced time [s]

0.0

0.5
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Mean distance from q1 = 0
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MC-PILCO

Figure 5.2: Performance observed w.r.t. the amount of interaction time with the cartpole
system. Mean results are plotted at each trial (each one long 3 [s]), together with the standard
deviation confidence intervals. The top graph represents the equilibrium time, while the
bottom graph represents the average distance from q1 = 0. Numerical values are reported in

Table 5.2 and 5.3.

5.5.2 Cartpole Model Learning

The cartpole system is now used to compare the models used by the two algorithms. We
trained the GP models of PILCO and MC-PILCO with the same training data, composed
of 3 [s] of random exploration. We compare the respective long-terms predictions under

2https://youtu.be/r74tCtVOWGc
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Success Rate (%) 3 s 6 s 9 s 12 s
MC-PILCO 3.8% 38.5% 69.2% 88.5%
PILCO 0.0% 20.0% 63.3% 76.7%

Table 5.1: MC-PILCO and PILCO success rates w.r.t. experienced time.
Time Up (s) 3 s 6 s 9 s 12 s
MC-PILCO 0.13 s 0.85 s 1.30 s 1.69 s
PILCO 0.10 s 0.60 s 1.10 s 1.45 s

Table 5.2: MC-PILCO and PILCO mean time in vertical upright position w.r.t. experienced
time.

Distance (m) 3 s 6 s 9 s 12 s
MC-PILCO 0.77 m 0.57 m 0.46 m 0.16 m
PILCO 0.51 m 0.52 m 0.32 m 0.19 m

Table 5.3: MC-PILCO and PILCO mean distance of the cart from the center position w.r.t.
experienced time.
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Figure 5.3: Cart position q1 (top) and pendulum angle q2 (bottom) particles’ rollouts
predicted by the model. Dots represent the real trajectories.
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the same control policy. The results are showed in Figure 5.4. MC-PILCO particles are
very accurate, being that some particles manage to follow the true trajectory for almost
all the three seconds, only with the few exploration data at disposal. On the other hand,
predicted state distribution used by PILCO is accurate enough until approximately 1.5
[s]. Later on, its variance increases drastically. This is due to the Gaussian unimodal
distribution that PILCO assumes to obtain long-term prediction via moment matching.

Finally, we investigate the effect of choosing different kernels in the model learning
framework described in Section 5.4.3. We compared the performance obtained using
the RBF kernel, and the proposed kernel in (5.10). Models are trained with the same
training data, and the predicted particles are compared with the same policy (in this case
a learned policy that correctly executes the swing-up). Results are presented in Figure
5.5. The model adopting the combination of MP and RBF kernels outperforms the one
using only RBF kernel. Some particles follow the real trajectory for almost the whole 3
[s] horizon, and no particle predicted by the RBF GP model follows the real trajectory
for more than 1 [s]. Furthermore, not accurate particles produced by the GP with MP
and RBF kernel do not diverge from the real trajectory as much as the particles obtained
by the model with the RBF kernel. This difference in modeling accuracy is summed up
by the root mean squared error (RMSE) of the two models. The RMSE obtained with
the kernel in (5.10) is lower than the one obtained using only the RBF kernel, almost an
order of magnitude along the whole prediction horizon. The results obtained stress once
again the critical importance of the kernel choice, and its effects on accurate modeling of
the dynamics, that inevitably affect the performance of the policy learning process.
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Figure 5.4: PILCO and MC-PILCO (with MP+RBF kernel) predictions of the q2 (pendulum
angle) trajectory. For PILCO we indicated the 99% confidence interval with the red shaded

area. MC-PILCO particles are plotted in blue.
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Figure 5.5: Comparison of the particles predicted by a GP model with a MP+RBF kernel,
and one with a RBF kernel. Dots represents the real angle trajectory. The evolution of the

RMSEs is shown in the bottom plot.
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5.6 Conclusions

In this chapter, we proposed MC-PILCO, a particle-based version of PILCO, that
requires neither Gaussian approximations in the computation of the policy gradient nor a
mandatory RBF kernel for the GPs. The possibility of choosing different kernel functions
provides great flexibility to the algorithm. We adopted a combination of MP and RBF
functions as kernel function. This choice enhanced considerably the modeling capacity of
GP dynamic models. This crucial aspect allows MC-PILCO to obtain better performance
than PILCO. As future works, we aim to test MC-PILCO on more complex environments,
to explore its capacity to handle higher dimensional states. Besides, we would like to
apply it to the control of a real system.



6
Multiplicative Polynomial Kernel

and Volterra Series

6.1 Introduction

In many real applications, linear models cannot adequately describe dynamic systems.
This can be due to the presence of saturations, quantizers or static nonlinearities at the
input and/or the output Ljung (1999)[Section 5]. Even if some insight on the nonlinearities
can be available, the formulation of parametric models from finite data records is a difficult
task Haber and Unbehauen (1990); Lind and Ljung (2008). In particular, nonlinear
system identification is often seen as an extended parametric regression where the choice
of regressors and basis functions plays a crucial role.

In this context, Volterra series are especially useful since they can represent a broad
range of nonlinear systems Rugh (1980). In discrete-time, Volterra series are connected
with Taylor expansions of the input-output map. Considering systems with finite memory
(current output depends on a finite number m of past inputs and outputs), the r-th order
Volterra series is represented as the convolution between the Volterra maps1 and all the
possible monomials up to order r (function of past inputs and outputs). Identification

1These are typically called Volterra kernels in the literature but we adopt this terminology to avoid
confusion with the concept of kernels taken from machine learning and introduced later on.
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is difficult due to the curse of dimensionality: the number of monomials grows quickly
w.r.t. the adopted polynomial degree r and system memory m. Hence, a careful selection
of the relevant components to be included in the model is crucial to control complexity,
a problem known as regressor selection.
Suboptimal solutions are often adopted, e.g., greedy approaches like forward orthogonal
least squares Chen, Billings, and Luo (1989); Billings, Chen, and Korenberg (1989) and
its many variants Hong, Mitchell, Chen, Harris, Li, and Irwin (2008)[Section 3]. Another
approach uses variance analysis (ANOVA) Lind and Ljung (2005). These regressor
selection methods have however difficulties in handling high-dimensional spaces, as e.g.,
illustrated in Lind and Ljung (2008) where the divide-and-conquer method TILIA is
introduced to mitigate this problem. An interesting option is joint estimation and variable
selection whose aim is to automatically set to zero groups of variables in the regression
vector. This can be performed exploiting the `1-norm that leads to LASSO Tibshirani
(1996), also implementable using LARS Efron, Hastie, Johnstone, and Tibshirani (2004),
a less greedy version of classical forward selection.
Alternative solutions rely on kernel-based regularization Schölkopf and Smola (2001).
Positive definite kernels are especially important since they implicitly include a large
(possibly infinite) number of basis functions. They also define particular spaces, the so
called Reproducing Kernel Hilbert spaces (RKHS), and the related norms can be exploited
to control complexity. In particular, regularized least squares, also called regularization
networks in Poggio and Girosi (1990), determine the unknown system by minimizing an
objective sum of two terms. The first is a quadratic loss, accounting for data fit, and the
second is a regularization term given by the RKHS squared norm. The balance between
these two contributions is given by the regularization parameter, typically estimated from
data through Marginal likelihood maximization or cross validation Hastie, Tibshirani,
and Friedman (2001); Rasmussen and Williams (2006); Pillonetto and Chiuso (2015).
The crucial aspect in the design of a regularization network is the kernel choice. In system
identification the Gaussian kernel is often used to embed just expected smoothness of the
input-output map, see e.g., Espinoza, Suykens, and De Moor (2005); Li, Li, Su, and Chun
(2006); Xu and Chen (2009) and also Frigola, Lindsten, Schon, and Rasmussen (2013);
Frigola and Rasmussen (2013); Hall, Rasmussen, and Maciejowski (2012) for state-space
approaches. However, this kernel has some limitations in system identification. In those
regions of the regressor space where few data are collected, output prediction just decays
to zero. In this chapter, we instead focus on more structured kernels connected with
Volterra series. They are discussed in Franz and Schölkopf (2006) using the polynomial
kernel, which encodes all the monomials up to the desired degree r. Such implicit
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representation makes computationally feasible the handling of high-order Volterra series.
However, the associated regularization networks have some drawbacks and can overfit
the data as stated in Rasmussen and Williams (2006) (chapter 4.2.2). The reason is that
the norm associated with the polynomial kernel is sometimes not able to well control the
high number of monomials (implicitly) introduced in the estimation process.

More recent work on regularized Volterra series can be found in Birpoutsoukis,
Marconato, Lataire, and Schoukens (2017a). Here, authors do not use kernels to encode
monomials but focus on how to control the variance of the monomial coefficients via
regularization. This is performed extending some ideas developed for linear system
identification in Pillonetto and De Nicolao (2010), embedding in a Volterra map smooth-
exponential decay concepts, i.e., the fact that, as the lag increases, inputs should have
less effect on the output. In this way, the system memory m is replaced by continuous
hyperparameters that are connected with memory fading concepts and can be estimated
from data. Despite the remarkable results on both simulated and real data Birpoutsoukis,
Csurcsia, and Schoukens (2017b), one limitation is that computational and memory
requirements increase quickly with the polynomial degree r and the memory m.

The approaches proposed in Franz and Schölkopf (2006) and Birpoutsoukis et al.
(2017a) are in some sense complementary. The first one uses the kernel to handle efficiently
a large number of monomials but regularization is not always so effective. The second
one refines this aspect but the price to pay is that implicit encoding of monomials is
absent. In this work, we propose new techniques that overcome such dichotomy. To
obtain this, two new kernels are introduced.
The first new kernel, which we call Multiplicative Polynomial Kernel (MPK), builds upon
the polynomial kernel. For Volterra series of order r, it consists of the product of r basic
building blocks. Each block consists of a linear kernel containing hyperparameters that
permit monomial selection. This is a fundamental novelty w.r.t. the polynomial kernel
that does not promote any sparsity, possibly returning solutions too rich of monomials.
Hence, we will see that MPK allows a finer regularization, discovering those system parts
that really influence the output and improving prediction capability.
Then, inspired by Birpoutsoukis et al. (2017a), we will show that MPK features can be
further improved. Similarly to MPK, the second new kernel is the product of r linear
kernels but with different hyperparameters able to model smooth exponential decay of
Volterra coefficients. For this reason, it is called Smooth Exponentially Decaying MPK
(SED-MPK). Hence, SED-MPK combines the nice features of Birpoutsoukis et al. (2017a)
with implicit kernel encoding: handling of high-order Volterra series is so made possible.

The chapter is organized as follows. In Section 6.2 we provide background notions
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about discrete-time Volterra series, and we describe some solutions proposed to identify
such models. We start Section 6.3 analyzing the regularization properties of standard
polynomial kernel, highlighting possible limitations. Then, we introduce the MPK,
discussing the advantages due to the MPK parametrization. In Section 6.4, we describe
the SE-MPK, providing insights about the regularization induced by the SE-MPK
parameters w.r.t. the coefficients of the Volterra map. Finally, in Section 6.5 we report
experimental results.

6.2 Background

6.2.1 Volterra series

Consider a discrete time system, and let zk be its output at time k. Assume that the
system has finite memory m, and let uk = [uk, . . . , uk−m] be the vector containing the
lagged inputs influencing the system response at time k. When modeling the system
response with a truncated Volterra series of order r, the noisy output yk is defined by the
sum of r + 1 Volterra functions and the measurement noise ek ∼ N

(
0, σ2

n

)
. Specifically,

one has
yk = zk + ek = h0 +

r∑
i=1

Hi(uk) + ek , (6.1)

where h0 represents the zero-order Volterra function, constant and independent of the
inputs, while Hi(uk) are the higher-order contributions. Each Hi(uk) is the convolution
between a Volterra map hi and all the possible monomials of degree i built with the
components of uk. The Volterra map hi is function of i variables {τj}ij=1 that may
assume values {0, 1, . . . ,m} and represent input lags. In other words, they select (possibly
repeated) components from uk to define a monomial. Then, the expression of Hi(uk) is

Hi (uk) =
m∑

τ1=0
· · ·

m∑
τi=0

hi (τ1, . . . , τi)
τi∏

τ=τ1
uk−τ . (6.2)

For example, let m = 2 so that uk = [uk uk−1 uk−2], with i = 4 and τ1 = 0, τ2 = 0, τ3 =
1, τ4 = 2. Note that τ1 and τ2 both select uk while τ3 and τ4 choose, respectively, uk−1

and uk−2. Then h4 (0, 0, 1, 2) is a coefficient that multiplies the monomial u2
kuk−1uk−2.

Commonly, Volterra maps are assumed to be symmetric with respect to the input lags.
Given a set of i input lags, the hi value is equal for all the possible permutation of the
lags. For instance, coming back to the previous example, under symmetry assumptions
one has h4 (0, 0, 1, 2) = h4 (0, 1, 0, 2) = h4 (1, 0, 2, 0) = . . ..

Alternatively, (6.2) can be rewritten more compactly with an inner product. Let
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φi(uk) be the vector collecting all the distinct monomials in uk with degree i, and wi be
the vector function of the coefficients hi, multiplied by opportune constants to account for
the repetitions due to symmetry. Specifically, consider the generic monomial

∏m
j=0 u

dj
k−j ,

where d = [d0, . . . , dm] are the relative degrees of each variable, and
∑m
j=0 dj = i. Then,

the multiplicative constant cited above is equal to the multinomial coefficient
( i
d0 , ... , dm

)
,

hereafter denoted just by
( i
d

)
. For an opportune permutation of the hi and wi elements,

one then has
Hi (uk) = φTi (uk)wi. (6.3)

6.2.2 Volterra maps identification via regularized least squares

Combining (6.1) and (6.3), we have

yk = φT (uk)w + ek,

with

φT (uk) =
[
1,φT1 (uk), . . .φTr (uk)

]
∈ Rn, (6.4a)

wT =
[
h0,w

T
1 , . . . ,w

T
r

]
∈ Rn, (6.4b)

where n = 1 +
∑r
i=1 ni, with ni equals to the dimension of wi. System identification then

reduces to obtaining an estimate ŵ of w from the data set

D = {(yk,uk), k = 1 , . . . , N} . (6.5)

For instance, one can use least squares:

ŵ = arg min
w

∥∥∥y − ΦTw
∥∥∥ ,

where y = [y1, . . . yN ]T , and the regression matrix ΦT is

ΦT =
[
φ(u1) . . . φ(uN ).

]T
.

This approaches suffers of the curse of dimensionality. The number of parameters n
grows quickly with r and m, entailing high variance in the estimate. In Birpoutsoukis
et al. (2017a), such problem has been addressed for Volterra series of order two exploiting
regularized least squares. In particular, the smooth exponential decay of the Volterra
coefficients is enforced by a suitable positive definite matrix (also called kernel) denoted
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by P . The estimator becomes

ŵ = arg min
w

∥∥∥y − ΦTw
∥∥∥2

+wTP−1w, (6.6)

with ŵ available in closed form as

ŵ =
(
ΦΦT + P−1

)−1
Φy. (6.7)

The (i, j)-entry of the matrix P can be seen as a similarity measure between the i-th
and the j-th component of the vector w in (6.4), i.e., between two coefficients associated
to two monomials. In Birpoutsoukis et al. (2017a), such matrix is block diagonal, i.e.,
P = block diag([P0, P1, P2]). Let us discuss the three sub-blocks. First, P0 is a positive
scalar that regularizes h0 in (6.4). Second, P1 ∈ Rn1×n1 and has to account for w1. This
block contains the linear part of the system. Assume that the monomials in φ1(uk) are
ordered as w1 = [h1(0), . . . , h1(m)]T , and let P1(i, j) describe the interaction between
h1(i) and h1(j). Then, exploiting the DC kernel proposed in Pillonetto, Dinuzzo, Chen,
De Nicolao, and Ljung (2014), the (i, j)-entry of P1 is defined as

P1(i, j) = c · e−α|i−j|e−β
|i+j|

2 ,

where c, α and β are hyperparameters that can be tuned from data. The variable c is
the scale factor, while the other two regulate the impulse response exponential decay.
The important contribution of Birpoutsoukis et al. (2017a) is the definition of the third
matrix P2 ∈ Rn2×n2 that has to describe the interactions between all the second-order
monomials, whose coefficients are contained in w2. Each monomial is in one-to-one
correspondence with two lags assuming values in the set {0, 1, . . . ,m} (their ordering
is irrelevant in view of the nature of w2). Let the i-th and j-th monomial be given in
terms of the couples [τ1, τ2] and [τ ′1, τ ′2], respectively. Let also [v, u] and [v′, u′] be the
components of the two vectors w.r.t. the reference frame rotated of π/4[rad] around the
axis perpendicular to the plane identified by vectors [1, 0] and [0, 1]. Then, the following
definition holds

P2(i, j) = c2pv(i, j)pu(i, j), (6.8a)

pv(i, j) = e−αv ||v|−|v
′||e−βv

||v|+|v′||
2 , (6.8b)

pu(i, j) = e−αu||u|−|u
′||e−βu

||u|+|u′||
2 , (6.8c)

where the hyperparameters are now c2, αv, αu, βv and βu. Note that pv (and similarly
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pu) is the product of two exponentials. The first one measures the similarity between
two monomials, whereas the second one decreases if the lags projections assume large
values. For instance, if [τ1, τ2] coincide with [τ ′1, τ ′2] the first factor is equal to one (the
maximum value). Then, if [τ1, τ2] and, hence, also [v, u] are large, the corresponding
monomial coefficient will be much penalized. In fact, one expects that monomials built
with larger input lags will have less influence on output prediction.
Numerical results reported in Birpoutsoukis et al. (2017a) prove that the addition of the
regularization term is crucial to control estimator’s variance. Regarding computational
issues, (6.7) shows that the number of operations scales with the cube of n (the number
of distinct monomials), while the storage requirements are proportional to the square of
n. Thus, there is a direct dependence on the number of coefficients of the Volterra maps.
Unfortunately, this number grows rapidly with the system memory and with the order of
the Volterra series. This makes already hard to introduce monomials of degree three.

6.2.3 Polynomial kernel and Volterra series

An alternative technique is regularized system identification in a RKHS defined by a
kernel function k(ut,uj). Under mild assumptions, a kernel function admits a (possibly
infinite) expansion in terms of basis functions ψq, i.e.,

k(ut,uj) =
∑
q

λqψq(ut)ψq(uj), (6.9)

where λq are positive scalars. Any function in the induced RKHS has then the represen-
tation

f(uk) =
∑
q

cqψq(uk), (6.10)

for suitable coefficients cq.
A widely used estimator of the input-output map is

f̂ = arg min
f

N∑
t=1

(yt − f(ut))2 + γ‖f‖2H , (6.11)

where γ is the regularization parameter that trades-off data fit and the penalty term
‖ ·‖2H , given by the squared RKHS norm. According to the representer theorem Schölkopf,
Herbrich, and Smola (2001), one has

f̂(uk) =
N∑
t=1

αtk(uk,ut), (6.12)
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where α = [α1, . . . , αN ]T is given by

α = (K + γIN )−1y, (6.13)

with K the so called kernel matrix whose (t, j) entry is k(ut,uj). So, even if the RKHS
can implicitly encode a very large (possibly infinite) number of basis functions ψq, the
estimate always belongs to a finite-dimensional subspace and can be computed with a
finite number of operations.

A class of kernel-based solutions for Volterra series identification has been proposed
in Franz and Schölkopf (2006). The authors rely on the use of polynomial kernels which
are strongly connected with Volterra series since they encode monomials in uk. Let us
consider

r∑
i=1

ρi
(
uTt uj

)i
+ ρ0, (6.14)

where the ρi ≥ 0 are tunable hyperparameters. As discussed in Schölkopf and Smola
(2001), each term

(
uTt uj

)i
is the homogeneous polynomial kernel of degree i that encodes

all the monomials of degree i. So the ψq in (6.9) are the elements of φi in (6.4).
The computational bottleneck of kernel-based methods is the matrix inversion in

(6.13) that requires O(N3) operations. The memory requirements to store the kernel
matrix are O(N2). However, notice that there is no direct dependence on the number of
basis functions encoded in the kernel. So, computational complexity does not depend on
the number of Volterra parameters and this allows handling also high-order series.

6.3 Multiplicative Polynomial Kernel

Now, we show that in important cases the kernel hyperparameters in (6.14) do not
provide enough flexibility to penalize the different monomials. For our purposes, it is
useful also to recall the following two facts. First, given the kernel expansion (6.9) in
terms of the eigenvalues λq and the independent basis functions ψq, one has

f(uk) =
∑
q

cqψq(uk) =⇒ ‖f‖2H =
∑
q

c2
q

λq
.

So, smaller λq give more penalty to the coefficients of the corresponding ψq. Second, as
said, in the context of our polynomial kernels, the ψq belong to the set of monomials
contained in

φT (uk) =
[
1,φT1 (uk), . . .φTr (uk)

]
.
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It is also useful now to denote the components of the blocks φi, i.e., the monomials of
degree i, by φ(i)

1 , φ
(i)
2 , . . .. So, one has

φi(uk) =
[
φ

(i)
1 (uk) φ

(i)
2 (uk) . . .

]T
. (6.15)

Each monomial of degree i is in one-to-one correspondence with a m + 1-dimensional
vector whose components are the relative degrees of the uk components. In particular,
we will use d(i)

q to denote the vector that contains the relative degrees of the monomial
φ

(i)
q . We will also indicate with Di the following set

Di =
{
d(i) = [d(i)

0 d
(i)
1 . . . d(i)

m ] s.t.
m∑
τ=0

d(i)
τ = i

}
, (6.16)

that is thus associated with all the monomials φi in (6.15).

6.3.1 Penalties induced by the polynomial kernels

We focus on the penalties induced by the single homogenous kernels
(
uTt uj

)i
that compose

(6.14). We also introduce the positive semidefinite diagonal matrix Σ(i) ∈ R(m+1)×(m+1)

to define the generalized building block as

k
(i)
pk (ut,uj) =

(
uTt Σ(i)uj

)i
, (6.17a)

Σ(i) = diag(σ(i)), (6.17b)

σ(i) = [σ(i)
0 , . . . , σ(i)

m ]. (6.17c)

The overall kernel turns out to be

K
(r)
pk (ut,uj) =

r∑
i=1

k
(i)
pk (ut,uj) + ρ0. (6.18)

Since k(i)
pk encodes all the monomials of degree i (if the Σ(i) is full-rank), using (6.15) one

must have
k

(i)
pk (ut,uj) =

ni∑
q=1

λ(i)
q φ

(i)
q (ut)φ(i)

q (uj). (6.19)

But we can also find another representation through the multinomial theorem. Using
(6.16) and (6.17), one has

k
(i)
pk (ut,uj) =

(
m∑
τ=0

σ(i)
τ ut−τuj−τ

)i
=

∑
d(i)∈Di

(
i

d(i)

)
m∏
τ=0

(
σ(i)
τ ut−τuj−τ

)d(i)
τ (6.20)
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where here, and in what follows, we have used the fact that
( i
d(i)
)
is the number of all the

different lags vectors that identify the same monomial.
If d(i)

q contains the relative degrees [d(i)
q,0 d

(i)
q,1 . . . d

(i)
q,m] of the monomial φ(i)

q , equating the
right hand sides of (6.19) and (6.20) we have

λ(i)
q =

(
i

d(i)
q

)
m∏
τ=0

(σ(i)
τ )d

(i)
q,τ . (6.21)

The expression (6.21) highlights a first interesting issue. A part of the penalty is assigned
only on the basis of the relative degrees associated to the monomial. Due to the behaviour
of the multinomial coefficient, monomials composed by mixed terms are promoted. The
gap between the penalties assigned to monomials with mixed terms and monomials
composed by just one term becomes also particularly relevant when i grows. The
reconstruction of the input-output function exploiting this kind of penalties might not
be suitable, and higher flexibility could be desirable.

In (6.21), the presence of the multinomial coefficient
( i
d(i)
)
is due to repetitions induced

by symmetry. To avoid this fact, and for visualization purposes, we express the penalties
induced by λ(i)

q in the coefficients of the i-th Volterra map that define the input-output
formulation (6.2). Note that the set of ordered lags (τ1, . . . , τi) identifies univocally i,
q and, hence, the monomial φ(i)

q and the vector d(i)
q . The opposite is not true due to

the possible change of ordering: all the permutations of (τ1, . . . , τi) lead to the same
monomial. In particular, due to symmetry, the λ(i)

q contribution is equally divided among
all the coefficients of hi associated to the

( i
d

(i)
q

)
permutations of (τ1, . . . , τi). Then, the

penalty assigned to the coefficient hi(τ1, . . . , τi) = hi(τ ) is inversely proportional to

λ
(i)
q( i
d

(i)
q

) =
m∏
τ=0

(σ(i)
τ )d

(i)
q,τ . (6.22)

The equality (6.22) permits to analyze the effects of the σ(i)
τ in the penalties assigned to

the Volterra maps. Firstly, notice that when considering σ(i)
τ = 1 ∀τ = 0 . . . ,m, as done

in Franz and Schölkopf (2006), the penalties assigned to the coefficients of the hi maps
are flat, given that all the coefficients are equally penalized. Secondly, acting on the
values of the σ(i)

τ , we can promote or penalize the monomials containing uk−τ . However,
from (6.22), we can see that promotions or penalizations are rigid, in the sense that by
increasing σ(i)

τ we promote simultaneously all the monomials of degree i in which uk−τ
appears. There might be cases in which more flexibility is needed to penalize uk−τ by
also accounting for its relative degree.
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Remark 6.3.1. An alternative to (6.18) relies on the use of the inhomogeneous polynomial
kernel of order r: (

1 + uTt Σuj
)r

, (6.23)

where Σ ∈ R(m+1)×(m+1) is typically diagonal. The inhomogeneous polynomial kernel
encodes all the monomials with degree up to r Schölkopf and Smola (2001). Similar
considerations can be done for this model by recalling that (6.23) can be expressed as sum
of r homogeneous kernels sharing the same Σ = Σ(i), multiplied by opportune coefficients,
namely, (

1 + uTt Σuj
)r

=
r∑
i=0

(
r

i

)
k

(i)
pk (ut,uj).

The last equation shows that the use of the inhomogeneous polynomial kernel further
reduces the flexibility in determining penalties. In fact, the same hyperparameters
determine simultaneously the penalties assigned to monomials with different degrees,
while, through the model (6.17), one can exploit σ(i) to tune specific regularization for
each block φi in (6.15).

6.3.2 Multiplicative Polynomial Kernel

In view of the limitations of the currently used polynomial kernels described above,
the MPK is now introduced. Let k(i)

mpk denote a novel kernel that, similarly to the
homogeneous polynomial kernel, encodes all the monomials of degree i, i.e., all those
contained in φi. But its structure is different, being the product of i linear kernels, i.e.,

k
(i)
mpk(ut,uj) =

i∏
p=1

(
uTt Σpuj

)
, (6.24a)

Σp = diag(σp), (6.24b)

σp = [σ(p)
0 , . . . , σ(p)

m ]. (6.24c)

Differently from k
(i)
pk in (6.17), the k(i)

mpk assigns assigns a distinct set of hyperparameters
to each factor. It is easy to see that (6.24) is a well-defined kernel function, being the
product of valid kernels Rasmussen and Williams (2006). Also, it admits an expansion in
terms of the elements in φi. Then, we propose the following kernel to model Volterra
series of order r:

K
(r)
mpk(ut,uj) =

r∑
i=1

ρik
(i)
mpk(ut,uj) + ρ0. (6.25)
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6.3.3 Penalties induced by the MPK

As done with (6.17), we analyze the regularization properties of (6.25) focusing on the
single bulding blocks k(i)

mpk. Using the same kind of notation adopted in the previous
subsection, an expression of the λ(i)

q is obtained by expanding (6.24), isolating the terms
with relative degrees d(i)

q , and, finally, summing their coefficients.
To perform such computation, let us introduce the following set

T (i)
q =

{
(τ1, . . . , τi) s.t.

τi∏
τ=τ1

uk−τ =
m∏
τ=0

u
d

(i)
q,τ

k−τ .

}
, (6.26)

Each vector in T (i)
q contains i lags associated with the same d(i)

q . Then, summing all
the contributions associated to the elements of T (i)

q , one obtains

λ(i)
q =

∑
(τ1,...,τi)∈T iq

 i∏
p=1

σ(p)
τp

 . (6.27)

The last equation shows that the MPK parameters allow for a more flexible regularization.
In particular, tuning opportunely the hyperparameters, it is possible to promote or
penalize the relative degree with which each lagged input appears. For example, consider
the lagged input uk−τ , and the coefficients σ(1)

τ , . . . , σ
(i)
τ . Then, by inspection of (6.27),

it comes that, in order to promote monomials in which uk−τ appear with relative
degree d ≤ i, at least d of the σ(1)

τ , . . . , σ
(i)
τ hyperparameters should assume large values.

Otherwise, all the products in (6.27) and λq become small, much penalizing the monomials
containing the powers udk−τ , . . . , uik−τ . Standard polynomial kernels do not provide such
possibility, given that, as showed before, changing the values of the hyperparameters
promote, or penalize, simultaneously all the monomials containing uk−τ , regardless of
the relative degree.

It is worth stressing that MPK obtains more flexibility by increasing the number of
hyperparameters, possibly leading to overfitting. In particular, when considering the
polynomial kernel of degree i, MPK has (m+ 1)i additional hyparameters. However, as
it will be seen through extensive numerical experiments, when considering sufficiently
exciting input trajectories the prediction capability of MPK outperforms constantly that
of the homogeneus and inhomogeneus polynomial kernel.
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6.3.4 Re-parametrization of the diagonal Σp matrices

To optimize the Σp matrices, we will use Marginal Likelihood maximization Rasmussen
and Williams (2006), by adopting a reparametrization. In fact, since (6.24) is the product
of i equal blocks, optimizing directly the σ(p)

τ could lead to undesired behaviors due
to the presence of several local maxima. In particular, from the structure (6.24), it is
immediate to see that any permutation of the i vectors σp that represent the diagonals
of the matrices Σp defines the same k(i)

mpk.
To avoid this situation, we propose a hierarchical parametrization of the σp vectors,
w.r.t. a set of vectors {ap, p = 1, . . . , i}, where ap =

[
a

(p)
0 , . . . , a

(p)
m

]
with all non negative

entries. More specifically, the σp vectors are defined iteratively by a backward iteration
as follows,

σi = ai, (6.28a)

σp = σp+1 + ap, (6.28b)

with p = i− 1, . . . , 1.
Beyond reducing the presence of possible local maxima, this parametrization has an

intuitive interpretation also in terms of the penalties and the relative degree of each uk−τ .
Indeed, from (6.28) we see that increasing a(p)

τ means increasing all the σ(d)
τ with d ≤ p

and then, recalling (6.27), this promotes all the monomials in which uk−τ has degree at
least equal to p. Moreover, if a(d)

τ is close to zero for d > p, then the monomials with
uk−τ of degree larger than p are highly penalized. In this way, by tuning opportunely
the hyperparameters it is possible to control the maximum degree of each lagged input.

6.4 Smooth exponentially decaying MPK

In this section, we extend the framework introduced in the previous subsection by design-
ing a novel Smooth Exponentially Decaying MPK (SED-MPK). The model incorporates
information on smooth exponential decay of Volterra maps coefficients. The kernel has
the same structure of the MPK (6.24), except for the positive definite matrices Σp which
are no more restricted to be diagonal. In fact, we define the basic building kernel as

k
(i)
sed(ut,uj) =

i∏
p=1

uTt Σpuj (6.29a)

Σp(i, j) = e−αp|i−j|e−βp|i−1+j−1| (6.29b)
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where Σp(i, j) is the (i, j)-entry of Σp, and the hyperparameters αp and βp regulate the
smooth exponential decaying behavior. One can thus notice that while in (6.24) each Σp

is diagonal with the hyperparameters corresponding to the m+ 1 diagonal elements, now
the matrix is full but depends only on αp and βp. Similarly to the MPK, to limit the
presence of local maxima, αp and βp can be parametrized hierarchically.
Then, similarly to the MPK, the SED-MPK of order r is the sum of kernels (6.29) of
increasing order, i.e.,

K
(r)
sed(ut,uj) =

r∑
i=1

ρik
(i)
sed(ut,uj) + ρ0. (6.30)

The regularization matrix in (6.29b) has clear analogies with the regularizer (6.8)
introduced in Birpoutsoukis et al. (2017a). But a fundamental difference holds: while
in Birpoutsoukis et al. (2017a) it is used to regularize the Volterra coefficients hi in an
explicit way, i.e., writing down the model in terms of basis functions, the penalty is here
embedded in a kernel. This point is crucial, and the rest of the subsection is devoted to
illustrate it by building a kernel that generalizes both MPK and SED-MPK.

As said, once an order i is fixed, the hi(τ ) is the coefficient of a monomial of order i
defined by the vector τ = [τ1, . . . , τi] containing the input lags. Recall that Hi (uk) in
(6.2) is the sum of products between hi and the possible monomials of degree i built with
uk. In other words, this is the part of the system output due only to the monomials of
order i. With this in mind, let Pi(τ , τ ′) be a kernel that measures the similarity between
two lags vectors. Then, we define

k(i)(ut,uj) =
∑
τ

∑
τ ′
Pi(τ , τ ′)

i∏
p=1

ut−τpuj−τ ′p (6.31)

as the similarity measure between the system outputs Hi(ut) and Hi(uj) obtained
using two different inputs ut and uj . Note that (6.31) accounts for the effect of all the
monomials of order i built with ut and uj by summing over all the possible couples of
vector lags. As a final step, the global kernel that accounts for all the monomials of
degree up to r is defined as

K(r)(ut,uj) =
r∑
i=0

k(i)(ut,uj). (6.32)

Now, consider (6.29a) but without assigning any particular structure to Σp. In
particular, for t, j in {0, 1, . . . ,m} let σ(p)

tj be the (t+ 1, j + 1)-entry of Σp. Then, it is
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easy to prove that (6.29a) generalizes into

∑
τ

∑
τ ′

i∏
p=1

σ
(p)
τpτ ′p

ut−τpuj−τ ′p , (6.33)

where we are summing over all the possible couples of lags vectors

τ = [τ1, . . . , τi], τ ′ = [τ ′1, . . . , τ ′i ].

Equating the right hand sides of (6.33) and (6.31), we obtain

Pi(τ , τ ′) =
i∏

p=1
σ

(p)
τpτ ′p

. (6.34)

The equality (6.34) is important because it shows the correspondence between the
similarity measure assigned to two lags vectors (and, hence, also to two Volterra map
coefficients) and the elements of the Σp. In particular, (6.34) says that the similarity
between hi(τ ) and hi(τ ′) is factorized by i elements, corresponding to the entries of the
Σp matrices identified by τ and τ ′. Without parametrizing the Σp structure, the model
complexity could become relevant, in particular when the system memory m and the
Volterra order i are large. MPK reduces complexity by using diagonal matrices exploiting
(6.24b). Instead, inspired by Pillonetto and De Nicolao (2010) and Birpoutsoukis et al.
(2017a), SED-MPK uses the option (6.29b) to limit the number of parameters and enforce
smooth exponential decay of the hi(τ ). This feature is so encoded in the kernel, providing
information that monomials built with large input lags values should have less influence
on output prediction. To clarify this concept, we provide the explicit expression of the
P(τ , τ ′) obtained with the kernel in (6.29), in the particular case where all the αp (resp.
βp) are equal to α (resp. β). By (6.33), we have

P(τ , τ ′) = e−α‖τ−τ
′‖1e−β‖τ+τ ′‖1 . (6.35)

The fundamental point is that, thanks to our kernel-based framework, the SED-MPK
computational complexity scales with the number of samples, instead that with the
number of coefficients of the Volterra maps as in Birpoutsoukis et al. (2017a). This allows
to model also high-order Volterra series. As proven by numerical results reported in the
next section, solutions based on SED-MPK are effective in identifying also Volterra series
up to order 5.
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6.5 Experimental results

We tested the proposed kernel functions in several experiments. Firstly, we compare the
performance of the MPK with that of the standard polynomial kernels. In particular,
we considered the benchmark system introduced in Spinelli, Piroddi, and Lovera (2005),
described by a Volterra series with order r = 3 and memory m = 6. Finally, in the last
part of the section, to evaluate the advantages of the SED-MPK, we use the two proposed
kernels to identify a more challenging system, proposed in Stoddard and Welsh (2018),
and modeled as Volterra series with r = 3 and m = 70.

6.5.1 Experiment 1

The system considered in this experiment is described by the following equation

zk =uk + 0.6uk−1 + 0.35(uk−2 + uk−4)− 0.25u2
k−3

+ 0.2(uk−5 + uk−6) + 0.9uk−3

+ 0.25ukuk−1 + 0.75u3
k−2 − uk−1uk−2

+ 0.5(u2
k + ukuk−2 + uk−1uk−3). (6.36)

The estimator based on the MPK is compared with the ones based on the homogeneous
polynomial kernel (PK) and the inhomogeneous polynomial kernel (IPK), expressed,
respectively, by (6.18) and (6.23). The input signals are 1000 samples obtained from a
realization of Gaussian noise. Concerning mtr

u , mts
u , σtru and σtsu , which are, respectively

the input mean and standard deviation of the training and test samples, we considered
two different scenarios :

• Setup 1 : mtr
u = mts

u = 0, σtru = σtsu = 4;

• Setup 2 : mtr
u = mts

u = 0, σtru = 1, σtsu = 4.

Notice that in Setup 1 the distribution of the training and test inputs is the same, while
in Setup 2 is different. In particular, we limited the variability of the training samples,
increasing the probability of generating test samples that are significantly distant from
the training distribution. Consequently, the second scenario is more challenging. In all
the experiments the noise standard deviation is σn = 4. The hyperparameters of the
kernels have been trained maximizing the marginal likelihood in the training samples. As
concerns the optimization, we used standard gradient descent algorithm, with adaptive
learning rate. The algorithms are implemented in Pytorch Paszke et al. (2017), to exploit
its automatic differentiation capabilities for computing the gradient.
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Figure 6.1: Boxplot of the Fit obtained with a Monte Carlo simulation composed of 100
simulations of the system described by (6.36). IPK, PK, and MPK correspond to the estimators

based on (6.23), (6.18), and (6.24), respectively.

For each scenario we performed a Monte Carlo of 100 simulations. In each simulation
the same training and test dataset have been used to train and test the three estimators.
Performance is measured by the percentage fit (Fit%), defined as

100%
(

1− ‖z − ẑ‖1
‖z − z̄‖1

)
,

where z is a vector collecting the noiseless system outputs, ẑ is the vector of the estimated
outputs, and, finally, z̄ is the mean of z. Results are reported in Figure 6.1. As far as
Setup 1 is concerned, all the three estimators perform well. This is due to the fact that
the input distribution does not vary between training and test, combined with the low
value of m. Instead, performance vary significantly in the second scenario, where the
MPK-based estimator outperforms the other estimators; the MPK Fit is 10% higher
than the IPK and PK Fit. This fact shows that, thanks to the higher flexibility provided
by the additional parameters, the MPK extracts more information from the training
data, obtaining better out of sample performance.

To closely inspect about the regularization properties of the three kernels, we analyze
the penalties assigned to the different monomials. In particular, we focus on the monomials
with degree two, and we compute the penalty assigned to the h2 map. We recall that λ(i)

q ,
the scalar defining the penalty assigned to monomial φ(i)

q , is equally divided among the
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Volterra map coefficients associated to φ(i)
q . Then, given a vector of lags τ = [τ1 . . . τi],

with φ
(i)
q =

∏
τ∈τ uk−τ , we have that λhi(τ ), the portion of λq assigned to the hi(τ )

coefficient, is given by

λhi(τ ) = λ
(i)
q( i
d

(i)
q

) . (6.37)

In Figure 6.2, we compare the magnitude of the h2 coefficients of the system in (6.36) with
the λh2 computed by the IPK, PK and MPK estimators after tuning the hyperparameters
by marginal likelihood maximization. We recall that small values of λ entail high
penalization. Results confirm the consideration done in Section 6.2 and 6.3. Notice that
the IPK and PK estimators are not able to penalize properly the different monomials.
In particular, IPK promotes significantly only the monomial u2

k−2. This is probably
due to the constraints between penalties assigned to the different orders. Indeed, notice
that in (6.36) the only monomial with degree three is u3

k−2. Instead, PK is not able
to select the relative degree of each monomial; for example, u2

k−1 is promoted despite
its maximum relative degree in (6.36) is one. Finally, results confirm that MPK can
promote monomials depending on the relative degrees. Indeed, the monomial uk−2uk−3

is promoted without promoting u2
k−2 and u2

k−3, contrary to PK, and in accordance with
(6.36).

6.5.2 Experiment 2

In this set of experiments we compare the performance of the estimators based on MPK
and SE-MPK, simulating a more complex system. We considered the Wiener system
proposed in Stoddard and Welsh (2018), and described by the following equation,

zk =
r∑
i=1

(
10q−1

A(q) uk

)i
, (6.38)

where q is the forward shift operator, and A(q) = 1− 1.8036q−1 + 0.8338q−2. To analyze
the robustness of the two kernels w.r.t. measurement noise, we performed simulations
with different noise levels. Specifically, we varied σn obtaining simulations with signal
to noise ratio (SNR) approximately equal to 5dB and 20dB. Concerning the Volterra
orders, we considered r = 2,...,5. As for the system memory m, it was set to 70. For
each Volterra order we performed a Monte Carlo study composed of 40 simulations. As
done in Stoddard and Welsh (2018), in each simulation the training and test inputs are
the collection of 3500 samples, generated from a Gaussian distribution with zero mean
and unitary standard deviation. Notice that the number of samples is approximately
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Figure 6.2: Visualization of h2 coefficients’ magnitude associated to the system in (6.36),
compared with the penalties assigned to the h2 coefficients by IPK, PK, MPK. Penalties have
been computed with the expression in the left-hand-side of (6.37). Dark squares represent
higher values. For each matrix the values have been normalized w.r.t. the maximum value,

i.e., black squares corresponds to 1, while white squares to zero.
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equal to the number of distinct coefficients of a Volterra map with r = 2 and m = 70,
and significantly lower than the number monomials in φi with i > 2. In Figure 6.3 we
visualized the Fit obtained for r = 2 and r = 3, after training the hyperparameters by
marginal likelihood maximization. As concerns the SED-MPK, we considered the special
case reported in (6.35), with all the αp and βp equal. Results show that, compared to
SED-MPK, the performance of the MPK decreases faster with the increasing of r, as well
as being more sensitive to measurement noise. Due to the high number of parameters,
and the small number of samples, the MPK is not able to identify a convenient set
of penalties capable of providing generalization and robustness to measurement noise.
Instead, results show the effectiveness of the regularization strategy implemented by the
SED-MPK. Notice that the SED-MPK based estimator provides accurate estimates of
the system output also with r = 3, as well as being robust to the presence of noise. This
trend is confirmed also by results reported in Figure 6.4, where we plotted the SED-MPK
Fit obtained with r = 3, 4, 5. Despite the number of samples is orders of magnitude
smaller than the number of monomials in φ5, the average Fit is higher that 80%. Finally,
notice that effects of noise become particularly relevant only with r = 5, where there have
been several outliers. However, we would like to stress that the considered configuration
is particularly challenging.
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Figure 6.3: Comparison of the Fit obtained by MPK and SED-MPK in a Monte Carlo study
composed of 40 simulations of the system in (6.38).
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Figure 6.4: Boxplot of the Fit obtained by the SED-MPK based estimator in a Monte Carlo
study composed of 40 simulations of the system in (6.38), with r = 3, 4, 5.
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6.6 Conclusion

In this chapter, we introduce two new kernels to deal with the Volterra series identification.
The two new kernels are named multiplicative polynomial kernel and smooth exponentially
decaying multiplicative polynomial kernel. The MPK of degree i is defined as the product
of i basic building blocks, represented by distinct linear kernels. Compared to standard
polynomial kernels, the MPK identify the same RKHS, but it is equipped with a richer
set of hyperparameters that allows for a flexible regularization, allowing to penalize
monomials w.r.t. their maximum relative degree. Similarly to the MPK, the SED-MPK is
defined by the product of distinct linear kernels. However, by defining parameters of each
linear kernel w.r.t. a proper function, the SED-MPK encodes the sooth exponentially
decaying of the Volterra maps coefficients. In this way, we combine encoding properties
of the polynomial kernel with explicit regularization of the Volterra maps, increasing
significantly regularization and data-efficiency. Experimental results obtained in two
benchmark systems confirm the effectiveness of the proposed solutions, and validate the
possibility of identifying high order Volterra series using a limited number of samples.
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7
Conclusions

In this manuscript, we presented different learning algorithms for robotics systems. In
the first part, we introduced two data-driven algorithms for deriving the kinematics
and dynamics models of the robot, while in the last part we addressed the collision
detection problem, as well as proposing a model-based Reinforcement Learning algorithm
for learning control.

Specifically, the kinematics identification algorithm proposed in Chapter 2 derives the
geometrical model of the robot combining proprioceptive measures with data acquired
with a 2D camera. No prior knowledge about the robot geometry is assumed. Hence,
the algorithm is particularly useful in the context of Modular Robotics, as well as in
applications of automatic adaptation to hardware failure. The effectiveness of the solution
is shown with tests performed on a real setup, where we validate also the implementation
of a simple kinematic controller based on the model learned.

In Chapter 3, we derived the GIP kernel, a data-efficient kernel for robot inverse
dynamics identification. Experimental results showed that, compared to other data-driven
solutions, the GIP kernel achieves better performance, both in terms of accuracy and
data efficiency. Despite it requires minimal prior information about the robot, the GIP
kernel-based estimator behaves similarly to model-based estimators. However, with
respect to model-based solutions, our algorithm is not affected by model bias, and it is
not platform-dependent, possibly leading to reductions in costs and time design.
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In Chapter 4, we validated the possibility of using GPR for deriving a proprioceptive
collision detection algorithm. Moreover, we focused the attention on behaviors happening
in quasi-static configurations, where friction forces become particularly non-linear and
unpredictable. Besides highlighting the consequences of not considering these behaviors,
we modified the standard GPR models used to identify the inverse dynamics, with the
aim of modeling effects due to frictions and improving the collision detection performance.
Tests performed with a UR10 robot confirmed the effectiveness of the proposed solution.

In Chapter 5, we introduced MC-PILCO, a model-based Reinforcement Learning
algorithm inspired by PILCO. By approximating the expected cost relying on Monte
Carlo particle-based methods, MC-PILCO addresses two main limitations of the original
algorithm, namely, the unimodality of the predicted state distributions, and the mandatory
use of RBF kernel to model the system evolution. A comparison of the performance
obtained in the learning of a swing-up task shows consistent improvements, both in terms
of speed and success rate.

Finally, in the last chapter, we analyzed in-depth the properties of the MPK, a
refinement of the standard polynomial kernel used by the GIP kernel. In particular, we
applied the proposed kernel to the identification of Volterra series, a class of models
particularly useful to describe non-linear systems. Results confirm that, compared to
the standard polynomial kernel, the MPK exhibits better regularization properties and,
consequently, higher out of sample accuracy.
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A.1 Proof of Proposition 2.3.5

To prove Proposition 2.3.5, we introduce the relative transformations between two links
Lj1 and Lj2 which are, in general, not subsequent. The relative orientation between Lj1
and Lj2 , denoted by RLj1Lj2

, is derived iterating (2.2) along the kinematic chain, namely
considering all transformations due to the joints between Lj1 and Lj2 , that is,

R
Lj1
Lj2

=
m=j2∏
m=j1+1

(Rz(θm)Rx(αm)) , (A.1)

where θm is a function of qkm if the joint is revolute. Instead, as regards lLj1Lj2
, i.e., the

position of Lj2 w.r.t. Lj1 , we have

l
Lj1
Lj2

=
m=j2∑
m=j1+1

(
R
Lj1
Lm−1

l
Lm−1
Lm

)
. (A.2)

Proposition 2.3.5 states that, when excitation trajectories are in accordance with
Definition 2.3.4, if (Mi1Mi2 , qk) verifies equations of Proposition 2.3.1 for the minimal set
of observations D̄, then Lj1 and Lj2 , that is, the links to which Mi1 and Mi2 are attached,
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are subsequent in the kinematic chain and connected through the prismatic joint qk.

We prove Proposition 2.3.5 by contradiction. First, we consider the case in which
there is at least one revolute joint between Lj1 and Lj2 . Without loss of generality
assume that j3 is the index of the link coming after the revolute joint. The relative
orientation between the markers is RMi1

Mi2
= R

Mi1
Lj1

R
Lj1
Lj3
R
Lj3
Lj2
R
Lj2
Mi2

, which, exploiting (A.1),
can be rewritten as

R
Mi1
Mi2

= R
Mi1
Lj1

m=j3−1∏
m=j1+1

Rz(θm)Rx(αm)

 × (A.3)

Rz(θj3)Rx(αj3)

 m̄=j2∏
m̄=j3+1

Rz(θm̄)Rx(αm̄)

RLj2Mi2

Now let θj3 = qkj3 + θ0
j3 , where θ

0
j3 is the initial value and qkj3 the joint variable.

Moreover let us define

R
L̄j3
Mi2

:= Rz(θ0
j3)Rx(αj3)

 m̄=j2∏
m̄=j3+1

Rz(θm̄)Rx(αm̄)

RLj2Mi2
.

Then it follows
R
Mi1
Mi2

= R
Mi1
Lj3−1

Rz(qkj3 )RL̄j3Mi2
.

If conditions of Proposition 2.3.1 are verified, then RMi1
Mi2

is constant, and, in turn, when

considering two different time instants t1 and t2, we have RMi1
Mi2

(t1) = R
Mi1
Mi2

(t2) implying

R
Mi1
Lj3−1

(t1)Rz(qkj3 (t1))RL̄j3Mi2
(t1) = R

Mi1
Lj3−1

(t2)Rz(qkj3 (t2))RL̄j3Mi2
(t2). (A.4)

Now, consider the set of observation D̄ introduced in Definition 2.3.4 and, in particular, let
us select two input locations belonging to the subset of trajectories with mod

(
qkj3 (t1)

)
6=

mod
(
qkj3 (t2)

)
and qw(t1) = qw(t2) if w 6= kj3 . Then R

Mi1
Lj3−1

(t1) = R
Mi1
Lj3−1

(t2) and

R
L̄j3
Mi2

(t1) = R
L̄j3
Mi2

(t2), but for the uniqueness of the Euler anglesRz(qkj3 (t1)) 6= Rz(qkj3 (t2)),
thus contradicting (A.4).

To conclude the proof, we consider the case in which there is at least one prismatic
joint between Lj1 and Lj2 . Under this assumption the relative translation between
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markers is

l
Mi1
Mi2

=lMi1
Lj1

+R
Mi1
Lj1
l
Lj1
Lj2

+R
Mi1
Mi2

(
−lMi2

Lj2

)
(A.5)

=
m=j2∑
m=j1+1

RMi1
Lm−1




0
0
dm

+Rz(θm)


am

0
0



+

l
Mi1
Lj1

+R
Mi1
Mi2

(
−lMi2

Lj2

)
+

m=j2∑
m=j1+1

RMi1
Lm−1


0
0
qkm




=li2∗i1∗ +
m=j2∑
m=j1+1

RMi1
Lm−1


0
0
qkm


 , (A.6)

where in li2∗i1∗ we have collected all the terms which are constant, while the terms in the
last sum depend on the joint signals. Now, similarly to (2.7), let us define the parameters
vector bi2∗i1∗ = [li2∗i1∗ (zMi1

Lj1
)T . . . (zMi1

Lj2−1
)T ], and the matrix A∗ =

[
I3 qkj1 I3 . . . qkj2 I3

]
where the zMm

Lm−1
vectors have unitary norm. Accordingly, let A∗(D̄) the matrix built

stacking the matrices A∗(tj,h), j = 1, 2, h = 1, . . . , n− 1, on top of one another.
If equations of Proposition 2.3.1 are verified for the set of observations D̄, then, from

(2.9) it follows that
l (Pi1 , Pi2) = A(qk)bi2i1 ,

but, also,
l (Pi1 , Pi2) = A∗(D̄)bi2∗i1∗.

However, when joints trajectories belong to the class defined in Definition 2.3.4, rank (A(qk)) =
6 and rank

(
A∗(D̄)

)
= 3 + 3(j2 − j1), and, given the constraints on bi2i1 and bi2∗i1∗,

rank
(
A(D̄)bi2i1

)
≤ rank

(
A∗(D̄)bi2∗i1∗

)
. Then, it must hold j2 = j1 + 1. Finally, since

span ([qki(t1) . . . qki(tn−1)]) = span
([
qkj (t1) . . . qkj (tn−1)

])
if and only of ki = kj , the

equivalence in (A.1) holds only when considering the joint input signal qk. This concludes
the proof of Proposition 2.3.5.

A.2 Proof of Proposition 2.3.6

We prove the proposition by contradiction. Assume that systems defined by Proposition
2.3.2 and Proposition 2.3.3 admit a solution for the set of observations D̄. Consider the
case where Lj1 and Lj2 are not consecutive. Let Nrev be the number of revolute joints
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present in the chain between the two links, and let kj3 . . . kj3+Nrev be the corresponding
indexes. The relative orientation between Mi2 and Mi1 is RMi1

Mi2
= R

Mi1
Lj1

R
Lj1
Lj2
R
Lj2
Mi2

, with

R
Lj1
Lj2

as in (A.1). We rewrite RMi1
Mi2

highlighting the contributions of a particular revolute

joint, for example joint j3, obtaining R
Mi1
Mi2

= R
Mi1
Lj3−1

Rz(qkj3 )RL̄j3Mi2
. Since the system

defined by Proposition 2.3.3 holds true, we have RMi1
Mi2

= R
Mi1
Lj1

Rz(qk)R
L̄j2
Mi2

, with RMi1
Lj1

and RL̄j2Mi2
corresponding to the solution of the non linear system. Then it follows

R
Mi1
Lj1

Rz(qk)R
L̄j2
Mi2

= R
Mi1
Lj3−1

Rz(qkj3 )RL̄j3Mi2
.

Exploiting the standard properties of the rotation matrices and of the Euler angles, it
holds Rz(qk) = R

Lj1
Mi1

R
Mi1
Lj3−1

Rz(qkj3 )RL̄j3Mi2
R
Mi2
L̄j2

. Rewriting RLj1Mi1
R
Mi1
Lj3−1

and R
L̄j3
Mi2

R
Mi2
L̄j2

w.r.t. their Euler angles, and adopting the zxz convention, we obtain

Rz(qk) = Rz(α1)Rx(β1)Rz(γ1)Rz(qkj3 )Rz(α2)Rx(β2)Rz(γ2),

where (α1, β1, γ1) refers to RLj1Mi1
R
Mi1
Lj3−1

and (α2, β2, γ2) refers to RL̄j3Mi2
R
Mi2
L̄j2

. Then

Rz(qk − α1 − γ2) = Rx(β1)Rz(qkj3 + γ1 + α2)Rx(β2).

Given the uniqueness of the Euler angles, the last equation holds true if and only if β1 and
β2 are null, and qk−α1− γ2 = qkj3 + γ1 +α2, namely qk− qkj3 = α1 + γ2 + γ1 +α2. Now,
consider two observations at time t1 and t2, selected from D̄, satisfying mod

(
qkj3 (t1)

)
6=

mod
(
qkj3 (t2)

)
and qw(t1) = qw(t2) if w 6= kj3 . With this type of trajectory α1, β1, γ1,

α2, β2 and γ2 are constant when t is equal to t1 and t2. Then, it follows

qk(t1)− qkj3 (t1) = qk(t2)− qkj3 (t2).

Under the excitation assumptions in Definition 2.3.4, the last equation holds if and only
if k = kj3 . Similar considerations can be done when considering the other revolute joints,
thus implying that only one revolute joint can be present between Lj1 and Lj2 , and that
the corresponding input must be qk.

To conclude the proof we need to consider the case in which between Lj1 and Lj2
there is at least one prismatic joint, in addition to the revolute joint qk. Let j3 be the
index of the link after the revolute joint, that is, the revolute joint connects Lj3−1 and
Lj3 . Consider the expression of lMi1

Mi2
in (2.4), and let us expand lLj1Lj2

highlighting the
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prismatic transformations that occurs before, or after, the revolute joint. We have

l
Mi1
Mi2

=lMi1
Lj1

+R
Mi1
Mi2

(−lMi2
Lj2

) +
m=j3−1∑
m=j1+1

R
Mi1
Ljm

l
Lm−1
Lm

+R
Mi1
Lj3−1l

Lj3−1
Lj3

+R
Mi1
Mi2

m=j2∑
m=j3+1

R
Mi2
Ljm−1

l
Lm−1
Lm

, (A.7)

where the RMi1
Ljm

, RMi1
Lj3−1

and RMi2
Ljm−1

matrices are constant. The two sums account for the
prismatic transformation happening, respectively, before and after the revolute joint; in
each sum, the lLm−1

Lm
expression is defined in (2.3), where dj is a function of a suitable joint

signal. The translation due to the revolute joint instead, is represented by RMi1
Lj3−1l

Lj3−1
Lj3

,

where lLj3−1
Lj3

is defined as in (2.3), with dj3 constant and θj3 function of qk. Equation
(A.7) can be rewritten as a linear expression w.r.t. a suitable vector bi2∗i1∗ and the following
matrix of coefficients

A∗ =
[
I3 qkj1

I3 . . . qkj3
I3 qkj3+1R

M1
M2

. . . qkj2
RM1

M2
Rz(qk)

]
Moreover, recall that if conditions of Proposition 2.3.2 are verified l (Pi1 , Pi2) =
Ā(Pi1 , Pi2)b̄i2i1 , and then

l (Pi1 , Pi2) = Ā(Pi1 , Pi2)b̄i2i1 = A∗(D̄)bi2∗i1∗.

If the input trajectories are in accordance with Definition 2.3.4 we have that rank
(
Ā(Pi1 , Pi2)

)
=

6 while rank
(
A∗(D̄)

)
= 6 +Np, where Np is the number of prismatic joints. With con-

siderations similar to the ones done in the proof of the previous proposition, we obtain
that Np = 0. Then we have proved that conditions of Proposition 2.3.6 are verified if
and only if the triplet (Mi1 ,Mi2 , qk) is connected and qk is revolute.

A.3 Proof of Proposition 2.5.1

We prove Proposition 2.5.1 by inspection. Given that Proposition 2.5.1 assumes the
knowledge of the kinematic structure, in the following we assume that Qq = {q1, . . . , qn},
that is, joints are provided in accordance with the order with which they occur in the
kinematic chain. The relative rotation between the marker attached to the last link and
the camera frame is given by

RcM (q) = RcL1R
L1
Ln

(q)RLnM ,
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where RcL1
and RLnM are constant matrices, expressing, respectively, the orientation of

the base link RF w.r.t. the camera RF and the relative orientation between the last
marker and the RF of the last joint. The expression of the matrix RL1

Ln
(q) instead, is

reported in (A.1), namely, it is factorized by the matrices RLm−1
Lm

, m = 2, . . . , n, defined
as in (2.2). Observe that the elements of RLm−1

Lm
are constant if the joint between links

Lm and Lm−1 is prismatic, or linear functions of cos(qm−1) and sin(qm−1) if the joint is
revolute. Consequently, RcM (q) is a polynomial function in qc and qs, with maximum
degree Nr, where each monomial is subject to

deg(qcb) + deg(qsb) ≤ 1. (A.8)

To prove that the relative translation between the marker attached to the last link
and the camera RF is a polynomial function in the elements of qc, qs and qp we follow
the same reasoning. The expression of lcM is

lcM = lcL1 +RcL1l
Ln
L1

(q) +RcLn(q)lLnM ,

where lcL1 and lLnM are the coordinates of the base-link and the marker attached to the
last link expressed, respectively, w.r.t. the camera RF and Ln- RF. From (A.2), lLnL1

(q)
can be factorized as RL1

Lm−1
(q)lLm−1

Lm
(q), where lLm−1

Lm
is defined as in (2.3). Its elements

are linear functions of cos(qm−1), sin(qm−1) when qm−1 is revolute, or of qm−1 if qm−1

is prismatic. Then, the elements of RL1
Lm−1

(q) are polynomial functions in qcb , qsb , with
b = 1, . . . ,m− 2, subject to (A.8). It turns out that lcM is a polynomial function in the
elements of qc, qs and qp, where each element appears with maximum degree 1, and
each monomial is subject to the constraint in (A.8).

A.4 Proof of Proposition 3.3.1

We prove Proposition 3.3.1 by inspection, analyzing individually all the terms in (3.1), i.e.,
the B (q) q̈ and C (q, q̇) q̇ contributions and the gravity term g (q). Firstly, we provide a
characterization of the elements of B (q) as polynomials in qc, qs and qp. The inertia
matrix is given by

B (q) =
i=n∑
i=1

miJ
T
i Ji + JTωiR

0
i I
i
iR

i
0Jωi ,

where mi and Iii are the i-th link mass and inertia matrix, expressed in a reference frame
(RF) solidal with the i-th link. Ji and Jωi are the linear and angular Jacobians of the i-th
RF, i.e., ċi = Jiq̇ and ωi = Jωi q̇, where ci is the position of the center of mass of the i-th
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link, while ωi is the angular velocity of the i-th RF. To expand the Ji and Jωi expressions,
we introduce some notions regarding the kinematics. Adopting the Denavit-Hartenberg
(DH) convention, the Ri−1

i and li−1
i variables, which denote the i-th RF orientation and

translation with the respect to the previous RF, are

Ri−1
i = Rz (θi)Rx (αi) ,

li−1
i = [0 , 0 , di]T +Rz (θi) [ai , 0 , 0]T ,

where Rx and Rz are the elementary rotation matrices around the x and z axis, while
ai and αi are two constant geometrical parameters, see Siciliano et al. (2009). The
definitions of di and θi depend on the joint interconnecting the i-th link with the previous
link. When the joint is revolute, di is constant and θi = θ0i + qi, and the only terms
that depend on q are cos (qi) and sin (qi) contained in Ri−1

i . Referring to the polynomial
notation previously introduced, we can write that the elements of Ri−1

i are functions in
P(1)

(
cos (qi)(1) , sin (qi)(1)

)
. In case the joint is prismatic, θi is constant, and di = d0i +qi.

Consequently the only q dependent terms are in li−1
i . In particular the elements of li−1

i

belong to P(1)
(
qi(1)

)
.

The Jωi matrix relates q̇ with the angular velocity of the i-th link. Adopting the DH
convention, ωi−1

i = λi [0 , 0 , q̇i]T , with λi = 1 if the joint is revolute, and λi = 0 if it is
prismatic. Then, summing all the angular velocities projected in the base frame through
the R0

j =
∏b=0
b=j R

b−1
b matrices, and remarking that ωi =

∑j=i
j=1 λjR

0
j−1ω

j−1
j , we obtain

ωi =

R0
0


0
0
λ1

 , . . . , R0
i−1


0
0
λi

 , 0 (3, n− i)

 q̇,
where 0 (3, n− i) is a 3× (n− i) matrix containing only zero elements. The last equation
implies

Jωi =

R0
0


0
0
λ1

 , . . . , R0
i−1


0
0
λi

 , 0 (3, n− i)

 .
Exploiting the properties of the rotation matrices, we obtain

Ri0Jωi =

Ri0


0
0
λ1

 , . . . , Rii−1


0
0
λ1

 , 0 (3, n− i)

 q̇.
Let {Ir ≤ i} be the set of revolute joint indexes lower or equal than i, and let qc ({Ir ≤ i})
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be the corresponding subset. Recalling that the elements of Ri−1
i are functions in

P(1)
(
cos (qi)(1) , sin (qi)(1)

)
, with maximal degree one, and that Rkj =

∏b=k
b=j R

b−1
b , with

j > k, it follows that the JTωiR
0
i I
i
iR

i
0Jωi elements belong to

P(2|{Ir≤i}|)
(
qc ({Ir ≤ i})(2) , qs ({Ir ≤ i})(2)

)
,

where in each monomial the following constraint holds

deg (qcb) + deg (qsb) ≤ 2 . (A.9)

To derive a similar characterization of the Ji elements, we analyze the ci expression.
The position of the i-th center of mass in the base frame is ci =

∑j=i−1
j=1 R0

j−1l
j−1
j +R0

i c
i
i.

Then the ci elements are functions in

P(i)
(
qc ({Ir ≤ i})(1) , qs ({Ir ≤ i})(1) , qp ({Ip ≤ i})(1)

)
,

and in each monomial the following inequality holds

deg
(
qcj

)
+ deg

(
qsj

)
≤ 1. (A.10)

Since ċi = Jiq̇, and since the derivative of cos (qj), sin (qj) and qj does not increase the
degree of these terms when inequality (A.10) holds, it follows that the Ji elements belong
to the same functional space of ci. Consequently, the elements of JTi Ji are functions in
P(2i)

(
qc ({Ir ≤ i})(2) , qs ({Ir ≤ i})(2) , qp ({Ip ≤ i})(2)

)
; as before, in each monomial the

qcj and qsj degrees are subject to inequality (A.9).

Given the characterization of JTi Ji and JTωiR
0
i I
i
iR

i
0Jωi , we obtain that the B (q)

elements are functions in P(2n)
(
qc(2)

, qs(2)
, qp(2)

)
, where in each monomial the qcj

and qsj degrees are subject to inequality (A.9). Then the B (q) q̈ are functions in
P(2n+1)

(
qc(2)

, qs(2)
, qp(2)

, q̈(1)

)
.

As reported in Siciliano et al. (2009), the i-th element of the C (q, q̇) q̇ product is
equal to

j=n∑
j=1

cij q̇j =
j=n∑
j=1

k=n∑
k=1

(
∂bij
∂qk
− 1

2
∂bik
∂qi

)
q̇kq̇j .

Since the B (q) elements belong to P(2n)
(
qc(2)

, qs(2)
, qp(2)

)
and (A.9) holds true, also the

bij partial derivatives belong to P(2n)
(
qc(2)

, qs(2)
, qp(2)

)
, with (A.9) satisfied. Indeed, for

each monomial in bij , the derivation respect to qp decreases the degree by one, while the
derivation respect to qc or qs does not alter the monomial degree. Then we obtain that



A.4 Proof of Proposition 3.3.1 127

the elements of C (q, q̇) q̇ are functions in P(2n+1)
(
qc(2)

, qs(2)
, qp(2)

, q̇v(1)

)
.

Regarding g (q), we observe that the i-th element is given by −∂U/∂qi, where by
definition the potential energy U =

∑j=n
j=1 g

T
0 cj , with g0 denoting the vector of the

gravitational acceleration. Then, the elements of g (q) are functions in the same space of
the Jn elements.

To conclude the proof, we just need to sum all the contributions and to note that,
for each joint, the torque is a function in P(2n+1)

(
qc(2)

, qs(2)
, qp(2)

, q̇v(1)
, q̈(1)

)
, with each

monomial satisfying (A.9).
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