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Robotics systems are becoming always more and more autonomous and reconfigurable, 
as well as used in “out of the cage” applications:
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MODULAR ROBOTICS
(M-TRAN 3, AIST JAPAN)

COLLABORATIVE ROBOTICS SERVICE ROBOTS
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CHALLENGING ISSUES:
● Decreasing manufacturing and set-up costs
● Limited prior knowledge about the robot model:

● Kinematic (e.g. Modular Robotics)
● Dynamics (e.g. low-quality components)

● Unknown  external environment:
● Workspace, tools, and object to be manipulated
● Human-robot interaction (e.g. Collaborative Robotics)

● Need of autonomous algorithms for control (e.g. set-up costs reduction)

POSITIVE ASPECT:
● Large availability of data (digital controller)
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● Decreasing manufacturing and set-up costs
● Limited prior knowledge about the robot model:

● Kinematic (e.g. Modular Robotics)
● Dynamics (e.g. low-quality components)

● Unknown  external environment:
● Workspace, tools, and object to be manipulated
● Human-robot interaction (e.g. Collaborative Robotics)

● Need of autonomous algorithms for control (e.g. set-up costs reduction)

POSITIVE ASPECT:
● Large availability of data (digital controller)

Can we face these challenges developing data-driven strategies?
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● Motivation

● Thesis overview:
● Autonomous learning of the robot Kinematics
● Inverse dynamics identification: proprioceptive contact detection
● Reinforcement Learning: MC-PILCO

● Geometrically Inspired Polynomial (GIP) kernel
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DATA

MODEL:
● Synthesizes information

coming from data
● Improves the 

data-efficiency

APPLICATION

MODEL APPLICATION

Kinematics Kinematic controller

Inverse Dynamics Proprioceptive contact detection

Forward Dynamics
Controller based on
Reinforcement Learning (RL)

Problems considered
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NO PRIOR INFORMATION 
ABOUT THE KINEMATICS

SETUP:
● 2D camera
● Fiducial markers

(one for each link)
MEASURES
● Joint values
● Marker poses

REFERENCES:
● 2019 18th European Control Conference (ECC), Naples, Italy, 2019, pp. 1586-1591.

A. Dalla Libera, M. Terzi, A. Rossi, G. A. Susto, R. Carli, Robot kinematic structure classification from time series of visual data
● IEEE T-RO (submitted)

A. Dalla Libera, N. Castama, S. Ghidoni, R. Carli,  Autonomous learning of the robot kinematics structure
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SETUP:
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● Fiducial markers
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KINEMATIC STRUCTURE CLASSIFICATION
Identification of:
● Joints order
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Identified using
Gaussian process 
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REFERENCE:
● 2019 American Control Conference (ACC), Philadelphia, PA, USA, 2019, pp. 19-24. 

A. Dalla Libera, E. Tosello, G. Pillonetto, S. Ghidoni, R. Carli, Proprioceptive Robot Collision Detection through Gaussian Process Regression

ROBOT+CONTROLLER

TASK: detect contacts using only proprioceptive measures (torques and joint coordinates)



  

Proprioceptive contact detection

Dalla Libera Alberto Learning Algorithms for Robotics Systems

ROBOT+CONTROLLER

TASK: detect contacts using only proprioceptive measures (torques and joint coordinates)

When considering external forces...

REFERENCE:
● 2019 American Control Conference (ACC), Philadelphia, PA, USA, 2019, pp. 19-24. 

A. Dalla Libera, E. Tosello, G. Pillonetto, S. Ghidoni, R. Carli, Proprioceptive Robot Collision Detection through Gaussian Process Regression
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ROBOT+CONTROLLER

TASK: detect contacts using only proprioceptive measures (torques and joint coordinates)

DIRECT ESTIMATION ALGORITHM:

● Derive an inverse dynamics estimator 
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ROBOT+CONTROLLER

TASK: detect contacts using only proprioceptive measures (torques and joint coordinates)

DIRECT ESTIMATION ALGORITHM:

● Derive an inverse dynamics estimator 

● Characterize the estimator accuracy defining 
a threshold (e.g. max error in a test set)

REFERENCE:
● 2019 American Control Conference (ACC), Philadelphia, PA, USA, 2019, pp. 19-24. 

A. Dalla Libera, E. Tosello, G. Pillonetto, S. Ghidoni, R. Carli, Proprioceptive Robot Collision Detection through Gaussian Process Regression
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ROBOT+CONTROLLER

TASK: detect contacts using only proprioceptive measures (torques and joint coordinates)

DIRECT ESTIMATION ALGORITHM:

● Derive an inverse dynamics estimator 

● Characterize the estimator accuracy defining 
a threshold (e.g. max error in a test set)

● A collision occurred if  the estimation error 
is greater than the threshold

REFERENCE:
● 2019 American Control Conference (ACC), Philadelphia, PA, USA, 2019, pp. 19-24. 

A. Dalla Libera, E. Tosello, G. Pillonetto, S. Ghidoni, R. Carli, Proprioceptive Robot Collision Detection through Gaussian Process Regression
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OBJECTIVE: learning to perform a task based on data acquired interacting with the system
MC-PILCO: Monte Carlo Probabilistic inference for learning Control
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THE GOAL IS MINIMIZING 
THE EXPECTED VALUE OF 

THE CUMULATIVE COST



  

MC-PILCO

Dalla Libera Alberto

OBJECTIVE: learning to perform a task based on data acquired interacting with the system
MC-PILCO: Monte Carlo Probabilistic inference for learning Control

Learning Algorithms for Robotics Systems

TEST ON THE REAL SYSTEM

THE GOAL IS MINIMIZING 
THE EXPECTED VALUE OF 

THE CUMULATIVE COST



  

MC-PILCO

Dalla Libera Alberto

OBJECTIVE: learning to perform a task based on data acquired interacting with the system
MC-PILCO: Monte Carlo Probabilistic inference for learning Control

Learning Algorithms for Robotics Systems

MODEL LEARNING: FORWARD DYNAMICS IDENTIFICATION
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MC-PILCO
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OBJECTIVE: learning to perform a task based on data acquired interacting with the system
MC-PILCO: Monte Carlo Probabilistic inference for learning Control
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MODEL LEARNING: FORWARD DYNAMICS IDENTIFICATION

POLICY LEARNING

TEST ON THE REAL SYSTEM

THE GOAL IS MINIMIZING 
THE EXPECTED VALUE OF 

THE CUMULATIVE COST



  

Outline GIP kernel
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Geometrically Inspired Polynomial (GIP) kernel:
● Background on inverse dynamics identification

● Parametric approach
● Non-parametric approach (Gaussian process regression)

● Derivation of the GIP kernel
● Numerical experiments

Learning Algorithms for Robotics Systems



  

GIP kernel: background

Dalla Libera Alberto

INVERSE DYNAMICS: maps that relates joint trajectories and generalized torques
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INVERSE
DYNAMICS
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Under rigid body assumptions:
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Under rigid body assumptions:

Linear w.r.t. the dynamics parameters

Dependent on the kinematics parameters



  

GIP kernel: background
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INVERSE DYNAMICS: maps that relates joint trajectories and generalized torques

Learning Algorithms for Robotics Systems

Under rigid body assumptions:

PARAMETRIC IDENTIFICATION:

Training dataset

Assuming the
kinematics

parameters known

Linear w.r.t. the dynamics parameters

Dependent on the kinematics parameters
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Non-parametric approach: GAUSSIAN PROCESS REGRESSION

● Deriving physical models requires effort
● Kinematics parameters could be unknown or partially known
● Uncertainty in the kinematics parameters
● Unmodeled behaviors like frictions, elasticity, and backlash
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independent (given the 
inputs)
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Non-parametric approach: GAUSSIAN PROCESS REGRESSION

● Deriving physical models requires effort
● Kinematics parameters could be unknown or partially known
● Uncertainty in the kinematics parameters
● Unmodeled behaviors like frictions, elasticity, and backlash

DATA:

MODEL:

PRIOR:

● Joint torques are assumed 
independent (given the 
inputs)

● The kernel function defines 
the prior covariance:

● The posterior can be 
computed in closed form

POSTERIOR:
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It is a common considering the mean null, and focusing on the the kernel function:
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MODEL BASED (MB)
● Data-efficiency
● Generalization 

● Requires a model
● Model bias
● Unmodeled behaviors
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needed and no bias 

● Low data-efficiency
● Low generalization
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SEMI-PARAMETRIC (SP) Merges the strengths
of the two approaches:
● MB => generalization
● NP => accuracy

● Requires a model
● NP compensation could

be local
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It is a common considering the mean null, and focusing on the the kernel function:
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MODEL BASED (MB)
● Data-efficiency
● Generalization 

● Requires a model
● Model bias
● Unmodeled behaviors

NON-PARAMETRIC (NP)
● High model capacity
● Good asymptotic

performance 
● No prior information

needed and no bias 

● Low data-efficiency
● Low generalization

SEMI-PARAMETRIC (SP) Merges the strengths
of the two approaches:
● MB => generalization
● NP => accuracy

● Requires a model
● NP compensation could

be local

We aim at deriving a kernel with the following properties:
● No need of strong prior information
● Data-efficiency
● Good generalization
● Good asymptotic performance
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POLYNOMIAL NOTATION
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POLYNOMIAL NOTATION

INPUT SPACE TRANSFORMATION

PROPOSITION: Characterization of the inverse dynamics as a polynomial function

REFERENCE: 
● IEEE Robotics and Automation Letters. PP. 1-1. 10.1109/LRA.2019.2945240.

A. Dalla Libera, R. Carli. (2019). A Data-Efficient Geometrically Inspired Polynomial Kernel for Robot Inverse Dynamics. 



  

KERNEL PROPERTIES (RKHS interpretation)
● The RKHS of the inhomogeneous Polynomia kernel is composed of all the monomials up 

to the polynomial degree
● The product of kernels is still a kernel, and its RKHS is given by the convolution of the 

RKHS of the two kernels

GIP kernel: Derivation
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REFERENCE: 
● IEEE Robotics and Automation Letters. PP. 1-1. 10.1109/LRA.2019.2945240.

A. Dalla Libera, R. Carli. (2019). A Data-Efficient Geometrically Inspired Polynomial Kernel for Robot Inverse Dynamics. 
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GIP KERNEL

REFERENCE: 
● IEEE Robotics and Automation Letters. PP. 1-1. 10.1109/LRA.2019.2945240.

A. Dalla Libera, R. Carli. (2019). A Data-Efficient Geometrically Inspired Polynomial Kernel for Robot Inverse Dynamics. 



  

KERNEL PROPERTIES (RKHS interpretation)
● The RKHS of the inhomogeneous Polynomia kernel is composed of all the monomials up 

to the polynomial degree
● The product of kernels is still a kernel, and its RKHS is given by the convolution of the 

RKHS of the two kernels

GIP kernel: Derivation

Dalla Libera Alberto Learning Algorithms for Robotics Systems

REFERENCE: 
● IEEE Robotics and Automation Letters. PP. 1-1. 10.1109/LRA.2019.2945240.

A. Dalla Libera, R. Carli. (2019). A Data-Efficient Geometrically Inspired Polynomial Kernel for Robot Inverse Dynamics. 

GIP KERNEL

Encodes all the terms that depends on 
cos and sin satisfying:



  

GIP kernel: Numerical results
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MONTE CARLO EXPERIMENT:
● Setup: simulated SCARA robot
● 20 simulations:

● Training and test dataset: 
2000 samples (20 sec)

● Joint trajectories:
sum of 200 random sin

● Measure of performance: 
Normalized Mean Squared 
Error

● Estimators compared:
● Model-free:

● GIP kernel
● RBF kernel
● NN: 2 layer neural network 

(400 sigmoids per layer)
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MONTE CARLO EXPERIMENT:
● Setup: simulated SCARA robot
● 20 simulations:

● Training and test dataset: 
2000 samples (20 sec)

● Joint trajectories:
sum of 200 random sin

● Measure of performance: 
Normalized Mean Squared 
Error

● Estimators compared:
● Model-free:

● GIP kernel
● RBF kernel
● NN: 2 layer neural network 

(400 sigmoids per layer)
● Model-Based

(with perturbation of the 
geometrical parameters):
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GIP kernel: Numerical results
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DATE-EFFICIENCY TEST:
● Setup: simulated SCARA robot
● Measure of performance: 

Global Mean Squared Error
● Training and test dataset: 4000 

samples (40 sec)
● Estimators compared:

● Model-free:
● GIP kernel
● RBF kernel
● NN: 2 layer neural network 

(400 sigmoids per layer)
● Model-Based

(without perturbation of the 
geometrical parameters):
● MB kernel



  

GIP kernel: Numerical results
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TEST WITH REAL DATA:
● Setup: UR10 robot
● Measure of performance: 

Normalized Mean Squared 
Error

● Training dataset: 40000 
(random points)

● Test dataset: 25000 (random 
points+ circle)

● Estimators compared:
● Model-free:

● GIP kernel
● RBF kernel
● NN: 2 layer neural network 

(400 sigmoids per layer)
● Model-Based:

● MB kernel
● SP kernel



  

Conclusion
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● We have introduced different data-driven strategies which do not requires high prior 
knowledge about the robot model

● The problem considered are:
● Kinematics (modeling and control)
● Dynamics (proprioceptive contact detection)
● RL-based control

● We Introduced the GIP kernel, a data-efficient kernel for inverse dynamics identification:
● No need of strong prior information
● Data-efficiency
● Good generalization
● Good asymptotic performance
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THANKS FOR
THE ATTENTION

Learning Algorithms for Robotics Systems
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