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A B S T R A C T

He � Ne ring lasers gyroscopes are, at present, the most precise de-
vices for absolute angular velocity measurements. Limitations to their
performances come from the non-linear dynamics of the laser. Ac-
cordingly to the Lamb semi-classical theory of gas lasers, a model can
be applied to a He–Ne ring laser gyroscope to estimate and remove
the laser dynamics contribution from the rotation measurements.

We find a set of critical parameters affecting the long term stabil-
ity of the system. We propose a method for estimating the long term
drift of the laser parameters, and for filtering out the laser dynamics
effects, e.g. the light backscattering. The intensities of the counter-
propagating laser beams exiting one cavity mirror are continuously
measured, together with the monitor of the laser population inver-
sion. These quantities, once properly calibrated with a dedicated pro-
cedure, allow us to estimate cold cavity and active medium param-
eters of the Lamb theory. Our identification procedure, based on the
perturbative solutions of the laser dynamics, allow us for the appli-
cation of the Kalman Filter theory for the estimation of the angular
velocity.

The parameter identification and backscattering subtraction proce-
dure has been verified by means of a Monte Carlo studies of the
system, and then applied to the experimental data of the ring lasers
G-PISA and G-WETTZELL. After the subtraction of laser dynamics ef-
fects by Kalman filter, the relative systematic error of G-PISA reduces
from 50 to 5 parts in 103, and it can be attributed to the residual
uncertainties on geometrical scale factor and orientation of the ring.
We also report that after the backscattering subtraction, the relative
systematic errors of G-WETTZELL are reduced too.

Conversely, in the last decade an increasing attention was drawn to
high precision optical experiments, e.g. ring laser experiments, which
combine high sensitivity, accuracy and long term stability. Due to
the experimental requirements, position and orientation of optical el-
ements and laser beams formation must be controlled in the field of
nano-positioning and ultra-precision instruments. Existing methods
for beam direction computing in resonators, e.g. iterative ray tracing
or generalized ray transfer matrices, are either computationally ex-
pensive or rely on overparametrized models of optical elements.

By exploiting the Fermat’s principle, we develop a novel method
to compute the beam directions in resonant optical cavities formed
by spherical mirrors, as a function of mirror positions and curvature
radii. The proposed procedure is based on the geometric Newton
method on matrix manifold, a tool with second order convergence
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rate that relies on a second order model of the cavity optical length.
As we avoid coordinates to parametrize the beam position on mirror
surfaces, the computation of the second order model does not involve
the second derivatives of the parametrization.

With the help of numerical tests, we show that the convergence
properties of our procedure hold for non-planar polygonal cavities,
and we assess the effectiveness of the geometric Newton method in
determining their configurations with an high degree of accuracy and
negligible computational effort.

We also presents a method to account for the (ring laser) cavity de-
formations due to mirrors displacement, seen as the residual motions
of the mirrors centers after the removal of rigid body motions. Having
the cavity configuration and the model to account for mirrors move-
ments, the calibration and active control of the optical cavity can be
addressed as a control problem. In fact, our results are of some impor-
tance not only for the design and simulation of ring laser gyroscopes,
but also for the active control of the optical cavities.

In the final part of this work we detail a complete model including
the simulation of the physical processes of interest in the operation
of a ring laser gyroscope. Simulation results for the application of the
model to the ring laser GP2 are presented and discussed.

S O M M A R I O

I giroscopi laser che sfruttano la tecnologia He � Ne a 632 nm so-
no attualmente i dispositivi più precisi per la misura accurata della
velocità angolare di rotazione. Gli attuali limiti alle loro prestazioni
provengono dalla dinamica non lineare del battimento laser. Sfruttan-
do la teoria semi-classica di Lamb viene sviluppato un modello per le
dinamica del laser, successivamente applicato per stimare e rimuove-
re il contributo della dinamica del laser dalle misure di rotazione di
un giroscopio.

Individuati una serie di parametri critici la cui variazione influen-
za la stabilità nel tempo della misura, viene proposto un metodo per
stimare la deriva dei parametri laser e per filtrare gli effetti della di-
namica laser dalle misure acquisite con il giroscopio. Le intensità dei
fasci laser contropropaganti che escono da uno specchio della cavità
sono acquisite, assieme ad un monitor della inversione di popola-
zione laser. Questi osservabili, una volta correttamente calibrati con
una procedura dedicata, permettono di stimare i parametri dissipati-
vi di cavità fredda e i parametri del mezzo attivo, che determinano
la parte principale delle non linearità del sistema. La procedura di
identificazione, basata sulle soluzioni perturbative della dinamica del
laser, ci consente l’applicazione di un filtro di Kalman per la stima
della velocità angolare.
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La procedura di identificazione dei parametri e sottrazione delle
sistematiche laser è stata validata mediante uno studio Monte Car-
lo del sistema, inoltre i risultati delle analisi su dati sperimentali dei
prototipi G-PISA e G-WETTZELL sono mostrati e discussi. Dopo la
sottrazione della dinamica del laser mediante filtro di Kalman, l’erro-
re sistematico relativo alla frequenza di rotazione di G-PISA si riduce
da 50 a 5 parti in 103, residuo che può essere attribuito alle incertezze
residue sul fattore di scala geometrico e sull’orientamento del girosco-
pio. Anche nel caso dell’analisi dei dati di G-WETTZELL si segnala
che l’errore sistematico relativo viene ridotto.

Negli ultimi dieci anni, una crescente attenzione è stata attirata da
esperimenti ottici di alta precisione, ad esempio, esperimenti basati
su giroscopi laser, che combinano alta sensibilità, precisione e stabili-
tà a lungo termine. Per soddisfare a stringenti requisiti sperimentali,
la posizione e l’orientamento degli elementi ottici, e la formazione
dei fasci laser, devono essere controllati nel campo degli strumenti
di nano-posizionamento e ultra-precisione. Metodi esistenti per il cal-
colo del cammino del fascio laser in risonatori, ad esempio, il ray
tracing iterativo o le matrici di trasferimento generalizzate, sono com-
putazionalmente costosi o si basano su modelli ridondanti di elementi
ottici.

Sfruttando il principio di Fermat, un nuovo metodo per calcolare
il cammino ottico in cavità risonanti formate da specchi sferici è svi-
luppato, in funzione delle posizioni degli specchi e del valore dei
rispettivi raggi di curvatura. La procedura proposta si basa sul me-
todo di Newton geometrico, un algoritmo con tasso di convergenza
del secondo ordine che si basa su un modello del secondo ordine
della lunghezza ottica della cavità. Evitando di parametrizzare con
coordinate la posizione del raggio laser sugli specchi, il calcolo del
modello di secondo ordine non coinvolge le derivate seconde della
parametrizzazione.

Con l’aiuto di simulazioni numeriche, si dimostra che le proprietà
di convergenza della nostra procedura valgono per un vasto insie-
me di cavità poligonali non planari, e viene valutata l’efficacia del
metodo di Newton geometrico nella determinazione delle configu-
razioni delle cavità laser con un alto grado di precisione e sforzo
computazionale trascurabile.

Viene anche presentato un metodo per tenere conto delle deforma-
zioni della cavità ottica dovute agli spostamenti degli specchi, ovvero
gli spostamenti degli specchi che non si traducono in movimenti di
corpo rigido della cavità stessa. Conoscendo la configurazione della
cavità e avendo un modello per descrivere i movimenti degli specchi,
la calibrazione ed il controllo attivo della cavità ottica possono essere
studiati. I nostri risultati sono infatti di una certa importanza non so-
lo per la progettazione e la simulazione, ma anche per l’allineamento
e in linea di principio anche per il controllo attivo di giroscopi laser
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ad alta precisione.
Nella parte finale di questo lavoro si descrive il modello RLG, un

modello multiuso completo comprensivo della simulazione accurata
di tutti i processi fisici rilevanti nel funzionamento di un giroscopio la-
ser ad alta risoluzione. I risultati della simulazione dell’applicazione
del modello RLG al giroscopio GP2 vengono presentati e discussi.
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1
I N T R O D U C T I O N

1.1 the ring laser as a gyroscopic instrument

A Ring Laser Gyroscope (RLG) is a planar device that employs laser
light for the measure of rotation rates. The modern setup of an high
sensitivity RLG consists in a closed optical cavity of triangular or
square shape made with mirrors as vertexes and gas-filled tubes as
sides. To excite the He � Ne laser transition of wavelength l = 632.8
nm, the cavity is supplied with a radio-frequency circuit in the mid-
dle of a side, for the gas discharge. In standard working conditions,
two optical waves counter-propagate inside the ring cavity. In an in-
ertial frame, each beam follows a path of the same length. When the
cavity rotates, a time difference between the clockwise and counter-
clockwise beams occurs. This translates into a frequency difference of
the two beams which carries the information about the rotation rate
of the RLG frame. To measure the frequency difference, in one vertex
is located a beam combiner which generates the interference signal
detected by a photodiode.

Fig.1 shows a schematic of a RLG. The physical mechanism that
transduces rotations into fringe shifts is named after the physicist
Georges Sagnac, who predicted and demonstrated the first passive
ring interferometer in 1913 [52]. Although Sagnac had the purpose
to detect the effect of the relative motion of the Earth and the ether,
successive works explained the Sagnac effect in the framework of the
Special and General Relativity [55]. To achieve a high sensitivity, the
active interferometric setup is preferred to the original set up. In the
former case, light is excited directly inside the ring cavity and the
signal detected is a beat note, i.e. a frequency shift, while in the lat-
ter case light enters the cavity from outside and the signal detected
is a phase shift. Nowadays the RLGs are the industry standard for
precision rotation measurement, being crucial components in air and
marine navigation systems, platform stabilization systems, pointing
and targeting systems, and attitude and heading reference systems. In
the commercial area RLGs are eventually preferred among the rota-
tional sensors for low cost, no moving parts, and compact form factor.
Typical commercial performances include start-up time of 1 second,
bias stability less than 0.04 degree/hour, and angular random walk
less than 10�5 rad

p
Hz [37].

1
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Figure 1: A schematic of a RLG: 4 mirrors delimiting the ring square cavity,
the two laser modes counter-rotating; in one corner the two output
beams are made to interfere and the beat note of Sagnac frequency
is shown.

In a rotating Ring Laser (RL) the frequency difference between two
electromagnetic waves (i.e. the frequency of the beat signal between
the two beams) reads

ns =
4A
lL

n · W , (1)

where ns is the Sagnac frequency, A and L are the area and the length
of the cavity, respectively, l is the wavelength of the laser beam, n

is the unit vector normal to the plane containing the ring cavity, and
W is the angular velocity of the detector. The ratio A/L is the scalar
compactness factor of the instrument.

The dynamics of a RL is one of the sources of systematic errors
in the estimate of ns, and therefore in the measure of W. In fact, the
laser dynamics is determined by a set of non-linear equations that
depends on parameters which are slowly varying due to changes in
environmental conditions of the ring cavity (mainly temperature and
atmospheric pressure). Moreover, in the operation of high resolution
RLs, some parameters, e.g. the laser detuning and the voltage oscil-
lator power are actively controlled, with the drawback of enhancing
the drifts of others parameters. To take into account the different er-
ror sources that corrupt the beat signal of a RL, Eq.(1) is modified
as

ns =

✓

4A
lL

+ DnSF

◆

n · W + Dn0 + DnBS + h , (2)
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where the deviations from ideal behavior in Eq.(1) involved in the
measure of the Sagnac frequency are:

• Photon shot-noise described by the stochastic white noise pro-
cess h, which is due to light incoherence. Shot-noise poses a
fundamental limit to the angular velocity resolution of a RLG,
as fluctuations limit the resolution of the instrument for a given
integration time. The related power spectral density reads

P1/2
hh

=
c

lQ

s

hn

Pout
, (3)

where Q is the quality factor of the optical cavity, h the Planck
constant, Pout the optical power detected by photodiodes, c the
speed of light, and n = c/l the light frequency.

• Corrections to the scale factor DnSF, which are due to fluctu-
ations of either the ring cavity shape or the laser gain, cavity
losses, plasma temperature and pressure, and also to the detun-
ing between the gain center frequency and optical frequencies.

• Null shift errors Dn0, due to any cavity non-reciprocity, e.g. cav-
ity non planarity or asymmetries in the cavity geometry, gas
flows inside the tubes, parasite magnetic fields and mirror bire-
fringence.

• Non-linear coupling of the counter-propagating laser beams DnBS,
due to light retro-reflections, also known as backscattering.

Eq.(3) leads to a standard deviation for ns, s

n

= P1/2
hh

/
p

T, where
T is the integration time considered for the measure. This standard
deviation, converted in equivalent rotational noise and expressed in
unit of rad/s, reads

sW =
cL

4AQ

s

hn

PoutT
, (4)

note that the intrinsic noise level is inversely proportional to the op-
tical factor Q (that depends in its turn on the mirror losses) and to
the size of the RL, by the factor L/A µ 1/L. Increasing the dimension
of the RL eventually results in more demanding requirements on the
mirrors alignment and on the mechanical stability of the device. Varia-
tions of the environmental conditions during measurement processes
on long timescales (hours) induce deformations of the optical cavity,
enhancing the fluctuations of the correction terms in Eq.(2). The mag-
nitude of those effects, which are mainly driven by temperature and
pressure drifts, has been reported to be proportional to L. Therefore a
trade off must be made between the minimization of intrinsic and sys-
tematic noise sources. The world’s most sensitive RLG G-WETTZELL,
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operated inside the geodetic station of Wettzell, in Bavaria (GER), has
an optical cavity length of L = 16 m, and routinely achieves a sensi-
tivity of few prad/s at the frequency of 1 Hz. The optical cavity of
G-WETTZELL has a monolithic design to minimize the effects of en-
vironmental drifts: it exploits an ultra-low expansion coefficient glass,
named Zerodur, and a passive stabilization of the optical cavity length
by means of a pressure vessel to control some residual mechanical de-
formations. On the other hand, in high sensitivity large size RLGs of
etherolitic design, as the apparatus called G-PISA, operated at LNGS
(the INFN laboratories of Gransasso, Abruzzo (ITA) ), the mirrors are
equipped with piezoelectric transducers to react against changes in
their displacement, to constrain the geometry of the instrument. By
this means, G-PISA is now 10 times less sensitive than G-WETTZELL,
and up to 100 times less stable. Our analysis is focused on the latter
type of RLGs, since the etherolitic design is the most promising to
be adopted for the design of RLGs to test General Relativity. In fact,
it is not economically nor technically affordable to build monolithic
optical cavities bigger than the one of G-WETTZELL, and such bigger
dimensions are required to obtain the desired Signal-to-Noise ratio.
Further more in the monolithic design there is no way to account for
the geometry of the RL with the accuracy required by the measure of
the Lense-Thirring effect.

We have developed accurate models for the relevant dynamics of
RLGs, then we estimate the rotation by identificating the relevant RL
parameters, and applicating an Extended Kalman filter (EKF), which is
able to recursively track the laser dynamics even in the presence of
noise fluctuations. We have also developed models for the computa-
tion of the optical path in resonant cavities, and for the decomposition
of shape and pose of a square optical cavity, to separately account for
rigid its body motions and deformations.

We have shown that identification and dynamical filtering improve
the response of large size RLGs as G-WETTZELL, which have already
reached a precision of ⇠ 5 part in 109 of the Earth rotation rate, pro-
viding so informations for geophysics and geodesy of paramount im-
portance. Middle size rings, with sides of ⇠ 1 m as G-PISA, which
are more affected by backscattering, improved as well. Such measure-
ments are more suitable for geophysics applications (i.e. rotational
seismology) [76], and for application to the gravitational waves inter-
ferometers (e.g. local tilts measurements) [71].

1.2 outline of the thesis

The thesis examines several aspects of stability and accuracy of high
sensitivity RLGs, with particular attention to the etherolitic design,
by means of the offline post-processing of the acquired interferogram
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and intensities signals, and the active control of the geometry of the
optical cavity.

In the Sections 1.3 and 1.4 the relevant literature on RLs is reviewed,
and their use in General Relativity tests is outlined.

In Chapter 2 we develop a comprehensive model of the RL dy-
namics, and we devise methods for estimating the Lamb parameters:
excess gain minus losses coefficients a1,2, scattering coefficients r1,2
and #1,2, self- and cross- saturation coefficients b1,2 and q12,21, and
scale factor and null shift errors s1,2 and t12,21, which depend in their
turn from cavity losses µ1,2, plasma polarizability and single pass
gain G of the laser medium. In addition, we estimate the round trip
losses and the laser medium single pass gain, and set up a monitor
of the gain. Exploiting these informations, we run an EKF which is
able to remove from Earth rotation rate measurements a relevant frac-
tion of the laser dynamics contributions. In this way we improved
the long term stability and the accuracy of the rings G-PISA and G-
WETTZELL, and demonstrated the effectiveness of non-linear Kalman
filtering techniques in removing the systematics effects of light from
the RLG output. A motivation for this part of our work is also to fore-
see a calibration procedure of high resolution RLGs which exploits
the non linearity of laser active medium.

In Chapter 3 we address the model of the geometry of the optical
cavity. Our results are twofold: i) we develop an alghoritm to compute
the beam steering of an optical cavity for given mirror position and
alignment; and ii) we state the Shape and Pose Decomposition of
four tridimensional points, representing the curvature centers of the
RL spherical mirrors. On the one hand, this decomposition provides
a straight way to model the geometry of the optical cavity of a square
RL, on the other hand, it sets up an efficient and elegant framework
for the active control of a RL cavity.

In Chapter 4 the models developed in the previous chapters are
put together to obtain a complete simulation of an high resolution
RLG, and a simulation case study is presented. Finally, conclusions
are drawn in Chapter 5.

1.3 previous & related works

Great attention has been paid by the scientific community to the appli-
cations, and hence to the accurate modeling and optimization of any
aspect of the RLG design; for instance, the search in Google Scholar
with key word “ring laser” shows more than 2.000.000 occurrences
among scientific papers and patents. RLs have been successfully oper-
ated starting from the 50’s, and the first RLG was empirically demon-
strated as rotational sensor in 1963 [47], almost a decade before a
complete model for its operation was addressed in 1973 [49], follow-
ing the publication of models for the standing wave and traveling
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wave optical masers, in 1963 and 1965 [82, 7]. The interest for this op-
tical device was strong enough to allow for a dedicated review of the
Sagnac effect itself [52], where theoretical models for the RLG readout
in Eq.(2) are discussed. Much work will be devoted from now on to
the development of error models for RLs, both for the optimization of
the design of these instruments and for the interpretation and offline
post processing of the output signals.

E. Lamb [82, 49] and F. Aronowitz [7, 9] studied the dynamics of the
gas lasers by developing a set of differential equations that describe
the coupling between the radiation field and the atomic polarization
at the third-order expansion, in terms of the so called Lamb parame-
ters. The physical process, that for its complexity and empirical rele-
vance, became object of great study and deep research, is the backscat-
tering, which causes the lock-in phenomenon. In the optical cavity
some light from one beam is scattered back and recombined with the
light of the beam traveling in the opposite direction. The lock-in be-
havior is a dead zone effect for small rotations in the characteristic
curve of a RLG. Ref.[25] is expressly dedicated to the clarification of
the backscattering model developed by Aronowitz. Even larger instru-
ments, in which the Earth rotation rate is a bias with enough magni-
tude to overcome the lock-in, have been reported to be limited in their
sensitivity and stability by backscattering. The most common solution
to the lock-in for small RLGs, that are not forced to work outside the
dead zone only by the Earth rotation, is to mechanically dither the in-
strument with a known angular velocity. The authors of ref.[10] also
review and exploit a formalism to deal with frequency multiplication
and time-variant differential equations systems, named after G. Flo-
quet, in order to make quantitative predictions for their experiments.
Other recipes to overcome the lock-in problem consist in the applica-
tion of a frequency bias by means of some non reciprocal effects, i.e.
magnetic (Kerr) effect, non planarity, or polarized light.

The reviews [8, 30] offer a comprehensive treatment of the relevant
aspects of the design and operation of a RLG, with particular atten-
tion to backscattering effects and the lock-in phenomenon. Even if
the stochastic term in Eq.(2) is often negligible for the cases of in-
terest, the dynamics of a RL with backscattering have been investi-
gated also from a statistical point of view [23, 81]. Mandell and oth-
ers [18, 19, 88, 16] derived approximated forms of the distribution
of the state description of a RL, assuming the reciprocity of some of
the Lamb parameters. Deterministic solutions allowing some non re-
ciprocities were found by A. Chyba [20, 21], one of Mandell brightest
Ph.D students. Chyba also reported some experimental investigations
that motivated and demonstrated his theoretical analysis. Basing on
these results, some others authors studied deeper the RL backscatter-
ing model from a stochastic point of view [51], having in mind inves-
tigations on laser physics [36, 70] . In ref.[22], stochastic analytic meth-
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ods devised for periodic potentials were applied to the RL Langevin
equations, and finally in ref.[68, 44] the nature of the symmetries that
connect and break down in the operation of these instruments was
investigated.

The mitigation of backscattering effects in high resolution RLGs is
still an open research field, with many publications describing meth-
ods for the active mitigation of the backscattering [27, 12, 83, 50], or
for its offline subtraction [29].

On another issue, the dependence of RLs on the spatial orienta-
tion and misalignment of the optical cavity mirrors has been object
of detailed researches, too. In ref.[43, 4] the principles of Geometric
and Gaussian Optics are applied for the first time to generic resonant
optical cavities and then properly to RLs. Another article describes a
procedure to align a RLG and ensure its operation [5]. Basing on these
results other authors discussed the possibility to compensate the mis-
alignments of the resonant optical cavity of a RL by means of mirror
movements and frequency stabilization [26, 56]. Rodloff also remark-
ably noticed that by accomplishing the alignment one would also mit-
igate the effects of backscattering. The connection between backscat-
tering and mirror misalignments was highlighted also by Stedman,
that developed a model for the planar alignment of a RL [13] as well
as a refinement of Aronowitz backscattering analysis [73]. Its review
[72] is nowadays considered one of the best review concerning the
Physics experiments available by means of RLGs.

However, for the design of high performances RLGs one must face
to different shapes and tridimensional configurations of ring cavity,
for this reason simulation tools were developed [78] and non planar
configurations studied [67]. Advances in frequency and phase active
enslavement and offline processing pushed further the possibilities
of constrain the optical cavity [38], as well as to investigate the rela-
tion between Lamb parameters and misalignments [74]. Yuan and Long
[87, 84, 86, 85] addressed the relevant questions we posed so far, and
formalized a tridimensional extension of the usual planar ABCD ray
matrix formalism to account for mirror tilts and translations in a cav-
ity with tridimensional misalignments. The action of these matrices
on the spatial profile of a gaussian beam has been elegantly formal-
ized by means of matrix group theory [11]. Some authors addressed
the initial alignment of monolithic optical cavities [45], some others
studied the symmetries of some of the most common optical elements
to be found in the RL cavity, i.e. spherical and flat mirrors [46]. Most
recent articles in this research field includes design methods for op-
tical cavities with regard to simplicity [54] and practical methods to
heal the magnetic sensitivity of an optical cavity by means of non
planar cavity deformations [17].

The commercial applications detailed in Section 1.1 are not rep-
resentative of all the RLG applications. For instance a RLGs can be
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employed in giving a precise definition of the standard unit in an-
gular metrology [31], and also down-scaling the dimensions of a RL
may have some interesting applications [28]. U. Schreiber and cowork-
ers have addressed some remarkable applications concerning seismol-
ogy, geodesy and geophysics operating the instrument G-WETTZELL
[39, 66, 61, 65, 63, 60, 35, 59]. They demonstrated the observation
of the Chandler and Annual Wobble, and other Earth signals, charac-
terized the noise contributions in the frequency band suitable for
geodetical and geophysical signals, and investigated some hardware
upgrades for G-WETTZELL to overcome the residual stability limita-
tions. We report on two Ph.D. thesis [33, 77] that has been elaborated
by two students of the Schreiber research group. To review some of
the applications of RLGs to seismology and geophysics we also report
on ref.[40, 64, 62, 76] that analyze various Earth related signals (e.g.
tidal tilts) in the measures of high resolution RLGs.

At the end of this review, we briefly report on the research group
that has inspired, guided and supported the experimental work in
this thesis. At the beginning, it was of paramount importance the
INFN proposal to measure relativistic effects related to gravity by
means of a tridimensional array of RLs [75, 14]. In order to accom-
plish this goal the construction of the etherolitic RLG G-PISA has been
pursued, and some experimental investigations have been conducted
[79, 14]. This research activity promoted two master thesis [24, 58],
this Ph.D. thesis and four peer-review articles already published. In
addition, two papers related to the innovative contribution of this
thesis are currently under review.

1.4 current and future developments of rls

In the last years several applications of high resolution, stable, middle
or large size RLGs, to many cutting edge research fields of Physics
have been highlighted by the scientific community. We already dis-
cussed that the mechanical properties of these devices, together with
their stability and sensitivity, fit RLG among the most precise sen-
sors of Earth rotation. In the near future, the application of large
frame (side > 1 m) RLs is foreseen to improve the performances of
advanced gravitational waves detectors [71]. Furthermore, the gravi-
tational physics community has addressed the study of a RLG array
with the aim of measuring a relativistic effect with the 1% of accuracy,
and so providing a ground based test of General Relativity. The rela-
tivistic effect under study is the gravito-magnetic effect of the rotating
Earth, named after the physicists Lense and Thirring [14, 75, 72].

GINGER (Gyroscopes IN GEneral Relativity) is an INFN proposal
to measure the Lense-Thirring effect with an array of RLs. An under-
ground location is essential for this challenging experiment, and the
LNGS facility, located in the National Laboratories of the Gransasso
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mountain, Assergi (AQ), is a suitable location. G-GranSasso-RD is an
experiment that has been financed by the INFN Commission II, which
aims at the planning, installation and operation of GINGER. The GIN-
GER project is considered to be the final outcome of an international
collaboration with Germany and New Zealand, i.e. the institutes of
the TUM University and the Canterbury University, prof. U. Schreiber,
prof. J.P. Wells and their research groups.

The Italian group has developed two ring-laser prototypes, G-PISA
and GP2, and both apparatus have an etherolitic design: G-PISA is
the first prototype, a square ring with side length of 1.35 m. It is a
transportable device, which so far has been installed in different lo-
cations, and with different orientations. GP2 is the newest prototype
(2014), at present installed in the INFN Laboratories of S.Piero a Grado
(PI) and it was expressly designed to address the study of the geom-
etry of the ring cavity and its active control. The preliminary tests
done with G-PISA operated at the clean room of S.Piero a Grado, and
at LNGS, showed the several advantages of the passive stabilization
of the device provided by an underground location.

1.4.1 G-PISA and its experimental setup

The RLG G-PISA consists in a square optical cavity with a side length
of 1.350 m. The four cavity mirrors are contained in a steel vacuum
chamber entirely filled with a He � Ne gas mixture. This design al-
lows us to change the perimeter of the ring simply by changing the
length of the tubes connecting the four cavity mirrors. In the middle
of one side of the cavity is mounted a pyrex capillary, 4 mm in in-
ternal diameter and 150 mm in length. The capillary plays a double
role: it acts as a diaphragm selecting the TEM00 spatial mode and
it gives the possibility to apply a radio-frequency electric field for
the laser excitation of the He � Ne plasma. The measurement of the
Sagnac interferogram is obtained by combining the two output beams
exiting one corner trough an intensity beam splitter, while the single
beam intensities are directly detected at the output of the adjacent
corner. Two optically transparent windows are mounted on each cor-
ner of the cavity and allow to monitor the eight beams exiting the
cavity. Two of the four mirrors are equipped with a piezo-transducer,
which moves the mirror along a diagonal of the square. They are
used to keep constant the perimeter of the ring allowing a continu-
ous measurement of the angular velocity of the ring. In fact the RLG
can be operated either free running or enabling the control loop of
the perimeter. The perimeter is controlled by keeping the wavelength
of one of the two modes of the RL constant, using a stabilized laser
source as an external reference. For this purpose a Doppler-stabilized,
single-frequency He� Ne laser associated with a Lambda Meter LM-10
is employed.
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Figure 2: G-PISA on top of its granite table, moved from its installation in
S.Piero (Pisa).

Inside the dedicated area in the LNGS facilities G-PISA has been
fixed to a granite table that, in its turn, is firmly attached to a special
monument. The monument is made of reinforced concrete, which can
support the RLG and its granite table in horizontal configuration. In
this configuration, the Sagnac frequency due to the Earth rotation is
about 104 Hz. Two broad-band seismometer and a tilt-meter, with
nrad resolution in frequency below a mHz, have been installed on
top of the granite table. The monument was not fixed to the ground,
it was simply laying against the floor. Finally, simple acoustic and
thermal shielding was constructed around the ring-laser: a simple
box has been mounted around the apparatus, and the structure to
hold the stiferite panels used for the acoustic shielding is also visible.
The data acquisition is based on a NI PXI system.

Fig.2 shows the experimental set-up of G-PISA, attached to the
granite table, horizontally oriented. The next installation of this RLG
with augmented side length and renamed GINGERino has begun in
Spring 2014, and likely we expect to have the device operating in the
first months of 2015.

1.4.2 General Relativity Tests: the GINGER detector

The theory of General Relativity is the pillar of contemporary under-
standing of matter, energy and space-time. The theory succeeds in
explaining the behavior of the whole universe, as well as it fails to be
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in accordance with quantum mechanics in the high energy domain.
Anyway, also in the very low energy sector of the gravitational inter-
action there are predictions of General Relativity which have not been
fully explored up to now. A typical example is the so called gravito-
magnetic component of the gravitational field, i.e. the Lense-Thirring
effect, whose direct verification relies for the moment on three exper-
iments in space: Gravity Probe B; the two LAGEOS satellites orbital
nodes analysis; and the LARES mission. Here we report that the ex-
pected accuracy in the Lense-Thirring effect detection for those exper-
iments ranges from 10% to 2% [75].

Other evidence of gravito-magnetic effects may be found in the
laser ranging of the orbit of the moon and on the study of the dy-
namics of binary systems composed of at least one compact massive
object (neutron star) [53]. Moreover, some facts concerning galaxies
motions and the dark matter theory have stimulated the idea that
General Relativity might need some extensions. What matters here
is that the phenomenology to look for is in the differences from em-
pirical observations and General Relativity in the domain of low and
ultra-low energies. All above said gives motivations for working ex-
perimentally on the gravitational interaction in the weak domain look-
ing for post-Newtonian effects and Parametrized Post Newtonian de-
scriptions which predict deviations from classical General Relativity.

Among various possible experimental approaches, a nearly perfect
tool is represented by light. Light is indeed intrinsically relativistic
and is affected in various ways by the gravitational field.

In the classical domain and treating space-time as a continuous
four- dimensional Riemannian manifold, light completely covers the
manifold with a network of null geodesics. If we can measure the
local and global configuration of the null geodesics tissue we can re-
construct the gravitational field and see whether it fully corresponds
to the General Relativity description or not. For a RL fixed on the
Earth the General Relativity predicts a signal of the form

ns =
4A
lL

[W � 2
µ

R
W sin qu

q

+
GJ�
c2R3 (2 cos qur + sin qu

q

)] · n

where W is the angular velocity of the Earth, q is the colatitude of the
laboratory, ur and u

q

are unit vectors that represent the azimuthal
and north-south directions, µ = GM�/c2 ⇡ 4.4 ⇥ 10�3m is half of
the Schwarzschild radius of the Earth, and M�, J� and R are the mass,
the angular momentum and the radius of the Earth, respectively. In
summary: the RL beat note has 3 terms: Sagnac, de Sitter (Geodetic
term) and Lense-Thirring (Gravito-magnetic).

Since the Earth angular velocity is independently measured with
very high accuracy by the VLBI system, which measure the Earth ro-
tation with respect to the fixed stars, the Relativistic terms can be
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obtained by subtracting from the ring-laser data the Sagnac term mea-
sured by VLBI. For all these reasons the RL appears today as a most
interesting apparatus to probe the structure of space- time at the lab-
oratory scale.



2
T H E R L G M O D E L : L A S E R D Y N A M I C S

2.1 physical preliminaries and rl semi-classical treat-
ment

In the research field of high stability high resolution RLGs the 632.8
nm transition of the Helium Neon (He � Ne) laser system is almost
uniquely used [7, 9, 82, 49]. To improve both the stability and the ac-
curacy of these instruments, it is of paramount importance to model
the details of the stimulated emission process of the He � Ne media
in non ideal optical cavities. In fact the subtleties of the ring laser
dynamics are mainly related to the emission process in the He � Ne
medium and to the dissipative and parasite processes taking place
during light scattering on mirrors. The semi-classical treatment of the
RL, introduced by Lamb, Aronowitz, et al. [7, 49], is a framework in
which the laser radiations propagating in a closed path are modeled
by

c2 ∂

2Ei(s, t)
∂s2 � ∂

2Ei(s, t)
∂t2 + 2 {ŝ · [W(s, t)⇥ n(s, t)]} ∂

2Ei(s, t)
∂s∂t

(5)

=
1
e0

∂

∂t
[Ji(E�n . . . , En, s, t) + Pi(E�n . . . , Ens, t)] , i 2 N (6)

Eq.(5) is the component of a set of coupled Maxwell-Bloch equations,
where the index i is an integer number positive for clock-wise travel-
ing waves and negative for anti-clockwise ones: the state of the sys-
tem Ei(s, t) is the value of the electromagnetic field polarized along
the direction perpendicular to the optical cavity plane, traveling in
the clockwise + and counter-clockwise � direction. The electromag-
netic field represented by a complex number is dependent on both
time t and the spatial coordinate on the cyclic path s. Here ŝ is the
vectorized optical path parametrized in s, W is the Earth rotation rate
vector, n is the unit vector of the vectorial area of the optical cavity,
c is the light speed, e0 is the dielectric constant of vacuum, Ji is an
Ohmic current accounting for dissipative and scattering effects due
to light reflection transmission and absorption, and Pi is the effect of
the electric polarization of the active media on the laser mode labeled
by Ei.

The resulting system of equations can be solved by using variables
separation, within the WKB approximation [49]. The WKB approxi-
mation is a method for finding approximate solutions to partial dif-
ferential equations. The electric fields are recast as series of complex

13
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exponential functions, and then expanded assuming that amplitudes
and phases are slowly varying with respect to the eigenfrequencies of
the system. The polarizations and the currents are then expanded in
terms of the exponential functions, becoming functions of the slowly
varying amplitudes and phases. Within the small gain approxima-
tion, i.e. when the laser is not excited far above threshold, the series
are truncated at the third order in powers of the fields, retaining a
good accuracy in the resulting model.

2.1.1 RL equations: complex fields

The hypothesis made on Maxwell-Bloch equations fit the usual work-
ing regime of high resolution RLGs, which is obtained with a gain
starvation approach, where only the fundamental lasing mode TEM00
is excited in both the directions of propagations, labeled with 1 and
2 for clockwise and counter-clockwise traveling waves, respectively.
Therefore the ordinary differential equation system for the slowly
varying amplitudes and phases of the two lasing modes reads

Ė1(t) =
�A1 � B1|E1(t)|2 � C12|E2(t)|2

�

E1(t) +R2E2

Ė2(t) =
�A2 � B2|E2(t)|2 � C21|E1(t)|2

�

E2(t) +R1E1
. (7)

The amplitudes and phases are collected in the complex quanti-
ties E1 and E2, the parameters A1, B1, C12,R1, and for the opposite
traveling wave, A2, B2, C21,R2, account for the aggregate effect of am-
plification, saturation, absorption, transmission, and reflection in the
optical cavity of a RL.

By introducing the 2-dimensional vector complex valued function
E(t) = (E1, E2)

T , Eqs.(7) can be write in matricial form

˙

E =
h

A �D(E).B.D(E*)
i

E , (8)

where we have defined the complex-valued matrices

A ⌘
 

A1 R2

R1 A2

!

, B ⌘
 

B1 C21

C12 B2

!

, (9)

accounting for the linear and quadratic field interactions, and the
auxiliary field matrix

D(E) ⌘
 

E1 0
0 E2

!

. (10)
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ga 12 MHz
gb 127 MHz
gab 234 MHz
µab 3.2 · 10�30C m

Table 1: He � Ne laser system parameters.

2.1.2 RL equations: real variables

Eqs.(7) or Eq.(8) can be transformed into a real 4 components equa-
tions system by considering the light intensities normalized in Lamb
units

I1,2(t) =
|µab|2(ga + gb)

4h̄2
gagbgab

|E1,2(t)|2 ,

and the phases f1,2(t) = \E1,2(t), where

|µab| =
s

pe0
l

3

(2p)3 h̄Aik

is the electric dipole moment between states a = 3s2 and b = 2p4

(i.e. the upper and the lower of the laser energy levels), ga and gb are
the decay rates in Paschen notation, h̄ is the reduced Plank constant,
Aik is the radiative decay rate between the laser levels, and e0 is the
dielectric constant of vacuum. The Table 1 contains the reference val-
ues of the above quantities for a Doppler broadened active medium in
presence of collisions.

Since the dynamics of the monobeam intensities I1,2(t) and of the
Sagnac phase y(t) = f1(t)� f2(t) are autonomous, i.e. not influenced
by the quantity f1(t) + f2(t), we retain the system of 3 differential
equations [7, 9]

İ1(t)
I1(t)

=a1 � b1 I1(t)� q12 I2(t) + 2r2

s

I2(t)
I1(t)

cos (y(t) + #2) (11)

İ2(t)
I2(t)

=a2 � b2 I2(t)� q21 I1(t) + 2r1

s

I1(t)
I2(t)

cos (y(t) + #1) (12)

ẏ(t) =ws + s1 � s2 + t21 I1(t)� t12 I2(t) + . . . (13)

+ r1

s

I1(t)
I2(t)

sin (y(t) + #1) + r2

s

I2(t)
I1(t)

sin (y(t) + #2) , (14)

where the real valued parameters a1,2, b1,2, q12,21, ws, s1,2, t12,21, r1,2,
and #1,2 are related to the complex ones A1,2, B1,2, C21,12, R1,2 by the
relations
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>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

A1,2 = c
L

⇣

a1,2
2 ± i ws+s1,2

2

⌘

B1,2 =
c
L

s

|µab|2(ga + gb)

4h̄2
gagbgab

b1,2

C12,21 =
c
L

s

|µab|2(ga + gb)

4h̄2
gagbgab

(q12,21 � it12,21)

R1,2 =
c
L

r1,2ei#1,2

, (15)

recall that L is the length of the optical cavity, the ratio c/L is called
free spectral range of the optical cavity and it is a very important de-
sign parameter for a RL. Here ws is the Sagnac frequency, a1,2 are the
excess gain minus losses coefficients, b1,2 are the self saturation coef-
ficients, q12,21 are the cross saturation coefficients, s1,2 the frequency
error coefficients, t12,21 are the null shift error coefficients, r1,2 are the
backscattering amplitude coefficients and #1,2 are the backscattering
angles.

2.1.3 RL standard outputs

The most important measured signal for RLs is the interferogram,
i.e. the signal obtained combining on a photo-diode the two beams
transmitted thought a mirror. The intensities of both beams are also
separately acquired with others photo-diodes on another mirror. In
this description only one measure for sampling time of the beat signal
and of the intensities is considered, moreover we are not accounting
for the dynamics of the amplification stages, as they are faster (⇠
104 Hz) than the characteristic frequencies of the system (⇠ 102 Hz)
[79]. The vector collecting all the outputs of the system at the time
intervals kTS reads

y(k) =

0

B

B

@

V1(k)
V2(k)
S(k)

1

C

C

A

+ w(kTs) , (16)

where TS is the sampling time, the vector w represents a white
noise stochastic process, and

8

>

>

>

<

>

>

>

:

V1(k) = c1 I1(kTs)

V2(k) = c2 I2(kTs)

S(k) = c3 |h1E1(kTs) + h2E2(kTs)|2
; (17)

here the constants ci and hi are real numbers which account for pho-
todetectors characteristics. It is worth mentioning that the parameters
ci and hi are also related to parameters of the electronic amplification
and digital conversion stages, and hence they may drift as the envi-
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ronmental conditions change. The interferogram signal S(kTs) can be
recast as

S(k) =c3h2
1 I1(kTs) + c3h2

2 I2(kTs)+ (18)

2c3h1h2

q

I1(kTs)I2(kTs) cos (y(kTs)) .

Here we anticipate that the steady state intensities I1,2 are usually
in the form of constant signals plus small modulations, so the phase
information in the interferogram is, at a first approximation, intro-
duced only by y(kTs). For this reason the interferogram signal is
regarded as the most important signal in the estimation of rotation
rates by means of RLGs. To estimate cos(y(kTs)) directly from S(kTs),
the linear trend c3h2

1 I1(kTs) + c3h2
2 I2(kTs) is removed, and the scale

2c3h1h2
p

I1(kTs)I2(kTs) is normalized to 1 over time intervals which
usually correspond to thousands of cycles. We stress that in general,
if we allow the intensities to have oscillatory parts, the interferogram
phase information is not given only by the oscillations of the Sagnac
phase. In fact oscillatory components would arise also from the non-
linear coupling between intensities, from the coupling between in-
tensities and the Sagnac phase, and finally from the addition of the
intensity signals. Therefore to estimate the Sagnac frequency of a RLG
one would need information on the full RL system state. This has of-
ten been misunderstood by the scientific community, which regarded
to the interferogram as the main output of the instrument, and to the
intensities as sort of auxiliary signals.

2.2 parameters of rl dynamics

We already noted that the RL equations depend on two sets of pa-
rameters with distinct physical origin: i) cold cavity parameters as-
sociated to dissipative and parasite scattering effects; and ii) active
medium parameters associated to atomic polarizability.

Correspondingly, the RL matrices in Eq.(9) can be written as

A ⌘ c
L

P

(0) � M , (19)

B ⌘ c
L

P

(2) (20)

where P

(0) and P

(2) are the 0-th and 2-nd order contributions to the
gas mixture polarizability and M is the dissipative linear coupling
matrix.
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2.2.1 Laser medium parameters

We now address to the study of the parameters related to He � Ne
laser system (Atomic Polarizability) avoiding the “Doppler limit” ap-
proximation usually made my Aronowitz [7]. The polarization P in
Eq.(5) is presented for the case of two opposite traveling TEM 00
beams. This leads to the terms P

(0) and P

(2) in the matrices A and
B of Eqs.(8),(19) and (20). The matrices P

(0) and P

(2) are given by

P

(0) =
G
2

 

z(0)(x1) 0
0 z(0)(x2)

!

, P

(2) = G

 

z(2)s (x1) z(2)c (x1,2)

z(2)c (x1,2) z(2)s (x2)

!

,

(21)
where G is the laser single pass gain, and z(0)(x1,2), z(2)s,c (x1,2) are

functions related to the atomic polarization which depends on the
detunings of the optical frequencies to the cavity center frequency
x1,2. The typical values of z(0)(x1,2), z(2)s (x1,2), and z(2)c (x1,2) for the
RL G-PISA tuned at the maximum of the gain profile, are listed in
Tab.2.

z(0)(xmax) 0.878 � 0.011 i
z(2)s (xmax) 1.107
z(2)c (xmax) 0.413 + 0.04 i
z(2)ms (xmax) 0.403 � 1.893 i
z(2)mc (xmax) 0.154 + 0.033 i

Table 2: Complex value of the polarization contributions as expressed in
Eq.(28) and Eq.(32) for the clockwise wave calculated at a detun-
ing xmax = 0.05 with respect to the center of the absorption profiles
of 20Ne and 22Ne.

The complex valued functions z(0)(x1,2), z(2)s (x1,2), and z(2)c (x1,2)
which allow us to estimate self- and cross- saturation parameters are
rather common in plasma physics, and were calculated for the first
time by Aronowitz with two counter-propagating laser beams [7]. His
model of plasma requires that the ratio h between homogeneous gab
and inhomogeneous G broadening line width is h ⌘ gab/G ⌧ 1. For
instance, in the experiment of ref. [9], the typical value of h is ' 10�2.
For gas mixtures with pressure 4÷ 8 mbar and temperature 300÷ 500
K, as in G-PISA, we have instead 0.2  h  0.5 and so we must per-
form a more general calculation of the atomic polarization. However,
we will follow the approach of Aronowitz for what concerns the series
expansion in powers of the electric fields describing the interaction
between radiation and atoms. Aronowitz showed that the complex po-
larization of the active medium in a gas He � Ne laser, expanded to
the third order in the field amplitude, can be written in the following
integral form
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P (3)(E1,2) = �2i|µab|2E1,2

gab

Z •

0
c

s
1,2(v) r

(2)(v, E1,2) dv , (22)

where |µab| is the electric dipole moment between states a and b, gab
is the homogeneous line width, v is the velocity of atoms, c

s
1,2(v) =

1/(ih + x1,2 ± v/u) is the complex susceptibility, u is the atomic mass
constant, and

r

(2)(v, E1,2) =
N e�

v2
G2

2gagbh̄G

⇣

1 � I1
1

1 + (x
0
1 + v/u)2

(23)

�ga + gb
gab

I2
1

1 + (x
0
2 � v/u)2

⌘

. (24)

is the second order population inversion. Here ga and gb are the
decay rates of the upper and lower energy level, N is the average
excitation inversion density, I1,2 are the normalized light intensities
of E1,2 expressed in Lamb units, and x

0
1,2 = (w0 � w1,2)/gab is the fre-

quency detuning to the natural line width ratio, w1,2 are the mode fre-
quencies, and w0 is the gain center frequency. It is worth mentioning
that the polarization depends on both amplitudes and frequencies of
the electrical fields. After a decomposition in simple fractions of the
rational part of Eq.(23) , the integral in Eq.(22) can be conveniently
evaluated by means of the plasma dispersion function

Z (y) ⌘ ZR(y) + iZI(y) =

1p
p

Z

R

e�x2

x � ih � y
dx =

i
p

pe�(h�iy)2
erfc (h � iy) ,

where erfc(·) is the complementary error function, and ZR and ZI
are the real and imaginary parts of the plasma dispersion function,
and are proportional to the spectral gain and dispersion profiles of
the unsaturated active medium, respectively.

The expression for the atomic polarization up to the 3-rd order
approximation reads

P (3)(E1,2) ⌘ c(E1,2)E1,2 (25)

=

p
pAZI (0)
gabgagb

⇣

z(0)(x1,2)� z(2)s (x1,2)I1,2 � z(2)c (x)I2,1

⌘

E1,2 ,(26)

where c(E1,2) is the cavity atomic polarizability, A = N|µab|2/(h̄G),
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>

:

z(0)(x1,2) =
Z (x1,2)
ZI (0)

z(2)s (x1,2) =
ZI(x1,2)(1 � 2h(h + ix1,2))

ZI (0)
+

+
2h � 2hZR(x1,2) (ih � x1,2)

ZI (0)

z(2)c (x) =
ga + gb

gab

h

x

Z I(x)x �ZR(x)h �Z i(x)(x � ih)
ZI (0) (h + ix)

, (27)

and x1,2 = ±(w � w1,2)/G is the frequency detuning to the Doppler
width ratio, Z I = [ZI (x1) +ZI (x2)] /2, ZR = [ZR (x1) +ZR (x2)] /2,
Z i = [ZI (x1)�ZI (x2)] /2. Using Eq.(25), the expression of r.h.s. of
Eq.(21), (8) can be identified with the coefficients of z(0)(x1,2), z(2)s (x1,2)

and z(2)s (x1,2) of Eq.(27), except for the constant laser single pass gain
G.

In our calculations we must take into account that usually a RL
cavity is filled with a gas mixture of two Neon isotopes. Thus the
matrix elements of Eq.(21) must be substituted by

8

>

>

>

<

>

>

>

:

z(0)(x1,2) = k0z(0)(x 0
1,2) + k00z(0)(x 00

1,2)

z(2)s (x1,2) = k0 z(2)s (x
0
1,2) + k00 z(2)s (x

00
1,2)

z(2)c (x) = k0 z(2)c (x
0
) + k00 z(2)c (x

00
)

, (28)

where the symbols 0 and 00 refer to the 20Ne and 22Ne isotopes,
k0 and k00 are the fractional amount of each isotope, and x

0
1,2, x

00
1,2 are

the detuning to the center frequency of each isotope. Practically, the
values of h, x and k are rescaled by the square root of the ratio of
the atomic mass of the two isotopes. As an example, we show in
Fig.3 the polarization of a 50-50

20Ne-22Ne gas mixture as the sum of
contributions arising from each Ne isotope, according to Eq.(28).

It is worth noticing that in the standard RL operation where the
rotational frequency is negligible respect to the modes frequencies
of the cavity, |x1 � x2| . 10�7, consequently the difference between
the polarization contributions for the 1 and 2 beams is very small,
|z(0)(x1)� z(0)(x2)| . 10�6. Therefore we will use the approximations
B1 ' B2 = B, from now on, by discarding the pedices 1, 2.

2.2.1.1 Multimode saturation coefficients

We address to the problem of calculating the cross-saturation coeffi-
cients z(2)ms (x), z(2)mc (x) for two multimode counter-propagating waves
E3,4, lasing at x3,4 = x1,2 + nc/L, n 2 Z, that arise at multimode tran-
sition of a RL.
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Figure 3: Plot of the computed gain (a) and dispersion (b) profiles of the
plasma polarizability in the RL cavity (continuous line), and of its
contributions from 20Ne isotope (dashed line), and 22Ne isotope
(dotted line), assuming I1 = I2 = I. The black lines represent
the unsaturated profile ( I ! 0), the blue and red lines represent
profiles saturated by signals of intensity I = 0.1, and I = 0.2,
respectively. The vertical dashed lines indicate the centers of the
broadening profiles of the Ne isotopes.
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The polarization components for the waves E3,4 at multimode thresh-
old is given by Eq.(22), provided that the subscript 1, 2 is substituted
with 3, 4 , and r

(2)(v, E1,2) is replaced with the following expression

r

(2)
m (v, E1,2) =

N e
� v2

G2

2gagbh̄G

⇣

1 � ga + gb
gab

I1
1

1 + (x3 � fm + v/u)2 (29)

�ga + gb
gab

I2
1

1 + (x4 � fm � v/u)2

⌘

(30)

where fm = nc/(LG). The expression for the multimode atomic
polarization reads

P (3)(E3,4) =

p
pAZI (0)
gabgagb

E3,4

⇣

z(0)(x3,4)� z(2)ms (x3,4)I1,2 � z(2)mc (x)I2,1

⌘

,

(31)
where

8

>

<

>

:

z(2)ms (x3,4) = 2h

2 ga+gb
gab

Z(x3,4� fm)�Z(x3,4)
⇤

fm(i fm+h)ZI(0)

z(2)mc (x3,4) =
h

x� fm
2

ga+gb
gab

(x� fm
2 )ZI (x4,3� fm)� h

2 (Z(x4,3� fm)+Z(x3,4)
⇤)

ZI(0)(h+i(x� fm
2 ))

.

(32)
In addition, for the cross saturation coefficients between 1 and 2

modes of fundamental and m-th mode, we have
8

>

<

>

:

q31,42 = Re
h

z(2)s (x3,4)
i

q32,41 = Re
h

z(2)c (x3,4)
i

. (33)

When more than one isotope is present in the gas mixture, one
must modifies Eqs.(32) using the weighted average of each isotope
contribution, as in Eqs.(28). As a final remark, we note that, for large
RL sensing the Earth rotation, the difference between the normalized
detunings of each m-mode is very small, e.g. |z(0)(x3) � z(0)(x4)| .
10�6. Consequently, the following approximation holds

8

>

<

>

:

z(2)ms (x3,4) ⇠ z(2)ms

⇣

x3+x4
2

⌘

z(2)mc (x3,4) ⇠ z(2)mc

⇣

x3+x4
2

⌘

.

2.2.2 Dissipative parameters

In contraposition with the active medium parameters, the dissipative
parameters are characteristics of the mirrors, and account for light
scattering inside the optical cavity. Since the effects described by these
parameters are dissipative effects, no detailed physical model for their
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calculation exists. For this reason the values of the dissipative param-
eters of a RL must be determined directly from the measured output
signals, in an identification framework. The elements of the linear
coupling matrix M are

M =

 

c
L

µ1
2 + iw1 � c

L r2ei#2

� c
L r1ei#1 c

L
µ2
2 + iw2

!

, (34)

where w1,2 = W1,2 � wr + c
L s1,2, µ1,2 are the cavity losses, r1,2 are

the backscattering coefficients and #1,2 are the backscattering phases.
The effects of these parameters in the dynamics of a RL is to account

for light scattering, each dissipative parameter is given by the sum
of contributions representing the cavity dissipative sources, e.g. the
mirrors. We stress that, in the case of an optical cavity with additional
scattering centers, the additional centers must be taken into account
to compute the dissipation parameters.

In Eq.(5) the complex current J, acting as a source, accounts for
dissipations. For the two fundamental conterpropagating laser modes
the latter current reads

J(E1,2) = s

s
1,2E1,2 + d

s
1,2E2,1 (35)

where the self interaction coefficients s

s
1,2 are reals, and the cross in-

teraction coefficients d

s
1,2 are complex numbers. A non zero imaginary

part of s

s
1,2 can account for a flow of the gas atoms in the ring cavity,

that lead to corrections to the nominal value of the frequency differ-
ence between the two beams. This effect is called Langimur flow, and
it has been previously reported and studied in the literature [82, 7].
This flow effect has been reported to be caused by asymmetries in the
geometry of the radio-frequency circuit of the RL. For modern high
sensitivity sensors this effect is carefully avoided, and the imaginary
parts of s

s
1,2 will not be considered in our treatment.

2.2.2.1 Mirror losses

During the process of light reflection on mirrors in the optical cavity a
small portion of the laser light is transmitted, absorbed and scattered.
The coefficients µ1,2, which are proportional to the self interaction
coefficients s

s
1,2, accounts for all these light losses in the RL model

[49]. Those quantities are also related to the optical quality factor Q
of the RL cavity by

Q1,2 =
4c

Lµ1,2
= wt1,2 ,

where t1,2 is the average decay time of photons in the cavity. For
super-mirrors of modern manufacture the losses are of the order of
some part per million, providing modern high sensitivity RLGs with
side ⇠ 1 m with quality factors ⇠ 1013.
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2.2.2.2 Backscattering coefficients

In the optical cavity, during RL operation, part of the light lost in the
former reflection processes is scattered from one beam to the oppo-
site traveling one. This retro-reflection is called backscattering. The
backscattering is modeled by the coefficients r1,2, representing the
relative amount of light scattered from beam 1, 2 in the direction of
propagation of the beam 2, 1, and the phases #1,2, representing the
relative phase shift between the backscattered and opposite traveling
beams [73]. If the RL is provided with n mirrors, we can decompose
the backscattering parameters as

r1,2ei#1,2 =
n

Â
j=1

r

(j)
1,2e

0

@

2pilj

l

+ e

(j)
1,2

1

A

, (36)

where l is the laser wavelength, lj are the optical paths between con-
secutive scattering centers, and r

(j)
1,2 and e

(j)
1,2 are the local backscatter-

ing amplitudes and phases of the j�th scattering center.

2.3 study of rl dynamics

Some insights are gained by writing Eqs.(12) in the new coordinates
I = (I1, I2)

T , and X = log (I1/I2)y, as

8

>

>

>

<

>

>

>

:

d
dt log(I) = 2Re

2

4

0

@

A1

A2

1

A� B.I +

0

@

R2e�X

R1eX

1

A

3

5

d
dt X = A1 �A2 � (B � C)(I1 � I2) +R2e�X +R1eX

(37)

which reduce to Eqs.(12) after one identifies y = Im [X] , and assumes
C = 0. By translating y of an initial phase y0 = p + (#1 + #2)/2, it
also comes out that the dynamics of the system depends only on the
value of the scattering angle difference # = (#1 � #2)/2 . We assume
in what follows that #1,2 = ±#.

The matrix form of Eq.(37) is suitable for a general system analysis
and identification. In fact, if the system of Eqs.(37) is written for a
reciprocal ring (i.e. A1 = A2, B1 = B2, C21 = C12, and R1 = R2),
it is clearly invariant under the transformation (E1, E2 , W1, W2) �!
(E2, E1 , W2, W1) ; thus the corresponding phase portrait is topolog-
ically equivalent to a torus [68]. Therefore we have two kinds of
asymptotic time behaviors depending whether or not the orbits in
the phase space can be continuously shrunk to a point. For behaviors
of the first kind, Eqs.(37) exhibit a fixed point, the beat frequency is
equal to zero and the light intensities are constant (laser switched off
or locked-in).
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Conversely, the behaviors of the second kind are limit cycles regimes,
characterized by nonzero beat frequency of the the counter-propagating
waves (single mode laser operation). When the reciprocal conditions
do not hold, the qualitative characteristics of asymptotic time behav-
ior are left unchanged, due to the invariance of the phase portrait
topology under continuous variation of RL parameters. The study of
Eqs.(12) has been conducted by several authors in the past, both with
numerical and analytical approaches. Analytic solutions of Eqs.(12)
have been found in the case of I1 _ I2 [73], C21 = C12 and R1 = R⇤

2
[51], or Re[C21] = Re[C12] = B1 = B2, [21]. However, general analytic
solutions of the RL equations system with non reciprocal parameters
are not known, and therefore perturbative solutions are necessary to
study actual RL. Approximated analytical expressions for the time
evolution of the Sagnac phase provide, nevertheless, an useful refer-
ence to better understand the role of the Lamb parameters noise on
the estimation of the angular velocity ws.

2.3.1 Lamb parameters effect on RL performances

We present in the following the periodic solution of the RL dynamics,
derived from Eqs.(12) in the case where: I1/I2 = k and, t12 = t21 = 0.
In this case the phase equation takes the form:

ẏ = ws � c
L

h

r1k sin(y � #) +
r2

k
sin(y + #)

i

. (38)

Eq.(38) admits the following solution:

y(t) = 2 arctan

"

WL1 + Wp tan
� 1

2 Wpt
�

ws + WL2

#

, (39)

where WL1 = c/L(kr1 + r2/k) cos #, WL2 = c/L(r2/k � kr1) sin # and
Wp =

q

w

2
s � W2

L1 � W2
L2.

From Eq.(39), for WL1,L2 ⌧ ws, we get

w(t) ' ws � WL2 cos wst � WL1 sin wst , (40)

where w denotes the detected Sagnac frequency and wBS ⌘ �WL2 cos wst
�WL1 sin wst represents the frequency modulation of the Sagnac sig-
nal.

In Figure 4 we report the results of a Monte Carlo simulation of
106 s of RL dynamics evolution with I1/I2 = k. We considered the
following noise sources in the system: a white frequency noise, with
standard deviation of 10�1, on w(t) (mimic of the output of AR(2)
frequency detection algorithm) and a random-walk noise on the pa-
rameters r1,2, k, and #. The Allan variance of w(t) has been calculated
for four different cases, denoted with (a), (b), (c) and (d).
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Figure 4: Simulated Allan deviations of the estimated rotation rate. See the
text for details.

In case (a) (r1,2, k, #) are independent and vary in random walk
with relative step size of (10�2, 10�3, 10�2) respectively. In case (b)
the only varying parameter is k, with a step size of 10�3. In case
(c) all parameters vary as in (a), but the processes r1 and r2 have
been correlated with a correlation coefficient of 0.9, while # varies
around the nominal value of 0 rad with a random walk step size of
10�4 rad. In case (d) all parameters vary as in (b), but the process #

varies around the nominal value of p/2 rad with a random walk step
size of 10�4 rad.

It can be easily observed that the noise contribution coming from
the parameters fluctuation is transferred to the noise of the measured
Sagnac frequency exhibiting the same random walk plus white noise
pattern. The relative noise on the laser parameters is converted into
frequency noise by the factor c/L meaning that the larger is the cavity
perimeter, the larger is the rejection of the laser parameters noise. In
addition, it is worth noticing that the backscattering phase # plays a
crucial role in transferring the fluctuations of r1, r2 on w. It determines
a strong reduction of the output noise for values close to # = p/2
(trace (d)). In this regime, also known as conservative coupling regime,
the backscattered photons interact destructively and their influence
on the nonlinear interaction between the two intracavity beams and
the active medium is minimized.

2.3.2 Steady state approximate solutions

To provide suitable algorithms for parameter estimation, we study the
steady state regime of Eqs.(12). By inspection of the right hand side of
Eqs.(12), one finds that the general steady state solutions are periodic.
In particular, without backscattering (r1,2 = 0), Eqs.(12) exhibit steady
state solutions of the type
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8

>

>

>

<

>

>

>

:

I1(t) = a1
b

I2(t) = a2
b

y(t) = wst ,

(41)

for t ! •. In the presence of backscattering, the above solutions
switch to periodic steady state solutions and exhibit oscillatory be-
haviors, and the backscattering can be treated as a perturbative sinu-
soidal forcing term. We can study the system oscillation around its
unperturbed steady state by means of the time dependent perturba-
tion theory [32]. To this aim we introduce the expansion parameter l,
which is assumed to be of the same order of magnitude of r1,2 and
write:
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>
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>

>
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>

>

:

I1(l, t) =
•

Â
k=0

l

k

k!
I(k)1 (t)

I2(l, t) =
•

Â
k=0

l

k

k!
I(k)2 (t)

Y(l, t) =
•

Â
k=0

l

k

k!
y

(k)(t)

(42)

For k = 0, substituting the latter into the Eqs.(12), we recover
the solution (41) with the positions I(0)1 (t) = a1/b, I(0)2 (t) = a2/b,
y

(0)(t) = wst. The approximated solutions can be calculated itera-
tively from the series expansion in powers of l of (42) into the dy-
namic of Eqs.(12). A second order approximations of the solutions
reads:
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:

I1(t)' a1

b

+ 2r2
p

a1a2
a1 cos(# + wst) + ws sin(# + wst)

b

�

a

2
1 + w

2
s
� � 2r1r2 sin(2#)

bws

I2(t)' a2

b

+ 2r1
p

a1a2
a2 cos(# � wst)� ws sin(# � wst)

b

�

a

2
2 + w

2
s
� +

2r1r2 sin(2#)
bws

Y(t)' (ws � 2r1r2 cos(2#)
ws

)t +
r1

q

a1
a2

cos(# � wst) + r2

q

a2
a1

cos(# + wst)

ws
,

(43)
where we made the additional approximation of keeping the leading
terms in w

n
s , with n � 2. Solutions (43) show a correction to the

mean intensity level and pushing and pulling in the phase difference,
as well as the presence of the first harmonic of ws. A slightly more
accurate solution can be obtained by the Poincaré-Lindstedt method
[80], i.e. by substituting in Eq.(43) the approximate angular frequency
(at the second order) with the exact angular frequency w, which can
be directly obtained from experimental measurements.
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2.4 calibration and identification procedures

With aim at applying Kalman filtering to RLG data for the estimation
of the Sagnac frequency from the measured light intensity {I1,2(n)} ,
and interferogram {S(n)}time series. In this way we can firstly es-
timate and then remove the parameters drifts effect in the detected
beat frequency, thus increasing the long-term stability of the estimate
of the rotation rate. To achieve also an accurate estimation of the ro-
tation rate, we devise an identification procedure and a calibration
method for the parameters associated to the non linear laser dynam-
ics.

2.4.1 Dissipative parameters identification

The existence of a limit cycle greatly simplify the steady state analysis
of the RL dynamics because asymptotic solutions are periodic with
period T = 2p/w. In fact, we can construct the functional

J(I, X, A, B) ⌘
�

�

�

�

�

d
dt

log(I)� 2Re

" 

A1

A2

!

� B.I +

 

R2e�X

R1eX

!#

�

�

�

�

�

2

L2(T)

,

(44)

where k·kL2(T) ⌘
q

R T
0 (·)2dt is the norm in the Hilbert space of

L2 T-periodic signal, and search for its minimum value to derive a
statistics of parameters estimation. From the perturbative solutions
(43), we can write the steady state intensities approximate up to the
first harmonic terms

8

>

>

>

>

<

>

>

>

>

:

I1(t) = I1 + i1 sin (wt + f1)

I2(t) = I2 + i2 sin (wt + f2)

X(t) = 1
2 log

h

I1(t)
I2(t)

i

+ iwt

. (45)

where I1,2, i1,2, and f1,2 are the intensity offsets, monobeam modula-
tion amplitudes and phases, which can be readily measured from RL
outputs; it follows also that the backscattering phase differences can
be simply estimated by b

#1,2 = f1,2, so that it holds b# = f1 � f2. Thus,
after substituting Eqs.(45) into Eq.(44), we can estimate the cavity loss
parameters µ1,2 and r1,2 as

(µ̂1,2, r̂1,2) = argmin
µ1,2,r1,2

{J(I, X, A, B)} .

The new identified parameters read
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:

µ̂1,2 = a0 � b

✓

I1,2 +
i2
1,2

I1,2

◆

� i1i2 I2,1(Lw/c)cosbe
4I2

1,2
�

�q

✓

i2
2,1+4I2

2,1
4I1,2

� i2
1,2 I2

2,1
2I3

1,2
+ i1i2 I2,1 cos be

I2
1,2

+
i2
2,1 cos 2be

4I1,2

◆

r̂1,2 = i2,1(Lw/c)
2
p

I1 I2
⌥ i1,2

q

I1,2
I2,1

q sin be

, (46)

where b

e = b

e1 � b

e2, and a0 is the excess gain for zero losses. Unfor-
tunately, the minimization of the functional in Eq.(44) is ill-posed for
the full set of Lamb parameters, and so different approaches for their
measurement must be investigated.

2.4.2 Experimental calibration

Here we discuss the theory used and the different monitors employed
in our calibration procedure, and give details on their derivation and
implementation.

2.4.2.1 Ring Down time measurement

The spectroscopic technique known as “Ring Down Time measurement”
(RDT) allow us to estimate mirror losses from the impulse response
of a linear system. In fact, from Eq.(8) written with G = 0, we have

˙

E = M.E , (47)

and so the system shows two exponential decays, which reflect
losses parameters. If we switch off the laser excitation at the time
t = 0, the initial conditions are E(0) =

h

p

I1(0),
p

I2(0)eif0
i

, where
I1,2(0) are the initial intensities, and f0 is the initial phase difference
equal to (#1 � #2)/2.

The solutions of Eq.(47) for the light intensities, expanded in series
of w � c

L r1,2, c
L µ1, c

L µ2 up to the first order, reads
8

<

:

I1(t) = I1(0) e� c
L µ1t

I2(t) = I2(0) e� c
L µ2t

, (48)

The experimental procedure to measure the light decays is per-
formed by recording with a fast detector, (photomultiplier Hamamatsu
H7827012) loaded on a 1 kW impedance, after a rapid switch off of
the radio-frequency discharge. The switching-off operation has to be
much faster than the laser decay time. In our setup we obtain a suf-
ficiently rapid switch off by grounding one of the two electrodes of
the radio-frequency discharge by means of a mechanical switch. A
validation of this technique is obtained by measuring the decay time
of the plasma fluorescence which results to be of the order of few mi-
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croseconds. Finally, we performed an exponential fit of the collected
data.

2.4.2.2 Calibration of Intensities in Lamb units

To get accurate estimates of the Sagnac frequency, the light intensities
input of the EKF must be calibrated in Lamb units. An accurate exper-
imental method consists in the generation of additional longitudinal
mode to the two fundamental cavity modes. This dynamical change
is known as “multimode transition”, and has been widely studied in
the literature, mainly for medium size and large size RLs. The multi-
mode transition can be achieved by increasing the laser output power
and the laser single pass gain until new modes appear. The value
of the mean light intensity for the multimode transition expressed
in lamb units Ith, is commonly defined multimode threshold [34, 33].
Different calculations of the multimode threshold were proposed [33],
taking into account only the plasma dispersion function, evaluated at
frequencies of fundamental and higher order modes. To increase the
accuracy of the multimode threshold its convenient to account for
cavity losses and back-scattering in the balance of gained and lost
photons for longitudinal lasing modes.

The threshold condition for multimode transition can be calculated
from the stability analysis of the RL system. Starting from Eqs.(37),
we can write the following system of equations for the intensities I1,2
of two fundamental modes

˙

I = Re
�

D(E⇤) ˙

E

�

= Re (D(E⇤).AE �D(I).B.D(E⇤)E) , (49)

where I = (I1, I2)
T . If a new m�mode (lasing at w1,2 +mc/L) adds

to the system, its dynamics will depend on 4 intensities of light I1,2,3,4.
The evolution of the system is still ruled by Eqs(49), provided that we
substitute the 2 ⇥ 2 matrices A and B with the corresponding 4 ⇥ 4
matrices, calculated by means of the plasma dispersion function for 4

intensities (see Subsection 2.2.1).
We now consider the system in the initial configuration (I1, I2, 0, 0)T

and look for the condition of the m-th mode growth. The lower diag-
onal block of the Jacobian matrix of the 4 modes dynamical system is
given by

0

B

B

B

B

@

· · · · · · · · · · · ·
· · · · · · · · · · · ·
0 0 a3 � q31 I1 � q32 I2 0
0 0 0 a4 � q41 I1 � q42 I2

1

C

C

C

C

A

,

(50)
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where a3,4 are the gain minus losses of clockwise and counter-
clockwise m-th mode, and q31,41,32,42 are the cross saturation coeffi-
cients between fundamental and m-th modes propagating in clock-
wise and counter-clockwise direction. By the Lyapunov linearization
theorem, if the eigenvalues of the above matrix lie in the strictly pos-
itive complex half-plane, the equilibrium point is unstable, and the
new laser modes can start to grow [69]. Therefore an higher m�mode
can be excited if a3 � q31 I1 � q32 I2 > 0 and a4 � q41 I1 � q42 I2 > 0.
Since the frequency difference of the two counter-propagating beams
is much smaller than the Doppler width, we have q31 ⇠ q42 ⇠ qms,
q32 ⇠ q41 ⇠ qmc . Thus, to derive a threshold condition for the multi-
mode operation we can take the average of the two inequalities and
write

ām > q̄m I ,

where ām = (a3 + a4)/2, I = (I1 + I2)/2 and q̄m = (qms + qmc)/2,
and so the threshold condition for the intensity Ithis

ām = q̄m Ith . (51)

This condition is not sufficient to determine the multimode thresh-
old because active laser parameters depend on the value of the single
pass gain at the threshold Gth, which is also unknown. However, we
can add to Eq. (51) a second equation representing the balance of the
average intensity for the fundamental mode in steady state, and write
the equation system

8

>

<

>

:

Gth z(0)m (x)� µ̄ = 2IthGth

h

z(2)m (xm)
i

Gth z(0)(x)� µ̄ = IthGth

h

z(2)s (x) + z(2)c (x) 1+3d

2
I

1�d

2
I

i

, (52)

where xm is the normalized detuning averaged over the beams 3
or 4, dI = (I1 � I2)/(I1 + I2), µ = (µ1 + µ2)/2, z(0)m , z(0)s and z(0)c
are polarization contributions from the plasma dispersion function
which are computed in Subsection (2.2.1). As m-modes are very close
in frequency, their losses can be assumed with good approximation to
be equal. The quantity dI can be estimated from the acquired intensity
channels V1,2 as dI = (V1 � V2)/(V1 + V2). It is worth noticing that
the measure of dI is independent of multiplicative change of scale.
The multimode condition can be derived by solving Eq.(52) in the
variables Gth and Ith,
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:

Ith =
Dz(0)

�

1 � d

2
I
�

Dz(2) + d

2
I

⇣

Dz(2) � 4z(2)c (x)
⌘

Gth =
µ̄

z(0)m (x)� Ith z(2)m (xm)

, (53)
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where Dz(0) = z(0)(x)� z(0)m (x), Dz(2) = z(2)s (x) + z(2)c (x)� 2z(2)m (xm)
represent the difference between the fundamental and m-modes of
the 0th and 2nd population inversion contributions. The resulting value
Ith provides the calibration of the voltages {V1,2(n)}, acquired by pho-
todetectors as detailed in Subsection 2.1.3, to the intensities {I1,2(n)}
in Lamb units. In addition, we have also derived an estimate of Gth
that will be used as the initial value of the gain monitor.

2.4.2.3 Population Inversion Monitor

The intensity of the plasma fluorescence line at 632.8 nm provides a
good observable for monitoring the relative variations of the atomic
population in the upper laser level. In order to perform an on-line
measurement of the laser gain, we coupled part of the plasma fluo-
rescence to a multi-fiber bundle. The collected light containing all the
spectral contribution of the He � Ne discharge, is filtered by a line
filter 1 nm wide around 632.8 nm and detected with a photodiode.
The photocurrent is amplified with a transimpedance stage with a
gain of 1 GW. The voltage Vp of the photodiode is used as an op-
tical monitor of the laser gain by recording the dependence of the
output powers I1 and I2 on Vp, after losses have been estimated. The
calibration of the monitor signal is obtained by performing intensity
steps in the neighborhood of the monomode working regime of the
RL, exploiting the identification procedure described in Eq.(46), and
a linear least squares fit. In fact, the second equation of the system
in Eq.(52), representing the balance among gain, losses and mean in-
tensities, holds for any value of G and I. By solving this equation
for the variable G, and using N measurements {I(n)} and {dI(n)}
(n = 1, 2, 3 . . . , N) in the monomode regime, we obtain N estimates
of the gain signal

G(n) =
µ̄

z(0)(x)� I(n)
⇣

z(2)s (x) + z(2)c (x)
1+3d

2
I (n)

1�d

2
I (n)

⌘ ,

where the mean losses value µ̄ is supposed to be constant and equal
to the mean of RDT estimation.

To account for the experimental setup, we can consider a simple
linear measure model G = a Vp + b for the gain monitor signal Vp,
where the constants a and b have to be estimated by the linear least
squares fit
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where G = [G(1), . . . , G(n)] is the vector of gain estimates. The
estimated constants ba, bb and Gth allow us to monitor the laser single
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pass gain by acquiring the signal Vp without affecting the continuous
operation of a RL.

2.4.2.4 Spectroscopic probe of the gain medium

Essential information about the gain medium can be extracted by ob-
serving the Doppler absorption of the plasma at 640.2 nm using a tun-
able laser crossing. This is a closed transition of Neon and can be
easily interrogated by probing the He� Ne plasma through the pyrex
allowing the RL radio-frequency excitation. We setup a frequency
tunable ECDL (Extended Cavity Diode Laser) crossing the He � Ne
plasma through the pyrex capillary . From this measurement one can
get a precise estimation of the Doppler broadening, as well as of the
isotopic composition of the gas. An example of this measurement is
given in Fig. 15, where a standard He � Ne gas mixture has been
studied by injecting a scanning laser frequency around 640.2 nm.

2.4.3 Estimation of ws by EKF

Knowledge of the Lamb parameters ba1,2 ,br1,2 and b

#, together with the
gain G separately acquired, allow us to set up an EKF for the estima-
tion of the rotation rate b

ws. The EKF state variables are the R3 vector
X(t) ⌘ [I1(t), I2(t), y(t)]T. The dynamics model is given by Eqs.,
with the addition of the model error as a zero mean, white, stochas-
tic vector field v(t) with variance Var[v(t)] ⌘ Q, where Q is a 3 ⇥ 3
covariance matrix that accounts for the effects of unmodeled dynam-
ics, for instance, identified parameter errors, calibration errors, and
numerical integration inaccuracies. The EKF prediction step, which
corresponds to the integration of Eqs.(12) over the time interval Ts, is
carried out using the RK4 Runge-Kutta routine. In the discrete time
domain, the model of the measurement process reads {y(n)} =
{X(n)} + {w(n)}, where w(n) is zero mean, white, stochastic vec-
tor field (observation noise) with variance Var[w(n)] ⌘ R, and R is a
3 ⇥ 3 covariance matrix. In the standard experimental set up of RLGs
[I1(t), I2(t), y(t)] are measured by independent sensors, and so we
can assume that R is diagonal, with diagonal elements the observa-
tion noise variances s

2
I1

, s

2
I2

, s

2
y

which can be conveniently calculated
through the level of white noise in the power spectrum of {y(n)}.

The backscattering frequency is estimated from the filtered chan-
nels bI1,2(n), b

y(n), the identified parameters ba1,2, br1,2, b#, and the ex-
ogenous parameter b as

b

wBS =
c
L

2

4

br1

s

bI1
bI2

sin( by � b

#) +br2

s

bI2
bI1

sin( by + b

#)

3

5

where, for simplicity, we have dropped the index (n) from time
series. The Sagnac frequency is then estimated from the difference
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b

ws = ḃ

y � b

wBS, where the numerical derivative of b

y has been com-
puted by the “5 point method” [53] designed to reject the derivative
amplification of the noise.

2.4.4 Pre-filtering scheme implementation

The data are acquired at a sampling frequency of 5 kHz (Ts = 200 µs).
To remove the oscillating component, intensity signals are low-pass
filtered with a first order Butterworth filter with 1 Hz cutoff frequency.
The quantities I1,2 are estimated by averaging the decimated intensi-
ties over a time interval of 10 s (i.e. 5 ⇥ 104 samples). On the other
side, to calculate the modulation i1,2 and phases f1,2, the intensities
are first band-passed around the fundamental Sagnac band [95÷ 125]
Hz by means of a Butterworth filter, and decimated by a factor 2. The
decimation procedure has been carried out by the tail recursive rou-
tine “Zoom and Decimation of a factor 2n (ZD(n)), where each itera-
tion step is composed by a half band filter stage with discrete transfer

function H(z) =

✓

z3 + 2z2 + 2z + 2
4z3 + 2z

◆5

, followed by a downsampling

by 2. The ZD(n) procedure ensures a linear phase filter response at
least for n = 3 iterations, as no appreciable phase distortion was ob-
served in simulated sinusoidal signals. The resulting data are then
demodulated with a digital lock-in using as reference signal the dis-
crete Hilbert transform of the interferogram, and setting the integra-
tion time to 10 s. A schematic of the parameter estimation procedure
is reported in Fig.5. In addition, the phase of the two monobeam os-
cillating components is determined by the discrete Hilbert transform,
and their difference is estimated by unwrapping the phase angle and
taking its average over 10 s. As a concluding remark on the parameter
estimation procedure, we mention that the problem of filtering very
long time series has been solved by the “overlap and save” method,
which is an efficient algorithm for avoiding the boundary transients
due to finite length of digital filters.

2.5 results and discussion

We here describe the implementation of the Lamb parameter estima-
tion procedures for simulation tests, and then for the G-PISA and
G-WETTZELL RLGs, and the results obtained. The two rings employ
different types of laser discharge circuits and diagnostic sensors, and
different informations about the rings orientations were available. We
implemented the subtraction of the laser systematic effects in the beat
frequency of G-PISA with and without the calibration of the experi-
mental apparatus. For the RLG G-WETTZELL the calibration of the
experimental apparatus could not have been performed up to now.
When no calibration is provided the numerical values needed, e.g.
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Figure 5: Schematic of the parameter estimation procedure, where LP !
lowpass Butterworth filter, BP ! bandpass Butterworth filter, ZD
! Zoom and Decimation routine, HT ! Hilbert transform (see
text).

the laser gain and the calibration constants of the detectors, are set to
some reasonable values.

2.5.1 Simulation results

The reliability of the parameter estimation routine is tested by Monte
Carlo simulations of the dynamics of Eqs.(12) followed by the estima-
tions of Lamb parameters from the simulated time series of I1,2 and y.
We run 104 simulations of Eqs.(12) allowing a1,2 and r1,2 to vary ac-
cording to normal distributions with mean as in Tab.3 and standard
deviation equal to 10% of their means. In addition, b is assumed con-
stant, and #1,2 uniformly distributed in [0, p/2). In each simulation,
we have compared the numerical RK4 solution of Eqs.(12) and approx-
imated analytical solution (43) evaluated with the same Lamb parame-
ters. We found that they are in a very good agreement, with means of
the relative errors on I1(t), I2(t) and y(t) of �6.4⇥ 10�7, �6.2⇥ 10�7

and �1.5 ⇥ 10�5, and standard deviations of 4.6 ⇥ 10�6, 4.6 ⇥ 10�6

and 1.3 ⇥ 10�6, respectively.
To numerically assess the performance of the parameter estimation

procedure, we run a simulation of 6 hours in which a1,2, r1,2, #1,2 and
ws fluctuate according to independent random walk processes with
self-correlation time of 1 hour. To reproduce the experimental behav-
ior of a RLG, the time drift of ws, which mimic the effects of local tilts
and rotations, is a factor of 5 lower than the auto-correlation times
of the other parameters. We superimposed to the simulated data an
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c/L 5.5 ⇥ 107Hz
a1,2 ⇠ 10�6

b 5 ⇥ 10�5

q 6.5 ⇥ 10�6

r1,2 ⇠ 2 ⇥ 10�7

t 180 rad/s

Table 3: Reference values of the Lamb parameters used in the simulation
of G-PISA dynamics. The contribution of r1,2 and t to the Sagnac
frequency is of the order of 1.5 Hz and 10�2 Hz, respectively.

additive white noise, with SNR= 102 for the beam intensities and
SNR= 5 ⇥ 103 for the interferogram. Such order of magnitudes are
routinely achieved in large RLGs. The results we got are summarized
in Fig. 6, Fig. 7 and Fig. 8.

The overall accuracy of the Lamb parameter estimation procedure
is good, with a relative standard deviation of 3⇥ 10�3 and 4⇥ 10�3 in
the estimation of a1,2, and r1,2, respectively. The absolute error in the
estimation of # is 3 ⇥ 10�3 rad. The attained accuracy is not far from
the lower bound ⇠ 10�4 associated to the level of the observation
noise of {I1(n)}, {I2(n)} and {y(n)}. The capability of the EKF in
increasing the time stability and the resolution of the gyroscope has
been tested with a 6 hours simulation of the RL dynamics. We use the
typical parameters of G-PISA as given in Tab. 3, their variations were
simulated as in the parameter estimation tests. We used a step size of
0.2 msec to integrate the Eqs.(12).

The results are summarized in Fig.9, where we compared the Allan
variance of AR(2) and EKF frequency estimations. We conclude that,
for this simulation with typical parameters of middle-size rings, the
rotational resolution increases by a factor of 10 while the minimum
of the Allan deviation shifts from 60 s to 360 s.

Then we have studied the bias induced in the estimate of the Sagnac
frequency by the approximations made in Eq.(46). The parameters
a1,2, r1,2 and # are simulated as independent random walks with start-
ing value as in Tab.3, correlation time of half of the simulation length
300 s, and relative step size of 10�2. The initial value of the backscat-
tering phase # is assumed uniformly distributed in [0, p/2]. We find
that the relative accuracy of the Sagnac frequency estimation is few
parts in 105.

Moreover, the Monte Carlo simulations show that the precision and
accuracy of the identification procedure increases with the dimension
of the ring, as the values of Lamb parameters decrease linearly with
the free spectral range; e.g. for a square ring with a side of ' 1, 5 and
10 m we found that the relative frequency accuracy is few parts in
105, 108, and 109, respectively. Other Monte Carlo simulations were
run by appropriately biasing the intensity time series, to mimic a sys-
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Figure 6: Histograms of the relative errors (â1,2 � a1,2)/a1,2 that affect the
estimation of Gain minus losses parameters calculated with 2 ⇥
104 realizations of the RL dynamics. (a) Histogram relative to a1 :
mean 1.4 ⇥ 10�3 and standard deviation 2.9 ⇥ 10�3; (b) histogram
relative to a2 : mean �2.5 ⇥ 10�4 and standard deviation 3.9 ⇥
10�3 .

Figure 7: Histograms of the relative errors (r̂1,2 � r1,2)/r1,2 that affect the
estimation of backscattering coefficients calculated with 2⇥ 104 re-
alizations of the RL dynamics. (a) Histogram relative to r1 : mean
1.1 ⇥ 10�3 and standard deviation 4.6 ⇥ 10�3; (b) histogram rela-
tive to r2 : mean 1.3 ⇥ 10�3 and standard deviation 3.2 ⇥ 10�3.

Figure 8: Histogram of the absolute errors #̂ � # that affect the estimation
of backscattering phase calculated with 2 ⇥ 104 realizations of the
RL dynamics; mean �4.3 ⇥ 10�4 rad and standard deviation 2.8 ⇥
10�3 rad.
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Figure 9: Allan deviation of the rotation rate estimated by AR(2) method
(dots) and EKF (open diamonds) using 2 ⇥ 104 seconds of the
Monte Carlo simulation with random walk of Lamb Parameters.
For comparison, we also plot the Allan deviation of the simulated
rotational drift (open triangles), and the Allan deviation of the EKF
estimation after the subtraction of the rotational drift (dash dotted
line).

tematic error in their calibration in Lamb units or acquisition process.
It results that the corresponding relative error in the Sagnac frequency
estimation mainly depends on the values of r1,2, t and #. In particular,
for the typical G-PISA parameters in table 3, the relative frequency
error scales linearly with the intensity error, and it turns out to be
' 1 part in 104 times the intensity relative error. Finally, we studied
the effects of systematic errors of the laser active medium parameters.
The end result of these Monte Carlo runs is that the accuracy of the
Sagnac frequency estimation is dominated by systematic errors of the
single pass gain. For instance, by biasing the relevant active medium
parameters b, q and t of a relative error of 10�1, 10�2, and 10�3, the
corresponding relative error in the Sagnac frequency turns out to be
10�4, 10�5, and 10�6, respectively.

2.5.2 Analysis of G-PISA data

We applied our identification and estimation routines for the subtrac-
tion laser dynamics from the beat frequency signal of the instrument
G-PISA. EKF and parameter identification were used on data both
with and without the experimental calibration of the laser gain pa-
rameter and photodetectors proposed.

2.5.2.1 G-PISA experimental setup

The G-PISA cavity is fixed to a granite table that, in its turn, is firmly
attached to a special monument completed in 2012 [79]. The monu-
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ment is made of reinforced concrete. The optical setup of G-PISA is
shown in Fig.10. The Sagnac signal and the single beams are detected
with large area (5.8 ⇥5.8 mm2) Si photodiodes (Hamamatsu S1227-
66BR), followed by a transimpedance amplifier (FEMTO LCA-4K-1G)
with a gain of 109W and bandwidth of 4 kHz. On the corner opposite
to the one for the Sagnac detection an optical beat setup is mounted
between the clock-wise beam and the stabilized He � Ne reference
laser. The beat is detected by an avalanche photodiode whose current
is amplified by a transimpedance amplifier (FEMTO HCA-400M-5K-
C) with a gain of 4 kW and a bandwidth of 400 MHz. During G-PISA
operation, the detuning of the clock-wise wave is kept constant by a
perimeter stabilization loop [79], acting on the position of two oppo-
site mirrors of the cavity. The ring laser frequency is locked in this
way to the value where Re[z(0)(x1,2)] attains its maximum.

2.5.2.2 Sagnac Frequency Estimation results without calibration

We run the parameter estimation routine on the G-PISA data without
making use of the calibration procedure. The photodetector signals
V1,2(t) are converted to dimensionless intensities I1,2(t) (Lamb units),
using the following relation

I1,2(t) = cLamb
V1,2(t)
Gphae f f

⌘ cLambPout 1,2, (54)

where: Gph = 109 V/A is the photo-amplifiers gain, ae f f = 0.4 A/W
is the quantum efficiency of the photo-diodes, and cLamb = 3.5 ⇥
106 W�1 is the calibration constant to Lamb units. Pout 1,2 is the output
power in Watt. The parameter estimation for G-PISA is completed by
the acquisition of the laser gain G.

In Fig. 11 we show the comparison between the time series mea-
sured on the RLG G-PISA and the signals computed by our alghoritm
after the parameter estimation step, according to the schematic in Fig.
5.

In Fig. 12 we show the time series of the identified parameters and
of b, for the RLG G-PISA.

After the estimation of the G-PISA parameters, we apply the EKF
to the light intensities and to the interferogram. However, the imple-
mentation of the EKF requires an estimation of the covariance ma-
trices Q and R of observation and model errors. Typically Q and
R are considered as tuning parameters and set on the base of trial-
and-error procedures. In fact, we started from an initial raw estima-
tion for the diagonal elements of Q and R using simulations and
power spectra of I1,2 and y, respectively. Then we tuned these values
searching for the minimum of the Allan variance of ws and came to
Q = diag(10�8, 10�8, 10�10) and R = diag(10�8, 10�8, 10�8).
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Figure 10: The experimental setup for the rotation measurement and the
calibration of the RL parameters. PMT: photomultiplier tube,
TA: transimpedance amplifier, LF:line filter, CL: Collimating lens,
ECDL: extended cavity diode laser, TA gain for G-PISA is 1 GW.
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Figure 11: Comparison of the estimated and observed time series of
I1(t), I2(t) and sin(y(t)) using the experimental data of G-PISA.

Figure 12: Time series of the a1,2, b, r1,2 and #. The parameters a1,2, r1,2 and
# have been estimated using 2⇥ 104 seconds of experimental data
of G-PISA.
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Figure 13: Power spectrum of the interferogram data around the Sagnac fre-
quency ⇠ 107.3 Hz.

The performances of parameter estimation and EKF were limited
by the environmental conditions of G-PISA, e.g. local tilts and spuri-
ous rotations induced by the granite slab that support the instrument
and some electronic disturbances, as it can be seen in Fig.13, showing
the power spectrum of {S(n)}.

In figure 14 we report the Allan deviation of the Sagnac frequency
estimated with AR(2) and EKF.

2.5.2.3 Measurement setup for calibration

To increase the level of precision and accuracy in the rotation-rate
measurements, cold cavity and active medium parameters (Neon atomic
kinetic temperature Tp, the total gas pressure p, and isotopic compo-
sition k0 , k00) should be directly measured on the experimental appa-
ratus. The experimental setup for the calibration of a RLG is sketched
in Fig.10. To measure the ring-down times of the clockwise and coun-
terclockwise mode, the beams exiting the corner opposite to the one
dedicated to the intensities monitors are injected into two single mode
fibers, and detected by two photomultiplier (Hamamatsu H7827012).
Two diagnostics have been arranged for the estimation of the active
medium parameters. A monitor for the gain variations and an absorp-
tion spectroscopy setup where a tunable diode laser interrogates the
plasma across the laser pyrex capillary. In order to perform an on-line
measurement of this quantity, we coupled part of the plasma fluores-
cence to a multi-fiber bundle and detect it with a photodiode after
a line filter 1 nm wide around 632.8 nm, as sketched in Fig.10. The
photocurrent is amplified with a transimpedance stage with a gain of
1 GW. The voltage Vp of the photodiode is used as an optical monitor
of the laser gain by recording the dependence of the output powers
I1 and I2 on Vp, after losses have been estimated.
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Figure 14: Allan deviation of the rotation rate estimated by AR(2) method
(dots) and EKF (open diamonds) using 2 ⇥ 104 seconds of experi-
mental data of G-PISA. An increase of a factor of 1.5 in rotation–
rate resolution and of a factor of 2 in the time stability is observed.

The calibration of the monitor signal is obtained by performing in-
tensity steps in the neighborhood of the monomode working regime
of the RL, exploiting the identification procedure described in Section
2.4, and a linear least squares fit.

The RL G-PISA is operated with a gas mixture of 50% 20Ne and
50% 22Ne, at a total pressure of 7.5 mbar. The monument of G-PISA
is oriented toward the local North direction and allows to hold the
granite table with a tilt angle equal to the latitude of the laboratory.
The positioning of monument has been done by using topographic
references (angle with the north) and an inclinometer (angle with the
local vertical). The estimated error in the monument orientation was
estimated to be less than < 1°. In this configuration, the Sagnac fre-
quency signal due to the Earth rotation is maximum, and the rotation
rate of the instrument is more stable in time. This is the best condition
for reducing the environmental disturbances, and for the systematic
study of the laser dynamics.

2.5.2.4 Sagnac Frequency estimation results with calibration

We implemented the estimation and calibrations routines for G-PISA
described in the previous sections. In addition, we also implemented
a data quality criterion that discards large outliers due to electronic
spikes. To get an estimation of the plasma temperature, gas pressure
and isotopic concentration, we fit the normalized measures of a laser
diode on the standard He � Ne gas mixture to the function z(0)(x)
in Eq.(27), see Fig.15. To account for detuning uncertainties in the
laser probe, we scaled the experimental abscissa so that x

0 = a0x + b0,
x

00 = a00x + b00. The fit parameters are a0, b0, h

0, k0, a00 =
p

22/20a0,
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Figure 15: Doppler profile of the closed optical transition in Neon at 640.2
nm, allowing for the Neon temperature estimation. The mea-
surement is taken in typical operation conditions for a plasma
of He � Ne standard mixture at 4.5 mbar. Using the standard
Matlab procedure for fitting custom functions, we get a reduced
R-squared of 0.9947 and the fitting parameters a0 = �4.9 ± 0.1,
b0 = �2.44 ± 0.05, k0 = 0.65 ± 0.02, h

0 = 0.27 ± 0.02.

b00 =
p

22/20b0, k00 =
p

22/20k0, and h

00 =
p

22/20h

0. From the fit
results, we get TNe = (360 ± 12)K, giving h20 ⇠ 0.27 ± 0.02, and
h22 ⇠ 0.28 ± 0.02, see Fig.15 for details.

In Fig.16 we report the results of the ring down time measurements,
the losses for the two beams were estimated as µ1 = (1.136 ± 0.02)⇥
10�4, µ2 = (1.146 ± 0.02)⇥ 10�4. Notice that within the precision of
the fit it is µ1 ⇠ µ2.

Fig.17 shows the calibration line of the single pass gain as a func-
tion of Vp, and the experimental data used for the linear fit.

Once the calibration of the experimental apparatus has been per-
formed, we have used the monobeam intensity offsets, modulation
amplitudes and phases, and the gain monitor to estimate both cold
cavity and active medium parameters. The intensity and interfero-
gram data, sampled at 5 kHz, were collected in two days. We com-
pared the performances of the EKF routine devised with AR(2), the
standard frequency detection algorithm for RL beat note [63].

Fig.18 shows the histograms of the AR2 and EKF estimates. Note
that the EKF mean is shifted with respect to AR2 mean (effective re-
moval of the frequency null shift), and that the EKF standard devi-
ation is ⇠ 10 times smaller than the standard deviation of AR2 es-



2.5 results and discussion 45

Figure 16: Plot of RDT data sampled at 10 MHz with the fitting functions
n1,2 exp(�µ1,2ct/L) for clockwise (a) and counter-clockwise (b)
beams, respectively. The reduced R�squared from Matlab fitting
toolbox are R2

1 = 0.9969, and R2
2 = 0.9955, and the fitting param-

eters are µ1 = (1.136 ± 0.02)⇥ 10�4, µ2 = (1.146 ± 0.02)⇥ 10�4,
n1 = (1.898 ± 0.005)⇥ 10�1, n2 = (1.982 ± 0.005)⇥ 10�1.
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Figure 17: Plot of single pass gain of G-PISA as a function of the gain mon-
itor Vp. Each point represents the average of 10 measurements
and the corresponding error bar is their standard deviation. The
linear fit gives a = 9.87⇥ 10�5, b = 1.303⇥ 10�4

sa = 1.57⇥ 10�6,
and sb = 2 ⇥ 10�7.

timator. The G-PISA long-term stability and accuracy have been so
increased.

Moreover, Fig.19 displays the Allan deviation of the two estimates
(AR(2) and EKF), and the reference curve of the Allan deviation for a
frequency signal corrupted by shot noise.

Table 4 summarizes the systematic error contributions to rotation
rate accuracy of G-PISA. For middle size RLG backscattering phenom-
ena are the most important systematic error source. The noise filtering
algorithm developed in this work promises to be also effective in im-
proving the long term stability of larger RLGs. For instance, we know
from Monte Carlo simulations that to filter out a relative backscat-
tering contribution of 1 part in 108 from the Sagnac frequency, the
inaccuracy on the laser dynamics parameters should be of the order
of 1 part in 105.

2.5.3 Analysis of G-WETTZELL data

We have applied the laser systematic subtraction algorithm to the
RLG G-WETTZELL. The intensity and interferogram data, sampled
at 2 kHz, were collected in almost one month. We could not apply
the calibration routine because the auxiliary measurements for esti-
mating the laser gain and the calibration constants for the detectors
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Figure 18: Histograms of the estimates of AR(2) (pale gray) and EKF (dark
gray) during 2 days of G-PISA data. The grey rectangular area
represents the residual uncertainty on the predicted Sagnac fre-
quency, due to geometric and orientation tolerances. Note that
the EKF mean is shifted with respect to AR(2) mean (removal of
null shift contribution), and that the EKF standard deviation is
⇠ 10 times lower than the AR(2) standard deviation (increasing
of long-term stability).
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Figure 19: Allan deviations of AR(2) (upper curve) and EKF (lower curve)
rotational frequency estimates. The straight line represents the
shot noise level of G-PISA for a cavity quality factor of 5.4 ⇥ 1011

and an output power of 4 nW.
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Error Source Freq. error
Back-scattering R2e�X +R1eX+ c.c. 0.4695 Hz

Null Shift t (I1 � I2) �8.7 ⇥ 10�4 Hz
Atomic Scale Factor s1 � s2 5.56 ⇥ 10�6 Hz

Cross Dispersion I (t21 � t12) 1.75 ⇥ 10�6 Hz

Table 4: Contributions to the accuracy budget of G-PISA from systematic
errors in the estimate of Lamb parameters.
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Figure 20: Plot of the means I1,2 (top box), of the modulations i1,2 (middle
box) and of the phases f1,2 as estimated by the pre-filtering rou-
tine from the time series of I1(t), I2(t) and S(t) ⇠ sin(y(t)) using
the experimental data of G-WETTZELL.

were not available. However, the engineer that operates the ring gave
us the nominal values of calibration constants for detectors, round
trip losses, pressure and temperature of the gas mixture, so we were
able to complete our analysis. However, to achieve greater precision
in the systematic subtraction, we firstly collect all the computed cor-
rections to the beat frequency and then fit them to experimental data
on time periods of several days, in this way we retain good results
even without the experimental calibration.

In Fig.20 we show the results of the pre-filtering procedure, note
that the ratio between the monobeam modulations i1,2 and the monobeam
means I1,2 is two order of magnitude smaller than in G-PISA data, this
is due to the greater dimensions of the G-WETTZELL optical path.

In Fig.21 we show the results of the laser parameter identification
procedure, it should be noted that, as we have no experimental cali-
bration available, the units of a1,2 and r1,2 are arbitrary.
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Figure 21: Time series of the a1,2, r1,2 and #1,2 estimated using the experi-
mental data of G-WETTZELL.

In Fig.22 we show good correlations between our estimation of the
laser systematics and AR(2). The selected data correspond to several
days in which the laser parameters does not vary significantly.

In Fig.23 we finally show the Allan deviation of AR(2) after the sub-
traction of the estimation of the laser systematics, for the 180 h of the
second plot of Fig.22. We note that i1,2 and f1,2 exhibit larger varia-
tions than I1,2, therefore light backscattering is the main systematic
error source. In fact, the backscattering subtraction by our methods
improved the Allan deviation on the 105 s timescale.
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Figure 22: Comparison between the AR(2) estimation of G-WETTZELL beat
frequency (black and blue lines) and the estimation of the laser
systematics (red lines). In the second plot the mean values of the
signals have been removed.
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without ( black line ) the subtraction of the laser systematics.





3
T H E R L G M O D E L : C AV I T Y G E O M E T RY

In this Chapter we address the study of the light path in resonant
cavities. A model based on geometric optics is proposed to compute
the laser beams position for given mirrors displacements. By exploit-
ing the Fermat’s principle, we develop a novel method to compute
the beam directions in resonant optical cavities formed by spherical
mirrors, as a function of mirror positions and curvature radii. These
results are of some importance for the design and alignment control
of the optical cavities of high accuracy RLGs. Afterwards we present a
method to decompose the mirror coordinate matrix of a square RL, in
order to separately account for shape and pose of the resonant cavity.
On the one hand, this decomposition allows to distinguish between
changes in the shape and changes in the rigid displacement of the res-
onant cavity; on the other hand, it provides a bijective map between
the coordinates of the RL mirrors and their distances.

3.1 computing the laser beam path in optical cavities

In three-dimensional resonant optical cavities, laser light travels a
closed path formed by N > 2 mirrors that are centered at the ver-
tices of non-planar polygons (a polygon is non-planar if its vertices
do not lie in the same plane). The cavity has a perimeter length p, and
encloses a vector area a. With such geometric properties we can form
the compactness ratio of a ring cavity ks ⌘ a/p, which is the relevant
geometrical quantity for the absolute calibration of RLGs [35, 59]. Gen-
erally, the increase of the optical path length p results in higher sensi-
tivity measuring devices and, at the same time, in more demanding
requirements for the mirrors positioning or beam alignment. Indeed,
the long term stability of a cavity also decreases as a function of its
size. The reasons thereof is twofold: i) the intrinsic noise limiting the
sensitivity of a cavity is the shot noise, and its magnitude turns out
to be inversely proportional to p; and ii) changes of the environmen-
tal conditions (e.g. temperature and pressure drifts) during measure-
ment processes induce deformations of the optical cavity which result
in a beam-jittering noise with magnitude almost proportional to p.
Even if a trade off can eventually be made between the intrinsic and
beam-jittering noises, to increase sensitivity and stability of an optical
cavity, the latter noise must be reduced as much as possible. In order
to be less sensitive to beam-jittering noise, an optical cavity can have
either a monolithic or eterolithic designs. In the monolithic approach,
one exploits an ultra low expansion coefficient material (e.g. Zerodur

53



54 the rlg model : cavity geometry

or Invar) to form a “rigid” reference frame for the mirrors, and may,
in case, add some passive stabilization of the cavity geometry by sta-
bilizing pressure and temperature of the environment. For instance,
the 4 m side square cavity of G-WETTZELL [60], nowadays the most
sensitive and stable RLG for geodetic and seismic applications, has a
monolithic design. However, an heterolithic design of optical cavities
should be much more effective to fight against mirror displacements
when RLs must be large and arranged in triaxial configurations [14].
In such approach, mirrors are fixed to a concrete or granite frame and
equipped with handlers to react against changes in their relative posi-
tions, and so stiffening the geometry of the apparatus. The geometry
can be also optimized to reduce the cavity sensitivity to the beam-
jittering noise, e.g. by adjusting the beams path to regular polygonal
shapes. Clearly, the heterolithic design requires also the identification
of suitable signals, provided e.g. by some metrological precision sys-
tem, proportional to mirror displacements.

The calculation of the beam directions in resonant optical cavities
is relatively recent [85, 57]. In particular, generalized ray transfer ma-
trices analysis is based on the optical axis perturbation, by means
of a suitable coordinate system, and ray tracing methods iteratively
propagates beams until a closed polygonal configuration is reached.
On the other hand, the geometric Newton algorithm and the Fermat’s
principle allow us to calculate efficiently the beams position in a cav-
ity as a function of the mirror positions and orientations. In particular,
the beams position of a cavity made of spherical mirrors can be cal-
culated starting from the positions of their centers of curvature. The
calculation of the beam path is the first step to develop efficient con-
trol strategies to keep fixed either the geometry of a cavity and the
relative angles among different cavities, which is the most demanding
requirement for the application of a triaxial system of RLs to funda-
mental physics [14].

3.1.1 Notation and Definitions

We assume a knowledge of the theory of finite dimensional smooth
manifolds and covariant differentiation. We refer to the books [1, 48]
for a review on differentiable manifolds and covariant differentiation.
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3.1.1.1 Notation

E Euclidean space E .

M,N ✓ E Embedded Submanifolds M,N ✓ E .

x 2 M Element x of the manifold M.

f : M ! R Real valued function on M.

f̄ : E ! R f̄ = f on M ⇢ E .

F(M) The set of smooth real valued functions on M.

Fx(M) The set of smooth real valued function defined near x 2 M.

TxM The tangent space to M at x 2 M.

xx 2 TxM The tangent vector xx to M at x.

Xx(M) The set of smooth vector fields on M near x.

x 2 Xx(M) Smooth vector field x : x 7! xx on M at x.

DF : TxM ! TF(x)N The tangent map of F : M ! N at x.

∂ f (x) 2 TxE Euclidean Gradient of f : E ! R.

∂

2 f (x) : TxE ! TxE Euclidean Hessian of f .

h·, ·iM : TxM⇥ TxM ! R Riemannian metric on M.

r : TxM⇥Xx(M) ! Xx(M) Riemannian connection on M ⇢ E .

grad f (x) 2 TxM Riemannian Gradient of f : M ! R.

Hess f (x) : TxM ! TxM Riemannian Hessian of f .

S2 Unit Sphere
�

x 2 R3, x

T
x = 1

 

^ Canonical cross product between vectors of R3.

⌦ Kronecker product

d : Rn⇥n 7! Rn⇥n d(A)ij =

8

<

:

Aij i = j

0 i 6= j

The Riemannian connection r is determined by the condition

D hxx, cxiM [hx] =
⌦�r

hx x

�

x , cx
↵

M +
⌦

xx,
�r

hx c

�

x

↵

M , (55)

where x 2 M, hx 2 TxM, and x, c 2 Xx(M), i.e. it is the unique
connection that is compatible with the Riemannian metric h·, ·iM of
M. Moreover, if M = E , we have that the covariant derivative associ-
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ated to the Riemannian connection of the vector field x with respect
to hx is simply the directional derivative, i.e. r

hx x= Dx[hx].
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Figure 24: Parametrization of the position of the laser spot on the k-th mir-
ror. With respect to the inertial frame origin O, the position of
laser spot is zk = rkxk + ck. The mirror Mk has radius rk. Rela-
tive to the mirror center ck, the position of the laser spot can be
parametrized as rkxk, xk 2 S2.

3.1.2 Problem Statement for a RL cavity

We consider an optical cavity formed by N spherical mirrors. Indicat-
ing with zk the coordinates in R3 of the position of the light spot on
the k-th mirror with respect to a common reference frame, the cavity
has a perimeter length p = ÂN

k=1 k zk � zk+1 k, and encloses a vector
area a = 1

2 ÂN
k=1 zk ^ zk+1, where zN+1 := z1. Applying the formalism

of geometric optics, we can model the k-th spherical mirror Mk as a
sphere of center ck 2 R3 and curvature radius rk 2 R+. Making use
of the mirror center position ck, the position of the laser spot on the
k�th mirror can be expressed as zk = ck + rkxk, where rk is the mirror
curvature radius and xk 2 S2. For a graphical representation of this
fact, see Figure 3.1.24.

A configuration for the laser beams in the optical cavity is defined
as the ordered set of points X = (x1, . . . , xN), which account for
the beams positions in the cavity. In addition, we define the ma-
trix of centers C = (c1, . . . , cN), and the matrix of curvature radii
R = diag (r1, . . . , rN). We refer to R and C as the parameters of the
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optical cavity. Given the cavity parameters R and C and a configura-
tion X, the corresponding laser beams path as well as the associated
(scalar and vector) fields p, a, and ks (see Section 3.1) can be computed.
Since not every configuration X is allowed, we have to compute the
physical beam position given the cavity parameters R and C. To this
aim we resort to the Fermat’s principle, and impose the stationarity
of the optical path p with respect to X. To this end, we use a geomet-
ric approach, exploiting explicitly the fact that the laser spot at each
mirror is constrained to live on a sphere.

A modern formulation of the Fermat’s principle is that rays of light
traverse the path of stationary optical length with respect to variations
of the path [3]. In our model for resonant cavities the optical path
length is function of the laser spot position {(x1, . . . , xN) : xk 2 S2}
with parameters C and R. This set is is isometric to the cartesian prod-
uct of N unit 3-spheres S2. As each unit 3-sphere inherits a smooth
differential structure from R3, the set of X inherits a smooth differ-
ential structure from R3⇥N [1]. Therefore {(x1, . . . , xN) : xk 2 S2}
corresponds to an embedded submanifold of R3⇥N . This manifold is
usually called the Oblique Manifold of dimension 2 ⇥ N. In general,
the Oblique Manifold of dimension n ⇥ m is defined as

OB(n, m) =
n

X 2 R(n+1)⇥m, d
⇣

XTX
⌘

= Im⇥m

o ⇠= Sn ⇥ · · ·⇥ Sn
| {z }

m

,

(56)
and its tangent space at X is

TXOB(n, m) =
n

Y 2 R(n+1)⇥m : d(XTY) = 0m⇥m

o

, (57)

which means that each column of X is orthogonal to the corre-
sponding column of Y, with respect to the (Riemannian) metric of
Rn+1, hx, yiRn+1 = x

T
y. It is worth mentioning that OB(n, m) inherits

the Riemannian metric of Rn⇥m, i.e. hX, YiOB(n,m) = tr
�

XTY
�

.
A physical configuration X̂ is any element of the set of stationary

points for the optical path p, defined as

{X 2 OB(2, N) : TXOB(2, N) 3 grad p(X; C, R) = 0} . (58)

The set (58) can contain 2 or more elements being p a continuos
function defined over a compact set OB(2, N), also the elements of
(58) depends on the values of C and R. Finding closed form expres-
sions for the elements of (58) is generally not possible, therefore we
resort to a numerical algorithm. Interest is put in computing the laser
beams positions on mirrors for optical cavities slightly misaligned
from an ideal design model, in which the beams path is known, there-
fore a local approach to the optimization is justified. In particular, we



3.1 computing the laser beam path in optical cavities 59

make use of a geometric version of the classical Newton method that
takes into account the geometry of the search, in order to speed up
calculations retaining accuracy.

3.1.3 Review of the Geometric Newton Algorithm

In the recent literature many authors addressed the geometric for-
mulation and extension of classical algorithms, e.g. the Newton Algo-
rithm. We follow the works of J.P. Absil and others [1, 2], that outlined
an intrinsic formulation of the Newton algorithm to embedded sub-
manifolds. The starting point is the well known iterative scheme of
the multidimensional Newton algorithm for a function f : Rn 7! R.
The alghoritm involves the computation of the Euclidean gradient
∂ f (x), and the inverse of the Euclidean Hessian ∂

2 f (x)[h]. In this
Section we review the extensions of the Newton algorithm to find sta-
tionary points of functions defined on an embedded submanifold of
Rn [1].

Given a smooth manifold M and a real valued function f 2 F(M)
defined on M, we build at each iteration xk 2 M a quadratic model
for f [1]

f (xk, hxk) = f (xk) + hgrad f (xk), hxki+
1
2
hHess f (xk)[hxk ], hxki (59)

where a connection r is used in the computation of the Hessian.
The stationary points of the local quadratic model are given by the
Geometric Newton Equation

Hess f (xk)[hxk ] = �grad f (xk) (60)
hxk 2 TxkM (61)

that provides a descent direction for the real valued function h =
kgrad f k. Note that the equation lives in the tangent space at the cur-
rent iterate. Once the descent direction hxk has been computed solving
(60), a map from TxkM to M is needed to compute the next iterate.
Such a map, in principle, should be the exponential map associated to
the Riemannian connection of M. In practice, especially when com-
puting the exponential map is expensive, a suitable approximation
of the exponential map (that agrees up to the second derivative at
the origin) can be used. Such a map is called a retraction [1], when
computing the exponential map is difficult, computations can be sub-
stantially speeded up. The basin of attraction of the (geometric) New-
ton algorithm can be increased by employing a line search method to
adjust the step length in the optimal descent direction hxk . Since we
are searching for stationary points, the function h will be minimized
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along the search direction. Here we employ the efficient line search
algorithm, named Armijo’s backtracking line search method [6]. Once
the search direction and the step size have been found, the next iter-
ate is computed and the procedure described above is repeated until
a termination condition is met.

The geometric Newton algorithm with line search can be summa-
rized as follows

Algoritmo 3.1 Geometric Newton with line search.
Input: x0 2 M, real valued function f on M
Output: Sequence of iterates x1, . . . xn

1. Search Direction: solve (60) in hxk .

2. Step Size: find tk = arg min
l

kgrad f (R (lhx))k2

3. Update: Set xk+1 = Rx(tkhxk)

In the following, we detail how to solve the search direction sub-
problem (60). If the manifold M is embedded in the Euclidean Space
E , we can exploit the geometry of the ambient space for computation
purposes. In fact, we can represent both points in M and vectors in
TxM as elements of E ' TxE , and use the Riemannian connection of
E to compute covariant derivatives on M.

geometric newton equation Let M denote a manifold en-
dowed with a Riemannian metric h·, ·iM. Given a point x 2 M, and
a function f 2 F(M), the Newton equation update for f at x is a
system of equations linear in the argument hx, as Hess f (x)[hx] is a
linear operator in the argument hx.

The Riemaniann gradient and Hessian 8x 2 M are defined by
8

<

:

hgrad f (x), xxiM = D f (x)[xx]

Hess f (x)[hx] =
�r

hx grad f
�

x

, (62)

and they can be evaluated exploiting the geometry of the ambient
space E . The approach of Ref.[1] shows how to compute a represen-
tation of vectors in TxM by orthogonal projection of vectors in TxE .
This representation is handy since elements in TxE can be represented
in the same way of elements of E itself, therefore the same represen-
tation in E is used for elements in M, TxM and TxE . Moreover, in
Ref.[1] its shown how to compute the Riemaniann gradient and Hes-
sian of f , and thus exploit second order information on the function
f defined on M, by means of the orthogonal projections of the gra-
dient and Hessian of f̄ , where f̄ is any smooth extension of f in
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E ◆ M. The gradient and Hessian of f̄ in E , ∂ f̄ and ∂

2 f̄ [h], are called
Euclidean gradient and Hessian.

tangent space projection To derive grad f and Hess f , start-
ing from the corresponding operators in E , we use the projection tool
developed in ref. [1].

The orthogonal projection operator

Px : TxE ! TxM (63)
xx 7! Px(xx)

maps every tangent vector xx of TxE into its orthogonal projection
onto TxM. In addition, every tangent vector xx in TxE admits the
unique decomposition xx = hx + nx, in terms of elements hx 2 TxM
and nx 2, where (TxM)? is the normal space of M at x, i.e. the
orthogonal complement of TxM to TxE . We have hx = Px(xx) and
vx = xx � Px(xx).

riemannian gradient The connection between the Riemannian
gradient grad f of a function f from M to R, and ∂ f̄ , the Euclidean
gradient of a local smooth extension f̄ of f into E is given by

8x 2 M, grad f (x) = Px
�

∂ f̄ (x)
�

, (64)

x here denotes the canonical immersion of x 2 M into E [1].

riemannian hessian In analogy with the Riemannian gradient,
the Riemannian Hessian Hess f of f at x, can be computed as the
orthogonal projection onto TxM of the tangent map of the extension
to E of the vector field grad f . Denoting with

D grad f̄ (x) : TxE 7! TxE (65)

the directional derivative in E of grad f regarded as a vector field on
E , we have

8x 2 M, Hess f (x)[h] = Px
�

D grad f̄ (x)[h]
�

. (66)

We stress that in general D grad f̄ (x) 6= D∂ f̄ (x) = ∂

2 f̄ (x), where ∂

2 f̄
is the Euclidean Hessian of the extension f̄ of f [1]. At this point we
can employ the projection operator Px to compute grad f and Hess f
as functions of ∂ f̄ , ∂

2 f̄ , Dgrad f̄ and x. It is not straightforward to
give a general expression for D grad f̄ from (64), and usually this
relation is expressed in terms of the Weingarten map, also known as
shape operator [2]. For our applications, it is enough to have a specific
expression of D grad f̄ (x) for the Oblique Manifold OB(2, N).
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3.1.4 The Newton Algorithm on OB(2, N)

A point X 2 OB(2, N) and a tangent vectors xX, hX to a point X can
both be represented using 3 ⇥ N dimensional matrices, i.e. as points
and tangent vectors of the ambient space R3⇥N . Therefore, the orthog-
onal projection PX(xX) of xX 2 TXR3⇥N and the directional derivative
D grad f̄ (X) can be represented using with 3 ⇥ N dimensional matri-
ces, as shown in Table 5. Further details and the derivation of the
these expressions are given [15].

M OB(2, N)

x X

Px(xx) PX(xX) := xX � d
�

XT
xX
�

X

D grad f̄ (x)[hx] D grad f̄ (X)[hX] = PX
�

∂

2 f̄ (X)[hX]
�� d

�

XT
∂ f̄ (X)

�

hX

Table 5: Expression for the coordinate representation of D grad f̄ (x)[hx] and
of Px(xx) on the Oblique manifold OB(2, N) .

solution to the newton equation Recalling that the New-
ton update (60) is a system of linear equations with solution set be-
longing to TXOB(2, N), which is a subspace of TXR3⇥N , we illustrate
a way to choose a basis of TXOB for computing the solution. The
change of basis matrix will be given as a nonlinear function of X, ex-
ploiting the vectors X and grad f (X), and employing computation of
outer products and Kronecker products of R3 vectors. The idea here
is to exploit the geometric structure OB(2, N), seen as the Cartesian
product of N unit spheres. We denote with grad fk(X) and Xk the N
columns of the matrices grad f (X) and X, and with ek the canonical
basis row vectors of RN . We also consider the map vect (·) that vec-
torize the matrix xX 2 R3⇥N into a 3N dimensional column vector
vect xX.

Proposition 1. Let X 2 OB(2, N) and f : M 7! R such that grad fk(X) 6=
0, k = 1, . . . , N. Then (60) for f and x is equivalent to

H(X)y = g(X) , y 2 R2N (67)

where
 

g(X)

0N⇥1

!

= T(X)vect grad f (X), (68)



3.1 computing the laser beam path in optical cavities 63

T(X) = (vect v1, . . . , vect vN , vect w1, . . . , vect wN , vect q1, . . . , vect qN)
T,

(69)
H(X) is the principal minor of T(X)H̃(X)T(X)T with indexes ranging

from 1 to 2N, H̃ik(X) =< ei, Hess f (X)[ek] >. Here vk = grad fk(X)⌦
ek, wk = (grad fk(X) ^ Xk)⌦ ek, qk = Xk ⌦ ek, and ek are the canoni-
cal basis vectors of RN .

The proof of Proposition 1 can be found in the Appendix. We con-
clude the discussion noticing that, if a column grad fk(X) = 0, in
the vector hX representing the solution the k-th column can be taken
equal to the null vector of R3, and one can rearrange the basis vectors
avoiding to account for this three components in the linear equation
system (60).

retraction for OB (2 ⇥ N ) Despite the fact that each Rieman-
nian manifold has a natural retraction in the exponential map, differ-
ent retractions are usually employed to minimize the computational
costs. For OB (2, N ), the map

R(X , x X ) = (X + x X )d
⇣

(X + x X )
T (X + x X )

⌘�1/2
, (70)

i.e., the normalization to unit norm of each column of the matrix
X + x X , is a retraction for OB (2, N ) [1, 2, 15].

armijo backtracking line search An effective and compu-
tationally efficient line search algorithm is Armijo’s [6, 1]. At each
iterate, the step size tk is choose as tk = a b

l , with l the smallest
integer such that

h(x) � h (R( tk hx )) � �sgk Dh(x) [hx ] , (71)

for a sufficiently small parameter s, with x denoting the current
iterate and hx the current descent direction. Here a > 0, and b,
s 2 (0, 1) are design parameters. Condition (71) assure the conver-
gence of the line search if the function h(R( tk hx )) to be minimized is
sufficiently smooth (continuously differentiable with Lipschitz deriva-
tive).

discussion and convergence In Alghoritm 3.1 at each itera-
tion the Newton equation (60) is solved for the function f , then the
function h(x) = kgrad f (x)k2 is minimized along the computed
direction. In this way we need to compute only Hess f and grad f ,
avoiding the computation of Hess h, that would require to compute
the third derivative of f .
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Proposition 2. Alghoritm 3.1 converges to the stationary point x⇤ of the
function f with quadratic convergence rate, providing that, in a neigh-
borhood I (x⇤ ), grad f 6= 0, Hess f is injective, and the first iterate is
x0 2 I (x⇤ ) [1].

Proof. Let x denote a generic alghoritm iterate, note that by hypoth-
esis the Newton vector hx, solution of (60), is well defined. The Rie-
mannian gradient of h reads

grad h = 2Hess f [grad f ] , (72)

evaluating the expression Dh(x)[hx] we get

Dh(x)[hx] =2
D

grad f (x), Hess f (x)[Hess f (x)�1[�grad f (x)]]
E

(73)

=� 2 kgrad f (x)k2 (74)
=� 2h(x).

The sequence {hxk} is gradient related to {xk}. In fact by hypoth-
esis and (72) it holds grad h(xk) 6= 0, therefore, using (73) we get
�2 supI(x⇤) h(xk) = supI(x⇤) Dh(xk)[hxk ] < 0. By the smoothness of
the functional Hess f and of the vector field grad f , since I(x⇤) is
a compact set, we can conclude that {hxk} is bounded. Hence Algo-
rithm 3.1 fits in the framework of Theorem 4.3.1 and Theorem 6.3.2
[1], stating that every accumulation point of {xk} is a critical point of
h, so that the local quadratic convergence holds.

Note that the Armijo condition (71) for the function h and the direc-
tion hx can be rewritten as

h(x)� h (yk) < �sgkDh(x)[hx] = 2sgkh(x) (75)
h (yk) > (1 � 2sgk) h(x) , (76)

where yk = Rx(gkhx), x = xk, hx = hxk , and k is the iteration
number.

3.1.5 Application to Square RL Cavity

We will discuss in details the case of an optical cavity made by N = 4
spherical mirrors whose centers approximately lie on a planar square.
The practical interest in studying this configuration is to address the
design and the control of the GINGER array of RLs [14, 75]. With four
mirrors, E = R3⇥4 and M = OB(2, 4).

The configuration and parameters of the optical cavity are

X = (x1, . . . , x4) 2 OB(2, 4) , (77)
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C = (c1, . . . , c4) 2 R3⇥4 , (78)

and
R = diag (r1, r2, r3, r4) 2 R4⇥4 ; (79)

In matrix form, the coordinates of the light spots on the mirror
surface are given by

Z = XR + C , (80)

where the matrix Z = (z1, z2, z3, z4).
The 4 vectors that describes the sides of the polygonal cavity, i.e.,

the vectors which join the spots on consecutive mirror surfaces (see
Fig.27), are given by yk = (zk+1 � zk), k = {1, 2, 3, 4} with z5 :=
z1. The length of the optical path, the vector area and compactness
ratio are p(X; C, R) = Â4

i=1 ||yi||, a(X; C, R) = 1
2 ÂN�1

k=1 zk ^ zk+1, and
kr(X; C, R) = a(X; C, R)/p(X; C, R), respectively. Defining

Y = ZM, M =

0

B

B

B

B

@

1 0 0 �1
�1 1 0 0
0 �1 1 0
0 0 �1 1

1

C

C

C

C

A

,

the optical path length can be written as

p(X; C, R) =tr
✓

d
⇣

YTY
⌘1/2

◆

, (81)

Note that the square root operator (·)1/2 acts component wise on
the diagonal entries of the matrix, i.e. d(W)1/2 = diag(w1/2

11 , w1/2
22 , w1/2

33 , . . . , w1/2
nn ).

The Euclidean gradient and Hessian of the extension p̄ of the func-
tion p satisfies the following relations

h∂ p̄, xXi = tr


d
⇣

YTY
⌘�1/2

d
⇣

YT
xXRM

⌘

�

, (82)

and

⌦

∂

2 p̄[h], xX
↵

= tr


d
⇣

YTY
⌘�1/2

d
⇣

MTRx

T
XhXRM

⌘

�

� (83)

tr


d
⇣

YTY
⌘�3/2

d
⇣

YT
hXRM

⌘

d
⇣

YT
xXRM

⌘

�

. (84)

Let us consider a square optical cavity of side L, and four mirrors
with the same curvature radius, i.e.
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C⇤ = (r � Lp
2
)

0

B

B

@

1 0 �1 0
0 1 0 �1
0 0 0 0

1

C

C

A

, (85)

R⇤ = diag(r, r, r, r) ,

so that p(X⇤; C⇤, R⇤) = 4L. The point X⇤ = �(r � L/
p

2)�1C⇤ lays
in OB(2, 4), and one can check that X⇤ is an extremum of p using
(82) and (83), and the formulas of Table 5. The eigenvalues of Hess p
at the point X⇤ reads

S (Hess p(X⇤)) = �
p

2r ·
h

(1, 1, 1, 1, 1, 1, 1, 1)� (86)

(0, 0,
Lp
2r

,
Lp
2r

,
p

2L
r

,
p

2L
r

,
p

2L
r

,
4Lp

2r
)
i

. (87)

The eigenvalues of Hess p are non-zero provided that the ration
L/r is not equal to

p
2 , 1/

p
2, or

p
2/4 which corresponds to un-

stable optical cavity configurations[]. For a stable optical cavity the
Riemannian Hessian has non-zero eigenvalues, therefore X⇤ is an iso-
lated root of grad p. For a stable cavity, furthermore the point X⇤ is
neither a minimum nor a maximum, but a saddle point of p, as the
spectrum of the Hessian (86) has both strictly positive and negative
eigenvalues. If a stable optical cavity is slightly misaligned from C⇤,
by the continuity of p, the Riemannian gradient will have isolated
roots, and so the eigenvalues of the Riemannian Hessian will be dif-
ferent from zero and the Newton algorithm will converge to the path
which satisfies the Fermat’s principle.

3.1.6 Numerical Study

The proposed geometric Newton algorithm has been tested by Monte
Carlo techniques. Optical cavity configurations are generated starting
with mirror positions close to square configuration C⇤, with L= 1.6
m and represented by 3 ⇥ 4 random matrices whose entries are uni-
formly distributed over the set

n

�

�

�

Cij � C⇤
ij

�

�

�

< s

o

, with s ranging from
10�6L to 10�2L with a logarithmic spaced step of L/10. The radii ma-
trix used is R = rI4⇥4, with r = 4 m. Those values correspond to
the design of the RLG GP2 [75]. The geometric Newton algorithm has
been applied to find the saddle point of the function p, starting from
the trial configuration X⇤. This procedure has been repeated 104 times
to assess if mirror displacements are small enough for satisfying the
convergence properties of the algorithm.

We can now state the first result: all the runs do not show ill-
conditioning problems in the Newton vector computation. In addi-
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tion, the algorithm took at most 3 iterations to generate an iterate
such that kgrad p(x)k < 10�12 m, and quadratic convergence is also
attained, as expected for a problem satisfying second order sufficient
condition for optimality (i.e., positive definiteness of the Hessian at
the optimal point). In all the Monte Carlo run we checked the eigen-
values of the Riemannian Hessian, all the laser spots positions found
by our algorithm were saddle points of p, i.e. the Hessian eigenvalues
are positive and negative.

To better illustrate the algorithm execution, we show in Figure 25

the typical behavior of kgrad p(x)k in a run with enhanced mirror
displacements from the ideal square configuration. In this case it was
s ⇠ 0.5 m and the alghoritm took 5 iterations to converge.

1 2 3 4 5
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g 10

 h
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Figure 25: Plot of h(xk) = krp(xk)k versus the iteration index k.

In Figure 26 a comparison between the function p and the second
order geometric model for p, and another comparison between the
function h and Armijo condition for the function h are displayed. In
the figure m f (l) = f (xk)+ hgrad f (xk), lhxi+ 1/2 hHess f (xk)[lhx], lhxi,
mh(l) = h(x) + s hgrad h(xk), lhxi, l 2 [0, 1], s = 1/2 and hx = hxk

is the Newton vector at the iteration k. Each of the 5 iterations of
the run reported in Figure 25 is displayed. We note that the optical
path length p is well modeled by the second order geometric model
starting from the first iteration, and that condition (71) allows for step
sizes tk closer to the unity, like in pure Newton methods, as the itera-
tion number increase.
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Figure 26: Comparison between the functions p and its second order geo-
metric model, and between the function h and the Armijo condi-
tion, on consecutive algorithm iterations from 1 to 5. The black
lines represent the second order geometric model for p and the
Armijo condition, and the red lines represent the functions p and
h, respectively. The blue crosses displayed are the iterates of the
line search method.

In Figure 27 we draw an illustrative example of mirror displace-
ments and the corresponding laser beams as calculated by Fermat’s
principle.
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Figure 27: An example of displacements of mirrors forming a square optical
cavity. Elements relative to each mirror are colored in grey. Red
dots mark the mirror centers, the thick orange lines represent the
optical path length as a link between consecutive laser spots zk.

3.2 pose and shape of four points in R3

In what follows we manipulate sets of four tridimensional points, i.e.
the centers of curvature of the RL mirrors, by means of their coordi-
nate matrix M 2 R3⇥4. Note that in the matrix M the components
of a vector representing a single point are disposed in a column. We
denote the columns of the matrix M 2 R3⇥4 as Mi 2 R3, where
i = 1, 2, 3, 4.

Our aim is to address the distinction between the information re-
lated to the pose of the 4 points, and the information concerning
their shape, in the matrix M. Figure 28 displays the two different
situations. Consider the action of SE(3) on R3⇥4, in the form of
N = R M + x1T

4 , where SE(3) is the Special Euclidean group of
dimension 3, whose elements are here represented by a pair (R , x)
of rotation matrix R 2 SO(3) and a vector x 2 R3. The vector
14 = [ 1 1 1 1 ]T is employed for the compactness of the for-
mulas. Clearly only the pose of the 4 points has changed in the rep-
resentation given by N from the one given by M. In fact one can
easily check that all the distances d M

i j =
�

�Mi � Mj
�

� between points
represented by Mi , Mj are equal to the distances d N

i j =
�

�Ni � Nj
�

�

between points represented by Ni , Nj , i , j 2 {1, 2, 3, 4}. In contrast
with the latter situation consider the case N = 2 M, the points of N
may have the same pose of the ones of M, but certainly the shape
of the points has changed. Indeed the points represented by N are
simply the points represented by M zoomed by a factor of 2
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Figure 28: In the top picture the red figure is obtained from the black one
by a dilatation of the points, while in the bottom picture only the
pose of the points has been changed.

So far our aim has been declared to describe the information about
the shape of the figure represented by means of the points which
are the columns of M 2 R3⇥4, independently from the rigid dis-
placement of the 4 points, thus working with sets we would like to
complete SE(3) to R3⇥4. To this purpose we need to restrict the con-
figuration space R3⇥4 to one in which the matrices allow for a decom-
position where a rotation matrix and a 3 component real vector can
be unambiguously factorized. Since we have 4 vectors available and
we only require 3 orthonormal components to specify a basis of R3,
there will exists more than one way to accomplish our objective. An
affordable way is to consider the Gram–Schmidt procedure starting
from a suitable column of M, and then consider others columns of
M during the next alghoritm iterations. Note that, once we find two
independent components, we can easily get the third one by means
of the wedge product of R3 of the first two. The key problem here
arise if the columns of M are linearly dependent. It is worth noticing
that a collection of vectors in R3 can be linearly dependent or not in
correspondence to the choice of the origin of their reference frame.
E.g. one can represent any couple of points in R3 with vectors that
are linearly dependent, by choosing a suitable position for the axes
origin.

It seems useful for our purposes to fix the axes origin so that the
linear independence between couples of vectors representing consec-
utive points is preserved. We fix the axes origin in the point given by
the arithmetic mean of the columns of M, M̄ = Â4

i=1 Mi/4, and then
assume linear independence among couples of vectors which repre-
sent consecutive points Mi � M̄, Mi+1 � M̄. From now on by conven-
tion the index i is assumed to be a circular index on the set {1, . . . , 4}
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so that e.g. if i = 4 then i + 1 = 1. We then choose a coordinate chart
of P , the resulting linear subspace of R3⇥4 (4 real triplets with null
mean) with the additional non linear constraints. Our choice is suited
to account for asymmetry with respect to a symmetric square con-
figuration of the points. Since the hypothesis of linear independence
(among the vector representing consecutive points in P) holds for
the square configuration, and we are interested in describing optical
cavities only slightly misaligned from a square configuration, the as-
sumptions made seems general enough to address all the misaligned
optical cavities of interest.

3.2.1 Pose and Shape Decomposition

To introduce Theorem in a compact way we will require the following
definitions and Lemma.

Definition 3.

P =
n

M 2 R3⇥4| Mi ^ Mi+1 6= 0, M = 03⇥1

o

, (88)

where ^ is the wedge product in R3. The set P , here called Pre-Shape
Space in analogy with [41, 42], contains matrices whose columns have
null mean that allow for the Shape and Pose decomposition.

Definition 4.

T =

8

>

>

<

>

>

:

2

6

6

4

a1 b 0
0 a2 0
0 0 1

3

7

7

5

2 R3⇥3, a1, a2 2 R+, b 2 R

9

>

>

=

>

>

;

, (89)

the elements of this set will be shown to parametrize the isosceles
trapezoids, a subset of all the possible matrices in P .

Definition 5.

V = R3 \
⇢

e1 + ae2,�e2 + be1,
e1 � e2

2
+ g (e1 + e2) , a, b, g 2 R

�

,

(90)

where e1 =
h

1 0 0
iT

, and e2 =
h

0 1 0
iT

. The set V is the
tridimensional space with three lines lying in the plane orthogonal to
the third canonical unit vector excerpted. The elements of the set V
will parametrize matrices that may represent irregular quadrilaterals,
e.g. when the points Mi are not coplanar.
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Lemma 6. Given a and b 2 R3 such that a ^ b 6= 0, there exists a unique
R 2 SO(3) such that [a, b] = RC, with

R =

2

4

u,
v � hu, vi u

q

1 � hu, vi2
,

u ^ v

ku ^ vk

3

5 , (91)

and

C =

2

6

6

4

kak kbk hu, vi
0 kbk

q

1 � hu, vi2

0 0

3

7

7

5

, (92)

where u =
a

kak and v =
b

kbk . Note also that c11 and c22 are always

positive.

The proof of Lemma 6 is given in the Appendix.

Theorem 7. Let Q 2 R3⇥4, be such that

Q
✓

I4 � 141
T
4

4

◆

= P 2 P . (93)

Then, Q admits the pose and shape decomposition

Q = RT

 "

I2 �I2

01⇥2 01⇥2

#

+
h

03⇥1 03⇥1 v �v

i

!

+ Q1T
n (94)

where Q 2 R3, R 2 SO(3), T 2 T , and v 2 V . The expressions
for R and T are given by Lemma 6 in terms of P1 and P2, and v =
T�1R�1 (Q3 � Q1) or, equivalently, v = T�1R�1 (Q2 � Q4).

Proof. By definition, the matrix P defined by (93) is such that P =
03⇥1.

The linear constraint P = 03⇥1 implicitly defines a linear subspace
of R3⇥4. Defining

8

>

>

>

<

>

>

>

:

w1 := P1

w2 := P2

w3 := P3 + P1 = � (P4 + P2)

, (95)

we can rewrite P as

P =
h

w1 w2 w3 � w1 �w2 � w3

i

. (96)

Consider w1 and w2 as in (96), i.e., the first two columns on P.
Because, by hypothesis, P 2 P , it follows that w1 ^w2 6= 0, and, from
Lemma 6, if follows that there exist unique R 2 SO(3), a1, a2 > 0 ,
and b 2 R such that
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h

w1 w2

i

= R

2

6

6

4

a1 b
0 a2

0 0

3

7

7

5

. (97)

The last matrix in the right hand side of (97) can be then rewritten
as

2

6

6

4

a1 b
0 a2

0 0

3

7

7

5

=

2

6

6

4

a1 b 0
0 a2 0
0 0 1

3

7

7

5

"

I2

0 0

#

:= T

"

I2

0 0

#

. (98)

As a1 and a2 are positive, it follows that T 2 T .
From (93) and (96), we get

Q =
h

w1 w2 w3 � w1 �w2 � w3

i

+ Q1T
4 , (99)

From (99), by using (97) and (98) and defining v = T�1R�1
w3, we

finally get (94).
The remaining part of this proof shows that v 2 V .
Recalling that we have proposed the parametrization

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

P1 = w1 = RTe1

P2 = w2 = RTe2

P3 = w3 � w1 = RT (v � e1)

P4 = �w3 � w2 = RT (�v � e2)

, (100)

for the element P 2 P . The domain of R, T, and v have to match
the non linear constraints Pi ^ Pi+1 6= 03⇥1, that we can enumerate as

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

P1 ^ P2 6= 03⇥1

P2 ^ P3 6= 03⇥1

P3 ^ P4 6= 03⇥1

P4 ^ P1 6= 03⇥1

. (101)

The domain of R and T have already been fixed by the first inequal-
ity in (101), explicating the remaining conditions in the following way

(RAx) ^ (RTy) 6= 003⇥1 , RTx 6= lRTy, l 2 R , (102)
x 6= ly, l 2 R , x ^ y 6= 03⇥1, x, y 2 R3 (103)

we get:
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8

>

>

>

<

>

>

>

:

v � e1 6= ae2

(v � e1) ^ (v + e2) 6= 03⇥1

v + e2 6= be1

a, b 2 R. (104)

The second inequality of (104) can be rewritten as

✓

v � e1 + e2

2
� e1 � e2

2

◆

^
✓

v +
e1 + e2

2
� e1 � e2

2

◆

6= 0 ,
(105)

✓

v � e1 � e2

2

◆

^
✓

v � e1 � e2

2

◆

+ . . . (106)

+2
✓

v � e1 � e2

2

◆

^
✓

e1 + e2

2

◆

�
✓

e1 + e2

2

◆

^
✓

e1 + e2

2

◆

6= 0 ,
(107)

2
✓

v � e1 � e2

2

◆

^
✓

e1 + e2

2

◆

6= 0 ,
(108)

v 6= e1 � e2

2
+ g (e1 + e2) ,g 2 R.

(109)

Therefore the domain of v is given by (90).

Remark 8. Considering the rotation matrix R as an element of SO(3),
we can write the decomposition given in Theorem 7 in a compact
form, as P = SO(3) ⇥ T ⇥ V . This allows for a clean use of the
quotient set operation to account for shape changes apart from pose
changes. Therefore the shape of four points in R3 is parametrized as
an element of the set T ⇥V , and its coordinate representation is given
by (94)

Remark 9. The parametrization given in (95) has the following inter-
pretation: the vectors w1 and w2 are the two principal symmetry axes
of the quadrilateral represented by the points P1, P2, P3, P4. the sym-
metry 1 ! 3, 2 ! 4, is broken by the vector w3. In fact one can see
that if w3 = 03⇥1, the quadrilateral is regular (planar), and v = 03⇥1.
Figure 29 shows the parametrization given in (95).

Remark 10. Note that the domain of v is not simply connected, i.e.
regions where kvk > 1 may not be connected with regions where
kvk < 1. However in the work interest is put in situations where
kvk ⌧ 1, so we can assume v to be in the simply connected part of V
containing the origin. Figure 30 shows the plot of the lines form R3

which represents the excepted part of R3 in the set V .
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P1
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-w1

-w2

w3

-w3

P

Figure 29: Visual scheme of the proposed set of coordinate for P.

Remark 11. By the unicity of the representation of elements in the
vector subspace given by P = 03⇥1, and by the unicity of the decom-
position given in Lemma 6, the Shape and Pose decomposition given
by Theorem 7 is unique. It means that given a matrix M fulfilling
the hypotheses of the Theorem it exists one and only one element
(A, R, v, M̄) for which the thesis of the Theorem 7 holds.

Remark 12. We stress that the parameters (T, R, v, M̄) are given in
Lemma 6 and Theorem 7 as smooth functions of the matrix M. This
means that we can consider any generic curve t 7! M(t) 2 R3⇥4,
and if for every fixed t the matrix M(t) satisfies the hypothesis of the
Shape and Pose decomposition, then we can point-wise describe the
curves t 7! R(t), t 7! T(t), t 7! v(t) and finally t 7! M̄(t), which are
in their turn smooth.

Remark 13. Let now briefly discuss the properties of our decomposi-
tion in relation to the cyclical order of the points in P. Starting from
the matrix P we can consider a ciclic permutation of its columns by
right multiplication by

S =

2

6

6

6

6

4

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

3

7

7

7

7

5

. (110)

We can now state the following Corollary:



3.2 pose and shape of four points in R3
77

0
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e1 + a e2

-e2 + b e1

He1- e2L
2

+ g He1+e2L

e3

Figure 30: Picture of the domain of v. The colored lines are the excerpted
lines due to the nonlinear constraints Pi ^ Pi+1 6= 0.

Corollary 14. Within the same hypotheses of Theorem 7, M admits the 4
decompositions

M = R(i)T(i)

0

B

B

@

"

I2 �I2

0 0 0 0

#

+

2

6

6

4

0
0
0

0
0
0

v

(i) �v

(i)

3

7

7

5

1

C

C

A

S�i + M̄1T
n .

(111)

Proof. Firstly note that the mean M̄ is invariant for a ciclic permuta-
tion of the columns of M, i.e. MSi1/4 = M̄, i = 1, . . . 4.

Consider the matrices M(i) = MSi, we check the hypothesis of our
decomposition for those matrices with the help of

P(i) = M(i)
✓

I4 � 141
T
4

4

◆

, (112)

since in the last expression all the square 4 ⇥ 4 matrices commutes
with each other we can rewrite each P(i) as

P(i) = M
✓

I4 � 141
T
4

4

◆

Si = PSi . (113)

Now if P 2 P it also holds P(i) 2 P , i = 1, 2, 3, 4. The proof of the
Corollary follows applying Theorem 7 to the matrices P(i), obtaining
thus the matrices R(i) 2 SO(3), T(i) 2 T , and the vectors v

(i), then
rewriting P = P(i)S�i using the decompositions and the inverses of
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the matrices Si. Note that for i = 4 we recover Theorem 7 since it
holds S4 = I4.

Remark 15. Consider a generic P(i) defined as in (93). Expressing its
columns as in (96), the third component is given by (�1)i

w3, with
w3 = P3 + P1 = � (P4 + P2). We stress that this holds for any value
of i  4 with the same vector w3. The latter vector direction and
modulus are invariant by the product by Si, therefore the quantity
w3 = R(i)T(i)

v

(i) is conserved trough all the possible decompositions
of Corollary 14, up to a sign.

To describe shape variations with respect to an ideal square config-
uration, in which all the mirrors radii are equal to rand the optical
path length is 4L, it is useful to cast the square configuration as

T0 =

2

6

6

4

d/2 0 0
0 d/2 0
0 0 1

3

7

7

5

, v0 = 03⇥1 , (114)

where d = r � L/
p

2 is the diagonal length of the square formed
by the mirror centers.

3.2.2 From Shape to Distance Matrix

Now let R = I3 and P̄ = 03⇥1, we can express all the distances be-
tween couples of points of P as a function of T, parametrized as in
(89), and of v = (v1, v2, v3)

T. We get

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

l1 =
q

(a2 � a1)
2 + a2

3

l2 =
q

[a1 (1 � v1) + a2 (1 � v2)]
2 + a2

3 (1 � v2)
2 + v2

3

l3 =
q

[a1 (1 � 2v1)� a2 (1 + 2v2)]
2 + a2

3 (1 + v2)
2 + 4v2

3

l4 =
q

[a1 (1 + v1) + a2 (1 + v2)]
2 + a2

3 (1 + v2)
2 + v2

3

d1 =
q

[a1 (2 � v1)� a2v2]
2 + a2

3v2
2 + v2

3

d2 =
q

[a1v1 + a2 (2 + v2)]
2 + a2

3 (2 + v2)
2 + v2

3

. (115)
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Note that the quadratic equation system
8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

l2
1 = (a2 � a1)

2 + a2
3

l2
2 = [a1 (1 � v1) + a2 (1 � v2)]

2 + a2
3 (1 � v2)

2 + v2
3

l2
3 = [a1 (1 � 2v1)� a2 (1 + 2v2)]

2 + a2
3 (1 + v2)

2 + 4v2
3

l2
4 = [a1 (1 + v1) + a2 (1 + v2)]

2 + a2
3 (1 + v2)

2 + v2
3

d2
1 = [a1 (2 � v1)� a2v2]

2 + a2
3v2

2 + v2
3

d2
2 = [a1v1 + a2 (2 + v2)]

2 + a2
3 (2 + v2)

2 + v2
3

(116)

has solution in y. We found 2 distinct solutions,

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

a1 =
p

3d2
1�d2

2+3l2
1�l2

2�l2
3+3l2

4
4

a2 = d2
1+d2

2�5l2
1+l2

2�l2
3+l2

4
16a1

a3 =

q

4l2
1(d2

1+d2
2+l2

2�l2
3+l2

4�l2
1)�(d2

1�d2
2�l2

2+l2
4)2

8a1

v1 =
(d2

1�l2
2)2�(d2

2�l2
4)2+2l2

1(�d2
1+d2

2�l2
2+l2

4)
64a1a3

v2 =
�(d2

1+d2
2�2l2

1)(d2
1+d2

2�l2
1)+(d2

1�d2
2+l2

1�l2
3)l2

2+(d2
1+d2

2�2l2
1�l2

4)l2
3+(�d2

1+d2
2+l2

1+4l2
2)l2

4
�32a1a3

v3 = ±
q

d2
2[d4

1�(l2
1�l2

2)(l2
3�l2

4)]+(l2
1 l2

3�l2
2 l2

4)(l2
1�l2

2+l2
3�l2

4)+d2
1[d4

2+(l2
2�l2

3)(l2
1�l2

4)]�d2
1d2

2(l2
1+l2

2+l2
3+l2

4)
8a1a3

,

(117)
that are different in the sign of the component v3.

3.2.3 Simulation results

We compare the results of two simulations of 104 RL cavities slightly
misaligned from the square configuration C⇤, with L= 1.6 m, R = 4
m. The mirror centers matrices of the optical cavities are represented
with the help of Theorem 7. In the first simulation all the scalars pa-
rameters of T and v were uniformly distributed in the relative range
[�10�6, 10�6], around their nominal value (114). In Fig. 31 the his-
tograms of the perimeter p and the scalar compactness factor kS =
kak /p are displayed.

The second simulation is similar to the first, but with constrained
shape parameter T, i.e. the first two diagonal elements of T does not
vary from their nominal values. The remaining 4 elements were uni-
formly distributed as in the first simulation. In Fig. 32 the histograms
of the perimeter p, and the scalar compactness factor kS are displayed.

Finally, we run 103 simulations with the shape parameters uni-
formly distributed in the relative range [�s, s], with 10�10 < s <
10�2. We simulated 4 cases: an unconstrained ring, a ring with con-
strained diagonal elements of T, and two intermediate cases in which
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Figure 31: Histograms of the relative variations of p (dark grey), and ks
(light grey) due to mirror displacements. The histograms of the
relative variations of p and kak are similar.
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Figure 32: Histograms of the relative variations of p (dark grey), and ks
(light grey) due to mirror displacements. In all simulations the
values of the first two diagonal entries of the matrix A were fixed
to 2.87.
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Figure 33: Relative standard deviation of kS as a function of sin the 4 cases:
unconstrained ring (black), ring with constrained diagonal ele-
ments of T (red), intermediate case with ed = 10�3 (green), and
ed = 10�6 (blue).

there the diagonal elements of A were biased by ±ed, with ed = 10�3

and ed = 10�6.
In Fig. 33 we show the relative standard deviation of kS as a func-

tion of s for the 4 cases. It is clear that, for an unconstrained ring
cavity, to achieve a relative accuracy of 1 part in 1010 one must have
almost the same relative accuracy on the mirrors displacements. On
the other hand, a relative accuracy on the mirrors displacements of
10�5 is enough for a constrained ring cavity. A small diagonal bias of
1 part in 106 does not affect the accuracy of ks up to 1 part in 1010.





4
C O M P L E T E R L G M O D E L

In this Chapter we illustrate a detailed high accuracy simulation of
the relevant processes involved in the operation of RLGs. The models
for the RL dynamics, the He � Ne gain process, the light backscatter-
ing, and the laser beams displacement in the resonant optical cavity
are merged together in a complete RLG model. Such model has been
developed in MATLAB® software and Simulink, and it allows us to
simulate the effects of control loops on RLG parameters and outputs.
To our knowledge these effects are studied for the first time. The
complete RLG model also permits to forecast the effect of hardware
changes, being a powerful tool for RLG design and optimization.

4.1 complete rlg model overview

The complete RLG model provides realizations of the relevant physi-
cal processes discussed in this thesis, starting from the processes that
constitutes the inputs of the simulation. These processes are then in-
terconnected into a system which emulates the operation of a RLG,
using the results of Chapters 2 and 3. We compute the laser beams
path, the Lamb parameters set, and the RLG outputs for the given in-
put signals. The diagonal lengths of the optical cavity d1, d2 and the
value of the monobeam intensity I1 are connected in feedbacks acting
respectively on cavity geometry and on the laser single pass gain G.
The schematic of the Simulink implementation of the complete RLG
model is shown in Figure 34. As a case study we present the simula-
tion of GP2. In particular, we simulate the feedback loops acting on
the optical cavity length by means of piezoelectric transducers, and
on light intensity by means of the radio-frequency circuit. Referring
to the flowchart diagram of Figure 35 we describe in some detail the
blocks: IN, RLG_CAV, RLG_PAR, RLG_DYN, and OUT.

4.1.1 IN:Simulation parameters

The RLG model depends on a wide set of parameters, including all
the constants given in this thesis. The parameters that should be sup-
plied to the model by the user are now listed:

• L side length of the RL;

• W earth rotation vector;

• n RL orientation;

83
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Figure 34: Simulink schematic of the RLG model. The signal & noise gen-
eration block synthesizes the input signals and fed them to the
optical cavity model, to the backscattering and detuning model,
to the He � Ne laser model, and to the diagonal and intensity
loops blocks. The optical cavity model feeds the diagonal loop
and the backscattering and detuning model, both the optical cav-
ity model and the backscattering and detuning model generate
inputs for the He � Ne laser mode and the Lamb parameters gen-
eration block. The He � Ne laser mode and the Lamb parameters
generation block feeds the RL dynamics integrator, and the signal
I1 is fed back to the intensity loop.
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Figure 35: Flowchart diagram of the complete RLG model. The continuos
lines represent the data shared between blocks, and the dashed
lines indicate the presence of feedback loops.

• G0 initial value for the laser single pass gain;

• kc Ne isotopic concentration in the gas mixture;

• fc the gain center frequency;

• C0 initial condition of mirror centers matrix;

• R mirror radii matrix;

Note that if the input signals are generated by a parametric generator
in Simulink, these parameters must be supplied too.

4.1.2 IN:Signal & noise generation block

In this block all the input signals for the RLG model are generated
at the rate of 1 Hz. The rate has been chose accordingly to be much
more lower than the time in which the physical processes involved
show significant variations. The generated signals are now listed:

• The stochastic processes w1, w2, w3, w4 that represent the veloc-
ity drifts of the mirrors in the optical cavity;

• The are stochastic processes µ1,µ2 that represent the fluctuations
of the reflectivity of the cavity mirrors;

• The stochastic process press representing the fluctuations of the
pressure of the atomic He � Ne gas mixture;
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• The stochastic process temp representing the drifts of the tem-
perature of the plasma;

• The stochastic processes rij that represent the fluctuations of
the scattering coefficients of each of the cavity mirrors Mi i =
1, 2, 3, 4 for the propagation direction j = 1, 2;

• The stochastic processes eij that represent the fluctuations of the
scattering angles of the mirrors of Mi i = 1, 2, 3, 4 of the optical
cavity, for the propagation direction j = 1, 2.

• The generated reference signal dre f for the feedback loop on the
diagonal lengths of the optical cavity;

• The generated reference signals I1re f for the feedback loop on
the clockwise intensity I1.

4.1.3 RLG_CAV: Optical cavity model

At each iteration k the vectors representing the mirrors velocity drifts
w1(tk), w2(tk), w3(tk), w4(tk), and the actions of the controls of the cav-
ity diagonals a(tk),b(tk), are are integrated over time and added to the
corresponding column in the initial condition matrix C0 to give the
current centers matrix (see Subsection 3.1.2)

C(t) = C0 + [w1, w2, w3, w4] + [a, b,�a,�b] . (118)

The matrix C(tk) is then employed together with the radii matrix
R in the calculation of the laser beams positions X⇤(C(tk), R) on the
cavity mirrors, via the geometric Newton Alghoritm 3.1.4. The co-
ordinates of the laser beams on the cavity mirrors are retained as
Z(tk) = X⇤(C(tk), R)R + C(tk), as in Subsection 3.1.5. From the ma-
trix Z(tk) the relevant lengths of the optical cavity and the vector area
are computed as
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:

l1(tk) = kz1(tk)� z2(tk)k
l2(tk) = kz2(tk)� z3(tk)k
l3(tk) = kz3(tk)� z4(tk)k
l4(tk) = kz4(tk)� z1(tk)k
d1(tk) = kz1(tk)� z3(tk)k
d2(tk) = kz2(tk)� z4(tk)k
p(tk) = l1(tk) + l2(tk) + l3(tk) + l4(tk)

A(tk) =
(z1(tk)� z3(tk)) ^ (z2(tk)� z4(tk))

2

, (119)

where ^ is the wedge product in R3.
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Figure 36: Simulink block for the diagonal loop.

4.1.4 Diagonal loop

The signals d1,d2 are then compared with a reference signal dre f and
fed back to two PI controllers suitably tuned. The outputs of the con-
trollers are fed to the simple model of 4 piezoelectric actuators, paired
two by two, pushing the mirrors M1,M2,M3,M4, in the directions e1,
e2, �e1, �e2, as can be seen in the schematic in Figure 36. The output
of this subsystem are the four vectors +a,+b,�a,�b that represents
the feedback actions of the cavity diagonals control scheme.

4.1.5 RLG_PAR: Backscattering and detuning model

At each iteration k the backscattering coefficients r1(tk) ,r2(tk) and
the backscattering phases #1(tk), #2(tk) are computed in dependence
of the rij(tk), eij(tk), and li(tk), i = 1, . . . , 4, j = 1, 2, using the model
discussed in Subsection 2.2.2 with the positions e

(i)
j = eij(tk) and

r

(i)
j = rij(tk). Moreover, the optical path length p(tk) is used to com-

pute detn(tk), i.e. the mean of detunings x1,2 of the optical frequen-
cies w1,2 from the gain center frequency w0 = 2p fc, see Subsection
2.2.1 for details. Finally, the Sagnac frequency fs(tk) is computed as in
Eq.(1), as a function of the Earth rotation vector W, the RL orientation
n, the compactness factor kAk /p, with ks f = 4A/(lp), where l is
the light wavelength.

4.1.6 RLG_PAR: He � Ne laser model & Lamb Parameters

The components of the complex plasma dispersion functions z
a

=

z(0)(x), z
b

= z(2)s (x1,2), z
q

+ iz
t

= z(2)c (x1,2) for the He � Ne laser
system are computed in dependence on the detuning detn, the gain
center frequency fc, the gas pressure press, the plasma temperature
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temp, the isotopic Ne concentration kc, and using the relations (27) of
Subsection 2.2.1.

Once the plasma dispersion components are computed, at each it-
eration k the Lamb parameters set

[a1(tk), a2(tk), b(tk), q(tk), t(tk)] (120)

is computed using the components of the complex plasma disper-
sion function z

a

(tk), z
b

(tk), z
q

(tk) ,z
t

(tk), the mirror losses µ1(tk),µ2(tk),
the laser single pass gain G(tk) and (19), (20) of Subsection 2.2.1.

4.1.7 RLG_DYN: RL dynamics integrator

The part of the RLG model that deals with laser intensities and phases
is up sampled to the rate of 5 kHz. The RL dynamics for I1,I2 and y

are numerically integrated using (12) of Subsection 2.1.2, in depen-
dence of the Lamb parameters [a1, a2, b, q, t] and the backscattering
parameters [r1,r2, #1, #2]. The initial conditions for the integration can
be set as I1(0) = a1(0)/b(0), I2(0) = a2(0)/b(0), y(0) = 0. The in-
tegration has been carried out in Simulink environment for continuos
time systems exploiting the variable time step solver ODE45. At each
iteration t, the in phase and in quadrature components of the interfer-
ogram signal S1(t),S2(t) and the monobeam intensities I1(t),I2(t) are
saved as simulation outputs, their expressions is given by (16) and
(18) of Subsection 2.1.3, with h1,2 = 1, c1,2,3 = 1, c4 = 0.

4.1.8 Intensity loop

The laser monobeam intensity I1 is filtered to get rid of the mod-
ulation, down sampled, and compared to the reference value I1re f .
The error signal is then fed back to a PI controller suitably tuned,
that feeds in its turn the single pass gain channel G(tk). This simple
model mimics the action of a feedback on the clockwise intensity of a
RL, where the action on the laser gain is usually implemented varying
the tension of the radio-frequency circuit.

4.1.9 OUT: Simulation outputs

The RLG model allow for the detailed simulation of the following
physical processes:

• the RL state {I1(t), I2(t), S1(t), S2(t)}, where S1,2(t) are the in
and out of phase components of the interferogram signal;

• the lengths of the optical cavity l1,l2,l3l4,d1,d2;

• the optical path p;
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• the vector area A of the RL;

• the Lamb parameters set [a1, a2, b, q, t];

• the backscattering parameters set [r1, r2, #];

• the Sagnac frequency fs.

4.2 results of the complete simulation of gp2

The RLG model has been employed to simulate the dynamics of the
resonant optical cavity and of the beat note of the RLG GP2. A sim-
ulation of 1 h has been run, generating at the rate of 1 Hz the in-
put signals. The parameters of the RLG model have been chosen as:
L = 1.35 m; W = 2p/86164.0916; n = [sin(0.2574p), 0, cos(0.2574p)];
G0 = 1.20055 ⇥ 10�4; kc = 0.5; fc = 43.302 MHz; the entries of the
matrix C0 of the initial position of the mirror centers has been cho-
sen as i.i.d. r.v. with mean given by the corresponding element of in
(85) Subsection 3.1.5, and standard deviation 10�4 m; finally, the mir-
ror radii i.e. the diagonal entries of the matrix R has been chosen all
equal to 4 m.

The stochastic processes were generated as white noise indepen-
dent stochastic processes, whose means and variances are now listed:

• Each of the stochastic processes w1, w2, w3, w4 has been simu-
lated with null mean and standard deviation equal to 10�8;

• The are stochastic processes µ1,µ2 have been simulated with
mean equal to 10�4 ± 10�7, respectively, and standard deviation
10�8;

• The stochastic process press have been simulated with mean 7.5
mbar and standard deviation 10�4 mbar;

• The stochastic process temp have been simulated with mean 450
K and standard deviation 10�2 K;

• Each of the stochastic processes rij has been simulated with
mean value taken as i.i.d. uniform random variable in the range
⇥

0; 2 ⇥ 10�7⇤, and with standard deviation 10�10.

• Each of the stochastic processes eij has been simulated with
mean value taken as i.i.d. uniform random variable in the range
[0; 2p], and with standard deviation 10�10.

The reference signals dre f and I1re f for the feedback loops have been
generated as constant signals, with value 6.0908 m and 2 ⇥ 10�3, re-
spectively. The initial conditions for the integration have been set as
I1(0) = I2(0) = 10�3, y(0) = 0.
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In Figure 37 are shown the simulated stochastic processes for the
mirror losses µ1,2, the plasma temperature temp and the gas pressure
press.

Figure 38 displays some of the simulated lengths of the optical
cavity, i.e. the four sides l1,2,3,4

In Figure 39 are shown the remaining lengths of the optical cavity,
i.e. the perimeter p and the two diagonals d1,2.

Figure 40 displays the simulated Sagnac frequency.
In Figure 41 the Lamb parameters [a1, a2, b, q, t] and the backscat-

tering parameters [r1, r2, #] are displayed as an output of the simula-
tion.

Finally, in Figure 42, the in-phase S1 and in-quadrature S2 com-
ponents of the interferogram signal, and the light intensities I1,2 are
displayed.



4.2 results of the complete simulation of gp2 91

0 2000
0.995

1

1.005

1.01 x 10−4

Time [s]

µ
1 []

0 2000
0.995

1

1.005

1.01 x 10−4

Time [s]

µ
2 []

0 2000
7

7.5

8

8.5

Time [s]

pr
es

s 
[m

ba
r]

0 2000
445

450

455

460

Time [s]

te
m

p 
[K

]

Figure 37: Realization of µ1,2, temp and press for the simulation case study.

0 2000
1,349988

1,349989

1,34999

1,349991

Time [s]

l1
 [m

]

0 2000
1,350002

1,350004

1,350006

Time [s]

l2
 [m

]

0 2000

1,349999

1,35

1,350001

1,350002

Time [s]

l3
 [m

]

0 2000
1,349998

1,349999

1,35

Time [s]

l4
 [m

]

Figure 38: Optical cavity lengths l1,2,3,4 resulting for the simulation case
study.
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Figure 39: Optical cavity lengths d1,2 and p resulting for the simulation case
study.
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Figure 41: Lamb parameters and backscattering parameters for the simula-
tion case study.
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C O N C L U S I O N S

5.1 ring laser dynamics

In Chapter 2 a model of the RL dynamics has been studied, and then
applied to the design of identification and calibration methods for
cold cavity and active medium Lamb parameters. The identification
method is based on the first harmonic approximation of the steady
state solution of RL equations and the minimization of a quadratic
functional over the Hilbert space of periodic signals. Results of Monte
Carlo simulations supported the viability of the dissipative parame-
ter estimation by yielding a relative estimation error of ⇠ 3 ⇥ 10�3

for a1,2 and r1,2, and an estimation error of ⇠ 10�3 rad for #. On
the other hand, the dynamics of a laser with cavity detuning shows
many monomode or multimode dynamical behaviors that can be ex-
ploited to get rid of systematic errors in the estimation of the Sagnac
frequency. The calibration method presented in this thesis is based on
the measures of the threshold of multimode transition and the plasma
dispersion function. The accurate estimation of the Lamb parameters
allows for the application of the Kalman filter for the estimation of
the Earth rotation rate. We have shown that the parameters of the
RL dynamics can be identified, and their effects on resolution and
long term stability removed, notwithstanding the system non lineari-
ties. Simulations showed a significant improvement in the Sagnac fre-
quency estimation by means of EKF compared to the standard AR(2)
method. The results we got, using the data of the RLG prototype
G-PISA, make us confident about the reliability of our approach in
the presence of unmodeled experimental noise and calibration errors.
The systematic errors associated with the calibration measurements
dominate over statistical errors, as plasma parameters depend also
on radio-frequency circuit details, e.g. the capillary shape. However,
the accuracy of the identified cold cavity parameters depends on the
amount of losses and backscattering of light: higher quality mirrors
lead to potentially higher accuracy of the estimated Sagnac frequency.
We also reported some exciting results about the data of the RLG
G-WETTZELL, obtained with no calibration of the instrument gain.
However, much work has still to be devoted to improve calibration
procedures and estimation of non-reciprocities for testing fundamen-
tal physics with RLs. Our approach can be further improved, and dif-
ferent mathematical tools can be used. For instance, there exist other
dynamical filters (e.g. Unscented Kalman Filter, Particle filters, etc.)
that could perform better than EKF in the presence of non linear dy-
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namics, and the statistics used for the estimation of the Lamb param-
eters can be improved too. RLGs achieved world record in rotation
sensitivity, accuracy and time stability with sophisticated hardware,
accurate selection of the working point of the He� Ne laser, despite a
very basic off-line analysis. We think that data analysis will cooperate
more and more with RLG hardware in pushing the resolution and the
time stability of RLGs forward the current limitations. The problem
of pushing calibration and identification methods to their intrinsic
accuracy limit, with or without the addition of a calibrated rotation
signal to the RLG input, would deserve further investigation.

5.2 ring laser geometry

We calculated the beam steering in optical cavities as a function of the
mirror positions and orientations by means of the Fermat’s principle.
To find the stationary optical path in a polygonal cavity, we have used
an extension of the Newton algorithm to Matrix Manifolds. Our ap-
proach is motivated by the need to compute the optical path of the
laser beams in resonant cavities, and our results allow for the appli-
cation of control techniques to constrain the beams path. With the
help of the results obtained in ref.[1], we proved the correctness and
quadratic convergence rate of our algorithm under mild assumptions
of regularity of the function p. Using smoothness we showed that the
function p meets the regularity requirements in a neighborhood of
the point C⇤, representing the perfectly aligned square cavity of side
L. Monte Carlo simulations have shown that this neighborhood con-
tains all the cavity configurations that can be encountered in practice
for heterolithic RLGs. In fact, manufacture tolerances of a RL frame
ensure kC � C⇤k ⇠ 10�5L , while we showed that our algorithm suc-
cessfully evaluates the beams position in a square cavity with errors
in mirror positioning or alignment up to 10�3L.

The geometric Newton method devised has been reported to pro-
vide a relative accuracy of 10�12 in evaluating the optical cavity con-
figuration of a square RL. It is worth noticing that greater precision
may be achieved, even if not of physical interest. We found that the
computational cost of the proposed method is low, since at most 3 it-
erations are required to reach the desired precision in the Riemannian
gradient norm during the Monte Carlo simulation. We also derived a
decomposition, suitable for the mirror centers matrix of a square RL,
capable to separately account for the shape and pose of the mirror
centers. By this decomposition we derived a model for the deforma-
tions of the optical cavity of a square RL, and one remarkable result
of this model is the existence of closed form solution to the triangula-
tion problem to find the coordinates of the mirrors centers given the
6 distances among them.
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The treatment of an optical cavity in the framework of differential
geometry is more suitable for an extension of geometrical optics for-
malism which includes also the description of Gaussian beams.

Once the laser beam configuration in the cavity is determined by
Fermat’s principle, the calibration and active control of the optical
cavity can be formulated as a optimization problem. However, a suit-
able description of the cavity configurations, and a dynamical model
for the active control of the light path in resonant cavities are still
issues which require further researches.

Such further investigations will allow us to estimate the sensitivity
and long term stability of heterolithic RLGs, with the aim to highlight
their promising applications to the fundamental physics, e.g. General
Relativity or Axion detection.

5.3 complete rlg model

A complete high accuracy simulation of the relevant processes in-
volved in the operation the RLG GP2 has been performed. The com-
plete RLG model accounts for, the RL dynamics, the He � Ne gain
process, the light backscattering process, and the laser beams dis-
placement in the resonant cavity. The RLG model has been developed
using MATLAB® and Simulink, and allow for the simulation of the
effects of the control loops implemented in high resolution RLGs as
GP2 on the RL parameters and output. For the first time these effects
have been studied with completeness and precision. The model devel-
oped is a powerful tool for the design and operation of high accuracy
RLGs, as it permits to forecast the effect of hardware upgrades.





A
A P P E N D I X

a.1 proof of proposition 1

We recall that and ek are the canonical basis vectors of RN . Suppose
that grad fk(X) 6= 0 for k = 1, . . . , N. each Xk is orthogonal to the cor-
responding grad fk(X) by the definition of TXOB(2, N) since Xk 6= 0

and grad fk(X) 6= 0. Therefore the vectors vk = grad fk(X)⌦ ek and
wk = (grad fk(X) ^ Xk) ⌦ ek are mutually orthogonal, and they be-
longs to TxOB(2, N) by construction, therefore the set {v1, . . . , vN , w1, . . . , wN}
is a basis of TXOB(2, N). The vectors qk = Xk ⌦ ek, are mutually or-
thogonal and belong to the normal space of TXOB(2, N); therefore
(v1, . . . , vN , w1, . . . , wN , q1, . . . , qN) is a suitable basis of TxR3⇥N and

T(X) = (vect v1, . . . , vect vN , vect w1, . . . , vect wN , vect q1, . . . , vect qN)
T

(121)
is the basis change matrix associated.
To prove the proposition we recast (60) in a suitable form. We get

T(X)vect hX =

 

y(X)

0

!

, T(X)z(X) =

 

g(X)

0

!

, (122)

Defining the matrix H̃(X) 2 R12⇥12, where H̃ik(X) =< ei, Hess f (X)[ek] >,
the Newton Equation (60) can be rewritten as

H(X)y(X) = g(X) , (123)

where y(X) 2 R2N and H(X) is the principal minor of T(X)H̃(X)T(X)T

with indexes ranging from 1 to 2N.
If the Matrix H(X) is not singular, an expression for the Newton

vector at each iteration is therefore: vect ‚X = T(X)T �H(X)�1
g(X), 0

�T.

a.2 proof of lemma 6

Note that within the assumptions made neither a nor b can be the
equal to the null vector, so both u and v are not equal to the null
vector.

One can check by inspection of the product RC that is RC = [a, b],
and that the diagonal elements of C are positives.
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Suppose now that there exists another rotation matrix R0 and an-
other upper triangular matrix C0 2 R3⇥2 such that

R
0
C

0
= RC = [a, b] . (124)

Rewriting (124) for the first column of C and C0 we get

R
0
C

0
1 = RC1 = a , (125)

Since both C1 and C0
1 have the last two components equal to zero,

by normalizing the three columns involved in (125) we get R1 = R0
1 =

a/ kak. Moreover, taking the norms of the each column in (125), we
get c11 = c0

11 = kak.
Consider now (124) rewritten for the second column of C and C0 ,

we get

R
0
C

0
2 = RC2 = b , (126)

and writing component-wise in C2 and C0
2 the last relation we get

R1c12 + R2c22 = R
0
1c

0
12 + R

0
2c

0
22 (127)

since it is R1 = R0
1, by multiplying the parts of (127) by RT

1 and
recalling that the columns of a rotation matrix are an orthonormal set
of vectors, we get c12 = c0

12.
From (127) we finally have that R2c22 = R0

2c0
22, normalizing the two

columns and taking again the norms of the each part of the latter
relations we get the thesis.
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