Learning Algorithms for Robotics Systems

Ph.D. candidate: Alberto Dalla Libera Advisor: Ruggero Carli Co-Advisor: Gianluigi Pillonetto

Robotics systems are becoming always more and more **autonomous** and **reconfigurable**, as well as used in **"out of the cage" applications**:

MODULAR ROBOTICS (M-TRAN 3, AIST JAPAN)

COLLABORATIVE ROBOTICS

SERVICE ROBOTS

Motivation

CHALLENGING ISSUES:

- Decreasing manufacturing and set-up costs
- Limited prior knowledge about the robot model:
 - Kinematic (e.g. Modular Robotics)
 - Dynamics (e.g. low-quality components)
- Unknown external environment:
 - Workspace, tools, and object to be manipulated
 - Human-robot interaction (e.g. Collaborative Robotics)
- Need of autonomous algorithms for control (e.g. set-up costs reduction)

POSITIVE ASPECT:

• Large availability of data (digital controller)

Motivation

CHALLENGING ISSUES:

- Decreasing manufacturing and set-up costs
- Limited prior knowledge about the robot model:
 - Kinematic (e.g. Modular Robotics)
 - **Dynamics** (e.g. low-quality components)
- Unknown external environment:
 - Workspace, tools, and object to be manipulated
 - Human-robot interaction (e.g. Collaborative Robotics)
- Need of autonomous algorithms for control (e.g. set-up costs reduction)

POSITIVE ASPECT:

• Large availability of data (digital controller)

Can we face these challenges developing data-driven strategies?

- Motivation
- Thesis overview:
 - Autonomous learning of the robot Kinematics
 - Inverse dynamics identification: proprioceptive contact detection
 - Reinforcement Learning: MC-PILCO
- Geometrically Inspired Polynomial (GIP) kernel

Thesis overview

Thesis overview

Problems considered

MODEL	APPLICATION
Kinematics	Kinematic controller
Inverse Dynamics	Proprioceptive contact detection
Forward Dynamics	Controller based on Reinforcement Learning (RL)

NO PRIOR INFORMATION ABOUT THE KINEMATICS

SETUP:

- 2D camera
- Fiducial markers (one for each link)
 MEASURES
- Joint values
- Marker poses

REFERENCES:

- 2019 18th European Control Conference (ECC), Naples, Italy, 2019, pp. 1586-1591.
 A Data Libera M Tarzi A Data Custo D Carli Data Liberatio structure classification.
- A. Dalla Libera, M. Terzi, A. Rossi, G. A. Susto, R. Carli, Robot kinematic structure classification from time series of visual data
 IEEE T-RO (submitted)
 - A. Dalla Libera, N. Castama, S. Ghidoni, R. Carli, Autonomous learning of the robot kinematics structure

REFERENCES:

- 2019 18th European Control Conference (ECC), Naples, Italy, 2019, pp. 1586-1591.
 A. Dalla Libera, M. Terzi, A. Rossi, G. A. Susto, R. Carli, Robot kinematic structure classification from time series of visual data
- IEEE T-RO (submitted)
 A. Dalla Libera, N. Castama, S. Ghidoni, R. Carli, Autonomous learning of the robot kinematics structure

REFERENCES:

- 2019 18th European Control Conference (ECC), Naples, Italy, 2019, pp. 1586-1591.
 A. Dalla Libera, M. Terzi, A. Rossi, G. A. Susto, R. Carli, Robot kinematic structure classification from time series of visual data
- IEEE T-RO (submitted)
 A. Dalla Libera, N. Castama, S. Ghidoni, R. Carli, Autonomous learning of the robot kinematics structure

Dalla Libera Alberto

REFERENCES:

0.

- 2019 18th European Control Conference (ECC), Naples, Italy, 2019, pp. 1586-1591.
 A. Dalla Libera, M. Terzi, A. Rossi, G. A. Susto, R. Carli, Robot kinematic structure classification from time series of visual data
- IEEE T-RO (submitted)
 A. Dalla Libera, N. Castama, S. Ghidoni, R. Carli, Autonomous learning of the robot kinematics structure

Dalla Libera Alberto

REFERENCES:

- 2019 18th European Control Conference (ECC), Naples, Italy, 2019, pp. 1586-1591.
 A. Dalla Libera, M. Terzi, A. Rossi, G. A. Susto, R. Carli, Robot kinematic structure classification from time series of visual data
- IEEE T-RO (submitted)
 A. Dalla Libera, N. Castama, S. Ghidoni, R. Carli, Autonomous learning of the robot kinematics structure

Dalla Libera Alberto

TASK: detect contacts using only proprioceptive measures (torques and joint coordinates)

REFERENCE:

2019 American Control Conference (ACC), Philadelphia, PA, USA, 2019, pp. 19-24.
 A. Dalla Libera, E. Tosello, G. Pillonetto, S. Ghidoni, R. Carli, Proprioceptive Robot Collision Detection through Gaussian Process Regression

Dalla Libera Alberto

TASK: detect contacts using only proprioceptive measures (torques and joint coordinates)

REFERENCE:

2019 American Control Conference (ACC), Philadelphia, PA, USA, 2019, pp. 19-24. A. Dalla Libera, E. Tosello, G. Pillonetto, S. Ghidoni, R. Carli, Proprioceptive Robot Collision Detection through Gaussian Process Regression

Dalla Libera Alberto

TASK: detect contacts using only proprioceptive measures (torques and joint coordinates)

REFERENCE:

2019 American Control Conference (ACC), Philadelphia, PA, USA, 2019, pp. 19-24. A. Dalla Libera, E. Tosello, G. Pillonetto, S. Ghidoni, R. Carli, Proprioceptive Robot Collision Detection through Gaussian Process Regression

Dalla Libera Alberto

TASK: detect contacts using only proprioceptive measures (torques and joint coordinates)

REFERENCE:

2019 American Control Conference (ACC), Philadelphia, PA, USA, 2019, pp. 19-24.
 A. Dalla Libera, E. Tosello, G. Pillonetto, S. Ghidoni, R. Carli, Proprioceptive Robot Collision Detection through Gaussian Process Regression

TASK: detect contacts using only proprioceptive measures (torques and joint coordinates)

REFERENCE:

2019 American Control Conference (ACC), Philadelphia, PA, USA, 2019, pp. 19-24.
 A. Dalla Libera, E. Tosello, G. Pillonetto, S. Ghidoni, R. Carli, Proprioceptive Robot Collision Detection through Gaussian Process Regression

Dalla Libera Alberto

OBJECTIVE: learning to perform a task based on data acquired interacting with the system MC-PILCO: Monte Carlo Probabilistic inference for learning Control

 $\boldsymbol{x}(t) = \text{System state at time } t$ $\boldsymbol{u}(t) = \text{Input vector at time } t$ $\pi(\boldsymbol{x}(t), \boldsymbol{\theta}) = \boldsymbol{u}(t) = \text{Policy } (\boldsymbol{\theta} = \text{Policy parameters})$ $c(\boldsymbol{x}(t)) \ge 0 = \text{Local cost: encodes the task}$ $C(\boldsymbol{x}(0), \pi) = \sum_{t=0}^{T} c(\boldsymbol{x}(t)) = \text{Cumulative cost}$

THE GOAL IS MINIMIZING THE EXPECTED VALUE OF THE CUMULATIVE COST

OBJECTIVE: learning to perform a task based on data acquired interacting with the system MC-PILCO: Monte Carlo Probabilistic inference for learning Control

$$\boldsymbol{x}(t) = \text{System state at time } t$$
$$\boldsymbol{u}(t) = \text{Input vector at time } t$$
$$\pi(\boldsymbol{x}(t), \boldsymbol{\theta}) = \boldsymbol{u}(t) = \text{Policy } (\boldsymbol{\theta} = \text{Policy parameters})$$
$$c(\boldsymbol{x}(t)) \ge 0 = \text{Local cost: encodes the task}$$
$$C(\boldsymbol{x}(0), \pi) = \sum_{t=0}^{T} c(\boldsymbol{x}(t)) = \text{Cumulative cost}$$

THE GOAL IS MINIMIZING THE EXPECTED VALUE OF THE CUMULATIVE COST

OBJECTIVE: learning to perform a task based on data acquired interacting with the system MC-PILCO: Monte Carlo Probabilistic inference for learning Control

$$\boldsymbol{x}(t) = \text{System state at time } t$$
$$\boldsymbol{u}(t) = \text{Input vector at time } t$$
$$\pi(\boldsymbol{x}(t), \boldsymbol{\theta}) = \boldsymbol{u}(t) = \text{Policy (} \boldsymbol{\theta} = \text{Policy parameters)}$$
$$c(\boldsymbol{x}(t)) \geq 0 = \text{Local cost: encodes the task}$$
$$C(\boldsymbol{x}(0), \pi) = \sum_{t=0}^{T} c(\boldsymbol{x}(t)) = \text{Cumulative cost}$$
$$\textbf{MODEL LEAR}$$
$$\textbf{Prior model:}$$
$$\boldsymbol{x}(t) = \left[\boldsymbol{q}^{T}(t) \, \boldsymbol{\dot{q}}^{T}(t)\right]$$
$$\mathcal{D} = \left\{ \langle \boldsymbol{x}(t), \boldsymbol{u}(t), \boldsymbol{x}(t+1) \rangle_{t=0}^{T} \right\}$$

THE GOAL IS MINIMIZING THE EXPECTED VALUE OF THE CUMULATIVE COST

NING: FORWARD DYNAMICS IDENTIFICATION

$$\boldsymbol{x}(t+1) = f\left(\boldsymbol{x}\left(t\right), \boldsymbol{u}\left(t\right)\right) + \boldsymbol{e}(t)$$

is a Gaussian process

Posterior:

$$\hat{\boldsymbol{x}}(t+1) \sim N\left(\hat{f}\left(\boldsymbol{x}\left(t\right), \boldsymbol{u}\left(t\right), \mathcal{D}\right), Var\left(\hat{f}\left(\boldsymbol{x}\left(t\right), \boldsymbol{u}\left(t\right)\right), \mathcal{D}\right)\right)$$

OBJECTIVE: learning to perform a task based on data acquired interacting with the system MC-PILCO: Monte Carlo Probabilistic inference for learning Control

$$\mathbf{x}(t) = \text{System state at time } t$$

$$\mathbf{u}(t) = \text{Input vector at time } t$$

$$\pi(\mathbf{x}(t), \theta) = \mathbf{u}(t) = \text{Policy } (\theta = \text{Policy parameters})$$

$$c(\mathbf{x}(t)) \ge 0 = \text{Local cost: encodes the task}$$

$$THE GOAL IS MINIMIZING THE EXPECTED VALUE OF THE CUMULATIVE COST$$

$$THE CUMULATIVE COST$$

$$C(\mathbf{x}(0), \pi) = \sum_{t=0}^{T} c(\mathbf{x}(t)) = \text{Cumulative cost}$$

$$\mathbf{x}(t) = \left[\mathbf{q}^{T}(t) \, \dot{\mathbf{q}}^{T}(t)\right]$$

$$\mathcal{D} = \left\{\langle \mathbf{x}(t), \mathbf{u}(t), \mathbf{x}(t+1) \rangle_{t=0}^{T} \right\}$$

$$\mathbf{x}(t) = \left[\mathbf{q}^{T}(t) \, \dot{\mathbf{q}}^{T}(t)\right]$$

$$\mathcal{D} = \left\{\langle \mathbf{x}(t), \mathbf{u}(t), \mathbf{x}(t+1) \rangle_{t=0}^{T} \right\}$$

$$\mathbf{x}(t+1) = f(\mathbf{x}(t), \mathbf{u}(t)) + \mathbf{e}(t)$$

$$f(\mathbf{x}(t), \mathbf{u}(t)) + \mathbf{e}(t)$$

$$f(\mathbf{x}(t), \mathbf{u}(t)) = \text{Cumulative cost}$$

$$\mathbf{x}(t+1) = f(\mathbf{x}(t), \mathbf{u}(t)) + \mathbf{e}(t)$$

$$f(\mathbf{x}(t), \mathbf{u}(t)) = \text{Cumulative cost}$$

$$\mathbf{x}(t+1) \sim N\left(\hat{f}(\mathbf{x}(t), \mathbf{u}(t), \mathcal{D}), Var\left(\hat{f}(\mathbf{x}(t), \mathbf{u}(t)), \mathcal{D}\right)\right)$$

$$\mathbf{x}(t+1) \sim N\left(\hat{f}(\mathbf{x}(t), \mathbf{u}(t), \mathcal{D}), Var\left(\hat{f}(\mathbf{x}(t), \mathbf{u}(t)), \mathcal{D}\right)\right)$$

Dalla Libera Alberto

Geometrically Inspired Polynomial (GIP) kernel:

- Background on inverse dynamics identification
 - Parametric approach
 - Non-parametric approach (Gaussian process regression)
- Derivation of the GIP kernel
- Numerical experiments

INVERSE DYNAMICS: maps that relates joint trajectories and generalized torques

INVERSE DYNAMICS: maps that relates joint trajectories and generalized torques

n = Degrees of freedom q = Joint coordinates $\tau = \text{Generalized torques}$ $w_d = \text{Dynamics parameters}$ $w_k = \text{Kinematics parameters}$ $\Phi(q, \dot{q}, \ddot{q}) = \begin{bmatrix} \phi^{(1)}(q, \dot{q}, \ddot{q}, w_k) \\ \vdots \\ \phi^{(n)}(q, \dot{q}, \ddot{q}, w_k) \end{bmatrix}$

INVERSE DYNAMICS: maps that relates joint trajectories and generalized torques

INVERSE DYNAMICS: maps that relates joint trajectories and generalized torques

PARAMETRIC IDENTIFICATION:

Dalla Libera Alberto

- Deriving physical models requires effort
- Kinematics parameters could be unknown or partially known
- Uncertainty in the kinematics parameters
- Unmodeled behaviors like frictions, elasticity, and backlash

Non-parametric approach: GAUSSIAN PROCESS REGRESSION

- Deriving physical models requires effort
- Kinematics parameters could be unknown or partially known
- Uncertainty in the kinematics parameters
- Unmodeled behaviors like frictions, elasticity, and backlash

Non-parametric approach: GAUSSIAN PROCESS REGRESSION

TRAINING TEST
DATA:
$$X = \{x_1, \dots, x_T\}$$
 $X_* = \{x_{1_*}, \dots, x_{T_*}\}$
 $\boldsymbol{y}^{(k)} = \begin{bmatrix} y_1^{(k)}, \dots, y_N^{(k)} \end{bmatrix}^T$ $\boldsymbol{y}^{(k)}_* = \begin{bmatrix} y_{1_*}^{(k)}, \dots, y_{N_*}^{(k)} \end{bmatrix}^T$

 Joint torques are assumed independent (given the inputs)

- Deriving physical models requires effort
- Kinematics parameters could be unknown or partially known
- Uncertainty in the kinematics parameters
- Unmodeled behaviors like frictions, elasticity, and backlash

Non-parametric approach: GAUSSIAN PROCESS REGRESSION

TRAINING
TRAINING

$$X = \{\boldsymbol{x}_1, \dots, \boldsymbol{x}_T\}$$

$$\boldsymbol{x}_* = \{\boldsymbol{x}_{1_*}, \dots, \boldsymbol{x}_{T_*}\}$$

$$\boldsymbol{y}^{(k)} = \begin{bmatrix} \boldsymbol{y}_1^{(k)}, \dots, \boldsymbol{y}_N^{(k)} \end{bmatrix}^T \quad \boldsymbol{y}_*^{(k)} = \begin{bmatrix} \boldsymbol{y}_{1_*}^{(k)}, \dots, \boldsymbol{y}_{N_*}^{(k)} \end{bmatrix}^T$$

$$MODEL: \begin{bmatrix} \boldsymbol{y}_{*}^{(k)} \\ \boldsymbol{y}_{*}^{(k)} \end{bmatrix} = \begin{bmatrix} \boldsymbol{f}(X) \\ \boldsymbol{f}(X_*) \end{bmatrix} + \begin{bmatrix} \boldsymbol{e}(X) \\ \boldsymbol{e}(X_*) \end{bmatrix} \text{ with } \boldsymbol{e}(\cdot) \sim N\left(0, \sigma_e^2 I\right)$$

 Joint torques are assumed independent (given the inputs)

- Deriving physical models requires effort
- · Kinematics parameters could be unknown or partially known
- Uncertainty in the kinematics parameters
- Unmodeled behaviors like frictions, elasticity, and backlash

Non-parametric approach: GAUSSIAN PROCESS REGRESSION

TRAINING TEST
DATA:
$$X = \{\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{T}\} \qquad X_{*} = \{\boldsymbol{x}_{1_{*}}, \dots, \boldsymbol{x}_{T_{*}}\}$$

$$\boldsymbol{y}^{(k)} = \begin{bmatrix} \boldsymbol{y}_{1}^{(k)}, \dots, \boldsymbol{y}_{N}^{(k)} \end{bmatrix}^{T} \quad \boldsymbol{y}_{*}^{(k)} = \begin{bmatrix} \boldsymbol{y}_{1_{*}}^{(k)}, \dots, \boldsymbol{y}_{N_{*}}^{(k)} \end{bmatrix}^{T}$$
MODEL:
$$\begin{bmatrix} \boldsymbol{y}_{*}^{(k)} \\ \boldsymbol{y}_{*}^{(k)} \end{bmatrix} = \begin{bmatrix} \boldsymbol{f}(X) \\ \boldsymbol{f}(X_{*}) \end{bmatrix} + \begin{bmatrix} \boldsymbol{e}(X) \\ \boldsymbol{e}(X_{*}) \end{bmatrix} \text{ with } \boldsymbol{e}(\cdot) \sim N\left(0, \sigma_{e}^{2}I\right)$$
PRIOR:
$$\begin{bmatrix} \boldsymbol{f}(X) \\ \boldsymbol{f}(X_{*}) \end{bmatrix} \sim N\left(\begin{bmatrix} \boldsymbol{m}_{f}(X) \\ \boldsymbol{m}_{f}(X_{*}) \end{bmatrix}, \begin{bmatrix} K_{f}(X, X) & K_{f}(X, X_{*}) \\ K_{f}(X_{*}, X) & K_{f}(X_{*}, X_{*}) \end{bmatrix}\right)$$

- Joint torques are assumed independent (given the inputs)
- The kernel function defines the prior covariance: $K_f(X,X) = E[X,X] \in \mathbb{R}^{T \times T}$ $E\left[y_i^{(k)}, y_j^{(k)}\right] = k(\boldsymbol{x}_i, \boldsymbol{x}_j)$

- Deriving physical models requires effort
- Kinematics parameters could be unknown or partially known
- Uncertainty in the kinematics parameters
- Unmodeled behaviors like frictions, elasticity, and backlash

Non-parametric approach: GAUSSIAN PROCESS REGRESSION

TRAINING TEST
DATA:
$$X = \{x_1, \dots, x_T\}$$
 $X_* = \{x_{1*}, \dots, x_{T*}\}$
 $\boldsymbol{y}^{(k)} = \begin{bmatrix} y_1^{(k)}, \dots, y_N^{(k)} \end{bmatrix}^T \boldsymbol{y}_*^{(k)} = \begin{bmatrix} y_{1*}^{(k)}, \dots, y_{N*}^{(k)} \end{bmatrix}^T$
MODEL: $\begin{bmatrix} \boldsymbol{y}_*^{(k)} \\ \boldsymbol{y}_*^{(k)} \end{bmatrix} = \begin{bmatrix} \boldsymbol{f}(X) \\ \boldsymbol{f}(X_*) \end{bmatrix} + \begin{bmatrix} \boldsymbol{e}(X) \\ \boldsymbol{e}(X_*) \end{bmatrix}$ with $\boldsymbol{e}(\cdot) \sim N\left(0, \sigma_{\boldsymbol{e}}^2 I\right)$
PRIOR: $\begin{bmatrix} \boldsymbol{f}(X) \\ \boldsymbol{f}(X_*) \end{bmatrix} \sim N\left(\begin{bmatrix} \boldsymbol{m}_{\boldsymbol{f}}(X) \\ \boldsymbol{m}_{\boldsymbol{f}}(X_*) \end{bmatrix}, \begin{bmatrix} K_f(X, X) & K_f(X, X_*) \\ K_f(X_*, X) & K_f(X_*, X_*) \end{bmatrix}\right)$
POSTERIOR: $\hat{\boldsymbol{f}}(X_*) = K_f(X_*, X)\left(K_f(X, X) + \sigma_{\boldsymbol{e}}^2 I\right)^{-1} \boldsymbol{y}^{(k)}$

- Joint torques are assumed independent (given the inputs)
- The kernel function defines the prior covariance: $K_f(X, X) = E[X, X] \in \mathbb{R}^{T \times T}$

$$E\left[y_{i}^{\left(k
ight)},y_{j}^{\left(k
ight)}
ight]=k\left(oldsymbol{x}_{i},oldsymbol{x}_{j}
ight)$$

• The posterior can be computed in closed form

It is a common considering the **mean null**, and focusing on the **the kernel** function:

MODEL BASED (MB)

- Data-efficiency
 - Generalization

- Requires a model
- Model bias
- Unmodeled behaviors

 $k_{\phi}\left(oldsymbol{x}_{i},oldsymbol{x}_{j}
ight)=\left(oldsymbol{\phi}^{\left(k
ight)}\left(oldsymbol{x}_{i}
ight)
ight)^{T}\Sigma_{\phi}oldsymbol{\phi}^{\left(k
ight)}\left(oldsymbol{x}_{j}
ight)$

It is a common considering the **mean null**, and focusing on the **the kernel** function:

MODEL BASED (MB) $k_{\phi}(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}) = \left(\phi^{(k)}(\boldsymbol{x}_{i})\right)^{T} \Sigma_{\phi} \phi^{(k)}(\boldsymbol{x}_{j})$	Data-efficiencyGeneralization	Requires a modelModel biasUnmodeled behaviors
NON-PARAMETRIC (NP) $k_{RBF}(\boldsymbol{x}_i, \boldsymbol{x}_j) = \lambda e^{-\frac{ \boldsymbol{x}_i - \boldsymbol{x}_j _{\Sigma}^2}{2}}$	 High model capacity Good asymptotic performance No prior information needed and no bias 	Low data-efficiencyLow generalization

It is a common considering the **mean null**, and focusing on the **the kernel** function:

MODEL BASED (MB) $k_{\phi}(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}) = \left(\phi^{(k)}(\boldsymbol{x}_{i})\right)^{T} \Sigma_{\phi} \phi^{(k)}(\boldsymbol{x}_{j})$	Data-efficiencyGeneralization	 Requires a model Model bias Unmodeled behaviors
NON-PARAMETRIC (NP) $k_{RBF}(\boldsymbol{x}_i, \boldsymbol{x}_j) = \lambda e^{-\frac{ \boldsymbol{x}_i - \boldsymbol{x}_j _{\Sigma}^2}{2}}$	 High model capacity Good asymptotic performance No prior information needed and no bias 	Low data-efficiencyLow generalization
SEMI-PARAMETRIC (SP) $k_{SP}(\boldsymbol{x}_i, \boldsymbol{x}_j) = k_{\phi}(\boldsymbol{x}_i, \boldsymbol{x}_j) + k_{RBF}(\boldsymbol{x}_i, \boldsymbol{x}_j)$	Merges the strengths of the two approaches: • MB => generalization • NP => accuracy	 Requires a model NP compensation could be local

It is a common considering the **mean null**, and focusing on the **the kernel** function:

MODEL BASED (MB) $k_{\phi}(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}) = \left(\phi^{(k)}(\boldsymbol{x}_{i})\right)^{T} \Sigma_{\phi} \phi^{(k)}(\boldsymbol{x}_{j})$	Data-efficiencyGeneralization	 Requires a model Model bias Unmodeled behaviors
NON-PARAMETRIC (NP) $k_{RBF}(\boldsymbol{x}_i, \boldsymbol{x}_j) = \lambda e^{-\frac{ \boldsymbol{x}_i - \boldsymbol{x}_j _{\Sigma}^2}{2}}$	 High model capacity Good asymptotic performance No prior information needed and no bias 	Low data-efficiencyLow generalization
SEMI-PARAMETRIC (SP) $k_{SP}(\boldsymbol{x}_i, \boldsymbol{x}_j) = k_{\phi}(\boldsymbol{x}_i, \boldsymbol{x}_j) + k_{RBF}(\boldsymbol{x}_i, \boldsymbol{x}_j)$	Merges the strengths of the two approaches: • MB => generalization • NP => accuracy	 Requires a model NP compensation could be local

We aim at deriving a kernel with the following properties:

- No need of strong prior information
- Data-efficiency
- Good generalization
- Good asymptotic performance

POLYNOMIAL NOTATION

 $\mathbb{P}_{[p]}\left(\boldsymbol{a}_{[p_a]}, \boldsymbol{b}_{[p_b]}\right) = \text{Polynomial functions with maximal degree } p \text{ in the elements of } \boldsymbol{a} \text{ and } \boldsymbol{b} \text{ such that,}$ for each monomial, the relative degrees of the elements of \boldsymbol{a} (resp. \boldsymbol{b}) are $\leq p_a$ (resp. $\leq p_b$)

POLYNOMIAL NOTATION

 $\mathbb{P}_{[p]}\left(\boldsymbol{a}_{[p_a]}, \boldsymbol{b}_{[p_b]}\right) = \text{Polynomial functions with maximal degree } p \text{ in the elements of } \boldsymbol{a} \text{ and } \boldsymbol{b} \text{ such that,}$ for each monomial, the relative degrees of the elements of \boldsymbol{a} (resp. \boldsymbol{b}) are $\leq p_a$ (resp. $\leq p_b$)

INPUT SPACE TRANSFORMATION

$$\begin{split} \boldsymbol{q}_{c} &= \left[\cos \left(q^{(r_{1})} \right) \dots \cos \left(q^{(r_{N_{r}})} \right) \right]^{T} \in \mathbb{R}^{N_{r}} \\ \boldsymbol{q}_{s} &= \left[\sin \left(q^{(r_{1})} \right) \dots \sin \left(q^{(r_{N_{r}})} \right) \right]^{T} \in \mathbb{R}^{N_{r}} \\ \boldsymbol{q}_{cs} &= \left[\boldsymbol{q}_{c}^{T} \boldsymbol{q}_{s}^{T} \right]^{T} \\ \boldsymbol{q}_{p} &= \left[q^{(p_{1})} \dots q^{(p_{N_{p}})} \right]^{T} \in \mathbb{R}^{N_{p}} \\ \boldsymbol{\dot{q}}_{v} &= Vec \left(\left\{ \dot{q}^{(i)} \dot{q}^{(j)} , 1 \leq i \leq n , i \leq j \leq n \right\} \right) \end{split}$$

 $\mathcal{I}_r = \text{indices of the revolute joints} \\ = \{r_1, \dots, r_{N_r}\} \\ \mathcal{I}_p = \text{indices of the prismatic joints} \\ = \{p_1, \dots, r_{N_p}\}$

POLYNOMIAL NOTATION

 $\mathbb{P}_{[p]}\left(\boldsymbol{a}_{[p_a]}, \boldsymbol{b}_{[p_b]}\right) = \text{Polynomial functions with maximal degree } p \text{ in the elements of } \boldsymbol{a} \text{ and } \boldsymbol{b} \text{ such that,}$ for each monomial, the relative degrees of the elements of \boldsymbol{a} (resp. \boldsymbol{b}) are $\leq p_a$ (resp. $\leq p_b$)

INPUT SPACE TRANSFORMATION

$$\begin{aligned} \boldsymbol{q}_{c} &= \left[\cos \left(q^{(r_{1})} \right) \dots \cos \left(q^{(r_{N_{r}})} \right) \right]^{T} \in \mathbb{R}^{N_{r}} \\ \boldsymbol{q}_{s} &= \left[\sin \left(q^{(r_{1})} \right) \dots \sin \left(q^{(r_{N_{r}})} \right) \right]^{T} \in \mathbb{R}^{N_{r}} \\ \boldsymbol{q}_{cs} &= \left[\boldsymbol{q}_{c}^{T} \boldsymbol{q}_{s}^{T} \right]^{T} \\ \boldsymbol{q}_{p} &= \left[q^{(p_{1})} \dots q^{(p_{N_{p}})} \right]^{T} \in \mathbb{R}^{N_{p}} \\ \dot{\boldsymbol{q}}_{v} &= Vec \left(\left\{ \dot{q}^{(i)} \dot{q}^{(j)} , 1 \leq i \leq n , i \leq j \leq n \right\} \right) \end{aligned}$$

$$\mathcal{I}_r = \text{ indices of the revolute joints} \\ = \{r_1, \dots, r_{N_r}\} \\ \mathcal{I}_p = \text{ indices of the prismatic joints} \\ = \{p_1, \dots, r_{N_p}\} \end{cases}$$

PROPOSITION: Characterization of the inverse dynamics as a polynomial function The inverse dynamics is a polynomial function in $\mathbb{P}_{(2n+1)}\left(\boldsymbol{q}_{c_{(2)}}, \boldsymbol{q}_{s_{(2)}}, \boldsymbol{q}_{p_{(2)}}, \dot{\boldsymbol{q}}_{v_{(1)}}, \ddot{\boldsymbol{q}}_{(1)}\right)$. Moreover, \forall monomial $deg\left(\boldsymbol{q}_{c}^{(i)}\right) + deg\left(\boldsymbol{q}_{s}^{(i)}\right) \leq 2$.

REFERENCE:

IEEE Robotics and Automation Letters. PP. 1-1. 10.1109/LRA.2019.2945240.

A. Dalla Libera, R. Carli. (2019). A Data-Efficient Geometrically Inspired Polynomial Kernel for Robot Inverse Dynamics.

KERNEL PROPERTIES (RKHS interpretation)

- The RKHS of the inhomogeneous Polynomia kernel is composed of all the monomials up to the polynomial degree
- The product of kernels is still a kernel, and its RKHS is given by the convolution of the RKHS of the two kernels

 $\hat{f} \text{ is the MAP estimator } \iff \hat{f} = \operatorname{argmin}_{f \in \mathcal{H}} ||\boldsymbol{y}^{(k)} - \boldsymbol{f}(X)||^2 + \sigma_n^2 ||f||_{\mathcal{H}}^2 \text{ with } \mathcal{H} \text{ RKHS of } k$ $k_{pl(p)} \left(\boldsymbol{a}(t_h), \boldsymbol{a}(t_j)\right) \to \mathbb{P}_{[p]} \left(\boldsymbol{a}_{[p]}\right)$ $k_{pl(p_a)} \left(\boldsymbol{a}(t_h), \boldsymbol{a}(t_j)\right) k_{pl(p_b)} \left(\boldsymbol{b}(t_h), \boldsymbol{b}(t_j)\right) \to \mathbb{P}_{[p_a + p_b]} \left(\boldsymbol{a}_{[p_a]}, \boldsymbol{b}_{[p_b]}\right)$

REFERENCE:

IEEE Robotics and Automation Letters. PP. 1-1. 10.1109/LRA.2019.2945240.
 A. Dalla Libera, R. Carli. (2019). A Data-Efficient Geometrically Inspired Polynomial Kernel for Robot Inverse Dynamics.

Dalla Libera Alberto

KERNEL PROPERTIES (RKHS interpretation)

- The RKHS of the inhomogeneous Polynomia kernel is composed of all the monomials up to the polynomial degree
- The product of kernels is still a kernel, and its RKHS is given by the convolution of the RKHS of the two kernels

 $\hat{f} \text{ is the MAP estimator } \iff \hat{f} = \operatorname{argmin}_{f \in \mathcal{H}} ||\boldsymbol{y}^{(k)} - \boldsymbol{f}(X)||^2 + \sigma_n^2 ||f||_{\mathcal{H}}^2 \text{ with } \mathcal{H} \text{ RKHS of } k$ $k_{pl(p)} \left(\boldsymbol{a}(t_h), \boldsymbol{a}(t_j)\right) \to \mathbb{P}_{[p]} \left(\boldsymbol{a}_{[p]}\right)$ $k_{pl(p_a)} \left(\boldsymbol{a}(t_h), \boldsymbol{a}(t_j)\right) k_{pl(p_b)} \left(\boldsymbol{b}(t_h), \boldsymbol{b}(t_j)\right) \to \mathbb{P}_{[p_a + p_b]} \left(\boldsymbol{a}_{[p_a]}, \boldsymbol{b}_{[p_b]}\right)$

GIP KERNEL

REFERENCE:

• IEEE Robotics and Automation Letters. PP. 1-1. 10.1109/LRA.2019.2945240.

A. Dalla Libera, R. Carli. (2019). A Data-Efficient Geometrically Inspired Polynomial Kernel for Robot Inverse Dynamics.

Dalla Libera Alberto

KERNEL PROPERTIES (RKHS interpretation)

- The RKHS of the inhomogeneous Polynomia kernel is composed of all the monomials up to the polynomial degree
- The product of kernels is still a kernel, and its RKHS is given by the convolution of the RKHS of the two kernels

 $\hat{f} \text{ is the MAP estimator } \iff \hat{f} = \operatorname{argmin}_{f \in \mathcal{H}} ||\boldsymbol{y}^{(k)} - \boldsymbol{f}(X)||^2 + \sigma_n^2 ||f||_{\mathcal{H}}^2 \text{ with } \mathcal{H} \text{ RKHS of } k$ $k_{pl(p)} \left(\boldsymbol{a}(t_h), \boldsymbol{a}(t_j)\right) \to \mathbb{P}_{[p]} \left(\boldsymbol{a}_{[p]}\right)$ $k_{pl(p_a)} \left(\boldsymbol{a}(t_h), \boldsymbol{a}(t_j)\right) k_{pl(p_b)} \left(\boldsymbol{b}(t_h), \boldsymbol{b}(t_j)\right) \to \mathbb{P}_{[p_a + p_b]} \left(\boldsymbol{a}_{[p_a]}, \boldsymbol{b}_{[p_b]}\right)$

GIP KERNEL

REFERENCE:

IEEE Robotics and Automation Letters. PP. 1-1. 10.1109/LRA.2019.2945240.
 A Della Libera D. Carlin (2010). A Data Efficient Coordination line language Delma

A. Dalla Libera, R. Carli. (2019). A Data-Efficient Geometrically Inspired Polynomial Kernel for Robot Inverse Dynamics.

Dalla Libera Alberto

MONTE CARLO EXPERIMENT:

- **Setup**: simulated SCARA robot
- 20 simulations:
 - Training and test dataset:
 2000 samples (20 sec)
 - Joint trajectories:
 sum of 200 random sin
- Measure of performance: Normalized Mean Squared Error
- Estimators compared:
 - Model-free:
 - GIP kernel
 - RBF kernel
 - NN: 2 layer neural network (400 sigmoids per layer)

MONTE CARLO EXPERIMENT:

- **Setup**: simulated SCARA robot
- 20 simulations:
 - Training and test dataset:
 2000 samples (20 sec)
 - Joint trajectories: sum of 200 random sin
- Measure of performance:
 Normalized Mean Squared
 Error
- Estimators compared:
 - Model-free:
 - GIP kernel
 - RBF kernel
 - NN: 2 layer neural network (400 sigmoids per layer)
 - Model-Based (with perturbation of the geometrical parameters):
 - PA: parametric approach
 - MB kernel
 - SP kernel

DATE-EFFICIENCY TEST:

- Setup: simulated SCARA robot
- Measure of performance:
 Global Mean Squared Error
- Training and test dataset: 4000 samples (40 sec)
- Estimators compared:
 - Model-free:
 - GIP kernel
 - RBF kernel
 - NN: 2 layer neural network (400 sigmoids per layer)
 - Model-Based

(without perturbation of the geometrical parameters):

• MB kernel

TEST WITH REAL DATA:

- Setup: UR10 robot
- Measure of performance: Normalized Mean Squared Error
- Training dataset: 40000 (random points)
- Test dataset: 25000 (random points+ circle)
- Estimators compared:
 - Model-free:
 - GIP kernel
 - RBF kernel
 - NN: 2 layer neural network (400 sigmoids per layer)
 - Model-Based:
 - MB kernel
 - SP kernel

- We have introduced different data-driven strategies which do not requires high prior knowledge about the robot model
- The problem considered are:
 - Kinematics (modeling and control)
 - Dynamics (proprioceptive contact detection)
 - RL-based control
- We Introduced the GIP kernel, a data-efficient kernel for inverse dynamics identification:
 - No need of strong prior information
 - Data-efficiency
 - Good generalization
 - Good asymptotic performance

THANKS FOR THE ATTENTION