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Summary

Fast implementations of NMPC are important when addressing real-time control of systems

exhibiting features like fast dynamics, large dimension, and long prediction horizon, as in

such situations the computational burden of the NMPC may limit the achievable control

bandwidth.

For that purpose, this thesis addresses both algorithms and applications.

First, fast NMPC algorithms for controlling continuous-time dynamic systems using a long

prediction horizon have been developed. A bridge between linear and nonlinear MPC is built

using partial linearizations or sensitivity update. In order to update the sensitivities only

when necessary, a Curvature-like measure of nonlinearity (CMoN) for dynamic systems has

been introduced and applied to existing NMPC algorithms. Based on CMoN, intuitive and

advanced updating logic have been developed for different numerical and control performance.

Thus, the CMoN, together with the updating logic, formulates a partial sensitivity updating

scheme for fast NMPC, named CMoN-RTI. Simulation examples are used to demonstrate the

effectiveness and efficiency of CMoN-RTI. In addition, a rigorous analysis on the optimality

and local convergence of CMoN-RTI is given and illustrated using numerical examples.

Partial condensing algorithms have been developed when using the proposed partial

sensitivity update scheme. The computational complexity has been reduced since part of the

condensing information are exploited from previous sampling instants. A sensitivity updating

logic together with partial condensing is proposed with a complexity linear in prediction

length, leading to a speed up by a factor of ten.

Partial matrix factorization algorithms are also proposed to exploit partial sensitivity

update. By applying splitting methods to multi-stage problems, only part of the resulting

KKT system need to be updated, which is computationally dominant in on-line optimization.

Significant improvement has been proved by giving floating point operations (flops).

Second, efficient implementations of NMPC have been achieved by developing a Matlab

based package named MATMPC. MATMPC has two working modes: the one completely

relies on Matlab and the other employs the MATLAB C language API. The advantages of

MATMPC are that algorithms are easy to develop and debug thanks to Matlab, and libraries



x

and toolboxes from Matlab can be directly used. When working in the second mode, the

computational efficiency of MATMPC is comparable with those software using optimized code

generation. Real-time implementations are achieved for a nine degree of freedom dynamic

driving simulator and for multi-sensory motion cueing with active seat.



Sommario

Implementazioni rapide di NMPC sono importanti quando si affronta il controllo in tempo

reale di sistemi che presentano caratteristiche come dinamica veloce, ampie dimensioni e

orizzonte di predizione lungo, poichÃl’ in tali situazioni il carico di calcolo dell’MNPC puÃš

limitare la larghezza di banda di controllo ottenibile.

A tale scopo, questa tesi riguarda sia gli algoritmi che le applicazioni.

In primo luogo, sono stati sviluppati algoritmi veloci NMPC per il controllo di sistemi

dinamici a tempo continuo che utilizzano un orizzonte di previsione lungo. Un ponte tra MPC

lineare e non lineare viene costruito utilizzando linearizzazioni parziali o aggiornamento

della sensibilitÃă. Al fine di aggiornare la sensibilitÃă solo quando necessario, Ã́l stata

introdotta una misura simile alla curva di non linearitÃă (CMoN) per i sistemi dinamici e

applicata agli algoritmi NMPC esistenti. Basato su CMoN, sono state sviluppate logiche di

aggiornamento intuitive e avanzate per diverse prestazioni numeriche e di controllo. Pertanto,

il CMoN, insieme alla logica di aggiornamento, formula uno schema di aggiornamento della

sensibilitÃă parziale per NMPC veloce, denominato CMoN-RTI. Gli esempi di simulazione

sono utilizzati per dimostrare l’efficacia e l’efficienza di CMoN-RTI. Inoltre, un’analisi rigorosa

sull’ottimalitÃă e sulla convergenza locale di CMoN-RTI viene fornita ed illustrata utilizzando

esempi numerici.

Algoritmi di condensazione parziale sono stati sviluppati quando si utilizza lo schema di

aggiornamento della sensibilitÃă parziale proposto. La complessitÃă computazionale Ã́l stata

ridotta poichÃl’ parte delle informazioni di condensazione sono sfruttate da precedenti istanti

di campionamento. Una logica di aggiornamento della sensibilitÃă insieme alla condensazione

parziale viene proposta con una complessitÃă lineare nella lunghezza della previsione, che

porta a una velocitÃă di un fattore dieci.

Sono anche proposti algoritmi di fattorizzazione parziale della matrice per sfruttare

l’aggiornamento della sensibilitÃă parziale. Applicando metodi di suddivisione a problemi

a piÃź stadi, Ã́l necessario aggiornare solo parte del sistema KKT risultante, che Ã́l com-

putazionalmente dominante nell’ottimizzazione online. Un miglioramento significativo Ã́l

stato dimostrato dando operazioni in virgola mobile (flop).
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In secondo luogo, sono state realizzate implementazioni efficienti di NMPC sviluppando

un pacchetto basato su Matlab chiamato MATMPC. MATMPC ha due modalitÃă operative:

quella si basa completamente su Matlab e l’altra utilizza l’API del linguaggio MATLAB C. I

vantaggi di MATMPC sono che gli algoritmi sono facili da sviluppare e eseguire il debug grazie

a Matlab e le librerie e le toolbox di Matlab possono essere utilizzate direttamente. Quando

si lavora nella seconda modalitÃă, l’efficienza computazionale di MATMPC Ã́l paragonabile

a quella del software che utilizza la generazione di codice ottimizzata. Le realizzazioni in

tempo reale sono ottenute per un simulatore di guida dinamica di nove gradi di libertÃă e

per il movimento multisensoriale con sedile attivo.
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1
Introduction

Model Predictive Control (MPC) has been a popular advanced control technique since its

success in process industry in 1980s. During the past decades, MPC has been widely used in the

application of chemical , aerospace, paper manufacturing and automotive industries (Garcia,

Prett, and Morari, 1989; Qin and Badgwell, 2003; Camacho and Alba, 2013). Comparing to

classical PI/PID controllers, MPC employs a mathematical model of the control system and

exploits optimization techniques to find the optimal control law. The capability of tackling

multi-input-multi-output (MIMO) systems with constraints enables MPC superior control

performance in a lot of scenarios that require complex control strategies and careful controller

design. In addition, MPC is able to respond to disturbances really fast, due to the fact that it

makes use of repeated optimization w.r.t. the latest state measurement or estimation.

Nowadays, there are increasingly more applications of MPC in the field of mechanical,

electrical and electronic engineering. Such applications take advantage of growing computa-

tional power of embedded chips and the development of optimization algorithms, especially

convex optimization. For these systems which usually work at a frequency above 1Hz, it is of

crucial importance that MPC can work in real-time, i.e. optimization problems must be solved

on-line within a limited time. There exists a type of explicit MPC which solves optimization

problems off-line analytically (Bemporad, Morari, Dua, and Pistikopoulos, 2002). However,

there are growing evidence showing that on-line optimization based MPC is superior in terms

of scalability and robustness. In this thesis, we focus on the on-line optimization algorithms
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specialized for MPC applications.

The nonlinear nature of the world has urged scientists and engineers to develop MPC

algorithms that take into account the nonlinearities of control systems. Nonlinear MPC

(NMPC) considers a nonlinear mathematical model of the control system and nonlinear

constraints that may be very complex to describe. The theoretical studies and industrial

applications of NMPC can be found in excellent review papers and books, e.g. (Qin and

Badgwell, 2000; Allgöwer and Zheng, 2012; Diehl, Ferreau, and Haverbeke, 2009; Ricker

and Lee, 1995; Mayne, Rawlings, Rao, and Scokaert, 2000; Mayne, 2000). However, due to

the difficulties to obtain nonlinear mathematical models, to solve the nonlinear optimization

problem on-line and to implement NMPC algorithms in embedded systems, NMPC has a

very limited number of applications (Qin and Badgwell, 2000), especially in the field of

mechanical, electrical and electronic engineering.

Only recently, fast implementations of NMPC are becoming necessary and popular, from

benchmark systems like the Pendubot (Gulan, Salaj, Abdollahpouri, and Rohal-Ilkiv, 2015), to

industry relevant systems like combustion engines (Albin, Frank, Ritter, Abel, Quirynen, and

Diehl, 2016), tethered airfoils (Vukov, Gros, Horn, Frison, Geebelen, Jørgensen, Swevers, and

Diehl, 2015), and electrical motor drives (Bolognani, Bolognani, Peretti, and Zigliotto, 2009).

Fast implementations of NMPC are particularly relevant when addressing real-time control of

systems exhibiting features like fast dynamics, large dimension, and long prediction horizon,

as in such situations the computational burden of the NMPC may limit the achievable control

bandwidth. As a motivating example, consider dynamical driving simulators (introduced

in Chapter 7), and the related Motion Cueing Algorithms (MCAs), that is, the simulator

motion strategies aiming to providing the driver with a realistic driving experience. The

most recent implementations of MCA (Bruschetta, Maran, and Beghi, 2017a) are based on

fast MPC, which results to be a suitable technique to take into account perceptive models

of the human being and models of the platforms dynamic, and, if available, information

about future driver behavior. In particular, a real time linear MPC implementation has been

developed with long prediction horizon, exploiting available information about future driver

behavior (Beghi, Bruschetta, and Maran, 2013). Also, a real-time NMPC implementation

considering a more complex model has been proposed, taking into account exact actuators

constraints (Bruschetta, Maran, and Beghi, 2017c). Intuitively, applying in real-time an NMPC

controller with a long prediction horizon would lead to a better driver perception and better

platform work space exploitation. However, this comes at a cost of significantly increased

on-line computational load, since the dimension of the on-line optimization problem and its

complexity scales with the prediction horizon.

Therefore, this thesis particularly addresses fast NMPC algorithms for controlling continuous-
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time dynamic systems, using a long prediction horizon for better control performance. The

starting point is to build a bridge between linear and nonlinear MPC using partial lineariza-

tions. The idea is that, within the prediction window, the predicted trajectories of the control

systems can be partial linearized, i.e. being linearized only when it is considered highly

nonlinear. To achieve this goal, a measure of nonlinearity (MoN) for dynamic systems has

to be introduced and applied to existing NMPC algorithms. However, the nonlinearity of a

dynamic system is time-varying and condition dependent. A super nonlinear system, at least

seems so at its expression, may become almost linear when running at its steady state. A

mildly nonlinear system, may become highly nonlinear when working far from its steady state.

Therefore, MoN is desired to be measured on-line to reflect the current and local nonlinearity

of the control system. The resulting NMPC algorithm thus becomes a mixed linear/nonlinear

MPC which requires less computational effort in the evaluation of the linearization, matrix

production and factorization.

To begin with, a guiding example is shown in the following to give a first idea on when

linear MPC may work well with a highly nonlinear system. This example will be referenced

several times in this thesis.

1.1 A Guiding Example: Inverted Pendulum

Consider a classical nonlinear mechanical system: an inverted pendulum. The inverted

pendulum is mounted on top of a cart and can swing up to 360 degrees (Quirynen, Vukov,

Zanon, and Diehl, 2015). A schematic illustration is given in Fig. 1.1. The nonlinear dynamics

y

x0

m2
F

m1 θl

p

Figure 1.1: A schematic illustration of the inverted pendulum control problem. m1, m2, l, F
are the mass of the pendulum, the mass of the cart, the length of the pendulum and the
horizontal control force, respectively. The swing angle θ is defined as drawn.
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are given by

p̈ =
−m1l sin(θ )θ̇2 +m1 g cos(θ ) sin(θ ) + F

m2 +m1 −m1(cos(θ ))2
, (1.1a)

θ̈ =
F cos(θ )−m1l cos(θ ) sin(θ )θ̇2 + (m2 +m1)g sin(θ )

l(m2 +m1 −m1(cos(θ ))2)
, (1.1b)

where p,θ are cart position and swinging angle, respectively. The values of model parameters

are given in Table 1.1. Looking at the dynamic function (1.1), we can immediately make the

Variable Value
m1 1 kg
m2 0.1 kg
l 0.8 m
g 9.81 ms−2

Table 1.1: The values of model parameters of the inverted pendulum.

first argument that the inverted pendulum is highly nonlinear. We employ a multiple-shooting

based Sequential Quadratic Programming (SQP) algorithm ((Leineweber, 1999), see also in

Chapter 2) for solving the resulting nonlinear MPC problem. Suppose that the trajectory of

the dynamic system (1.1) is obtained by employing a numerical integration operator Ξ as

xk+1 = Ξ(xk, uk), (1.2)

where xk, uk are system states and controls at the prediction time point tk. A common

approach to deal with a such nonlinear problem is to linearize it, either at the steady-state or

at the current transient point in state space. The linearization of the dynamic constraint (??)

is given by

∆xk+1 = Ak∆xk + Bk∆uk + ck. (1.3)

where∆xk = x−xk is the increment of the state variable and Ak =
∂Ξ
∂ x (xk, uk), Bk =

∂Ξ
∂ u (xk, uk)

are linearized transition matrices. ck is a variable related to the integration results. We refer

to linear MPC (LMPC) using constant matrices Ak = A, Bk = B 1 and nonlinear MPC (NMPC)

using locally linearized dynamics. In the sequel, we will investigate two control tasks using

these two MPC algorithms and illustrate how a linear MPC is able to control a nonlinear

system in a certain circumstances.

1Precisely speaking, this is a semi-linear scheme as described in Chapter 2
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Invert the pendulum

The first control task is to invert the pendulum from bottom to top, i.e. θ : π→ 0. At each

sampling instant, the following nonlinear programming problem is solved

min
x ,u

N−1
∑

k=0

‖xk − xre f ‖Q + ‖uk‖R + ‖xN − xre f ‖QN
(1.4a)

s.t. x0 = x̂0, (1.4b)

xk+1 = Ξ(xk, uk), k = 0,1, . . . , N − 1, (1.4c)

−2≤ pk ≤ 2, k = 1,2, . . . , N , (1.4d)

−20≤ uk ≤ 20, k = 0, 1, . . . , N − 1, (1.4e)

where x = [p,θ , ṗ, θ̇]> is system state and u = F the control input. The initial condition

is given by x̂0 = [0,π, 0, 0]> and the reference is xre f = [0,0,0,0]>. The values of tuning

parameters are given in Table 1.2. The simulation results are shown in Figure 1.2. In this

Variable Description Value
Q weight on state diag(10,10,0.1,0.1)
R weight on control 0.01

QN terminal weight diag(10,10,0.1,0.1)
N prediction horizon 40
Ts sampling time 0.05 s

Table 1.2: The values of NMPC tuning parameters of the inverted pendulum.

situation, NMPC has perfectly completed the control task while LMPC is always struggling

to achieve the goal. No wonder LMPC has such a terrible performance due to the highly

nonlinearity of the system at hand. However, it is too early to draw a conclusion that a linear

MPC is not suitable for the inverted pendulum.

Shake the pendulum

The second control task is to “shake” the pendulum around its unstable equilibrium point

θ = 0. Provided that the shaking angle is sufficiently small, a locally linear behavior can be
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Figure 1.2: State and control trajectories of the inverted pendulum using NMPC and LMPC
for the first control task. For LMPC, the static transition matrices are obtained by linearizing
the nonlinear system (1.1) at the initial point.

expected. In this situation, the following nonlinear programming problem is solved

min
x ,u

N−1
∑

k=0

‖θk − θre f ‖Q + ‖u̇k‖R + ‖θN − θre f ‖QN
(1.5a)

s.t. x0 = x̂0, (1.5b)

xk+1 = Ξ(xk, uk), k = 0,1, . . . , N − 1, (1.5c)

−20≤ uk ≤ 20, k = 0, 1, . . . , N − 1, (1.5d)

where x̂0 = [0,0,0,0]>, Q = 100, R = 10−3 and other tuning parameters are identical to

those in Table 1.2. In Figure 1.3, the simulation results using NMPC and LMPC for shaking

the pendulum up to 5 degrees are shown. Although there are some input oscillations at

around t = 4s, the performance of LMPC is in general very similar to that of NMPC. This

demonstrates that a linear MPC scheme can work with a highly nonlinear system in a certain

circumstances, as long as the local nonlinearity is small enough. Indeed, if the shaking angle

is too big ,e.g. up to 20 degrees, this linear MPC can no longer provide a reliable control to

the inverted pendulum.
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Figure 1.3: State and control trajectories of the inverted pendulum using NMPC and
LMPC for the second control task. For LMPC, the static transition matrices are obtained by
linearizing the nonlinear system (1.1) at the initial point. The shaking angle has the range
of [−5o, 5o].

1.2 The Second Example: Chain of Masses

The second example is a chain of masses which is a mechanical system with a number of

masses connected by springs. One end of the chain is fixed on a wall and the other end is

controlled by external forces. A schematic illustration is shown in Figure 1.4. To stabilize the

chain with n masses in the X-Z plane, the following NLP problem is solved at each sampling

instant.

min
x,u

N
∑

i=0

(
n
∑

j=1

‖v i
j‖

2
Wv
+ ‖pi

n − pi
n‖

2
Wp
) +

N−1
∑

i=0

n
∑

j=1

‖ui
j‖

2
Wu

(1.6a)

s.t. ṗ j = v j , j = 1, . . . , n− 1, (1.6b)

v̇ j =
n
m
(F j+1 − F j)− g, j = 1, . . . , n− 1, (1.6c)

ṗn = u, (1.6d)

where pi ∈ R3, vi ∈ R3, u ∈ R3 are the positions, velocities of the masses and the control input

in 3D space, respectively, and

F j = k(x j − x j−1)(n−
lr

||x j − x j−1||2
), j = 1, . . . , n− 1, (1.7)
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Figure 1.4: A schematic illustration of the chain of masses system.

is the force generated by the spring between mass j and j − 1. System state is x =

[p>0 , . . . , p>n , v>0 , . . . , v>n−1]
> and parameters are k, m, lr , g with values given in (Kirches, Wirsching,

Bock, and Schlöder, 2012).

Problem (1.6) penalizes the velocities of every mass and the final position of the last

mass. The steady positions for each mass will automatically be obtained by solving (1.6) until

optimum. Although the spring dynamics (1.7) are linear, it contains the distance between two

masses which results in a nonlinear model. This example will be used for testing algorithms

developed in this thesis as it allows for arbitrary number of states. Therefore, a sufficiently

large system can be built.

1.3 Contributions and Outline

Example 1.1 shows that the nonlinearity of a system is condition dependent and a linear

MPC may be capable of controlling nonlinear systems when considered locally linear. As the

nonlinearity of a system is varying, a mixed strategy that combines linear and nonlinear MPC

is expected to provide acceptable control performance. Therefore, if optimization algorithms

can make use of such mixed structure, their computational efficiency can be significantly

improved. In the following, the structure of this thesis is described as in Fig. 1.5 that addresses

different aspects of on-line optimization algorithms.
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Chapter 2: NMPC and RTI

Chapter 3: Partial Sensitivity UpdateChapter 4: Theoretical Analysis

Chapter 5: Partial Condensing and Matrix Factorization

Chapter 6: MATMPC Package

Chapter 7: Applications

Figure 1.5: Structure of the thesis.

Chapter 2 - Fast Nonlinear Model Predictive Control Algorithms

This chapter introduces a popular algorithmic framework for optimal control problem formu-

lation, which is the target of the thesis. It starts with an overview of direct multiple shooting

and nonlinear programming algorithms. In particular, fast algorithms to solve nonlinear

programming problem on-line in the scenario of NMPC are discussed. The Real-Time It-

eration (RTI) scheme (Diehl, Bock, Schlöder, Findeisen, Nagy, and Allgöwer, 2002) is one

of the most popular fast NMPC algorithms and is presented in detail. In addition, several

inexact sensitivity schemes in the framework of RTI are introduced, which will be used for

comparisons with new developments in this thesis.

Chapter 3- Partial Sensitivity Update

In this chapter, we present a framework for partially updating sensitivities of optimization

problems using a Curvature-like Measure of Nonlinearity (CMoN). First the classical methods

of Measure of Nonlinearity (MoN) are introduced. Then a novel Curvature-like Measure of

Nonlinearity (CMoN) is proposed and analyzed in detail for dynamic systems. Finally, two

updating logic are proposed in this framework, including a fixed-time block updating logic

and an adaptive one with a fixed threshold. The numerical and control performance of each
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updating logic are presented by means of simulations. Results in this chapter are mainly from

paper (Chen, Cuccato, Bruschetta, and Beghi, 2017a) and (Chen, Davide, Bruschetta, and

Beghi, 2017b).

Chapter 4- Optimality and Convergence of Partial Sensitivity Update

This chapter gives an analysis of the optimality and convergence properties of partial sensitivity

updating presented in the previous chapter. An updating logic that uses adaptive thresholds is

proposed. The resulting inexact sensitivity problem is re-formulated as a parametric problem

and the parameter has been related to the distance to optimum (DtO). As a result, the tuning

of the thresholds is converted to the tuning of DtO tolerance, which is defined by users.

By this means, a partial sensitivity updating scheme is available with a guarantee on DtO.

Such scheme is extended to the case of Sequential Quadratic Programming and its local

convergence is proved. Both numerical and simulation examples are given. Results of this

chapter have been written in a journal paper under review by now.

Chapter 5- Partial Condensing and Matrix Factorization

We further investigate possible improvements for a RTI step after partial sensitivity update.

Given that the QP subproblem can be solved either in a sparse form or a dense one, efficient

algorithms are proposed in both cases. To solve a dense QP, two algorithms are proposed

by combining partial condensing and partial sensitivity update, with a quadratic and linear

complexity in prediction horizon length, respectively. To solve a sparse QP, a partial matrix

factorization algorithm is proposed to exploit part of the KKT matrix factorization from

previous sampling instants. Comparison is made in computational cost in terms of floating

point operations (flops). Results of this chapter will be submitted to a conference soon.

Chapter 6- MATMPC: a Matlab-based Nonlinear MPC package

This chapter discuss an implementation of NMPC algorithms based Matlab, which is called

MATMPC. The motivation of MATMPC is firstly addressed, and its code structure is introduced.

MATMPC has two working modes: one is in pure Matlab environment and the other is

constructed using MATLAB C language API. We show how the first mode is useful and flexible

for non-experts in computer science and programming when developing and debugging their

solutions. The second mode shows comparable numerical performance w.r.t state-of-the-art

NMPC solvers based on C code generation.
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Chapter 7- Applications to Automotive Industry

A complex, real-world problem, named as dynamic driving simulator, is tackled in this chapter.

First, a simulator with nine degree of freedoms connected by tripod and hexapod is introduced.

A nonlinear model with four reference frames is derived and a high-pass and low-pass filters

are used to distinguish the movement of the tripod and hexapod. Actuator constraints,

which are nonlinear and very complex, are taken into account. A real-time implementation is

obtained by using MATMPC working in its second mode. Second, a Multi-Sensory Cueing with

Active Seat framework is constructed. The coupling between simulator’s movements and the

use of active seat is explicitly embedded into the dynamic model. The NMPC implementation

can be run in real-time by means of adjoint RTI scheme and the alternating direction method

of multipliers (ADMM). Results of this paper are from (Bruschetta, Cunico, Chen, Beghi, and

Minen, 2017b).
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2
Nonlinear Model Predictive Control

Model Predictive Control (MPC) is a an advanced computer control algorithm that exploits

explicit process models and constraints, and the power of optimization. The key feature

of MPC is to determine a control sequence at time t0 in order to optimize a cost function

representing the future behavior of the controlled process over a prediction horizon [t0, t f ].

However, only the first control input is forwarded to the plant and the optimization procedure

is repeated at the next sampling instant. As a result, MPC refers to a control strategy that solves

a sequence of optimization problems on-online (when system is running), with respect to the

latest state measurement of the plant. Figure 2.1 shows the building blocks of MPC. Firstly

proposed in 1980s (Cutler and Ramaker, 1980), MPC has become a mature modern control

technique in the application of chemical , aerospace, paper manufacturing and automotive

industries (Garcia et al., 1989; Qin and Badgwell, 2003; Camacho and Alba, 2013).

Nonlinear Model Predictive Control (NMPC) refers to MPC exploiting nonlinear plant

models. NMPC can provide better control performance and increasing productivity by

accurately capturing the nonlinear behaviors of plants. The theoretical studies and industrial

applications of NMPC can be found in excellent review papers and books, e.g. (Qin and

Badgwell, 2000; Allgöwer and Zheng, 2012; Diehl et al., 2009; Ricker and Lee, 1995; Mayne

et al., 2000; Mayne, 2000).

However, the limitation of NMPC is obvious. While the optimization problems arising

from linear MPC can be solved reliably and in a extreme fast speed, the optimization problems
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Figure 2.1: An illustrative building block of MPC

in NMPC are often hard to solve and are difficult to solve within the real-time restriction. This

is due to the difficulty of reliably solving an open-loop nonlinear optimal control problem at

each sampling instant, respecting state, control and other physical and safety constraints. In

this chapter, we review how NMPC is formulated and solved using modern algorithms and

some existing fast NMPC algorithms that intend to accelerate the on-line optimization.

2.1 Optimal Control Problem

Consider a nonlinear plant which is modeled by a first principle model like the following

ẋ(t) = f (t, x(t), u(t); p), (2.1)

where x ∈ Rnx , u ∈ Rnu , p ∈ Rnp are plant state, control and parameter variables. Equation

(2.1) refers to a system of Ordinary Differential Equations (ODE) and represents the dynamics

of the controlled plant 1. Starting at an initial condition x(t0) = x̂0, (2.1) is an Initial Value

Problem (IVP) given a control trajectory u(t). The existence of a unique solution x(t) on a

certain interval t ∈ [t0, t f ] is proved by the famous Picard’s existence theorem, under the

assumption that f is uniformly Lipschitz continuous in x , u and continuous in t. We follow

the same assumption throughout the thesis.

MPC requires to solve an open-loop Optimal Control Problem (OCP) at each sampling

1For simplicity we consider ODE systems throughout the thesis, although there are systems modeled by
Differential-Algebraic Equations
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instant, respecting the dynamics of the plant (2.1), as follows

min
x(·),u(·)

J̃ =

∫ t f

t0

φ(t, x(t), u(t); p)dt +Φ(x(t f )) (2.2a)

s.t. x(t0) = x̂0, (2.2b)

ẋ(t) = f (t, x(t), u(t); p), ∀t ∈ [t0, t f ], (2.2c)

r(x(t), u(t); p)≤ 0, ∀t ∈ [t0, t f ], (2.2d)

l(t f )≤ 0, (2.2e)

where φ and Φ are the optimization objective of the OCP (2.2), r the path constraints which

includes state and input constraints, l the boundary conditions. Given the current state

measurement x̂0, an optimal solution trajectory (x(·), u(·)) in the range of the prediction

length t f − t0 can be obtained by solving (2.2).

2.2 Direct Multiple Shooting

There are three well-known approaches for solving the OCP (2.2) (Binder, Blank, Bock,

Bulirsch, Dahmen, Diehl, Kronseder, Marquardt, Schlöder, and von Stryk, 2001; Quirynen,

2017):

1. Dynamic Programming using Hamilton-Jacobi-Caratheodory-Bellman(HJCB) and partial

differential equations (PDEs),

2. Indirect Methods using Calculus of Variations and Pontryagin’s Maximum Principle, and

3. Direct Methods based on a finite dimensional parameterization of the continuous-time

OCP (2.2).

Indirect methods are hardly used in today’s NMPC applications since their shortcomings.

In (Rao, 2009), Rao wrote that “indirect shooting method is extremely sensitive to the

unknown boundary condtions” and “requires the derivation of the first-order optimality

conditions of the OCP”. A more complete analysis of the shortcomings of indirect methods is

addressed in (Binder et al., 2001).

On the other hand, direct methods are more popular mainly due to their flexibility

and the fast development of numerical optimization solvers. Applying a finite dimensional

parameterization to the OCP (2.2), we obtain a Nonlinear Programming (NLP) problem

which can be solved by state-of-art numerical solvers. There exist a variety of approaches

to parameterize the state and control variables in (2.2), e.g. single shooting, multiple
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shooting and collocation, however, we focus on multiple shooting throughout the thesis.

This is because multiple shooting has been demonstrated an effective approach in NMPC

applications (Leineweber, 1999; Diehl et al., 2002) and the fast NMPC algorithms described

in the later chapters are based on this kind of parameterization. For a complete overview of

different parameterization approaches, see (Binder et al., 2001; Rao, 2009).

In direct multiple shooting, the prediction length is divided into N shooting intervals

defined as [tk, tk+1], k = 0,1, . . . , N − 1 resulting in N + 1 time grid points t0 < t1 < . . . <

tN = t f . The control trajectory is then parameterized over these shooting intervals, usually

by a piece-wise constant representation given by

u(t) = uk, ∀t ∈ [tk, tk+1). (2.3)

The application of higher order parameterization of the control trajectory is beyond the scope

of the thesis. Differently from single shooting, multiple shooting also parameterizes the

state trajectory x(t) over the N shooting intervals by considering the dynamics of the plant

(2.1). A total of N +1 shooting points (s0, s1, . . . , sN ) are introduced as additional optimization

variables and each shooting point sk, k = 0, 1, . . . , N , is defined exactly on the time grid point

tk. In multiple shooting, sk is the initial condition of the following IVP over the shooting

interval [t i , t i+1)

ẋk(t) = f (t, xk(t), uk(t); p), ∀t ∈ [tk, tk+1), xk(tk) = sk, (2.4)

so that the dynamic constraints (2.2c) are transcribed into continuity constraints as

sk+1 = Ξ(tk, sk, uk; p), k = 0,1, . . . , N − 1, (2.5)

where Ξ(·) is an integration operator which solves the IVP (2.4) and returns the solution at

the terminal time point tk+1. Similarly, the path constraints (2.2c) are parameterized on the

discrete time points given by

r(sk, uk; p)≤ 0, , k = 0, 1, . . . , N − 1. (2.6)

The optimization objective J̃ in (2.2a) is re-formulated as

N−1
∑

k=0

J̄k =
N−1
∑

k=0

∫ tk+1

tk

φ(tk, sk, uk; p)dt +Φ(sN ), (2.7)
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and can be approximated using a discrete sum (Leineweber, 1999; Quirynen, 2017) as

N−1
∑

k=0

Jk =
N−1
∑

k=0

φ(tk, sk, uk; p) +Φ(sN ). (2.8)

Given the specific parameterizations (2.5), (2.6) and (2.8), a NLP problem is formulated

as

min
s,u

N−1
∑

k=0

φ(tk, sk, uk; p) +Φ(sN ) (2.9a)

s.t. s0 = x̂0, (2.9b)

sk+1 = Ξ(tk, sk, uk; p), k = 0,1, . . . , N − 1 (2.9c)

r(sk, uk; p)≤ 0, k = 0, 1, . . . , N − 1, (2.9d)

l(sN )≤ 0, (2.9e)

where s = [s>0 , s>1 , . . . , s>N ]
> and u = [u>0 , u>1 , . . . , u>N−1]

> are discrete state and control vari-

ables. The features of multiple shooting parameterization and the resulting NLP (2.9) are

listed as follows.

1. An initial guess of the entire state and control trajectory over the prediction horizon is

needed to solve (2.9). However, this initial guess is not necessarily feasible.

2. The resulting NLP (2.9) is numerically stable, even if the dynamics (2.1) is unstable or

even chaotic

3. Existing software are directly available for solving Ξ(·) of (2.9c) and the NLP (2.9).

There is no need to re-design the NMPC for different problems at hand.

4. The NLP (2.9) is also called a multi-stage problem (Zanelli, Domahidi, Jerez, and Morari,

2017), as the objective (2.8), constraints (2.5) and (2.6) can be easily decoupled on

different shooting intervals or stages. Parallel computation is straightforward.

It should be noted that all the constraints in (2.9), particularly the continuity constraints

(2.9c), are usually violated at the beginning and in the process of solving (2.9) using an

iterative approach. Only at the optimal solution (up to a given accuracy) the constraints (2.9)

will be fulfilled. This is illustrated in Figure 2.2 and 2.3.
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Figure 2.2: The initial discontinuous trajectory of multiple shooting
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Figure 2.3: The terminal continuous trajectory of multiple shooting

2.3 Nonlinear Programming Algorithms

The NLP problem (2.9) can be re-written in a standard or compact form as

min
z

a(z) (2.10a)

s.t. b(z) = 0, (2.10b)

c(z)≤ 0, (2.10c)

where

z= [z>0 , z>1 , . . . , z>N−1, sN ]
> ∈ Rnz , (2.11)

zk = [s
>
k , u>k ]

> ∈ Rnx+nu , k = 0, 1, . . . , N − 1, (2.12)
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collects all the optimization variables and b : Rnz → Rnb , c : Rnz → Rnc collects all the

constraints, which are given by

b(z) =













x̂0 − s0

Ξ(s0, u0)− s1
...

Ξ(sN−1, uN−1)− sN













, c(z) =













r(s0, u0)
...

r(sN−1, uN−1)

l(sN )













(2.13)

This standard NLP problem (2.10) can be solved via efficient NLP solvers, such as Ipopt

(Wächter and Biegler, 2006), Knitro (Byrd, Nocedal, and Waltz, 2006) and SNOPT (Gill,

Murray, and Saunders, 2005). A comprehensive classification and comparison of optimization

solvers with open-source availability and commercial license is given by (Mittelmann, 2016).

For NMPC practitioners and users, the only remaining step is to select an appropriate NLP

solver. However, for researchers, it is important to go deep into the optimization to develop

and improve optimization algorithms. Mathematically speaking, there are mainly two classes

of NLP optimization algorithms, namely Sequential Quadratic Programming (SQP) and

Interior Point Method (IPM) (Nocedal and Wright, 2006). A comparison of these methods

for solving optimal control problems can be found in (Works, 2002).

For clarity we first introduce the Karush-Kuhn-Tucker (KKT) first order necessary con-

ditions of optimality of (2.10). Assumming z∗ a local minimizer of (2.10), there exist KKT

multipliers λ∗ ∈ Rnb ,µ∗ ∈ Rnc corresponding to constraints (2.10b) and (2.10c) respectively,

such that

Stationarity

∇zL(z
∗,λ∗,µ∗) :=∇za(z∗) +∇zb(z∗)>λ∗ +∇zc(z∗)>µ∗ = 0, (2.14a)

Primal feasibility

b(z∗) = 0, (2.14b)

c(z∗)≤ 0, (2.14c)

Dual feasibility

µ∗ ≥ 0, (2.14d)

Complementary slackness

µ∗kck(z
∗) = 0, k = 0,1, . . . , nc . (2.14e)

where y∗ = [z∗
>
,λ∗>,µ∗>]> is the optimal primal and dual solutions and is called a KKT point.

Throughout the thesis, we also assume the fulfillment of Linear Independence Constraint

Qualification (LICQ), Strict Complementary Slackness (LCS) and Second Order Sufficient
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Conditions (SOSC). These are general assumptions in most optimization problems and

detailed descriptions can be found in any relevant textbooks, e.g. (Nocedal and Wright,

2006).

2.3.1 Sequential quadratic programming

The idea of Sequential Quadratic Programming (SQP) (Han, 1976; Powell, 1978) is to

solve the NLP problem (2.10) iteratively by using a local quadratic approximation of the

objective and linearized constraints at each iteration. Specifically, given an initial guess

y i = [zi> ,λi>,µi>]> at the i th iteration, a standard Quadratic Programming (QP) problem is

formulated as follows

min
∆z

1
2
∆z>H(zi)∆z+ g(zi)>∆z (2.15a)

s.t. b(zi) + B(zi)∆z= 0, (2.15b)

c(zi) + C(zi)∆z≤ 0, (2.15c)

where ∆z = z − zi is the increment, H(zi) := ∇2
zL(z

i ,λi ,µi) the exact Hessian of the La-

grangian, g(zi) := ∇za(zi) the gradient of the objective, B(zi) := ∇zb(zi) and C(zi) :=

∇zc(zi) the Jacobian matrices of the constraints b, c, respectively. The resulting solution is

the primal increment ∆z together with new multipliers λi+1,µi+1. The initial guess y i is

then updated according to

zi+1 = zi +αi∆z, (2.16a)

λi+1 = (1−α)λi +αiλi+1, (2.16b)

µi+1 = (1−α)µi +αiµi+1, (2.16c)

where αi is the step size and can be determined by globalization strategies (Nocedal and

Wright, 2006). This procedure is repeated until the satisfaction of the KKT conditions (2.14)

up to a given accuracy. SQP is proved to exhibit a quadratic or superlinear convergence

rate given a sufficiently good initial guess (Han, 1976) and is widely used for solving NLP

problems arising from NMPC applications (Leineweber, 1999; Binder et al., 2001; Rao, 2009;

Diehl et al., 2009).

Solving the QP subproblem

In addition to the fast convergence rate, SQP is able to exploit existing solvers for solving QP

subproblems, which are typical in linear MPC applications. Therefore, the algorithmic effort
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needed for upgrading the linear MPC to NMPC is usually affordable. For linear MPC, efficient

and reliable QP algorithms and solvers have been developed for decades. There are three

main classes of algorithms for solving QPs (Kouzoupis, Zanelli, Peyrl, and Ferreau, 2015c;

Ferreau, Almer, Verschueren, Diehl, Frick, Domahidi, Jerez, Stathopoulos, and Jones, 2017)

which are summarized in the following.

1. First-order methods are the simplest and fastest algorithms for solving QPs with simple

constraints, e.g. box constraints on optimization variables. Fast primal and dual gradient

methods (Nesterov, 2013), multiplicative update dual optimization (Di Cairano and

Brand, 2013) and Alternating Direction Method of Multipliers (ADMM) (Boyd, Parikh,

Chu, Peleato, and Eckstein, 2011; O’Donoghue, Stathopoulos, and Boyd, 2013) all

belong to this class. A given solution accuracy can be achieved after finite iterations.

In case of equality and polytopic constraints, primal gradient methods often struggle

or fail the optimization but dual gradient methods and ADMM are able to proceed. A

code generation tool that implements first-order methods is FiOrdOs (Ullmann, 2011).

2. Active-set methods first guess the active inequality constraints and consider them as

equality constraints together with existing ones. As a consequence, a linear system is

solved if the guess is correct, otherwise the algorithms take new guesses and update

the solution until optimum. The most promising advantage of active-set methods is

the possibility to use warm-start strategy, which exploit an initial guess from the past

solution. By this means, only a few iterations are needed. A fantastic active-set QP

solver is qpOASES (Ferreau, Kirches, Potschka, Bock, and Diehl, 2014).

3. Interior point methods remove the inequality constraints by introducing slack variables.

A penalty term or barrier parameter is used in the objective to ensure that the entire

iterative procedure is feasible, so that the solution trajectory is in the “interior” of the

feasible region. The most famous interior point method for solving convex QP problems

is probably Mehrotra’s predictor-corrector scheme (Mehrotra, 1992). NLP solvers using

interior point methods such as Ipopt and Knitro (Wächter and Biegler, 2006; Byrd et al.,

2006), are capable of solving QP subproblems. The algorithmic performance can be

further improved if the structure of the QP is exploited, e.g. Forces Pro (Domahidi

and Jerez, 2014) solves multi-stage QP problems linearized from the multi-stage NLP

problems.

Linear MPC practitioners can select suitable QP solvers depend on their applications and

the features of solvers. However, additional considerations are necessary when implementing

SQP algorithm in NMPC applications. When the plant model is nonlinear, all the QP data in

(2.15) are in general time-varying hence advantages of some QP algorithms may disappear.
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For instance, for fast gradient methods, the optimal step size is computationally expensive

since it require to calculate the eigenvalues of the Hessian matrix. This calculation can be

moved off-line if the model is linear and the Hessian is time-invariant. However, on-line

computation is not affordable for nonlinear models (Kouzoupis, Ferreau, Peyrl, and Diehl,

2015a). As we will show in the following chapters, the type of constraints, the number

of active constraints, the number of shooting points and dimension of the model are all

important factors for selecting appropriate QP solvers in the framework of SQP in NMPC.

2.3.2 Interior Point Methods

Interior point methods (IPM) are arguably the best algorithms for solving a general constrained

NLP problem in the form of (2.10). Here we focus on solving NLP problems, although QP

problem is a special class of NLP problem and can be solved via IMP as described in Chapter

2.3.1.

The idea of interior point methods is to solve the following modified NLP problem by

introducing a barrier parameter τ > 0:

min
z,s

a(z)−τ
nc
∑

i=1

log si (2.17a)

s.t. b(z) = 0, (2.17b)

c(z) + s = 0, (2.17c)

where s is a slack variable and is inherently non-negative as the minimization of the objective

prevents s from being too close to zero. IPM iteratively finds approximate solutions of (2.17)

for a sequence of positive barrier parameters {τi} that converges to zero (Nocedal and Wright,

2006).

Given the value of τ, the equality constrained NLP (2.17) can be solved by applying

Newton’s method to the nonlinear system characterized by the KKT condition of (2.17). As a

result, at each iteration, we solve the following linear system











H ∇zb> ∇zc>

∇zb

∇zc I

S M





















∆z

∆λ

∆µ

∆s











= −











∇zL

b(z)

c(z)

Sµ−τe











, (2.18)

where H has the same definition as in (2.15), S,M diagonal matrices with vectors s,µ on

their diagonal entries and e = [1,1, . . . , 1]>. Such a linear system can be solved either by

LDL> factorization as in CVXGEN (Mattingley and Boyd, 2012), or by structure exploiting
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factorization as in Forces Pro (Domahidi and Jerez, 2014).

A key factor for the success of IPM is the barrier parameter updating strategy. While

Mehrotra’s predictor-corrector scheme (Mehrotra, 1992) has shown excellent performance for

convex QP problems, such a scheme is not necessarily that good for NLP problems (Nocedal

and Wright, 2006; Zanelli et al., 2017). A monotonically decreasing scheme for τ is shown

to be robust (Nocedal and Wright, 2006). Other schemes like adaptive barrier parameter

(Nocedal, Wächter, and Waltz, 2009) and centering parameter (Vanderbei and Shanno, 1999)

are also widely used.

Another key factor of IPM is the globalization strategy. There are mainly three types of

globalization strategies (Nocedal and Wright, 2006): i) line-search by merit function; ii)

line-search by filter; iii) trust-region methods. As indicated in (Ferreau et al., 2017), the

filter line-search method is most popular and has been adopted by state-of-art IPM solvers,

including Ipopt (Wächter and Biegler, 2006), Forces NLP (Zanelli et al., 2017) and PIPS-NLP

(Chiang, Huang, and Zavala, 2017).

2.4 Fast NMPC Algorithms

While an introduction of NLP optimization algorithms is addressed in Chapter 2.3, the focus

of this thesis is not on general numerical optimization. NMPC control engineers are willing

to solve NLP problems arising in NMPC applications instead of general ones from finance

or computer science. Since the real-time requirement of NMPC is so critical, algorithms are

desired to exploit the specialty of NLP problems from NMPC for possible speed-up. Therefore,

a summary is given in the following on the features of NMPC NLP problems and their effects

on optimization algorithms.

1. NLP problems at two consecutive sampling instants are very similar if the sampling

frequency is high enough. This may help select initial guess and pre-solve the problem.

2. Multi-stage problems in the form of (2.9) results in banded block diagonal Hessian and

constraint Jacobians, which can be exploited by solvers.

3. NMPC often requires only a moderate accuracy of the NLP solution. Inexact NLP

algorithms can often be used.

Existing fast NMPC algorithms more or less exploit the above features and deliver a

suboptimal solution with a certain degree of optimality guarantee. In the following we

introduce three popular fast NMPC algorithms.

1. Continuation/GMERES method (Ohtsuka, 2004) applies IPM with a single Newton step

and use a tangential predictor to approximate the optimal solution. However, as pointed
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out in (Ferreau et al., 2017), the solution manifold becomes highly nonlinear at an

active-set change, which leads to a less accurate predictor compared to SQP methods.

2. Advanced-step NMPC (Zavala and Biegler, 2009) also applies IPM but in a fully con-

vergence manner. A future NLP problem can be pre-solved at the current sample

using predicted states. The solution of the future NLP problem is then corrected at

the corresponding sample by exploiting parametric property of the NLP problem. The

pre-solving process, which is usually computationally expensive, can be run in back-

ground, while the correcting step is able to deliver a solution to the plant very quickly,

resulting in much less feedback delay. However, advanced-step NMPC also suffers from

the increasing nonlinearity due to active-set changes.

3. Real-time Iteration (RTI) (Diehl et al., 2002) is an early-stop SQP algorithm which

performs only one SQP iteration for solving NLP problem (2.10). An initial value

embedding strategy is exploited so that the resulting suboptimal solution is a tangential

predictor of the exact solution, even at the presence of active-set changes. The on-line

optimization process is divided into a preparation phase where the QP problem (2.15)

is formulated without knowing the initial condition, and a feedback phase where the QP

problem is solved once the initial condition measurement is obtained. If the initial guess

is sufficiently close to the exact solution, the tangential predictor obtained from RTI is

able to provide a sufficiently good approximate solution (Diehl, Findeisen, Allgöwer,

Bock, and Schlöder, 2005). An excellent implementation of RTI is provided by the

ACADO Toolkit (Houska, Ferreau, and Diehl, 2011), which exploits symbolic modelling

languages and exports optimized C-code for real-time applications.

2.4.1 Real-Time Iteration Scheme

Real-time Iteration (RTI) is today’s one of the most promising fast NMPC algorithms. At the

i th sampling instant, RTI performs only one SQP iteration to solve the NLP problem (2.10)

parameterized by multiple shooting. This corresponds to solve the QP problem (2.15) once.

The first equality linearized constraint in (2.15b) is given by

∆s0 = x̂0 − s0. (2.19)

This is called an initial value embedding strategy where the initial condition x̂0 enters the

QP problem (2.15) linearly so that the constraint (2.9b) is fulfilled after one SQP iteration.

Therefore, RTI scheme solves a sequence of similar QP problems on-line with varying initial

conditions and can be seen as a special case of linear time-varying MPC strategy (Gros, Zanon,
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Quirynen, Bemporad, and Diehl, 2016).

In RTI, the Hessian matrix H(zi) is usually approximated by using Gauss-Newton method,

which employs only the first derivative of the objective function and grants good numerical

performance when the OCP (2.2) is a least square problem (Diehl et al., 2002) 2. This

approximation also excludes the Lagrangian multipliers from Hessian computation. As a

result, the initialization zi for each QP problem is updated using a full Newton step

zi+1 = zi +∆zi , (2.20)

where ∆zi is the minimizer of (2.15). Since the initialization is of critical importance for

RTI scheme, different shifting strategies for improving the initialization are proposed (Diehl,

2001; Diehl et al., 2002). A warm start strategy directly takes the updated trajectory zi+1 to

initialize the QP problem at the next sampling instant. This is often useful when the sampling

frequency is high enough and the OCP does not change too much. If the sampling time does

make an effect, the initialization can be updated by shifting zi+1 one sampling time forward

using predicted states. The new initialization is given by

zi+1 = [z>1 , z>2 , . . . , z>N−1, s>N , u>N−1, s>N ]
>, (2.21)

where z0 is abandoned because it would have been outdated at the next sampling instant.

As will be shown in Chapter 7, there are other shifting strategies such as state trajectory

interpolation. All the strategies are motivated to provide a better initialization for the next

QP problem. The warm start or shifting strategy are in fact the essential ideas of RTI, which

try to exploit previous information as much as possible, including primal solutions as well as

multipliers.

2In (Diehl et al., 2002), exact Hessian and several approximations are discussed, but Gauss-Newton approxi-
mation is widely adopted and is the only option for Hessian approximation in ACADO Code Generation Toolkit
(Houska et al., 2011)
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Decomposing a RTI step

Given an initialization trajectory zi , RTI firstly needs to build up the QP subproblem (2.15).

Re-write (2.15) in a detailed form as

min
∆s,∆u

N−1
∑

k=0

(
1
2

�

∆sk

∆uk

�>

H i
k

�

∆sk

∆uk

�

+ g i>
k

�

∆sk

∆uk

�

) (2.22a)

+
1
2
∆s>N H i

N∆sN + g i>
N ∆sN

s.t. ∆s0 = x̂0 − s0, (2.22b)

∆sk = Ai
k−1∆sk−1 + Bi

k−1∆uk−1 + d i
k−1, k = 1, . . . , N (2.22c)

C i
k

�

∆sk

∆uk

�

≤ −c i
k, k = 0, 1, . . . , N − 1, (2.22d)

C i
N∆sN ≤ −c i

N (2.22e)

where Ai
k =

∂Ξ
∂ s (s

i
k, ui

k), Bk =
∂Ξ
∂ u (s

i
k, ui

k) are called (integration) sensitivities w.r.t. initial states

and controls, respectively. The gap between the end of the previous shooting trajectory and

starting point of the next one (See Figure 2.2) is denoted by d i
k−1 = Ξ(tk−1, si

k−1, ui
k−1; p)− si

k.

Here, H i
k, C i

k are the kth blocks of the Hessian and constraint Jacobian matrices and g i
k is the

kth sub-vector of g(zi).

In the preparation phase of RTI, all QP data need to be computed for all shooting intervals.

To evaluate g i
k, C i

k, we need to take first order derivatives of the objective and inequality

constraints a, r. The integrator Ξ together with its sensitivity evaluations are performed

by numerical integrating schemes, e.g. Runge-Kutta schemes. The exact Hessian requires

the second order derivatives of the objectives and the integration. These derivatives can be

computed by means of finite difference, or by a more modern technique called Automatic

Differentiation (AD). Refer to (Griewank and Walther, 2008) for a comprehensive overview.

The QP problem (2.22) can be solved directly in a sparse form, since H, B, C in (2.15)
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have the following banded block or block diagonal structures.
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, (2.23)
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, (2.24)

where I stands for an identity matrix of appropriate dimension. QP solvers that exploit such

a sparsity pattern have been developed, e.g. Forces Pro (Domahidi and Jerez, 2014) and

qpDUNES (Frasch, Sager, and Diehl, 2015). An alternative is to condense the QP problem

by removing the states ∆s from optimization variables based on the equality constraints

(2.22c). The resulting dense QP problem has much less decision variables with only inequality

constraints and is suitable for small-scale QP solvers, but the sparsity has been lost. In principle,

the condensing step has a computational complexity of order O(N3) (Vukov, Domahidi,

Ferreau, Morari, and Diehl, 2013), but an order of O(N2) has been achieved by exploiting

the banded block structure of QP matrices (Andersson, 2013). In the end, a full Newton step

is taken and the initialization is shifted.

2.4.2 Multi-Level Scheme

In (Bock, Diehl, Kostina, and Schlo’der, 2007), a Multi-Level scheme is proposed for reducing

the on-line computational cost of SQP based NMPC algorithms. The idea is to compute each

component of the QP problem (2.15) in different levels at different sampling rates. We follow

the definition in (Kirches, Wirsching, Sager, and Bock, 2010) for introducing different levels.

Level A: Feedback step

At this level, we only consider solving the QP problem (2.15) with fixed QP data. Given

a reference initial trajectory ȳ = [z̄>, λ̄>, µ̄>]>, we obtain Hessian matrix H̄, constraint

Jacobians B̄, C̄ , objective gradient ḡ and constraint residuals b̄, c̄. This is equivalent to a linear

MPC in which all data are time-invariant. The difference is that, these data come from upper

levels that may be performed more slowly than Level A.
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Level B: Feasibility improvement

At this level, we update the constraint residuals b(zi), c(zi) while keeping the Hessian H and

Jacobian matrices B, C constants as in Level A. The objective gradient is updated as

g i = ḡ + H̄(zi − z̄). (2.25)

It has been proved that such a SQP algorithm converges to a feasible (suboptimal) point of the

NLP problem (2.10). The additional computational costs are evaluations of the mentioned

functions. The computationally expensive matrix factorization is not necessary.

Level C: Optimality improvement

At this level, apart from updating constraint residuals as in Level B, we further compute a

modified objective gradient by

g i =∇za(zi) + (B(zi)− B̄)>λi + (C(zi)− C̄)>µi , (2.26)

where B̄, C̄ are computed at the reference trajectory as in Level A and B. Assuming a SQP

algorithm solving this sequence of gradient modified QPs converges to a limit (z∗,λ∗,µ∗),

then at the limit we have (∆z∗,λ∗,µ∗) the solution of the QP problem (2.15) with ∆z∗ = 0.

The gradient of the Lagrangian of the QP is

∇∆zLQP = H∆z∗ + g∗ + B̄>λ∗ + C̄>µ∗ (2.27)

= ∇za(z∗) + B>(z∗)λ∗ + C>(z∗)µ∗ (2.28)

= ∇zLN LP (2.29)

= 0 (2.30)

Hence, starting from a fixed x0, this SQP algorithm converges to the exact optimizer of the

original NLP problem (2.10).

Comparing to Level B, the additional computational cost is the evaluation the modified

gradient (2.26), which can be efficiently performed by computing the adjoint sensitivities

B̄>λ, C̄>µ (Kirches et al., 2010, 2012). It has been shown that the cost for computing adjoint

sensitivities is no more than five times the cost of the corresponding function evaluation

(Griewank and Walther, 2008). The matrix factorization is neither necessary since the Hessian

and constraint Jacobians are constants.
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Level D: Full step

At this level, the first and second order derivatives H, B, C , which are the most computationally

expensive QP data, are updated at the current trajectory. Note that the multi-level scheme

does not necessarily require to employ all levels of computations and it is in nature more

suitable for parallel computations (Kirches et al., 2010). A combination of Level A and D

using RTI is employed in (Albersmeyer, Beigel, Kirches, Wirsching, Bock, and Schlöder, 2009)

for an application of automotive control. A parallel implementation of multi-level schemes in

the SQP framework has been developed in (Lindscheid, Haßkerl, Meyer, Potschka, Bock, and

Engell, 2016).

The Multi-Level schemes can be summarized in Algorithm 2.1. 3

Algorithm 2.1 Multi-Level inexact sensitivity RTI scheme

1: Initialize at (z0,λ0,µ0). Choose a sensitivity update interval Nm ∈N+.
2: for i = 0, 1, . . . do
3: Compute H i , g i , bi , Bi , c i , C i ,
4: if i mod Nm = 0 then
5: Update the constraint Jacobian Bi

6: Set B̄← Bi

7: end if
8: Solve (2.15) with equality constraint Jacobian B̄
9: Update the initialization for the next sampling instant by (2.16)

with a full step αi = 1.
10: end for

2.4.3 Adjoint Sensitivity Scheme

The adjoint sensitivity scheme refers to a special class of Multi-level Scheme which contains

only the Level C. It is motivated by the observation that the constraint Jacobians, especially the

one of the dynamic constraint (2.22c), are computationally extensive even for state-of-the-art

numerical integrators (Serban and Hindmarsh, 2005; Kühl, Ferreau, Albersmeyer, Kirches,

Wirsching, Sager, Potschka, Schulz, Diehl, Leineweber, et al., 2007; Quirynen et al., 2015).

The computational efforts increase when multiple shooting parameterization is employed,

since the dynamic sensitivities are supposed to be evaluated for every shooting interval. As a

consequence, the adjoint sensitivity scheme adopts the constraint Jacobians B̄, C̄ at the the

reference trajectory z̄ which is selected off-line and kept constant throughout the on-line

computations.

3All QP components in (2.15) can be evaluated at different rates but we consider the constraint Jacobian
matrix here only for later comparison.
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Firstly proposed in (Wirsching, Bock, and Diehl, 2006; Wirsching, Albersmeyer, Kühl,

Diehl, and Bock, 2008), the adjoint sensitivity scheme is shown to have significantly reduced

the on-line computational cost in a RTI framework. If the condensing step is adopted, the

on-line computational cost can be further reduced by using matrix-vector condensing as

described in (Kirches et al., 2012). In the authors point of view, the biggest benefit brought

by using adjoint sensitivity scheme is such cheap condensing computation rather than fixing

the sensitivities.

As mentioned in Chapter 2.4.2, given a fixed initial guess y0, a SQP algorithm using the

adjoint sensitivity scheme converges to the exact KKT point of the NLP (2.10) (Bock et al.,

2007). An extension of this result is the feasibility and stability study of the adjoint sensitivity

scheme (Zanelli, Quirynen, and Diehl, 2016).

2.4.4 Mixed-Level Iteration Schemes

The idea of Mixed-Level Iteration Schemes (Frasch, Wirsching, Sager, and Bock, 2012) is

to update the QP components not only based on different sampling rates, but also over

the prediction horizon for different stages (or shooting intervals). As a consequence, the

multi-stage nature of the QP problem (2.22) is exploited. Mixed-Level Iteration Schemes

consist two levels of iterations.

Fractional-level iterations

In this iteration strategy, only the QP components in the first N f rac < N shooting intervals

are updated at every sampling instant. This is motivated by the observation that to model the

system better in earlier parts of the prediction horizon is more important than in later parts.

Mixed-level iterations

In this iteration strategy, the fractional-level iterations are mixed with the multi-level iteration

scheme. For example, a D/B level iteration updates all the QP components in the first N f rac <

N shooting intervals and updates the computationally cheap components, including constraint

residuals and gradient computations on the other intervals. If N f rac � N , significant savings

in computing derivatives can be expected. In addition, the fractional-level iterations can be

performed every Nm > 1 sampling instants, also reducing the computational burden.

A tailored condensing algorithm for the QP problem (2.15) has been proposed in (Frasch

et al., 2012) for Mixed-Level iteration schemes that further reduces the computational

effort for solving the NLP problem (2.10) on-line. It has been proved that the lower right



2.4 Fast NMPC Algorithms 31

(N −N f rac)× (N −N f rac) blocks of the condensed Hessian matrix are constant. This leads to

a computational complexity reduction for condensing from O(N3) to O(NN f rac + N3
f rac).

2.4.5 Remarks

There remain some open issues when applying Multi-Level schemes, adjoint sensitivity scheme

and Mixed-Level schemes in the RTI framework:

• It is not trivial to choose an appropriate sensitivity update interval Nm, or a pre-defined

trajectory z̄, such that the inexact Jacobian B̄ is a good approximation of the exact one

Bi for any i.

• In Algorithm 2.1, the integration sensitivity in each shooting interval over the prediction

horizon, either updated or not, are treated as a whole. The block structure of the

Jacobian matrix B is not exploited.

• In Mixed-Level schemes, updating only the first N f rac blocks in the Jacobian matrix is

often not adequate to control highly nonlinear and fast changing systems. In addition,

it is not trivial to choose an appropriate N f rac for all possible operating conditions.
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3
Partial Sensitivity Update

The computational burden of NMPC using on-line optimization has long been a difficulty

since NMPC is developed. While the optimization problems arising from linear MPC can

be solved reliably and in a extremely fast speed, the optimization problems in NMPC are

often hard to solve and cannot be solved within the real-time restriction. This is due to the

difficulty of reliably solving an open-loop nonlinear optimal control problem at each sampling

instant, respecting state, control and other physical and safety constraints. In Chapter 2,

state-of-the-art fast NMPC algorithms have been reviewed. However, there is more to do to

improve the computational efficiency.

The solution we provide is to build a bridge between linear and nonlinear MPC. Real-Time

Iteration (RTI) (Diehl et al., 2002) has built such a bridge by approximately solving the NLP

problem (2.10) on-line (Gros et al., 2016). RTI performs only one Newton step of SQP hence

only one QP problem is solved at each sampling instant, which is very similar to the case of

linear MPC. In this chapter, we go further than RTI by exploiting the multi-stage feature of

the NLP problem as in (2.22) and employing a partial linearization of the nonlinear dynamics

within prediction window. As a result, a mixed linear and nonlinear MPC is formulated and

computational cost reduction can be expected.

A question immediately arises that at what time linear MPC is appropriate and linearization

is necessary. As can be seen from the example (1.1), nonlinearities come from either dynamics,

constraints or operating conditions and not all nonlinear systems require nonlinear controllers



34 Partial Sensitivity Update

(Nikolaou and Misra, 2003). To answer this question, recognizing a system as being linear

or nonlinear is not sufficient. While this recognition is not difficult to obtain by applying

the definition of linearity to system’s model or output response, quantifying the degree

of nonlinearity (DoN) is not that easy. In the following section, the idea of Measure of

Nonlinearity (MoN) is reviewed to perform such a quantification.

3.1 Measure of Nonlinearity

The research of MoN can trace back to 1980s (Desoer and Wang, 1980). Early studies focus

on quantifying the input-output (IO) nonlinearity of a system, without the consideration of

feedback control law. These belong to the class of open-loop MoNs. However, open-loop

MoNs may be biased because of the interaction between nonlinearity and feedback (Nikolaou

and Misra, 2003; Schweickhardt and Allgower, 2004). For example, the nonlinearity of a

system can be decreased by introducing feedback (Desoer and Wang, 1980; Schweickhardt

and Allgower, 2004). Hence, there exist a class of closed-loop MoNs that explicitly take

feedback into account.

3.1.1 Open-loop MoN

Distance between a nonlinear and a linear system

The fundamental idea of measure of nonlinearity (MoN) is to compare the nonlinear system

at hand to a (set of) linear system. Consider a linear and a nonlinear transfer operators

denoted by L and N

L[u] : u→ yL , ∀u ∈ U, y ∈ Y, (3.1)

N[u] : u→ yN , ∀u ∈ U, y ∈ Y, (3.2)

where u is the input signal and yL , yN are outputs from the linear and nonlinear operator,

respectively. The very first definition of MoN is probably proposed in (Desoer and Wang,

1980) as

ε1 := inf
L∈L

sup
u∈U
‖N[u]− L[u]‖, (3.3)

where L is a set of linear systems. The definition (3.3) is intuitive and has the following

properties

1. ε1 measures the DoN in the worst case, i.g. with the worst possible input signal u.

2. The best linear approximation L is found among a set of linear models.
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3. ε1 depends on the input set U and the linear model set L, and is scale sensitive to the

input and output.

A scale-free definition is given in (Schweickhardt and Allgower, 2004) to overcome the

shortcoming of (3.3). The resulting MoN, named relative MoN, is defined by

ε2 := inf
L∈L

sup
u∈U

‖N[u]− L[u]‖
‖N[u]‖

. (3.4)

The most important property of ε2 is that its value is in the range of [0, 1] since it is normalized

by the nonlinear output. The interpretation of ε2 is intuitive: when ε2 is close to zero,

the nonlinearity of the operator N is small; ε2 close to one corresponds to a more severe

nonlinearity.

(Helbig, Marquardt, and Allgöwer, 2000) generalize the definition (3.4) to state-space

models and take the initial condition into account. Consider a nonlinear system given by

ẋN (t) = f (xN (t), u(t)), xN (0) = xN ,0, (3.5)

yN (t) = h(xN (t), u(t)), (3.6)

and a linear system

ẋL(t) = AxL(t) + Bu(t), xL(0) = xL,0, (3.7)

yL(t) = C xL(t) + Du(t). (3.8)

The MoN is defined as

ε3(t f ) := inf
L∈L

sup
(u,xN ,0)∈S

inf
xL,0∈XL,0

‖N[u, xN ,0]− L[u, xL,0]‖
‖N[u, xN ,0]‖

, (3.9)

where

S= {(u, xN ,0) : u ∈ U, xN ,0 ∈ XN ,0, N[u, xN ,0] ∈ Y}, (3.10)

and all signals are defined over a time interval [0, t f ). The meaning of ε3 is the difference

between the best linear approximation L over a linear system set L, and the nonlinear system

N , considering the worst-case combination of input u and initial condition xN ,0, and the

best-case initial condition xL,0. As a result, definition (3.9) is not restricted to the MoN of a

nonlinear system at the neighborhood of steady state as (3.4). The most important property

of such a definition is that ε3 can be employed for transient processes by optimally adjusting

the initial condition xN ,0.

(Li, 2012) further extend the idea of (3.4) to stochastic systems. Instead of computing
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the difference between a nonlinear system and its best linear approximation, the authors

manage to measure the deviation of the nonlinear system from all linear functions. This idea

is motivated from the most popular definition of distance between a point (the nonlinear

system at hand) and a subspace (the set of all linear functions), in the functional space.

Consider a discrete-time nonlinear stochastic system

xk+1 = fk(xk) + uk +wk, (3.11)

yk = hk(xk) + vk, (3.12)

where xk is the (random) state, uk a deterministic and known control input, wk, vk are

zero-mean white process noise and measurement noise. The nonlinear system can be written

in compact by

gk(xk) = [ fk(xk)
>, hk(xk)

>]>. (3.13)

The MoN is defined as

ε4 :=
infLk∈L(E[‖Lk(x)− gk(x)‖22])

1/2

[tr(Cgk
)]1/2

, (3.14)

where E is the expectation operator, L is the set of all linear functions in the form of L(x) =

Ax + b and Cgk
is the covariance matrix of gk(x). In contrast to definition (3.4) and (3.9), ε4

is a global measure rather than one evaluated at some point. Moreover, ε4 is relatively neutral

(i.g. not pessimistic (Li, 2012)) since it does not consider only the worst-case situation.

Gap metric

The distance between a nonlinear system and a linear system in definitions ε1 − ε4 are based

on norms. However, they are not valid for unstable systems, since the distance between

unstable systems cannot be measured in terms of norms (Tan, Marquez, Chen, and Liu,

2005). To overcome this limitation, (El-Sakkary, 1985) propose the gap metric to measure

the distance of two linear but not necessarily stable systems. Recently, (Du, Song, and Li,

2009) propose a nonlinearity measure based on gap metric between two linear systems

linearized at two operating points of a nonlinear system.

Consider two linear systems denoted by transfer matrices P1, P2 with the same number of

inputs and outputs. They can be factorized by the normalized right coprime factorization as

Pi = Ni M
−1
i , i = 1, 2, (3.15)

where M̃i Mi + ÑiNi = I and M̃ is the complex conjugate of M . The gap between P1, P2 is
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defined by

ξ(P1, P2) :=max
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. (3.16)

The metric defined by (3.16) is bounded between 0 and 1. A gap ξ close to 0 indicates two

close linear systems, while ξ close to 1 means distant linear systems. A more important

property of gap metric is that at the presence of a small gap ξ, there exists at least one

feedback controller that stabilizes both linear systems and the distance between the two

closed-loop systems is small in the ∞-norm sense (Du et al., 2009). We can exploit this

property to design linear controllers.

Strictly speaking, definition (3.16) is not a nonlinearity measure since it evaluates the

distance between linear systems. (Du et al., 2009) propose a MoN based on the gap (3.16),

given as

ε5 := sup
pi ,p j∈Ω

ξ(L(pi), L(p j)), (3.17)

where pi , p j are operating points in the operating space Ω of a nonlinear system N . L(p)

is a linear approximation of N linearized at point p. This definition avoids the selection of

a linear system set as in ε1-ε4. In addition, ε5 is a global measure that evaluates the MoN

in the worst-case over the entire operating space. This reveals a fundamental feature of

“nonlinearity” that the degree of nonlinearity of a system is closely related to its operating

point, which has been illustrated by example (1.1).

Relative curvature measure

Although definitions of MoNs introduced in previous sections are intuitive, the corresponding

cost for evaluating global MoNs is not affordable for most applications. Alternatively, (Bates

and Watts, 1980) develop a simple relative local measure of nonlinearity based on curvature

which is a concept in differential geometry. The authors apply the so-called curvature MoN

to a model-experimental design-parameterization combination and find that all the nonlinear

data investigated has a low intrinsic MoN, which is inherent for the model, and a large

parametric MoN, which is determined by parameterization of the model.

Consider a least-square estimation problem with experimental settings x t(t = 1, 2, . . . , n)

and responses yt(t = 1, 2, . . . , n). The relationship between the settings and the response is

given by

yt = η(x t ,θ ) + εt (3.18)
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where θ = [θ1,θ2, . . . ,θp]> is a set of unknown parameters and εt is an additive random

measurement error of zero-mean. We make exact distinctions between model and model

function. The model is the relationship between the response and the experimental settings

and is independent of the parameterization. The model function is related to the particular

parameterization of the model. In this sense, (3.18) refers to the model function which

depends on the parameter θ .

The linear approximation of the model function (3.18) around a point θ0 is given by

η(θ ) = η(θ0) +
p
∑

i=1

(θi − θi,0)vi (3.19)

where vi = [vi(x1), vi(x2), . . . , vi(xn)]> =
∂ η
∂ θi
(θ0) and vi(x) =

∂ η
∂ θi
(θ0). In a geometric point

of view, a straight line in the parameter space through θ0 is given by

θ (b) = θ0 + bh, (3.20)

where h = [h1, . . . , hp]> is any non-zero vector. The corresponding curve on the solution

locus is

ηh(b) = η(θ0 + bh). (3.21)

The velocity and acceleration vectors are defined by

η̇h =
dηh

db
(0) = V.h, (3.22)

η̈h =
d2ηh

d2 b
(0) = h>V..h. (3.23)

By writing

η̈h = η̈
N
h + η̈

P
h + η̈

G
h , (3.24)

the acceleration vector is decomposed by three components, with η̈N
h normal to the tangent

plane, η̈P
h parallel to η̇h and η̈G

h parallel to the tangent plane normal to η̇h.

The local curvature is defined as

Kh =
‖η̈h‖
‖η̇h‖2

, (3.25)

in the direction h. A straightforward classification is that an intrinsic curvature KN
h and a

parametric curvature K T
h . The former adopts the normal acceleration component η̈N

h for its

numerator and the latter adopts the parallel components η̈P
h + η̈

G
h for its numerator.

Given a confidence region of interest, the curvature MoN (3.25) is able to reflect the
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degree of nonlinearity locally. Then it is meaningful to judge a linear confidence region to be

valid or not. More importantly, the use of intrinsic and parametric curvature helps with the

parameter design. For example, for model functions having a low intrinsic curvature but a

high parametric curvature, re-parameterization can be used to improve the accuracy of the

linear approximation of the confidence region. Applications of curvature MoN to nonlinear

estimation problems can be found in (Mallick and La Scala, 2006; La Scala, Mallick, and

Arulampalam, 2007; Niu, Varshney, Alford, Bubalo, Jones, and Scalzo, 2008).

The idea of curvature MoN is extended to dynamic control system by (Guay, McLellan,

and Bacon, 1995), who evaluate the local MoN for input-output pairs around the steady state.

Consider an asymptotically stable nonlinear system

ẋ = f (x , u), x ∈ X, u ∈ U, (3.26)

y = h(x). (3.27)

The linear approximation at a stationary point (x0, u0) is given by

ẋ = A(x − x0) + B(u− u0), (3.28)

where A= ∂ f
∂ x (x0, u0), B = ∂ f

∂ u (x0, u0) are assumed to be controllable and rank(B) = PB. A

PB-dimensional sub-manifold is defined in the state space by f (x , u) = 0. As a result, there

exists a nonlinear map Ψ : U → X in a neighborhood of u0 ∈ U, which locally defines a

PB-dimensional manifold in Rnx denoted by Ψ(U). This surface is referred to steady-state

locus.

Compute the PB-dimensional tangent space of Ψ(u) at the point u0 by

v̇i =
∂Ψ

∂ ui
, 1≤ i ≤ PB. (3.29)

where v̇i refer to velocity vectors, and the acceleration vector by

v̈pq =
∂ 2Ψ

∂ up∂ uq
. (3.30)

Collect the velocity and acceleration vectors into matrices as

V = [v̇1, . . . , v̇p]
>, (3.31)

W = [v̈1,1, . . . , v̈1,p, . . . , v̈p,p]
>. (3.32)
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Applying QR factorization to the combined matrix [V, W ] (Bates and Watts, 1980) gives

[V, W ] =QR= [Qt
1,Qn

1,Q2]







R1 At

An






(3.33)

where Q is an N by N orthonormal matrix and R is an N by PB(PB + 3)/2 matrix. The first P t
1

columns of Q, denoted by Qt
1, span the tangent space of the steady state locus and the next

Pn
1 columns, denoted by Qn

1, span a Pn
1 -dimensional subspace of the space normal to Qt

1. The

remaining sub-matrix, denoted by Q2, is an orthonormal basis of P2 column vectors. This

factorization is similar to the curvature MoN (3.25) with three components. The curvature is

defined by

Kc :=
‖e>Ar e‖
‖R1e‖2

, (3.34)

where Ar is an N -dimensional array of P by P matrices (tensor) obtained from At , An, and

e is a direction vector in the input space. Note that definition (3.34) measures the instant

curvature or nonlinearity which is scale-free on e, since e square occur in both numerator

and denominator.

3.1.2 Closed-loop MoN

In Chapter 3.1.1, we introduce a number of definitions of the measure of nonlinearity.

However, they share a common feature that these measures are evaluated for input and

output pairs and do not consider the role of feedback control. (Nikolaou and Misra, 2003)

once pointed out that “the proximity of a nonlinear system to a linear one is neither necessary

nor sufficient for good closed-loop performance”. As a consequence, knowing how nonlinear

a system is does not suffice. There should be measures to evaluate the degree of nonlinearity

of a system interacting with feedback controllers.

To obtain a general measure of closed-loop MoN is not easy, since there are a number of

feedback structures and laws in the control theory. Hence, most of the closed-loop MoNs are

defined in a specific control structure. (Nikolaou and Misra, 2003) consider the closed-loop

MoN in the framework of internal model control (IMC) (Garcia and Morari, 1982), illustrated

by Figure 3.1. The Youla control operator Q may not have an analytic form and is defined

implicitly, e.g. via on-line optimization as in the case of MPC. Define an operator

∆N := NQ(I + NQ− LQ)−1 − LQ, (3.35)

as the difference between the nonlinear and linear closed loop. A lower and an upper bound
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Figure 3.1: Block diagram of IMC for a nonlinear process N and its (linear or nonlinear)
model L. Q is the Youla parameter of the controller.

is developed by (Eker and Nikolaou, 2002) that is

‖W (I − LQ)(N − L)Q‖∆E

1+ ‖(N − L)Q‖∆E
≤ ε6 ≤ ‖W (I − LQ)‖

‖(N − L)Q‖∆E

1− ‖(N − L)Q‖∆E
, (3.36)

where ε6 := ‖W∆N‖∆Z is the closed-loop MoN, set E contains signals ε and set Z = [I +

(N − L)Q](E). There are two interpretations of this result:

1. The closed-loop MoN depends on the open-loop MoN N − L and the controller Q.

2. An appropriate controller design may lead to a virtually linear closed-loop performance

for nonlinear processes.

Indeed, (Nikolaou and Misra, 2003) conclude that (3.36) are valid if γ := ‖(N − L)Q‖∆E < 1,

and if Q is designed such that γ � 1 and γ
1−γ � 1, then the closed loop in Figure 3.1 is

virtually linear.

(Schweickhardt and Allgower, 2004) study the closed-loop MoN in an optimal control

framework. Consider an optimal control problem

min
u

J(x0)[u] =

∫ T

t0

F(x , u)dt (3.37a)

s.t. ẋ = f (x , u), x(t0) = x0, x0 ∈ X (3.37b)

For T →∞, since the absence of state constraints, the solution of the infinite horizon optimal

control problem (3.37) can be formulated as a static state feedback control law u = k(x). As

a result, the OCP (3.37) depends only on the initial condition x0. The MoN of the optimal

control law (OCL) is defined as

ε7 = inf
K∈Rnx×nu

sup
x0∈X

‖NOC L[x∗]− K x∗‖
‖NOC L[x∗]‖

, (3.38)
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where NOC L[x∗] = u∗ = k(x∗) with x∗ the solution of (3.37). In this definition, the nonlinear

operator NOC L[x∗] is compared to the static linear system u= k(x). The resulting measure

ε7 considers only the the nonlinearity on the optimal trajectory of the closed-loop system.

Moreover, ε7 can be evaluated without the knowledge of the feedback law k, which is

beneficial for system analysis before controller design.

(Guay, Dier, Hahn, and McLellan, 2005) propose a local MoN as the quantification of the

sensitivity of controller performance for linear controllers operating on a nonlinear plant.

The authors focus on linear quadratic regulators and evaluate the deviation from optimality

for controlling nonlinear systems using linear controllers. Given a quadratic regulator

min
u

∫ ∞

0

x>(t)Qx(t) + u>(t)Ru(t)dt (3.39a)

s.t. ẋ = f (x , u(t)), (3.39b)

y = h(x(t)), (3.39c)

where system state x is time-invariant. Linearizing the nonlinear system about the origin we

obtain a linear time-invariant system

ẋ = Ax + Bu(t), (3.40)

y = C x , (3.41)

where A= ∂ f
∂ x (0, 0), B = ∂ f

∂ u (0,0), C = ∂ h
∂ x (0). The optimal regulation law is given by

u(t) = −R−1BP x(t) = K x(t), (3.42)

where K is the gain matrix and P is the solution of the following Riccati equation

A>P + PA− PBR−1B>P + C>QC = 0. (3.43)

The optimal cost can be approximated by

J∗ = x>(t)P x(t). (3.44)

The measure of nonlinearity in this context, refers to the performance sensitivity measure

(PSM). Assuming that there is a perturbation v(t) to the control law

u∗(t) = −R−1B>P x̂(t) + v(t), (3.45)

where x̂(t) is the current state estimate. The degree of nonlinearity can be assessed by
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computing the third order derivative of the objective functional, as

ε̄8 =∇3
vJ∗. (3.46)

For a detailed definition and computation of such a measure refer to (Guay et al., 2005). This

measure is a local one around the steady state point and requires only the knowledge of the

LQR design cost parameters and the operating region of interest.

3.2 Curvature-like MoN for NMPC

3.2.1 MoN in Dynamic Optimization

Due to extensive computational efforts, the global MoNs such as the distance measure and

the gap metric, are not suitable for on-line control algorithms. Indeed, the best linear model

in a global sense may deteriorate local performance and a highly nonlinear system (probably

of large dimensions) may require to identify a prohibitive number of local linear models using

gap metric. Since system nonlinearity depends not on dynamics, but also on local operating

conditions (as observed by example (1.1)), a local MoN suffices to assess the nonlinearity of

a system and provide guiding information for controllers. The measure should be adaptive to

operating conditions so that the latest MoN is always obtained.

Based on the analysis given above, the curvature MoN is selected to fulfill our purposes.

However, the computation of curvature (3.34) in Chapter 3.1.1 requires the knowledge of the

acceleration vector, which is the second order derivative of a nonlinear system. In addition,

computational complexities increases when the dynamics are characterized by a numerical

integration operator Ξ. There are two issues associated with this computation:

1. The second order derivative of a numerical integration operator is usually very difficult

to compute. The computational burden introduced by this derivative may far exceed

the reduced amount by using MoNs.

2. The curvature measure cannot completely reflect the nonlinearity of a system due to

lack of higher order terms (Li, 2012). A more accurate measure for highly nonlinear

system is needed.

To overcome these two drawbacks, we propose a novel curvature-like MoN that can be

applied to real-time NMPC applications. The main advantages are

1. only the first order derivatives from past sampling instants are needed to compute such

a curvature-like MoN but it still contains higher order terms, and
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2. local sensitivity change between two sampling instants are measured, and

3. the novel MoN depends not only on system dynamics, but also on the magnitude and

direction of inputs, which implicitly takes feedback into consideration.

Therefore, an accurate local MoN can be obtained with negligible computational efforts and

is an ideal tool for implementing on-line NMPC controllers.

3.2.2 Curvature-like MoN for Numerical Integration Operator

Consider a nonlinear, at least C2 continuous and differentiable vector function Z(x), where

x ∈ Rn,Z ∈ Rm. The Taylor expansion of Z at a point x0 with an increment p reads

Z(x0 + p) = Z(x0) +
∂Z

∂ x
(x0)p+

1
2!

p>
∂ 2Z

∂ x2
p> +O(‖p3‖), (3.47)

where x0, p ∈ Rn, ∂ z
∂ x is the first order m by n Jacobian matrix and ∂ 2z

∂ x2 is the second order

tensor, which is a vector of m by n matrices of length n. The product p> ∂
2z
∂ x2 p> is performed

by computing the vector-matrix-vector multiplication for each matrix in the tensor. Refer to

(Bates and Watts, 1980) for more mathematical details. In the sequel, we use ∂ 2z
∂ x2 p2 for this

product using the scalar form for notation simplicity.

The original curvature MoN is defined as

κ0 :=
‖ ∂

2Z
∂ x2 p2‖

‖ ∂Z∂ x (x0)p‖2
(3.48)

which is the ratio of the norm of the second order term over the square norm of the first

order one. Note that definition (3.48) eliminates the scaling effect of the directional input

p as both numerator and denominator contain p2. As a consequence, (3.48) evaluates the

instantaneous MoN at point x0 and that is the source of the name curvature. However, we

argue that measuring the instantaneous degree of nonlinearity in sampled digital systems can

barely provide any information about the nonlinearity of the system. In fact, the nonlinearity

(or the change of linearization) from one sample to the next is more useful, since our computer

cannot know what happened within two samples. Assume that a very small MoN of a system

is evaluated by definition (3.48) at x(t0) along the direction q that moves the system towards

x(t1). This means that the instantaneous nonlinearity is very low. After a (not necessarily

long) sample time t1 − t0, however, the linear representation of the system at x(t1) may be

considerably different from it at x(t0).

To consider the system evolution from one sample to the next, a novel curvature-like
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MoN is proposed as

κ1 :=
‖ ∂

2Z
∂ x2 p2‖

‖ ∂Z∂ x (x0)p‖
(3.49)

by removing the square computation in the denominator. Given that the function Z is at least

twice differentiable, the Jacobian matrix can be expanded as

∂Z

∂ x
(x0 + p) =

∂Z

∂ x
(x0) +

∂ 2Z

∂ x2
p+

1
2
∂ 3Z

∂ x3
p2 +O(‖p‖3). (3.50)

Hence, we have

[
∂Z

∂ x
(x0 + p)−

∂Z

∂ x
(x0)]p =

∂ 2Z

∂ x2
p2 +

1
2
∂ 3Z

∂ x3
p3 +O(‖p‖4) (3.51)

≈
∂ 2Z

∂ x2
p2 +O(‖p‖3) (3.52)

As a result, the definition of κ1 can be re-written as

κ2 =
‖[ ∂Z∂ x (x0 + p)− ∂Z

∂ x (x0)]p‖

‖ ∂Z∂ x (x0)p‖
(3.53)

that evaluates the relative change of the directional derivative with an approximation error

of order O(‖p‖3).
A more appropriate definition can be used by considering also the higher order terms.

Define the MoN as

κ3 =
‖Z(x0 + p)−Z(x0)−

∂Z
∂ x (x0)p‖

‖ ∂Z∂ x (x0)p‖
(3.54)

where the numerator equals to 1
2‖
∂ 2Z
∂ x2 p2‖ + O(‖p‖3). Here, we compute the ratio of all

the terms of order higher than one over the first order term. This is a precise definition

of nonlinearity. The advantages of using definition (3.54) over (3.48) and the others are

summarized in the following.

1. Higher order terms are considered.

2. No prior knowledge of the derivatives at the next point x0 + p is required.

3. The computation of (3.54) exploits only the first order derivative of the function Z.

Replace the function Z by a functional, or a numerical integration operator Ξ operating

on a dynamic system ẋ(t) = f (x), x(0) = x0 and the directional vector p by the initial

condition perturbation p = x̃0 − x0. The CMoN defined by (3.54) evaluates the sensitivity of
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the integration operator w.r.t. to initial condition perturbations. It should be noted that this

CMoN is integrator dependent, i.e. using different integrators can lead to different MoNs.

However, as long as the integrator is sufficiently accurate to catch the nonlinear dynamics of

the system, the resulting MoN suffices to evaluate the degree of nonlinearity of the dynamic

system.

3.2.3 Geometric Interpretation and Numerical Examples

A geometric interpretation of definition (3.54) is given in Figure 3.2. The linearization ∂Z
∂ x (x0)

x

z(x)

x0 x0 + p

p

Figure 3.2: Geometric interpretation of the definition of the CMoN ((3.54)) in one dimen-
sional space. The function Z : R→ R. The direction is given by vector p. Red solid line:
∂Z
∂ x (x0)p. Green solid line: ∂Z

∂ x (x0 + p)p. Blue solid line: The difference between the red
and the green one. The CMoN κ3 is approximately half of the ratio between the length of
the blue solid line over the red one.

is the slope of the red dashed line and the linearization ∂Z
∂ x (x0 + p) is the slope of the green

dashed line. The directional derivative maps the slopes into distances in the range space, as

shown by the blue and red solid lines.

Consider a functional Ξ(x(t)) that is the numerical integration operator of the following

ODE

ẋ(t) = e−5x(t), x(0) = x0 (3.55)

over a period of Ts = [0, t f ]. A 4th order explicit Runge-Kutta operator is assigned to F and

the simulation time is chosen to be t f = 0.01s. The initial condition is set to be x0 = −1.

Two perturbed initial conditions x1
0 = −1.5, x2

0 = −0.5 are used to compare their sensitivities.

The corresponding curvature-like MoN and the sensitivities are given in Table 3.1, where the

CMoN is measured by definition (3.54) where x0 is the initial condition and p = x i
0 − x0 for

i = 1, 2 respectively. The integration trajectories starting from the three initial conditions are

shown in Figure 3.3. There are three observations from this numerical example

1. The value of CMoN depends on the numerical integration operator. In Table 3.1, the
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s = 5 s = 10 s = 50
CMoN. Sens. CMoN. Sens. CMoN. Sens.

x0 0 0.11 0 0.12 0 0.12
x1

0 17.02 -8.01 2.57 -1.89 0.63 0.01
x2

0 2.06 0.62 1.85 0.62 1.85 0.62

Table 3.1: The CMoN and exact sensitivity measured at different initial conditions of the
numerical integration operator Ξ described in (3.55) using different number of integration
steps s.

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Integration Time[s]

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

Figure 3.3: The integration trajectories of Ξ(x(t)) starting from x(0) = x0, x1
0 , x2

0 respec-
tively.

values of CMoNs are significantly different when using different number of integration

steps over the same time horizon.

2. The value of CMoN can reflect the degree of sensitivity deviation for a dynamic system

with two different initial conditions. In Table 3.1, a larger CMoN value corresponds to

a larger sensitivity distance. For example, when s = 5, the sensitivity of Ξ w.r.t. x1
0 is

−8.01, which is much further to 0.11 than 0.62, which is the sensitivity of Ξ w.r.t. x2
0 .

Hence, the corresponding CMoN value is much bigger (17.02 vs 2.06).

3. When the integration is sufficiently accurate, the CMoN can correctly reflect the non-

linearity of system dynamics. In Figure 3.3, the integration trajectory starting from

x2
0 = −0.5 is much distant to the original trajectory from x0 = −1 than that from

x1
0 = −1.5. Hence it can be concluded that the dynamic system (3.55) is not that
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nonlinear in the region of x(0) ∈ [−1.5,−1] and is more nonlinear in the region of

x(0) ∈ [−1,−0.5]. The same conclusion can be drawn from third column of Table 3.1.

Therefore, the CMoN defined by (3.54) is highly potential for measuring the nonlinearity

of dynamic system in the context fast NMPC algorithms, which usually solve a sequence of

NLP problems with different initial conditions.

3.3 CMoN RTI

To speed up the on-line optimization of NMPC, a novel sensitivity updating scheme is proposed

to overcome the limitations of existing inexact sensitivity updating algorithms described in

Chapter 2. This new scheme need to not only exploit the multi-stage property of the NLP

problem (2.10) for computational efficiency, but also to employ a metric to decide which

Jacobian blocks should be updated. As discussed in Section 3.2.1, the CMoN (3.54) can

be such a metric. Therefore, we name the RTI-based fast NMPC strategy using the novel

sensitivity updating scheme as CMoN-RTI.

3.3.1 Computational Cost of Sensitivity Evaluation

Recall that in the multiple shooting, SQP-based NMPC algorithm described in Chapter 2, a

sequence of QP subproblems is obtained by linearizing the NLP problem at every iteration

(See the general QP (2.15) and the equivalent QP (2.22)). To linearize the equality constraint,

which is formulated by enforcing the continuity condition of the predicted state trajectory, the

sensitivity matrices Ak ∈ Rnx×nx , Bk ∈ Rnx×nu of the numerical integration operator Ξ w.r.t the

initialization zk for each shooting interval has to be evaluated. The computational complexity

of the sensitivity evaluation strongly depends on the selection of numerical integration scheme

and in turn affects the computational burden of the NMPC algorithm. In the sequel, we show

the computational cost for sensitivity evaluation by the example of chain of masses given in

(1.6).

Consider n= 15 so the system has nx = 87 states and nu = 3 controls. To linearize the

equality constraint, at each SQP iteration, there are N nx by nx and N nx by nu sensitivity

matrices that need to be evaluated. The reference computational time for integration and

sensitivity evaluation for each integration step, measured by running Matlab EXecutable

(MEX) provided by CasADi toolbox automatic differentiation functions (Andersson, 2013)

and CVODES (Serban and Hindmarsh, 2005), is given in Table 3.2. It can be seen that the

sensitivity evaluation is much more computationally expensive than nominal integration. The

more complex the integration scheme is, the more computational time it consumes. Although

the numbers in Table 3.2 seem to be small, the overall computational time for evaluating
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Integration Sensitivity
ERK4 0.02 0.32
IRK4 0.75 1.25

Adaptive 5∗ 100∗

Table 3.2: Computational time[ms/step] of integration and sensitivity generation for
problem (1.6). ERK4 stands for 4th explicit Runge-Kutta schemes and IRK4 for its implicit
counterpart. Adaptive refers to backward differential formula with adaptive step size that is
adopted by CVODES. The symbol ∗ means that the computational time is measured for the
entire integration period instead of for each integration step, since the number of integration
steps varies with different configurations when using an adaptive step size scheme.

sensitivities is quite big since multiple integration steps are usually performed in each shooting

interval among N shooting intervals over the prediction horizon. For stiff or complex systems

that require implicit or more complicated integration schemes, the computational burden for

evaluating sensitivities is quite heavy.

3.3.2 Updating Logic based on CMoN

The CMoN for measuring the nonlinearity of state trajectory in the k−th shooting interval at

sampling instant i can be defined as

K i
k :=

‖Ξk(z i
k)−Ξk(z i−1

k )−∇Ξk(z i−1
k )qi−1

k ‖

‖∇Ξk(z i−1
k )qi−1

k ‖
, (3.56)

where ∇Ξ(z i
k) = [A

i
k, Bi

k] is the sensitivity and qi−1
k is the direction in variable space. As in

RTI the initialization varies at each sampling instant, definition (3.56) can reflect the distance

of sensitivities between two consecutive sampling instants.

The possibility to update only part of the Jacobian blocks in (2.24) is due to the fact that

(Ak, Bk) uniquely depends on the corresponding initialization zk of the k−th shooting interval.

As a consequence, the Jacobian matrix B in (2.24) has a banded, block structure and replacing

a subset of the Jacobian blocks will not affect the remaining ones. On the other hand, the

evaluation of CMoN for the k−th shooting interval by (3.56) uniquely depends on information

in this shooting interval, including z i
k, z i−1

k , qi−1
k . Thus, the computation of sensitivity and

the evaluation of CMoN can be both performed independently for each shooting interval,

resulting in a stage-wise sensitivity updating scheme. An additional benefit from this property

is that parallel implementation is straightforward. In fact, this is the intrinsic property of

multiple shooting discretization method.

Once the values of CMoN for all shooting intervals are obtained, a question arises that

how to use these values for the selection of updating subset, where sensitivities are exactly
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evaluated. We define an updating logic which takes current CMoN values and sensitivities

from previous sampling instants as inputs and provides the sensitivities of the current sampling

instant as outputs.

Definition 3.3.1. In CMoN-RTI, a sensitivity updating logic Q : R×Rnx×(nx+nu)→ Rnx×(nx+nu)

computes the sensitivity ∇Ξk by

∇Ξk(z
i
k) = Q(K i

k,∇Ξk(z
i−1
k )), k = 0,1, . . . N − 1, (3.57)

where z i
k is the initialization of (2.10) at sampling instant i, K i

k is the CMoN computed by

(3.56).

A general algorithm describing CMoN-RTI can be summarized in 3.1. In the sequel,

two classes of updating logic are addressed. These two classes not only differ in the way

of updating sensitivities, but also in the places of applying the updating logic among the

algorithm steps.

Algorithm 3.1 A general algorithm of CMoN-RTI

1: Initialize zi for i > 0
2: Formulate QP problem (2.15), excluding B(zi)
3: Compute CMoN K i

k by (3.56) for all k > 0
4: Apply updating logic Q(K i

k,∇Ξ(z i−1
k )) for all k > 0 and obtain B(zi)

5: Solve QP problem (2.15)

Fixed-Time Updating Logic

First we propose a class of fixed-time updating logic, where a fixed number N f Jacobian

blocks are updated at each sampling instant (Chen et al., 2017a). This strategy is very similar

to Mixed-Level Schemes, where the first N f rac Jacobian blocks are updated. However, the

advantage of CMoN-RTI is that the selection of the updating Jacobian blocks is not based on

heuristics, but instead on the nonlinearity of the system. Only the sensitivities corresponding

to most nonlinear shooting trajectories will be updated.

The fixed-time block updating CMoN-RTI scheme, hereafter refer to FTB-RTI is able to

significantly reduce the computational cost for sensitivity evaluation, if the number N f of

updated Jacobian blocks is much smaller than the total number N , i.e. N f � N . One may

argue that the numerical and control performance may not be satisfactory by updating only

a small portion of the Jacobian blocks. However, practical observations suggest that the

proposed strategy is effective both in the case of constant reference along the prediction

horizon and in that of a time-varying reference. In the first case the system nonlinearities are
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typically excited at the beginning of the prediction window, while at the end the system is

almost linear. In the second case only the parts of the reference trajectory subject to changes

exhibit highly nonlinear behavior, requiring sensitivity updates. These observations reveal

the facts that the number of Jacobian blocks that needed to be updated is usually small hence

the fixed-time logic can often achieve a good control performance while saving considerably

the computational burden.

The updating logic Q1 for FTB-RTI is given by Algorithm 3.2. In Algorithm 3.2, the

Algorithm 3.2 The fixed-time block updating logic Q1 for FTB-RTI

1: Choose N f satisfying N f ∈ N in [0, N]
2: Sort K i

k, k = 0, 1, . . . , N−1 in descending order and extract the first N f indexes (e1, . . . , eN f
)

3: for k = e1, . . . eN f
do

4: Compute the exact ∇Ξk(z i
k)

5: end for

sensitivities that needed to be updated are selected by sorting the CMoN values for all

shooting intervals. Therefore, Q1 has to be applied after the CMoN values of all shooting

intervals are computed. Two remarks are made regarding the updating logic Q1. First, the

computational time for computing sensitivities at each sampling instant is fixed. This may

have two impacts. One is that if N f is too small, the QP problem using the inexact Jacobian

matrix may be infeasible, or granting unacceptable solutions. The other is that when the

system under control is almost linear, e.g. at the steady state, updating N f Jacobian blocks is

unnecessary and wasting computational power. Therefore, a careful choice of N f is of crucial

importance for the success of Q1. Second, the type of sorting algorithm is expected to have

just a little effect on the overall computational burden. For example, the Quick Sort algorithm

adopted by Matlab has a complexity of O(N log N), which is much lower than condensing

with O(N2). In addition, only the largest N f CMoN values are needed in Q1, which further

reduces the complexity of the sorting algorithm.

FTB-RTI is applied to the chain of masses problem (1.6). The control objective is to

stabilize the chain by penalizing over the velocities and final positions of the masses within

T f = 50s. The initial positions and velocities of the masses are randomly assigned in space so

that the sensitivity information at the initial condition is usually not a good representation of

the ones computed on-line. The initial and final positions of the chain of masses are shown

in Fig. 3.4.

The control performance of FTB-RTI is compared with that of three other schemes, namely,

the standard RTI algorithm (Diehl et al., 2002), the ML-RTI with Nm = 10 (Albersmeyer

et al., 2009), and the ADJ-RTI (Kirches et al., 2012). The sensitivities are calculated by
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Figure 3.4: Initial (black dotted) and final positions (red solid) of the masses on the chain.

a fixed step implicit Runge-Kutta integrator (Quirynen, 2012), which is implemented by

automatic differentiation in CasADi toolbox (Andersson, 2013) using c-code generation. After

a condensing procedure (Vukov et al., 2013), the QP problems are solved by the active-set

solver qpOASES (Ferreau et al., 2014) when N = 40, and by the sparse interior point solver

Ipopt (Wächter and Biegler, 2006) when N = 160. The computing environment is Matlab

R2016a on a PC with Intel core i7-4790 running at 3.60GHz.
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Figure 3.5: Control trajectories of the standard RTI (left) and the differences between
the control trajectories of ML-RTI, ADJ-RTI, FTB-RTI and that of the standard RTI (right).
The prediction horizon is T = 32s with N = 160 shooting points. The control variable is
constrained within [−1,1]m/s. For ML-RTI, the full sensitivity matrix is updated for every
Nm = 10 sampling instants; For ADJ-RTI, the sensitivity matrix is computed off-line at the
steady state trajectory; For FTB-RTI, N f = 10%×N = 16 blocks in the sensitivity matrix are
updated at every sampling instant.

In Fig. 3.5, one of the control trajectories of the standard RTI scheme with N = 160

are shown on the left, while the differences between the standard RTI trajectories and

those generated by FTB-RTI, ML-RTI, ADJ-RTI are reported on the right. Fig. 3.6 shows

the evolution of Karush-Kuhn-Tucker (KKT) values, which is the norm of the gradient of

the Lagrangian of (2.10), as an indicator of the solution optimality at each time step. It
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Figure 3.6: KKT evolution corresponding to results in Fig. 3.5. The prediction points are
N = 40 (left) and N = 160 (right), respectively.

can be observed that the FTB-RTI control trajectory is the one closest to standard RTI one

during the entire simulation, even if only 10% of sensitivity blocks are updated at every

sampling instant. Performance in terms of KKT are comparable with the ones of RTI at the

beginning of the simulation, when the nonlinearity of system is maximally excited (before

35s). Although ML-RTI shows a similar behavior when N = 40, the associated control cannot

stabilize the chain when the longer prediction horizon is used, as it can also be seen from the

KKT evolution. ADJ-RTI shows the poorest performance at the beginning of the simulation,

both in terms of control variables and KKT values, in accordance with the coarse sensitivity

approximation used. However, it is interesting to observe that the adjoint based compensation

is very effective when the system is close to the steady state condition (after 35s).

In Table 3.3, the computational times and objective values corresponding to results in

Fig. 3.5 are presented. The computational cost for sensitivities computation is significantly

reduced by applying the three suboptimal algorithms ML-, ADJ- and FTB-RTI, whereas FTB-

RTI has the smallest performance loss in terms of values of the objective function. In particular,

for both N = 40, 160, the burden for sensitivity computation of FTB-RTI is smaller than that

of ADJ-RTI, which computes only adjoint sensitivities on-line. A further advantage of FTB-RTI

is that the trade-off between computational cost and solution accuracy can be enforced by

tuning the parameter N f in the range [0–N]. If N f = N FTB-RTI becomes the standard RTI

scheme. Note that the computational time for solving the QPs of ML- and ADJ-RTI is higher

than that of FTB-RTI, since large sensitivity inexactness has a negative influence on the QP

solution, as previously observed in (Albersmeyer et al., 2009). Also note that we do not

intend to pursue a real-time implementation by showing the computational time here, but to

illustrate the effectiveness of the proposed algorithm.
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Table 3.3: Average computational time corresponding to results in Fig.3.5. Cond: Condens-
ing. Int: Nominal integration. Sens: sensitivity computation. QP: solving QP by qpOASES
(N = 40) or Ipopt (N = 160). Obj: the normalized sum of the objective values w.r.t. the
optimal one (obtained by running full SQP algorithm) of all sampling instants.

N=40 Cond[ms/call] Int[ms/call] Sens[ms/call] QP[ms/call] Total[ms/call] Obj
RTI 14.72 60.66 98.17 4.88 194.91 1.085
ML-RTI(Nm = 10) 9.47 61.56 9.90 5.74 98.17 1.197
ADJ-RTI 10.02 64.27 12.17 7.10 104.78 1.44
FTB-RTI(N f = 4) 14.41 60.68 9.42 4.99 101.77 1.118
N=160
RTI 231.57 247.92 399.26 86.63 965.38 1.079
ML-RTI(Nm = 10) 177.6 248.17 43.79 104.20 563.76 1.360
ADJ-RTI 203.49 251.85 52.68 160.42 668.44 1.903
FTB-RTI(N f = 16) 223.02 251.79 43.11 84.09 602.01 1.101

A Simple Adaptive Updating Logic

A fixed number of sensitivity updating is often not appropriate for controlling highly nonlinear

and fast changing systems. On one hand, a sufficiently large N f has to be chosen to catch the

nonlinearity of the system. On the other hand, system nonlinearity varies as its operating

condition changes. A universal fixed N f may sometimes become insufficient, but sometimes

conservative. Therefore, an adaptive updating logic which is able to adjust the number of

sensitivity updating on-line is desired (Chen et al., 2017b).

To develop such an adaptive strategy, we first introduce a threshold ηpri ≥ 0,ηpri ∈ R
to assess the value of CMoN (3.56). Here the subscript pri denotes the primal variable and

ηpri is the threshold for CMoN (3.56) working on the primal variable z. For the numerical

integration operator Ξk(zk), if its CMoN satisfies Kk ≥ ηpri, Ξk(zk) is said to be nonlinear

and its sensitivity ∇Ξk(zk) is required to be updated. Conversely, if Kk < ηpri , Ξk(zk) is said

to be (almost) linear and ∇Ξk(zk) may be kept unchanged. The threshold ηpri defines a

border that separates linear and nonlinear integration trajectories. In addition, the ηpri may

be time-varying so that the distinction of linear and nonlinear shooting intervals is subject to

operating conditions. The updating logic describing such a scheme is given in Algorithm 3.3.

Applying Algorithm 3.3 will implicitly (automatically) choose the sensitivity updating

number N f in Algorithm 3.2. This is because Algorithm 3.2 always updates sensitivities with

N f largest CMoN values. In Algorithm 3.3, the shooting intervals with larger CMoN values

are given higher priority for sensitivity updating. As a result, in CMoN-RTI, the tuning of N f

in Algorithm 3.2 is equivalent to that of ηpri in Algorithm 3.3.

The choice of the threshold ηpri is a crucial factor for the success of Algorithm 3.3. A

straightforward way is to set a constant threshold, i.e. ηi
pri = η

0
pri for all sampling instants

i. The value of η0
pri may be determined by simulation results. When η0

pri = 0, CMoN-RTI
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Algorithm 3.3 The adaptive block updating logic Q2 for CMoN-RTI

1: Choose ηi
pri for i > 0

2: for k = 0,1, . . . , N do
3: if K i

k < η
i
pri then

4: ∇Ξk(z i
k)←∇Ξk(z i−1

k )
5: else
6: Compute the exact ∇Ξk(z i

k)
7: end if
8: end for

becomes the standard RTI scheme where sensitivities are updated at every sampling instant.

When η0
pri ≥max(K i

k) for all k and i, no sensitivity is updated on-line and CMoN-RTI becomes

the ADJ-RTI without a modified QP gradient. The stability and feasibility of such a scheme

has been addressed by (Zanelli et al., 2016). As a consequence, the value of η0
pri can be

chosen arbitrarily between [0,max(K i
k)] to achieve a flexible tuning procedure. In practice, a

number of simulations are usually needed to determine the desired ηpri .

Note that although ηpri = η0
pri is fixed, the resulting CMoN-RTI scheme achieves an

adaptive number of sensitivity updating at each sampling instant. This is because the values

of CMoNs are time-varying. When the system is approaching the steady state, most of the

CMoNs evaluated are sufficiently small, resulting in a number of sensitivity updating as well.

When the system is changing dramatically or is affected by external disturbances, most of the

CMoN values are large so that most sensitivities are necessary to be updated.

The CMoN-RTI scheme using such an intuitive tuning strategy is applied to the inverted

pendulum problem (1.1). Comparisons with the standard RTI algorithm (Diehl et al., 2002)

and the ML-RTI (Albersmeyer et al., 2009) are provided. The ADJ-RTI schme (Kirches et al.,

2012) failed to perform all the required control tasks, hence its performance is not presented.

Different horizon lengths are used to demonstrate the effectiveness of this tuning strategy. In

all simulations, the sensitivities are evaluated using automatic differentiation of the explicit

Runge-Kutta method provided by CasADi toolbox (Andersson, 2013). The QP problems are

solved by a structure exploiting solver qpDUNES (Frasch et al., 2015), without the condensing

step. The computing environment is Matlab R2016a on a PC with Intel core i7-4790 running

at 3.60GHz.

The references change every tr = 3s and three different prediction lengths, Tp = 1, 3, 8s

with shooting points N = 20, 60, 160, are analyzed. The threshold in CMoN-RTI is set to be a

constant as ηpri = η0
pri and is tuned to obtain a good trade-off between computational cost

and control performance. On the other hand, the sensitivity updating interval is chosen to be

Nm = 2 for ML-RTI to obtain the best possible performance. Larger Nm would further reduce



56 Partial Sensitivity Update

computational cost but deteriorate control performance, even causing infeasible QP problems.

All the simulations are performed by initializing the NMPC at an optimal trajectory, computed

off-line, by solving the NLP problem at the first sampling instant until convergence.

The displacement and swing angle trajectories of the inverted pendulum obtained from

the standard RTI, ML-, and CMoN-RTI, are presented in Fig. 3.7. In all cases, CMoN-RTI

exhibits almost identical performance to the standard RTI, both in terms of tracking accuracy

and control force regulation. As for ML-RTI, several control oscillations can be observed with

N = 60, 160, e.g. around 12s. Note that, the sensitivity information cannot be updated more

frequently than once every two steps: Nm = 1 would make ml-RTI coincide with standard

RTI.
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Figure 3.7: State and control trajectories of the inverted pendulum during simulation with
prediction horizon lengths N = 20, 60, 160 from top to bottom. Black dashed line: standard
RTI; Blue dot-dashed line: ML-RTI; Red dot-dashed line: CMoN-RTI; Green dotted line:
reference.

In Fig. 3.8, the percentage of exactly updated sensitivity blocks at each sampling instant

using CMoN-RTI is presented. Since the NMPC algorithm is initialized at an optimal trajectory,

just a few sensitivities are updated at the beginning of the simulation, whereas several

peaks can be observed in conjunction with the reference changes in the prediction horizon,

respectively with N = 20,60,160. The maximal number of updated sensitivity blocks are

4,4,8 when N = 20,60,160 respectively, since the corresponding number of predicted

reference change is 1, 1, 2. When a longer prediction horizon is used, the maximal percentage

of updated sensitivities is smaller, making CMoN-RTI more promising in this case. The

minimal percentage is nonzero because a shifting strategy is used, causing a high nonlinearity

at the terminal shooting point in the prediction horizon (Diehl, 2001), and thus requiring the

update.

The average computational time per sampling instant is given in Table 3.4. The computa-
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Figure 3.8: The percentage of exactly updated sensitivity blocks at each sampling instant
during NMPC simulation using CMoN-RTI, with prediction horizon lengths N = 20, 60, 160.

tional time reduction for sensitivities is significant, especially when prediction horizon N is

large. The overall time is reduced up to 45%, and a larger reduction is possible when sensi-

tivity computations occupy more share in the overall computational cost with the increasing

system dimension.

Table 3.4: Average computational time per sampling instant for all schemes considered in
this paper with prediction horizon lengths N = 20, 60, 100. The term Int., Sens., QP. are the
abbreviation of Integration, Sensitivity propagation, solving QP, respectively. The term ml.,
adj., c. are the abbreviation of ML-RTI, ADJ-RTI and CMoN-RTI, respectively.

N
Int.[ms] Sens.[ms] QP.[ms] Total[ms]

η0
pri

all rti ml. c. rti ml. c. rti ml. c.
20 0.113 0.167 0.074 0.016 0.044 0.049 0.054 0.339 0.239 0.187 0.059
60 0.347 0.447 0.217 0.026 0.135 0.139 0.136 0.942 0.729 0.510 0.048

160 0.912 1.038 0.585 0.028 0.359 0.354 0.361 2.349 1.883 1.363 0.0197

In Fig. 3.9, the effect of the threshold η0
pri on the value of objective function, the

averagely and maximally updated sensitivity blocks when N = 60, is shown. The objective

value is computed by summing up the squares of tracking and control deviations at all

sampling instants. For each η0
pri 6= 0, a suboptimal objective value is obtained due to the

use of the inexact sensitivity scheme. These values are normalized w.r.t. the one of the

standard RTI scheme. As η0
pri grows, the numbers of averagely and maximally updated

sensitivity blocks decrease and the objective value increases. The value of η0
pri can be chosen

in a considerable range, which demonstrates the effectiveness and flexibility of the tuning

procedure of CMoNmon-RTI. In this work, different values of η0
pri are chosen when using

different prediction horizons as shown in Table 3.4. A more conservative η0
pri is used in the

case of a longer prediction horizon due to the increasing complexity of the NMPC problem.
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Figure 3.9: Effect of the threshold η0
pri on the value of objective function, the averagely

and maximally updated sensitivity blocks when N = 60. In this case, η0
pri = 0.048 is chosen.

3.4 Implementing CMoN-RTI

When using the updating logic as summarized in Algorithms 3.2 and 3.3, two issues have to

be addressed when estimating K i
k by (3.56):

1. how to choose the direction vector qi−1
k , and

2. how to compute ∇Ξk.

3.4.1 The Direction Vector

The direction qi−1
k = z i

k − z i−1
k is given by the difference of the initialization of the shooting

point k at two consecutive sampling instants. However, a precise definition has to consider

that sensitivities may not have been updated over multiple sampling instants, and that a

shifting strategy is used on the initialization (Diehl et al., 2002).

Suppose that, at sampling instant i, the k−th block of the Jacobian matrix has not been

updated for r sampling instants, therefore it is equal to ∇Ξk(z i−r
k ). To ensure the validity of

(3.56), the direction for computing CMoN should start from the sampling instant i − r. The

CMoN is then computed as

K̃ i
k =
‖Ξk(zold

k + qi−1
k )−Ξk(zold

k )−∇Ξk(zold
k )q

i−1
k ‖

‖∇Ξk(zold
k )q

i−1
k ‖

, (3.58)
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where zold
k = z i−r

k and qi−1
k = z i

k − zold
k . If a shifting on the initial guess (Diehl et al.,

2002) is adopted, the corresponding sensitivities have to follow such a shifting. An intuitive

shifting strategy between two consecutive sampling instants is to shift all state and control

variables one shooting interval backward, say z i+1
k = z i

k+1, k = 0,1, . . . , N − 1. In this case,

the corresponding shifting on the old initialization to abandon the information of the first

shooting interval is required as zold
k+1 = zold

k .

3.4.2 Integration Scheme

The integration of the dynamics or the execution of the numerical integration operator Ξk(z i
k)

is often performed simultaneously with the corresponding sensitivity propagation of ∇Ξk(z i
k)

(Albersmeyer, 2010; Quirynen et al., 2015). However, in the proposed scheme, the integra-

tion results are first used to estimate CMoN by means of (3.56), while the sensitivities are

propagated later according to the updating logic in Algorithms 3.2 and 3.3. As a consequence,

a deferred strategy for sensitivity propagation as described in (Albersmeyer, 2010) is adopted,

where the dynamics are firstly integrated and all the intermediate steps are stored in memory,

then the sensitivities are propagated after integration is finished. Note that no increase of

computational burden is introduced in this way, however, additional memory allocation is

required.

The complete scheme using the updating logic by Algorithm 3.3 is summarized in Algo-

rithm 3.4.

Algorithm 3.4 CMoN-RTI using updating logic by Algorithm 3.3

1: Choose an initial point (z0,λ0,µ0)
2: Set q−1

k ← 0,η0
pri ← 0,Ξold

k ← 0,∇Ξold
k ← 0, zold

k ← 0 for all k
3: for i = 0, 1, . . . do
4: Compute H i , g i , Bi

5: for k = 0, 1, . . . N − 1 do
6: Perform integration and obtain Ξi

k
7: Compute K i

k by (3.58)
8: Update ∇Ξi

k by Algorithm 3.3
9: Update and shift Ξold

k ,∇Ξold
k and zold

k
10: end for
11: Solve QP problem (2.15) and obtain (∆zi ,λi ,µi)
12: Update and shift the initialization by (2.16)
13: Compute qi

k = z i+1
k − zold

k for all k
14: Choose an appropriate ηi+1

pri
15: end for
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4
Accuracy of the QP Solution and Convergence

of SQP

In Chapter 3, we have presented a novel sensitivity updating scheme for RTI scheme called

CMoN-RTI. Two updating logic are proposed that either update a fixed or an adaptive number

of Jacobian blocks. Simulation results have shown that such schemes are able to reduce

significantly the computational time for evaluating sensitivities, while largely maintaining the

numerical and control performance. However, there remain some issues that are not clear:

• How the partial updating scheme and its tuning parameters, e.g. the number of updated

Jacobian blocks, affect the numerical performance of RTI.

• How to choose optimally the tuning parameters w.r.t the trade-off between sensitivity

computational cost and numerical performance of RTI.

• How the proposed scheme affects the local convergence of the algorithm, when applied

to full SQP methods.

Since in RTI only one QP problem is solved at each sampling instant, the numerical

performance of RTI is basically the numerical properties of a QP problem. Therefore, we first

introduce the stability of the QP solution subject to parameter perturbations. In CMoN-RTI,

such perturbations are Jacobian approximation error caused by partial sensitivity update. We
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then show how far the solution of the QP problem in CMoN-RTI deviates from that in the

standard RTI scheme. In this thesis, this deviation is called the distance to optimum (DtO). The

relationship between the DtO and the value of the threshold in CMoN-RTI is also constructed.

Based on this result, a novel adaptive threshold is proposed for the tuning of CMoN-RTI using

updating logic by Algorithm 3.3, which guarantees the DtO respecting a certain bound. As

a result, the tuning of the threshold is converted to the tuning of the DtO bound, which is

much more straightforward for non-expert users. Finally, we prove that CMoN-SQP, which is

CMoN-RTI applied in full SQP algorithm, is locally convergent by appropriate tuning. The

convergence rate of CMoN-SQP is also tunable hence its flexibility is increased.

4.1 Stability of the QP Solution

Definition 4.1.1. Define a parametric problem QP(p) with a parameter vector p ∈ Rnp

formulated as a matrix P in the equality constraint as

min
∆z

1
2
∆z>H∆z+∇L∆z (4.1a)

s.t. b(zi) + (B(zi) + P i)∆z= 0, (4.1b)

c(zi) + C(zi)∆z≤ 0 (4.1c)

where∇L is the gradient of the Lagrangian of (2.10), P := B̄−B the Jacobian approximation

error, and B̄ the inexact Jacobian with partial updated blocks. p = vec(P) ∈ Rnp is the

vectorization of P after eliminating zero elements.

By this definition, the exact sensitivity QP problem (2.15) is referred to as QP(0). Due to

multiple shooting discretization, P has the following banded block structure

P =

















Onx

P0 Onx

P1 Onx

. . . . . .

PN−1 Onx

















, (4.2)

where Oa is a zero matrix of dimension a and Pk ∈ Rnx×(nx+nu) is the Jacobian approximation

error of the k−th block, and in general is a dense matrix.

Definition 4.1.2. Define

∆y(p) = (∆z>(p),∆µ>(p),∆λ>(p))> (4.3)
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the solution triple of (4.1), where ∆z(p),∆µ(p),∆λ(p) are the increments of optimization

variables, multipliers for inequality and equality constraints, respectively.

Here the solution of QP(p) are all variable increments, since QP (4.1) has a modified

object gradient comparing to (2.15). It can be easily proved that these two formulations are

equivalent (Diehl, Walther, Bock, and Kostina, 2010).

The following Theorem shows that the distance between the solutions of QP(0) and QP(p)

is bounded, if the Jacobian approximation error is bounded.

Theorem 4.1.3 (QP Stability Theorem (Daniel, 1973)). Let S and S′ be the nonempty feasible

sets of QP(0) and QP(p), respectively, defined by

S = {∆z : b(zi) + B(zi)∆z= 0}, (4.4)

S′ = {∆z : b(zi) + (B(zi) + P i)∆z= 0}. (4.5)

Let ∆z(0) and ∆z(p) minimize QP(0) and QP(p) over S and S′, respectively. Then there exists

constants c and ε∗ > 0 such that ‖∆z(p)−∆z(0)‖ ≤ cεwhenever ε≤ ε∗ and ε = ‖B̄−B‖ = ‖P‖.

The following Theorem analyzes the stability of a NLP solution subject to perturbations.

Since QP problem is a special type of NLP problem, the theorem can also be applied to QP

problems. It is shown that ∆y(p) is a unique minimizer of (4.1). Moreover, the active set is

locally stable when the perturbation is sufficiently small.

Theorem 4.1.4 (Basic Sensitivity Theorem (Fiacco, 1984)). If

1. the functions defining QP(p) are twice continuously differentiable in z and if their gradients

w.r.t. z and the constraints are once continuously differentiable in p in a neighborhood of

∆z∗ and p= 0.

2. the second-order sufficient conditions for a local minimum of QP(0) hold at ∆z∗, with

associated Lagrange multipliers ∆µ∗ and ∆λ∗.

3. the rows of constraint Jacobians B(zi) and C(zi) are linearly independent.

4. ∆µ∗ > 0 when c(zi) + C(zi)∆z∗ = 0, i.e. strict complementary slackness holds,

then

1. ∆z∗ is a local isolated minimizer of QP(0) and the associated Lagrange multipliers ∆µ∗

and ∆λ∗ are unique,
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2. for p in a neighborhood of 0, there exists a unique, once continuously differentiable vector

function ∆y(p), satisfying the second-order sufficient conditions for a local minimum of

QP(p) such that ∆y(0) = [∆z∗
>
,∆µ∗

>
,∆λ∗

>
]> = ∆y∗, and hence ∆z(p) is a locally

unique local minimum of QP(p) with associated unique Lagrange multipliers ∆µ(p) and

∆λ(p),

3. for p in a neighborhood of 0, the set of active inequality constraints is unchanged, strict

complementary slackness holds, and rows of the active constraint Jacobian are linearly

independent at ∆z(p).

Finally, the following Theorem provides a linearly approximated relationship between

the exact and inexact solutions.

Theorem 4.1.5 (First-order Approximation (Fiacco, 1984)). A first order approximation of

∆y(p) in a neighborhood of p= 0 is given by

∆y(p) =∆y(0) +M−1(0)N(0)p+O(‖p‖2) (4.6)

where M(0), N(0) are defined as

M(0) =





























∇2
∆zLQP(0) ∇c>1 , . . . , ∇c>nc

∇b>1 , . . . , ∇b>nb

−∆µ1∇c1 −c1
...

. . .

−∆µm∇cnc
−cnc

∇b1
...

∇bnb





























, (4.7)

N(0) =
�

−∇2
p∆zLQP ,µ1∇pc>1 , . . . ,µnc

∇pc>nc
,−∇pb>1 , . . . ,−∇pb>nb

�>
, (4.8)

and

LQP(0) =
1
2
∆z>H∆z+∇L∆z+ (b+ B∆z)>∆λQP + (c + C∆z)>∆µQP , (4.9)

is the Lagrangian of QP(0), ∇bk and ∇ck are the kth row of B and C, respectively.

Given Theorems 4.1.3-4.1.5, the inexact QP solution is related to that of the Jacobian

approximation error. In addition, Theorem 4.1.5 provides a method for approximating the

inexact solution given the exact solution and the perturbation. Indeed, in linear MPC when
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the perturbation is the state measurement at every sampling instant, the perturbed solution

can be computed analytically. This is known as explicit MPC (Bemporad et al., 2002).

4.2 An Advanced Tuning Strategy

In Algorithm 3.3, a fixed threshold η0
pri is used to assess the value of CMoN. Since this choice

is application and control task dependent, the value of η0
pri becomes a tuning parameter.

For non-experts, η0
pri has no physical meanings hence its tuning is not straightforward. As a

result, one may desire an advanced tuning strategy for ηi
pri ,∀i > 0, that requires no prior

knowledge of control systems and adapts to system operating conditions.

Given that CMoN-RTI is an inexact sensitivity RTI scheme, it is always preferred to update

a minimal number of Jacobian blocks while being sufficiently close to the standard RTI scheme

in terms of numerical performance. As the inexact Jacobian affects both the accuracy of

the primal and dual solutions, an additional threshold ηdual for the dual variable must be

introduced. By exploiting the results in the last section, the relationship between DtO and

(ηpri ,ηdual) can be constructed.

4.2.1 Theoretical Results

Assuming that p is in the neighborhood of the origin, (4.6) can be rewritten as

∆y(0) =∆y(p)−M−1(p)N(p)p , (4.10)

where O(‖p2‖) is omitted. According to derivations from Appendix A, we have

N(p)p=







P>∆λ(p)

O

−P∆z(p)






, (4.11)

Therefore, at the sampling instant i + 1 it follows that

‖ei+1‖2 := ‖∆y(0i+1)−∆y(pi+1)‖2

≤ ‖M−1(pi+1)‖2 (‖P i+1>∆λ(pi+1)‖2 + ‖P i+1∆z(pi+1)‖2), (4.12)

where ‖ei+1‖ stands for Distance to Optimum (DtO), i.e. the distance between the solution of

exact Jacobian QP(0) and that of the inexact Jacobian QP(p). Note that, given M(pi+1) a
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finite dimensional and non-singular real matrix,

ρi+1 := ‖M−1(pi+1)‖ (4.13)

is bounded.Hence, the DtO (4.12) is bounded only if ‖P i+1>∆λ(pi+1)‖ and ‖P i+1∆z(pi+1)‖
are bounded. The two bounds are referred as the dual bound and primal bound, respectively,

and they are analyzed in the following.

Primal Bound

By applying the primal threshold ηpri to the updating logic Ω2 by Algorithm 3.3, we have

‖P i+1qi‖ ≤ 2ηi+1
pri ‖V

i
pri‖, (4.14)

where qi = [qi>
0 , . . . , qi>

N−1]
> and V i

pri is a vector of directional sensitivities defined in Appendix

A. Let us define αi+1 ≥ 0 as

αi+1 =

¨ ‖P i+1∆z(pi+1)‖
‖P i+1qi‖ , if‖P i+1qi‖> 0,

1, if‖P i+1∆z(pi+1)‖= 0,‖P i+1qi‖= 0
. (4.15)

Hence, a bound in the direction of the primal variable is as follows

‖P i+1∆z(pi+1)‖2 ≤ 4αi+12
ηi+12

pri ‖V
i
pri‖

2. (4.16)

Dual Bound

Similarly, the threshold ηdual for the dual variable can be applied to adjoint sensitivities.

Define the adjoint CMoN as

K̃ i+1
k :=

‖(∇ΞT (z i+1
k )−∇ΞT (zold

k ))∆λ
i
k+1‖

‖∇ΞT (zold
k ))∆λ

i
k+1‖

. (4.17)

where∇ΞT (z i+1
k )∆λi

k+1 can be computed by efficient adjoint sensitivity schemes(Albersmeyer,

2010). The following updating logic can be added to Ω2

∇Ξi+1
k =

¨

∇Ξk(zold
k ), K̃ i+1

k < ηi+1
dual ,

∇Ξk(z i+1
k ), K̃ i+1

k ≥ ηi+1
dual .

(4.18)

As a result,

‖P i+1>∆λ(pi)‖ ≤ ηi+1
dual‖V

i+1
dual‖. (4.19)
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Analogously, define β i+1 ≥ 0 as

β i+1 =







‖P i+1>∆λ(pi+1)‖
‖P i+1>∆λ(pi)‖

, if‖P i+1>∆λ(pi)‖> 0,

1, if‖P i+1>∆λ(pi+1)‖= 0,‖P i+1>∆λ(pi)‖= 0
. (4.20)

Hence, a bound in the direction of the dual variable is obtained as follows

‖P i+1>∆λ(pi+1)‖2 ≤ β i+12
ηi+12

dual‖V
i+1

dual‖
2 (4.21)

Optimal Bound Estimation

If

β i+12
ηi+12

dual‖V
i+1

dual‖
2 ≤ (1− c1)ē

i+12
/ρi+12

, (4.22)

4αi+12
ηi+12

pri ‖V
i
pri‖

2 ≤ c1 ēi+12
/ρi+12

, (4.23)

where 0< c1 < 1 is a tuning parameter and ēi+1 ∈ R+0 is a user-defined DtO tolerance, then

the DtO defined in (4.12) satisfies ‖ei+1‖ ≤ ēi+1. The primal and dual thresholds thus can be

estimated by

0≤ ηi+1
pri ≤

p
c1 ēi+1

2αi+1ρi+1‖V i+1
pri ‖

= U1(η
i+1
pri ) (4.24)

0≤ ηi+1
dual ≤

p

1− c1 ēi+1

β i+1ρi+1‖V i+1
dual‖

= U2(η
i+1
dual). (4.25)

Note that U1,U2 : R→ R are implicit and discontinuous functions of ηi+1
pri ,ηi+1

dual according

to (4.24), (4.25). αi+1,β i+1 and ρi+1 are functions of ηi+1
pri ,ηi+1

dual and can be computed once

solved problem (4.1).

A formal solution to find the optimal (ηi+1
pri ,ηi+1

dual) is then to solve the following problem

max
ηi+1

pri ,ηi+1
dual

ηi+1
pri ,ηi+1

dual (4.26a)

s.t. ηi+1
pri −U1(η

i+1
pri )≤ 0, (4.26b)

ηi+1
dual −U2(η

i+1
dual)≤ 0, (4.26c)

The solution of problem (4.26) provides the maximum CMoN value, that corresponds

to the minimum number of sensitivity updates while guaranteeing a bounded DtO, at every

sampling instant. Note that for a given ēi+1 ≥ 0, there always exists at least one feasible
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solution to (4.26), i.e. (ηi+1
pri ,ηi+1

dual) = 0, and CMoN-RTI becomes the standard RTI scheme.

A Practical Implementation

Problem (4.26) can be solved via enumeration, which requires to repeatedly solve problem

(4.1) (up to N + 1 times). However, this is computationally prohibitive and undermining the

advantage of CMoN-RTI. A practical approach to avoid solving problem (4.26) is setting the

two thresholds at their upper bounds in (4.24) and (4.25), using approximated information

from previous sampling instants.

Firstly, the unknown ρi+1 in (4.13) is replaced by ρ0. The rationale for such choice is

given by the fact that the matrix M in (4.7) is very sparse and its smallest singular value ρ

is practically close to 0. Moreover, ρ has only a finite number of values. By choosing ēi+1

sufficiently close to 0, the inequalities (4.24) and (4.25) are independent of ρ.

Secondly, as shown in (4.15) and (4.20), (αi+1,β i+1) cannot be practically computed,

since the Jacobian approximation error P i+1 is not known. However, it can be shown that

the DtO tolerance can always be respected by using large enough but finite parameters

(ᾱi+1, β̄ i+1) (See Appendix A). In this paper, such two parameters are chosen to be

ᾱi+1 = c2
‖∆z(pi)‖
‖qi−1‖

, β̄ i+1 = c2
‖∆λ(pi)‖
‖∆λ(pi−1)‖

, (4.27)

where c2 > 0 is a scaling parameter and (ᾱi+1, β̄ i+1) are approximated by using information

from previous sampling instants. Intuitively, when the system is approaching steady state

and the controller is converging “on the fly” (Gros et al., 2016), information from previous

sampling instants are good approximations of that at the current sampling instant. A more

detailed and formal discussion is given in Appendix A. Finally, the approximated thresholds

estimates are given by

ηi+1
pri =

p
c1 ēi+1

2c2ᾱi+1ρ0‖V i+1
pri ‖

(4.28)

ηi+1
dual =

p

1− c1 ēi+1

c2β̄ i+1ρ0‖V i+1
dual‖

. (4.29)

A summary of CMoN-RTI using the advanced tuning strategy is given in Algorithm 4.1.
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Algorithm 4.1 CMoN-RTI using the advanced tuning strategy

1: Choose an initial point (z0,λ0,µ0)
2: Choose tuning parameters c1 > 0, c2 > 0
3: Set q−1

k ← 0,η0← 0,Ξold
k ← 0,∇Ξold

k ← 0, zold
k ← 0 for all k

4: for i = 0, 1, . . . do
5: Compute ∇Li , H i , Bi

6: for k = 0, 1, . . . N − 1 do
7: Perform integration and obtain Ξi

k
8: Choose the DtO tolerance ēi

9: Compute K i
k, K̃ i

k by (3.58) and (4.17)
10: Update ∇Ξi

k by Ω2 in Algorithm 3.3 and (4.18)
11: Update and shift Ξold

k ,∇Ξold
k and zold

k
12: end for
13: Solve QP (4.1) and obtain (∆zQP ,∆λQP ,∆µQP)
14: Update and shift the initialization by (2.16)
15: Compute qi

k = z i+1
k − zold

k for all k
16: Compute (ηi+1

pri ,ηi+1
dual) by (4.28) and (4.29).

17: end for

4.2.2 Simulation Results

Algorithm 4.1 is applied to two NMPC examples, an inverted pendulum and a chain of masses.

Numerical integration and sensitivity generation are performed by a 4th order explicit Runge-

Kutta integrator with 4 steps per shooting interval, provided by CasADi toolbox (Andersson,

2013) using automatic differentiation. The QP problems are condensed by eliminating the

state variables (Vukov et al., 2013) using algorithms presented in (Andersson, 2013), which

have a quadratic computational complexity in horizon length. The condensed QPs are then

solved by an interior point NLP solver Ipopt (Wächter and Biegler, 2006), which, in this work,

is configured to solve convex QP problems using Mehrotra’s predictor-corrector approach,

thus avoiding drastic variation of computational time due to frequent active-set changes.

The computing environment is Matlab R2016a on a PC with Intel core i7-4790 running at

3.60GHz, and all the aforementioned time-critical steps are compiled as Matlab executable.

Inverted Pendulum

The inverted pendulum is given in (1.1) in Chapter 1. Here, a time-varying reference is given

to the inverted pendulum to track different horizontal displacements and swing angles. A

perfect initial guess is chosen by optimally solving the first optimization problem off-line. A

short (N = 40) and a long (N = 120) prediction horizons are applied with a control interval

Ts = 0.05s. The tolerance on DtO in CMoN-RTI follows the rule given in (4.42), where a
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conservative and an aggressive setting are denoted by s1, s2, respectively:

s1 : (εabs = 10−2,εrel = 10−2) (4.30)

s2 : (εabs = 10−1,εrel = 10−1) (4.31)
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Figure 4.1: State and control trajectories of the inverted pendulum with N = 40. The
reference signals change every 5 seconds. The constraints are ‖p‖∞ ≤ 1 and ‖F‖∞ ≤ 20.
The configurations s1, s2 are assigned by (4.30) and (4.31). CMoN-RTI control performance
is indistinguishable from that of Standard RTI. The trajectories obtained by using N = 120
is not shown as they are identical to the ones shown in the plot.

In Figure 4.1, the closed-loop state and control trajectories generated by the standard RTI

and CMoN-RTI with the two prediction horizons and two tolerance settings are shown. The

control performance of CMoN-RTI is indistinguishable to that of the standard RTI scheme. In

Figure 4.2, the percentage of exactly computed Jacobian blocks per sampling instant is given.

The CMoN-RTI scheme is able to adapt to operating conditions by computing more exact

sensitivities when the reference changes, as the peaks occur at around t = 3,8,13,18s. A

more aggressive setting results to less exact sensitivity computations. A significant reduction

of the percentage is observed when N = 120, making CMoN-RTI adequate to deal with the

case of long prediction horizons. Fig. 4.3 shows the DtO at each sampling instant together

with the user-defined tolerance. An additional QP with an exact Jacobian matrix is solved

at each sampling instant to estimate the DtO. In all cases, the DtO is strictly lower than the

tolerance.
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Figure 4.2: Percentage of exactly evaluated Jacobian blocks per sampling instant. The
percentage starts from 0% when N = 40 since there is no reference change within the
prediction horizon in the first 3 seconds. CMoN-RTI is able to adapt to reference changes,
as can be seen from the peaks at around t = 3,8, 13,18s.

Chain of Masses with Nonlinear Springs

A chain of masses is given in (1.6), where the masses are connected by forces in (1.7) provided

by linear springs. Here, nonlinear springs (Enns, 2010) are considered with forces

Fi(t) = D(x i(t)− x i−1(t))(1−
L

‖x i(t)− x i−1(t)‖2
) + FN L , (4.32)

where

FN L = D1(x i(t)− x i−1(t))
(‖x i(t)− x i−1(t)‖2 − L)3

‖x i(t)− x i−1(t)‖2
. (4.33)

A total of 50 simulations are performed using the standard, ML-, ADJ- and CMoN-RTI, with

randomly assigned initial positions and velocities of the masses, see e.g. Fig 4.4, for the

positions and control trajectories generated in one of the simulations. For ML-RTI, the entire

constraint Jacobian matrix is updated every Nm = 2 sampling instants; For ADJ-RTI, the

Jacobian matrix is computed off-line at the steady state trajectory; For CMoN-RTI, the DtO

tolerance is set to s2 in (4.31). To ensure that an accurate representation of the system is

always used in the controller, at least 10% of Jacobian blocks are updated at each sampling

instant. These blocks are those having the largest values of CMoN, hence exhibiting the most

significant nonlinearities.
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Figure 4.3: DtO estimated on-line (colored dashed line) and the user-defined tolerance
(black dotted line) for N = 40, 120, with two tolerance configurations in (4.30) and (4.31).
The DtO increases when the system is subject to a large reference change (at around
t = 3,8,13,18s). For N = 40, the DtO is zero in the first 3s since there is no reference
change within the prediction horizon and the DtO is zero. In all cases, the DtO is strictly
lower than the tolerance.

Control performance, numerical robustness, and efficiency of CMoN-RTI are evaluated

and compared with standard RTI, ML-RTI, and ADJ-RTI. Control performance are firstly

evaluated by collecting statistics of the stabilizing time tst , defined as

tst = argmin(t) (4.34a)

s.t. ‖u(t i)‖∞ < 0.1,∀t i ≥ t, (4.34b)

from the 50 simulations. In Fig. 4.5, the statistics of the standard, ML-, ADJ- and CMoN-RTI

with N = 40,80,160 are shown. Note that, if the chain is not stabilized within 50s, we set

tst = 50s, which is a conservative choice since the stabilization process may take far more

than 50s. For all simulations, RTI is able to stabilize the chain within 50s. The mean and

interquartile range (IQR) of tst of CMoN-RTI is very close to those of the standard RTI. This

means that CMoN-RTI has a similar control performance to the standard RTI in most of the
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Figure 4.4: Initial and final positions of masses (left) and the control trajectories (right) in
one of the simulations using the standard RTI scheme. One end of the chain is fixed on a
wall, while the other end is free and under control. The control interval is Tc = 0.2s. The
control inputs are constrained by ‖u(t)‖∞ ≤ 1.
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Figure 4.5: The time tst needed to stabilize the chain of masses using RTI, ML- and CMoN-
RTI in the total 50 simulations. The chain of masses is considered to be stabilized at time
tst that is computed by (4.34). For all schemes, the stabilizing time is set to be tst = 50s if
the chain is not stabilized within 50s.

situations. On the other hand, ML-RTI has a similar stabilizing time to RTI when N is short,

whereas tst grows significantly as N becomes larger. ADJ-RTI, initialized at the steady state

trajectory, is not able to provide acceptable control performance, especially when N is large.

The control performance is also evaluated by assessing the optimality of each controller.

In Fig. 4.6, the average Karush-Kuhn-Tucker (KKT) value, i.e. the norm of the gradient of the

Lagrangian of the NLP (2.9), at each sampling instant is presented. It can be observed that

• ML-RTI KKT values exhibit oscillatory behavior since the Jacobian update is performed

every m= 2 sampling instants only.

• As the system converges “on the fly”, the KKT of CMoN-RTI decreases smoothly as that

of the standard RTI.
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Figure 4.6: The average KKT value at every sampling instant of the successfully stabilized
cases using RTI, ML- and CMoN-RTI. The KKT value is computed as the norm of the
Lagrangian of the NLP (2.9) as an indicator of optimality.

Table 4.1: The number of simulations (among 50) where each controller cannot stabilize
the chain.

H
HHH

HH

N
40 80 160

ML-RTI 4 5 7
ADJ-RTI 7 42 50

CMoN-RTI 0 0 0

Table 4.2: The average computational time per sampling instant in milliseconds[ms] for
the standard RTI, ML-RTI, and CMoN-RTI, with prediction length N = 40,80,160. The
integration and sensitivity generation are performed by a 4th order explicit Runge-Kutta
integrator with 4 steps per shooting interval. The adjoint sensitivity is computed by automatic
differentiation of the integration with an adjoint variable. The QP problem is solved by
Ipopt using Mohrotra’s predictor-corrector approach.

N
40 80 160

RTI ML. CMoN. RTI ML. CMoN. RTI ML. CMoN.
Integration 1.6 3.1 6.0
Sensitivity 70.7 35.9 22.7 144.4 72.8 34.7 309.8 155.7 56.0

Adjoint sensitivity 0 2.8 0 5.7 0 9.9
Condensing 5.6 3.5 5.7 20.2 12.6 19.8 89.9 56.9 89.4

QP 8.9 9.1 9.2 23.3 24.9 24.3 91.1 94.6 93.5
Total 90.4 57.0 42.9 202.8 129.5 97.2 513.7 346.6 260.5

As for the numerical robustness, the number of simulations where each controller fails

to stabilize the system within 50s is reported in Tab. 4.1 . Given that the initial condition

of each simulation is randomly assigned, the numerical robustness or the sensitivity w.r.t.

initialization of each controller can be assessed. CMoN-RTI is able to stabilize the chain within

50s in all situations, although the maximal stabilizing time is larger than that of the standard
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Figure 4.7: The average percentage of exactly updated Jacobian blocks at every sampling
instant of the stabilized cases using CMoN-RTI. At least 10% of the Jacobian blocks are
updated at each sampling instant.

RTI (see Fig. 4.5). ML-RTI has a few failed cases if N = 40 and this number increases as

the prediction horizon grows. Not surprisingly, ADJ-RTI has the poorest robustness since its

success considerably relies on the quality of the off-line Jacobian matrix.

To evaluate computational efficiency, the average percentage of exactly updated Jacobian

blocks using CMoN-RTI at every sampling instant is reported in Fig. 4.7. In the first 20s,

the KKT values of CMoN-RTI and RTI are almost identical, however, the number of updated

Jacobian blocks is at most 80% and it reduces to 40% when N becomes larger. After t = 30s,

when the system is close to its steady state, updating only 10% of the blocks allows to still

maintain small KKT values. Table 4.2 shows the average computational time of each controller

per sampling instant. Each time critical step is shown separately for a clear view on the

computational cost distribution. The usage of CMoN-RTI can reduce significantly the cost for

the computation of sensitivities, which dominates the overall computations in all cases. Note

that the computational efficiency of CMoN-RTI can be further improved if structure-exploiting

QP solvers are adopted, thus avoiding the condensing step (Vukov et al., 2013). However, for

consistency, the condensing step has been introduced in all simulations and the corresponding

dense QPs have been solved. The computational time of ADJ-RTI is not reported because of

its poor control performance, see Fig. 4.5 and Table 4.1.
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4.3 CMoN-SQP

Although Algorithm 4.1 represents an inexact sensitivity updating scheme in the framework

of RTI, it can be straightforwardly extended to the SQP framework, in which a sequence of QP

problems is solved until convergence is achieved. The resulting algorithm, denoted hereafter

as CMoN-SQP, falls into the field of inexact Jacobian SQP methods. In this framework, the

Two-side-Rank-One (TR1) updating SQP algorithm has been proposed in (Griewank and

Walther, 2002) for equality constrained problems. Similar to the famous Symmetric-Rank-

One (SR1) updating scheme (Nocedal and Wright, 2006), the TR1 scheme requires Hessian

and Jacobian updates to satisfy both direct and adjoint secant conditions. This method is

extended to linearly inequality constrained problems in (Diehl et al., 2010) and its local

convergence is proved.

Differently from the TR1 scheme which adopts a rank one sensitivity update, CMoN-SQP

achieves a block update by exploiting the structure of the problem. In addition, the primal

and dual bounds are satisfied, instead of enforcing secant conditions. In the following, local

convergence of CMoN-SQP is proved and it is shown that the convergence rate is tunable via

the choice DtO tolerance.

4.3.1 Local Convergence of CMoN-SQP

Consider the parametric QP problem (4.1). Assume the active set is locally fixed thanks to

Theorem 4.1.4. Solving problem (4.1) in a SQP algorithm is equivalent to solve the following

nonlinear system

F(y) = 0,y :=

�

z

λ

�

, F(y) =







R>∇L(z,λ)

B(z)

Ca(z)






(4.35)

where λ denotes the multiplier for equality and active inequality constraints, Ca contains the

active constraints, and R is a matrix with orthonormal column vectors, such that ∇CaR= 0

(Diehl et al., 2010). The Jacobian matrix of the nonlinear system is

Ḟ(yi) =
∂ F
∂ y
(yi) =







R>i H i R>i ∇B>(zi)

∇B(zi)

∇Ca(zi)






(4.36)

where H i is an approximation of the exact Hessian, i.e. the Gauss-Newton approximation

which is independent of the multiplier λ. Let Ji be an approximation of the exact Jacobian
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Ḟ(yi) with

Ji =







R>i H i R>i ∇B>(zi)

∇B̃(zi)

∇Ca(zi)






(4.37)

The following theorem indicates that the proposed scheme is convergent when p is in the

neighborhood of 0.

Theorem 4.3.1. Let F : V→ Rny ,V ⊂ Rny be continuously differentiable. Consider the two

sequences

{y∗} : y i+1
∗ = y i

∗ +∆y i
∗ (4.38)

{yp} : y i+1
p = y i

p +∆y i
p (4.39)

where

∆y i
∗ = −Ḟ−1(y i

∗)F(y
i
∗) (4.40)

∆y i
p = −J−1(y i

p)F(y
i
p) (4.41)

Assume that

1. the Jacobian matrix is invertible and is uniformly bounded and has uniformly bounded

inverses,

2. there exists a κ0 < 1 such that ‖∆y i+1
∗ ‖ ≤ κ0‖∆y i

∗‖ for all i > m1, m1 ∈ N. Hence,

starting from y0 ∈ V, the sequence {y∗} converges to a local optimizer y+∗ ,

3. J(y i
p) is generated by Algorithm 4.1,

Then,

1. there always exists a set of scalars {i ∈ N+|ēi ≥ 0} such that the distance between the

sequences {yp} and {y∗} is sufficiently small at each iteration,

2. there always exists a set of scalars {i ∈ N+|ēi ≥ 0} and a κ2 satisfying κ0 ≤ κ2 < 1, such

that ‖∆y i+1
p ‖ ≤ κ2‖∆y i

p‖ for all i > m2, m2 ∈ N, and the sequence {yp} converges to

y+p = y+∗ starting from y0.

The proof is given in Appendix A. Theorem 1 shows that the Jacobian approximation error

can be controlled by using user-defined DtO tolerances, hence the convergence property can

be satisfied by using appropriate tuning configurations. The convergence rate is also shown

to be tunable, which increases the flexibility of the proposed algorithm. If ēi = 0,∀i ≥ 0,

CMoN-SQP becomes the standard SQP algorithm with the same convergence rate.
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4.3.2 Numerical Examples

As an example, the CMoN-SQP scheme is applied to two NLP problems from the Hock &

Schittkowski Optimization Suite (Hock and Schittkowski, 1980). The NLP problems hs060

and hs077 contain nonlinear equality constraints, linear inequality constraints and least square

objectives, which are suitable for using Gauss-Newton Hessian approximations. These one-

stage problems do not have a structured Jacobian matrix, and are only used to demonstrate

the convergence properties of the proposed method.

Figure 4.8 shows the results of the application of SQP algorithms with four different

settings to the NLP problems. On the horizontal axis the iteration index is represented, while

on the vertical axis the distance between the actual and optimal solution is displayed. The

SQP using exact Hessian with exact Jacobian (setting 1) converges quadratically. The SQP

using Gauss-Newton Hessian with exact Jacobian (setting 2) converges superlinearly. The

tolerance DtO in CMoN-SQP is chosen as

ēi = εabspn+ εrel‖∆y i‖ (4.42)

where (εabs,εrel) are the absolute and relative tolerances, n is the number of optimization

variables, and y = (x ,λ,µ) is the optimal triple. Such choice ensures that the DtO tolerance

scales with the size of the problem and the scale of the variable values(O’Donoghue et al.,

2013). A conservative setting of CMoN-SQP scheme (setting 3), converges at the same rate

of setting 2 while the exact Jacobian is not evaluated at more than the 70% of the iterations.

For the less conservative setting of CMoN-SQP (setting 4), the iterations in which the exact

Jacobian is not evaluated are marked by an “x” below the horizontal axis. The convergence

rate is slightly slower than that of setting 2 and 3, however, the exact Jacobian is not evaluated

at more than 85% of the iterations.
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Figure 4.8: Convergence behavior of the example hs060 (left) and hs077 (right). The DtO
tolerance is computed by (4.42). Setting 1: exact Hessian and exact constraint Jacobian;
Setting 2: Gauss-Newton Hessian and exact constraint Jacobian; Setting 3: CMoN-SQP
with conservative tuning parameters (εabs = 10−3,εrel = 10−3); Setting 4: CMoN-SQP with
extreme tuning parameters (εabs = 10−1,εrel = 10−1). For Setting 4, the iterations at which
the exact Jacobian is not evaluated are marked by an “x” below the horizontal axis.



5
Partial Condensing and Matrix Factorization

As shown in (2.23), the QP problem arising from multiple shooting has a block sparse structure.

This formulation can be solved by sparsity-exploiting algorithms directly. Alternatively, a

dense QP can be formulated by eliminating the state variables and solved by efficient dense QP

solvers. While in Chapter 4 the CMoN-RTI scheme with several sensitivity updating logic are

proposed to reduce the computational burden of RTI-based NMPC algorithms when preparing

the QP problem (2.22), this Chapter focuses on further reducing the computational cost for

solving the QP problem. With the help of partial sensitivity updates, a partial condensing

algorithm is proposed to save condensing efforts for solving dense QP problems. In addition,

a partial matrix factorization algorithm is proposed to solve sparse QP problems.
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5.1 Prepare dense QP in CMoN-RTI

Recall that the following QP problem has to be solved at each sampling instant.

min
∆s,∆u

N−1
∑

k=0

(
1
2

�

∆sk

∆uk

�>

Hk

�

∆sk

∆uk

�

+ g>k

�

∆sk

∆uk

�

) (5.1a)

+
1
2
∆s>N HN∆sN + g>N∆sN

s.t. ∆s0 = x̂0 − s0, (5.1b)

∆sk = Ak−1∆sk−1 + Bk−1∆uk−1 + dk−1, k = 1, . . . , N (5.1c)

Ck

�

∆sk

∆uk

�

≤ −ck, k = 0, 1, . . . , N − 1, (5.1d)

CN∆sN ≤ −cN . (5.1e)

An equivalent multi-stage formulation can be written as

min
∆z

N
∑

k=0

1
2
∆z>k Hk∆zk + g>k ∆zk (5.2a)

s.t. E0∆z0 = x̂0 − s0, (5.2b)

Ek+1∆zk+1 = Dkzk + dk, k = 0,1, . . . , N − 1, (5.2c)

Ck∆zk ≤ −ck, k = 0,1, . . . , N , (5.2d)

where ∆zk = [∆s>k ,∆u>k ]
> and ∆zN =∆sN and

Dk = [Ak, Bk], Ek = [I, 0], , k = 0, . . . , N − 1, (5.3)

EN = I. (5.4)

Here I is a nx by nx identity matrix and 0 is a nx by nu zero matrix.

5.1.1 Full Condensing

The computational cost for solving the QP problem (2.22) with sparsity-exploiting algorithm

grows linearly with the prediction horizon length N as O(N) (Axehill, 2015). However, this

formulation results in (N + 1)nx + Nnu decision variables hence a large dimensional QP

problem has to be solved. Alternatively, one can apply the condensing procedure to formulate

a dense QP with only Nnu decision variables. In this case, the sparsity of the original problem

is completely lost and the computational cost for solving such a dense QP grows cubically with

N as O(N3) (Ferreau et al., 2014). In addition, the condensing step itself has a complexity of
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O(N3) but can be reduced to O(N2) (Andersson, 2013).

The condensing step aims at eliminating the state variables∆sk from the decision variable

∆z. Exploiting the coupling constraint (5.1c), yields the following dense QP problem:

min
∆U

1
2
∆U>Hc∆U + g>c ∆U (5.5a)

s.t. Cc∆U ≤ −cc , (5.5b)

where ∆U = [∆u>0 , . . . ,∆u>N−1]
> and Hc , gc , Cc , cc are vectors and matrices of appropriate

dimension after condensing. The condensing procedure refers to the computation of these

vectors and matrices. Write the coupling constraints in a compact form as













∆s1

∆s2
...

∆sN













=













G0,0

G1,0 G1,1
...

. . .

GN−1,0 GN−1,1 · · · GN−1,N−1













︸ ︷︷ ︸

G













∆u0

∆u1
...

∆uN−1













+













L1

L2
...

LN













︸ ︷︷ ︸

L

(5.6)

where Gi, j ∈ Rnx×nu and G, L can be computed using block-wise forward substitutions as in

Algorithm 5.1.

Algorithm 5.1 Calculation of G, L in (5.6) with complexity O(N2) and O(N) respectively
(Andersson, 2013)

1: Initialize L0←∆s0 = x̂0 − s0
2: for i = 0, . . . , N − 1 do
3: Gi,i ← Bi
4: for k = i + 1, . . . , N − 1 do
5: Gk,i ← AkGk−1,i
6: end for
7: Li+1← Ai Li + ai
8: end for

Note that Hk and gk can be written as

Hk =

�

Qk Sk

S>k Rk

�

, gk =

�

gs
k

gu
k

�

, , k = 0, . . . , N − 1, HN =QN (5.7)

where Qk ∈ Rnx×nx , Sk ∈ Rnx×nu , Rk ∈ Rnu×nu and gs
k ∈ R

nx , gu
k ∈ R

nu . The computation of gc

originally requires a complexity of O(N2), but in the following an algorithm is given with a

complexity of O(N) in Algorithm 5.2.
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Algorithm 5.2 Calculation of gc in (5.5) with complexity O(N) (Andersson, 2013)

1: Initialize wN ← gs
N +QN LN

2: for k = N − 1, . . . , 1 do
3: gck

← gu
k + S>k Lk + B>k wk+1

4: wk← gs
k +Qk Lk + A>k wk+1

5: end for
6: gc0

← gu
0 + S>0 + B>0 w1

The most expensive part of the condensing is the computation of Hc, which is a dense

matrix and can be written as

Hc =







H0,0 · · · H0,N−1
...

. . .
...

HN−1,0 · · · HN−1,N−1






(5.8)

where Hi, j ∈ Rnu×nu . Hc can be efficiently computed by Algorithm 5.3.

Algorithm 5.3 Calculation of Hc in (5.5) with complexity O(N2) (Andersson, 2013)

1: for i = 0, . . . , N − 1 do
2: WN ,i ←QN GN ,i
3: for k = N − 1, . . . , i + 1 do
4: Hk,i ← S>k Gk,i + B>k Wk+1,i

5: Wk,i ←QkGk,i + A>k Wk+1,i
6: end for
7: Hi,i ← Ri + B>i Wi+1,i
8: end for

The inequality constraint in (5.16) can be re-written as











C s
0

C s
1

. . .

C s
N−1





















∆s0

∆s1
...

∆sN−1











+











Cu
0

Cu
1

. . .

Cu
N−1





















∆u0

∆u1
...

∆uN−1











≤ −











c0

c1
...

cN−1











, (5.9)

C s
N∆sN ≤ −cN (5.10)

where C s
k ∈ R

nc×nx , Cu
k ∈ R

nc×nu , ck ∈ Rnc for k = 0, . . . , N − 1 and C s
N ∈ R

ncN×nx , cN ∈ RncN .

Assuming that the condensed Jacobian and residual for the inequality constraint has the
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following form

Cc =

















C0,0
...

. . .

CN−2,0 · · · CN−2,N−2

CN−1,0 · · · CN−1,N−2 CN−1,N−1

CN ,0 · · · CN−,N−2 CN ,N−1

















, cc =







cc0
...

ccN−1






(5.11)

where Ci, j ∈ Rnc×nu , cck
∈ Rnc . The computation of Cc and cc are given in Algorithm 5.4.

Algorithm 5.4 Calculation of Cc and cc in (5.5) with complexity O(N2).

1: for i = 0, . . . , N − 1 do
2: Ci,i ← Cu

i
3: cci

← ci + C s
i Li

4: for k = i + 1, . . . , N − 1 do
5: Ck,i ← C s

kGk−1,i
6: end for
7: CN ,i ← C s

N GN−1,i
8: end for
9: ccN

← cN + C s
N LN

If there are only box constraints for ∆U , i.e. C s
k = 0, then Ci,i = Cu

i = I and Cc would be

an identity matrix. If there are box constraints for both ∆U and ∆sk, then C s
k = I, Cu

k = I
hence the lower triangular part of Cc is identical to G and the diagonal part is one.

Once the optimal solution∆U is obtained, the full solution∆z and Lagrangian multipliers

λ associated with the equality constraints (5.2b) and (5.2c) must be recovered. The gradient

of the Lagrangian of (5.2) at its optimal solution ∆z∗ is given by

H∆z∗ + g + B>λ+ C>µ, (5.12)

where H, B, C have structure in (2.23). Note that the Lagrangian multipliers µ associated

with the inequality constraints are identical for dense and sparse QP problems. Therefore,

∆z and λ can be computed by Algorithm 5.5, where λ= [λ>0 , . . . ,λ>N ]
>,µ= [µ>0 , . . . ,µ>N ]

>,

λk ∈ Rnx , k = 0, . . . , N , µk ∈ Rnc , k = 0, . . . , N − 1 and µN ∈ RncN .
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Algorithm 5.5 Recovering ∆z and λ in (5.2) with complexity of O(N).

1: for i = 0, . . . , N − 1 do
2: ∆sk+1← Ak∆sk + Bk∆uk + ak
3: end for
4: λN ←QN∆sN + gs

N + C s
NµN

5: for i = N − 1, . . . , 0 do
6: λi ← A>i λi+1 +Q i∆si + Si∆ui + C s>

i µi + gs
i

7: end for

5.1.2 Partial Condensing

In (Axehill, 2015), it is shown that the choice for formulating the QP problems does not have

to be binary: either fully condensed or sparse. An equivalent QP problem can be constructed

with a level of sparsity in between these two choices. The underlying idea is called block

condensing or partial condensing, that is to divide the horizon N in condensing blocks, each

consisting of Npc consecutive stages or shooting intervals. For each condensing block, the

traditional condensing algorithm is performed to obtain a dense problem which is a sub-

problem of the original QP problem. As a result, one can easily trade-off between the sparsity

and the dimension of the QP problem to achieve a faster QP solving procedure. (Axehill, 2015)

analyze the impact of partial condensing on Riccati based sparse linear algebra for soving QP

problems. Using an optimal chosen block size Npc , the computational complexity for solving

the QP problem grows linearly in the number of controls nu. (Kouzoupis, Quirynen, Frasch,

and Diehl, 2015b) combine partial condensing with the dual newton strategy for solving the

QP problem and achieves a significant speed up both in condensing and QP solving.

The idea of partial condensing is to divide the horizon N into blocks, each consisting Npc

consecutive stages. Hence, the number of blocks is Nb = N/Npc . To ensure an integer-valued

Nb, N must be a positive multiple of the block size Npc . The decision variable of the partial

condensed QP problem is

∆z̃= [∆s>0 ,∆U>0 , . . . ,∆s>Nb−1,∆U>Nb−1,∆s>N ]
> (5.13)

where Uk = [∆u>k ,∆u>k+1, . . . ,∆u>k+Npc−1]
>. Hence, for the m-th condensing block, m =

0, . . . , Nb − 1, the decision variable is

∆z[m] = [∆s[m]0 ,∆u[m]0 , . . . ,∆u[m]Npc−1]. (5.14)

When Npc = N and Nb = 1, the full condensing is recovered. Note that the full condensing

algorithms 5.1 to 5.4 completely eliminate the state variables from the optimization variable,
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but for partial condensing the first state variable of each block is an optimization variable,

hence the partial condensing algorithms have to be slightly modified. In each condensing

block, the coupling constraint (5.6) becomes













∆s0

∆s1
...

∆sNpc−1


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
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

=
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




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...
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


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







+

















L0

L1

L2
...

LNpc−1

















︸ ︷︷ ︸

L

, (5.15)

where G and L are computed in the following algorithm.

Algorithm 5.6 Calculation of G, L in (5.15) with complexity O(N2
pc) and O(Npc) respectively

(Kouzoupis et al., 2015b)

1: Initialize L0← 0, B−1← I
2: for i = 0, . . . , Npc − 1 do
3: Gi,i ← Bi−1
4: for k = i + 1, . . . , Npc − 1 do
5: Gk,i ← Ak−1Gk−1,i
6: end for
7: if i > 0 then
8: Li ← Ai−1 Li−1 + ai−1
9: end if

10: end for

As a result of partial condensing, a new but equivalent QP problem is formulated as

min
∆z

Nb−1
∑

k=0

1
2
∆z[k]

>
H̃k∆z[k] + g̃>k ∆z[k] (5.16a)

s.t. Ẽ0∆z[0] = x̂0 − s0, (5.16b)

Ẽk+1∆z[k+1] = D̃kz[k] + d̃k, k = 0,1, . . . , Nb − 1, (5.16c)

C̃k∆z[k] ≤ −c̃k, k = 0,1, . . . , Nb, (5.16d)

The coupling relationship between two consecutive blocks in (5.16c) is defined by ∆s[m+1]
0 =

∆s[m]Npc
. The latter quantity can be easily obtained by running Algorithm 5.6 until Npc.

H̃k, g̃k, C̃k, D̃k, c̃k are results of partial condensing with appropriate dimensions and can be

obtained by running Algorithms B.1 to B.3 in Appendix B. Note that Ẽk+1 = [Inx
,ONpc nu

].

Figure 5.1 and 5.2 show three examples on sparsity pattern of the Jacobian of the equality
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constraints in (5.16c) and the Hessian matrix, when (5.16) is written in a compact form.

By manipulating Nb or Npc across permissible values, the sparsity of the QP problem (5.16)

can be varied and the computational cost for solving this QP can be affected (Kouzoupis

et al., 2015b). The highest computational complexity of partial condensing is O(NbN2
pc) for

Algorithm 5.3.
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Figure 5.1: Illustrative examples on sparsity pattern of the constraint Jacobian when using
partial condensing. From left to right, the number of divided blocks are Nb = 20,5,1,
respectively.

Figure 5.2: Illustrative examples on sparsity pattern of the Hessian when using partial
condensing. From left to right, the number of divided blocks are Nb = 20, 5, 1, respectively.

5.1.3 CMoN-RTI using Partial Condensing

The CMoN-RTI scheme proposed in Chapter 4 updates part of the sensitivities Ak, Bk in the

constraint Jacobian (2.24). In CMoN-RTI, the advantage that can be exploited for condensing

is probably that if only the first N f rac blocks are updated, i.e. the biggest index of updated

sensitivity in CMoN-RTI is N f rac , then the last N − N f rac block columns of G in (5.6) do not

change. If the Hessian does not change, its lower right (N − N f rac)× (N − N f rac) condensed
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Hessian blocks requires no update (Frasch et al., 2012). However, as can be seen in Algorithm

5.2 to 5.4, this fractional update introduced in Mixed-Level Schemes in Chapter 2 has few

potential for reducing the computational burden of condensing, since N f rac varies significantly

from sample to sample and the largest N f rac of all sampling instants is usually close to N . In

fact, the complete condensing should be re-performed at every sampling instant even if only

a part of the sensitivities are updated.

The aforementioned limitation can be overcome by combining CMoN-RTI and partial

condensing. The intuition is simple: if all sensitivities in a condensing block do not change,

the condensing results G for this block requires no re-computation. If the Hessian does not

change, the condensing results H̃k for this block is a constant as well. In the following, we

first illustrate how to obtain a constant Hessian hence the condensing results for H̃k can also

benefit from CMoN-RTI.

Constant Hessian

Recall in (2.9) that the following NLP problem has to be solved at every sampling instant:

min
s,u

N−1
∑

k=0

φ(tk, sk, uk; p) +Φ(sN ) (5.17a)

s.t. s0 = x̂0, (5.17b)

sk+1 = Ξ(tk, sk, uk; p), k = 0,1, . . . , N − 1 (5.17c)

r(sk, uk; p)≤ 0, k = 0, 1, . . . , N − 1, (5.17d)

l(sN )≤ 0, (5.17e)

The QP problem (5.1) is obtained by linearizing (5.17). Using Gauss-Newton approximation,

the Hessian Hk is computed by Hk =∇φ̄>k ∇φ̄k if φk = φ(tk, sk, uk; p) = 1
2‖φ̄k‖22. If φ̄k is a

linear function of sk and uk, Hk is a constant matrix for all sampling instants. In case φ̄k is

nonlinear, define yk = φ̄k and augment the system state by

s̄k = [s
>
k , u>k , y>k ]

>. (5.18)

The derivatives of the augmented state is

˙̄sk = [ṡ
>
k , u̇>k , ẏ>k ]

>. (5.19)

where ẏk =
∂ φ̄k
∂ t =

∂ φ̄k
∂ sk

ṡk +
∂ φ̄k
∂ uk

u̇k and ūk = u̇k is the new control input. The new Hessian

is constant since φ̄k is a linear function of s̄k and ūk. The dimension of the augmented

system depends on φ̄k and the original number of inputs. Since constant Hessian can be
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obtained both in linear and nonlinear objective cases, we can assume a constant Hessian

in CMoN-RTI without loss of generality. This means that each block Hk in (2.23) and its

sub-blocks Qk, Sk, Rk in (5.7) are constants throughout on-line optimization. In the following,

we assume a linear least square objective function φk, k = 0, . . . , N for notation simplicity.

Exploit previous condensing blocks

Now let us combine CMoN-RTI and partial condensing. Take the fixed-time block updating

logic Ω1 in Algorithm (3.2) as an example. At every sampling instant, N f out of N sensitivities

are updated. The indexes for these sensitivities are labeled by (e1, . . . , eN f
). 1 Once given the

number of condensing block Nb or the number of consecutive stages in a block Npc = N/Nb,

the indexes of the condensing blocks which those sensitivities belong to can be computed.

Assume

ek = fkNpc + r j , k = 1, . . . , N f , r j = 1, . . . , Npc (5.20)

where fk is the quotient of ek divided by Npc and rk is the remainder. The condensing

algorithms are performed only for those blocks of indexes from f1 to fN f
and the updated

sensitivities have indexes r j 6= Npc in each condensing block. Notice that fi = f j , i 6= j is

possible. Hence, the maximum number of condensing blocks that should be re-computed is

N f .

For a condensing block l = 0, . . . Nb−1, the updating strategies from the previous sampling

instant have two steps:

1. If some or all sensitivities of indexes from 0 to Npc − 1 are updated, the condensing

algorithms for this block require completely re-computation. Otherwise, the condensing

results G, H̃k, C̃k can be directly used.

2. The coupling relationship D̃k, ãk between two consecutive condensing blocks can be

computed by multiplying sensitivities A(l+1)Npc−1 to the last row block of G in (5.15).

The complete algorithm is summarized in Algorithm 5.7.

1These blocks are originally ordered based on their CMoN values. Here their indexes are ordered monotonically.
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Algorithm 5.7 CMoN-RTI using updating logic Ω1 and partial condensing with complexity
O(N f N2

pc)

1: // prepare on-line data
2: Initialize zi for i > 0
3: Formulate QP problem (2.15), excluding B(zi)
4: Compute CMoN K i

k by (3.56) for all k > 0
5: // Apply sensitivity updating logic and partial condensing
6: Perform Algorithm (3.2)
7: Compute f i

j , j = 1, . . . , N f by (5.20)
8: for l = 0, 1, . . . , Nb − 1 do
9: Compute L i

l , g̃ i
l , c̃ i

l by Algorithms 5.6, B.2 and B.3
10: if l ∈ { f i

1 , . . . , f i
N f
} then

11: Compute G i
l and H̃ i

l , C̃ i
l in (5.15) and (5.16) by looping Algorithms 5.6, B.1 and B.3,

until Npc − 1
12: else
13: G i

l ← G i−1
l , H̃ i

l ← H̃ i−1
l , C̃ i

l ← C̃ i−1
l

14: Compute D̃i
l , ai

l by multiplying Ai
(l+1)Npc−1 to the last row block of G i

l and L i
l

15: end if
16: end for
17: // Solve the QP problem
18: Solve QP problem (5.16)

Partial Condensing with a Linear Complexity in Horizon Length

Notice in Algorithm 5.7, the 13th step computes the coupling relationship between two con-

secutive condensing blocks. The computational complexity of this step is O(Npc). Therefore,

it is possible to achieve a linear growth rate of the computational complexity w.r.t. to the

number of stages in a block. To make this possible, the first Npc − 1 sensitivities in each block

has to be unchanged hence no O(N2
pc) computations are involved. Bearing this idea, a novel

strategy named Linear Partial Condensing RTI (LPC-RTI) for determining the sensitivities

that should be updated at each sampling instant is proposed.

Choose an appropriate number of condensing blocks Nb < N and compute Npc = N/Nb >

1. Define an index set

ILPC = {Npc − 1,2Npc − 1, . . . , NbNpc − 1}. (5.21)

In LPC-RTI, a sensitivity double (Ak, Bk) is updated at each sampling instant if k ∈ ILPC . As a

consequence, the dominating partial condensing computation reduces to the 13th step of

Algorithm 5.7. There are several remarks regarding this strategy:
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1. The sensitivities that should be updated are determined offline and are equally dis-

tributed over the prediction window. In this case, the nonlinearity of the system is

not taken into account. As the number of condensing blocks increases, there are more

sensitivities that are updated and the dynamics of the system is approximated in a

higher accuracy.

2. The computationally complexity of partial condensing is O(NbNpc) = O(N). Hence,

the complexity is linear in N , independent on the choice of Nb. A trade-off between

sensitivity computational cost and the accuracy of dynamics approximation can be

expected by varying Nb among permissible values.

This strategy is summarized in Algorithm 5.8.

Algorithm 5.8 LPC-RTI: Linear Partial Condensing RTI with complexity O(N)

1: // prepare on-line data
2: Initialize zi for i > 0
3: Formulate QP problem (2.15), excluding B(zi)
4: // Apply sensitivity updating logic and partial condensing
5: for l = 0, . . . Nb − 1 do
6: Compute L i

l , g̃ i
l , c̃ i

l by Algorithms 5.6, B.2 and B.3
7: G i

l ← G i−1
l , H̃ i

l ← H̃ i−1
l , C̃ i

l ← C̃ i−1
l

8: Compute Ai
(l+1)Npc−1 and Bi

(l+1)Npc−1

9: Compute D̃i
l , ai

l by multiplying Ai
(l+1)Npc−1 to the last row block of G i

l and L i
l

10: end for
11: // Solve the QP problem
12: Solve QP problem (5.16)

In Figure 5.3, we show the average CPU time of Algorithm 5.7 for each sampling instant,

and the speedup factor w.r.t. the standard partial condensing algorithms presented in Ap-

pendix B. The CPU time is measured in a closed-loop simulation starting at the same initial

condition. All algorithms are coded in Matlab hence there maybe some software overheads.

However, under the same criterion, the comparison among algorithms is fair and the trend

shown in Figure 5.3 is demonstrative.

Intuitively, the computational time for block condensing decreases when a larger number

of condensing blocks Nb is selected. This is because that the complexity of block condensing

scales quadratically with the size of each block but only linearly with the number of condensing

blocks. The speedup factor also grows with the number of condensing blocks, since more

condensing blocks can be kept unchanged if only a small subset of sensitivities are updated.

When Nb = 2, there is little speedup since in most cases both blocks contain the updated

sensitivities hence are needed to be updated as well.
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In Figure 5.4, the same results are depicted when applying Algorithm 5.8. In this case, the

number of updated sensitivities is equivalent to the number of condensing blocks. For smaller

Nb, the computational time for block condensing and sensitivity evaluation is less, however,

the approximation of nonlinear dynamics is worse. Therefore, one may expect a trade-off

between the computational efficiency and the optimization accuracy. As demonstrated in

Algorithm 5.8, the computational time of LPC-RTI grows linearly with the horizon length N .

Considerable speedup is observed when using LPC-RTI, with at least a factor of 2 and up to

14 as shown in the right sub-figure. In addition, the speedup is more significant for larger N ,

making LPC-RTI more appealing for problems with a long prediction horizon.
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Figure 5.3: The average CPU time[ms] of Algorithm 5.7 for each sampling instant (left), and
the speedup factor w.r.t. the standard partial condensing algorithms presented in Appendix
B (right).
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Figure 5.4: The average CPU time[ms] of Algorithm 5.8 for each sampling instant (left), and
the speedup factor w.r.t. the standard partial condensing algorithms presented in Appendix
B (right).
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5.2 Solve sparse QP in CMoN-RTI

The computationally complexity for solving fully condensed QP problems is usually O(N3)

(Ferreau et al., 2014). Partial condensing results to an equality and inequality constrained QP

problem (5.16), which can be solved by sparsity-exploiting solver with a complexity of O(N),

or more specifically, O(Nb). The most expensive steps for solving the (partially) sparse QP

problem are formulating and factorizing the KKT system. State-of-the-art sparsity-exploiting

solver, e.g. qpDUNES, has a complexity of O(NbN3
pc) for factorizing the Hessian blocks for

inner stage QP problems and a complexity ofO(Nb) for factorization in outer Newton iterations

(Kouzoupis et al., 2015b). ForcesPro has a complexity of O(Nb) for factorizing the KKT system

(Domahidi, Zgraggen, Zeilinger, Morari, and Jones, 2012). However, the discussion by now

does not taken into account the partially updated sensitivities when formulating the QP

problem. In fact, either qpDUNES or ForcesPro require a complete re-factorization when part

or all the sensitivities are updated. In this section, we show that in CMoN-RTI, the sparse QP

problem can be solved via splitting methods with a complexity of O(N f ).

5.2.1 Splitting Methods

Operator splitting (OP) techniques can solve convex optimal control problems very fast with

a moderate solution accuracy. The most popular OP method is probably the alternating

direction method of multipliers (ADMM) (Boyd et al., 2011). In (O’Donoghue et al., 2013), a

tailored ADMM algorithm is developed for solving optimal control problems. This algorithm

breaks the original problem into two parts, a quadratic part which can be solved via on-line

optimization, and a set of non-convex part which can be solved in parallel or sometimes

analytically.

Consider the fully sparse QP problem (5.2). The partially condensed QP problem (5.16)

can be seen as a shrunken problem of (5.2). Move the inequality constraint into objective we

obtain

min
∆z

ψ(∆z) + IC(∆z) (5.22a)

s.t. ∆z ∈D (5.22b)

where the quadratic objective is

ψ(∆z) =
N
∑

k=0

1
2
∆z>k Hk∆zk + g>k ∆zk, (5.23)
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and

IC(∆z) =

¨

0, ∆z ∈ C

∞, otherwise,
(5.24)

is an indicator function over a closed convex set

C= {∆zk|Ck∆zk ≤ −ck, k = 0, . . . , N}. (5.25)

System dynamics are imposed in the set

D= {∆z|E0∆z0 = x̂0 − s0, Ek+1∆zk+1 = Dkzk + ak, k = 0, 1, . . . , N − 1}. (5.26)

Such a definition ensures the equivalence of problem (5.22) and (5.2), since the inequality

constraints are imposed in the objective function and will be fulfilled after optimization.

Splitting methods break problem (5.22) into two parts as

min
∆z,∆ẑ

ψ(∆z) + ID(∆z) + IC(∆ẑ) (5.27a)

s.t. ∆z=∆ẑ, (5.27b)

where∆ẑ is a duplicate of the original optimization variable∆z. This is the typical consensus

form of ADMM algorithms and the equivalence between problem (5.22) and (5.27) is shown

in (O’Donoghue et al., 2013; Boyd et al., 2011). The formulation (5.27) can be solved via a

standard ADMM algorithm, which is summarized in Algorithm 5.9.

Algorithm 5.9 ADMM for solving problem (5.27)

1: Initialize ∆ẑ0,ν0 for iteration i = 0
2: for i=0,1,. . . do
3: ∆zi+1 = argmin(ψ(∆z) + ID(∆z) + ρ

2 ‖∆z−∆ẑi − νi‖22)
4: ∆ẑi+1 = argmin(IC(∆ẑ) + ρ

2 ‖∆ẑ−∆zi+1 + νi‖22)
5: νi+1 = νi +∆ẑi+1 −∆zi+1

6: end for

In Algorithm 5.9, ρ > 0 is an algorithm parameter and ν is the Lagrangian multiplier for

the consensus constraint (5.27b). The second step in Algorithm 5.9 is separable across time,

hence we can replace it by

∆ẑ i+1
k = argmin(ICk

(∆ẑk) +
ρ

2
‖∆ẑk −∆z i+1

k + νi
k‖

2
2), k = 0,1, . . . , N − 1. (5.28)

This step also refers to proximal minimization. If C is a box and is separable across components,

then the minimum of (5.28) can be computed analytically by using saturation functions. If C
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is not a simple set, the proximal minimization can be solved via a general numerical method,

such as active-set and interior point method. The biggest advantage of ADMM methods is

that the proximal minimization can be performed in parallel on multiple processors. The

convergence of Algorithm 5.9 is shown in (O’Donoghue et al., 2013; Boyd et al., 2011).

5.2.2 CMoN-RTI using Partial Block Update

The most computationally expensive part of Algorithm 5.9 is the first step, which requires to

solve the QP problem (5.2) without inequality constraints, written as

min
∆z

N
∑

k=0

1
2
∆z>k Ĥk∆zk + ĝ>k ∆zk (5.29a)

s.t. E0∆z0 = x̂0 − s0, (5.29b)

Ek+1∆zk+1 = Dkzk + ak, k = 0,1, . . . , N − 1, (5.29c)

where Ĥk = Hk +ρInx+nu
, ĝk = gk −ρ(∆ẑk + νk). A compact form as (2.15) can be written

as

min
∆z

1
2
∆z>Ĥ∆z+ ĝ>∆z (5.30a)

s.t. b(zi) + B(zi)∆z= 0, (5.30b)

where Ĥ = blkdiag(Ĥ0, . . . , ĤN ), ĝ = [ ĝ>0 , . . . , ĝ>N ]
>. Problem (5.30) can be solved by solving

its KKT system, expressed as

�

Ĥ B>

B

��

∆z

λ

�

= −

�

ĝ

b

�

. (5.31)

(O’Donoghue et al., 2013) suggest to use sparse LDL> factorization to solve the linear system

(5.31). While this method is quite efficient, there is a major shortcoming when applying it in

NMPC or time-varying problems. In these cases, LDL> factorization has to be re-computed

at every sampling instant which significantly increases the computational effort. As a result,

splitting methods or ADMM are usually employed for linear MPC problems, where the KKT

system (5.31) is time-invariant and its factorization can be computed offline.

An alternative way is to eliminate the primal variable ∆z by

∆z= −Ĥ−1(B>λ+ ĝ), (5.32)
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which results to the most compact form, often called normal equations,

Yλ= β , (5.33)

where Y = BĤ−1B>,β = b − BĤ−1 ĝ. Due to block banded structure of Ĥ and B, Y is

symmetric block tri-diagonal. In the following, we show that in CMoN-RTI, Y can be efficiently

factorized using partial block-wise Cholesky factorization in the scenario of NMPC.

Calculating Y

Y has a symmetric block-banded structure (Domahidi et al., 2012):

Y =

















Y11 Y12

Y>12 Y22 Y23
...

. . . . . .

Y>N−2,N−1 YN−1,N−1 YN−1,N

Y>N−1,N YN ,N

















, (5.34)

where

Yk,k = Dk−1Ĥ−1
k−1D>k−1 + EkĤ−1

k E>k , (5.35)

Yk,k+1 = −EkĤ−1
k−1D>k . (5.36)

To compute Y , (Domahidi et al., 2012) suggest to use a rectangular factorization expressed

by

Ĥk = L̂k L̂>k , (5.37)

Vk L̂>k = Dk, (5.38)

Wk L̂>k = Ek, (5.39)

Yk,k = Vk−1V>k−1 +Wk−1W>
k−1, (5.40)

Yk,k+1 =WkV>k , (5.41)

where L̂k is the Cholesky factor of Ĥk and Vk, Wk can be solved by matrix forward substitution.

The Flops for computing (5.37) to (5.41) in two different scenarios is compared in Tabel

5.1: in an interior point method exploited by (Domahidi et al., 2012) and in the proposed

splitting method with partially updated sensitivities when employing CMoN-RTI.
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Table 5.1: Computational cost in Flops for computing (5.37) to (5.41) for all stages in
(5.29)

Equation (Domahidi et al., 2012) Proposed

(5.37) 2
3 N(nx + nu)3 0

(5.38) N(nx + nu)2nx N f (nx + nu)2nx
(5.39) N(nx + nu)2nx 0
(5.40) 2N(nx + nu)n2

x N f (nx + nu)n2
x

(5.41) 2N(nx + nu)n2
x 2N f (nx + nu)n2

x

The proposed method can perform the steps (5.37) and (5.39) completely offline. This is

because Ĥk is constant given a constant Hessian Hk and a constant splitting parameter ρ.

The Cholesky factor L̂k is a constant. In addition, Ek = [Inx
O] is a constant matrix, hence

(5.39) as well as the second part of (5.40) can also be computed offline. However, using the

original interior point method as in (Domahidi et al., 2012), Ĥk is time-varying or iteration

varying even if the Hessian Hk is a constant, since Ĥk contains the Lagrangian multipliers

associated with inequality constraints, which vary at every iteration. The splitting method

eliminates inequality constraints when computing the normal equation (5.33).

On the other hand, in CMoN-RTI the sensitivities Dk are partially updated for k =

0, 1, . . . , N−1. Hence only N f out N equations like (5.38) are needed to be solved. Specifically,

for sensitivities Dr , r > 0 not being updated, Yr+1,r+1 and Yr,r+1, i.e. the (r+1)th block column

of Y does not need to be re-computed. For D0 not being updated, Y11 does not change. As a

result, the computational cost for (5.38), (5.40) and (5.41) are considerably saved, especially

when N f � N .

Factorizing Y

The Cholesky factor of Y is

LY =

















L11

L21 L22

L32
...

...
. . .

LN ,N−1 LN

















, (5.42)
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where the blocks Li, j are computed by (Wang and Boyd, 2010)

Y11 = L11 L>11, (5.43)

Yi,i+1 = Li,i L
>
i+1,i , i = 1, . . . , N , (5.44)

Yi,i − Li,i−1 L>i,i−1 = Li,i L
>
i,i , i = 2, . . . , N . (5.45)

Note that LY is computed sequentially. First, L11 is the Cholesky factor of Y11. Second, L21 is

computed by matrix forward substitution. Finally, L22 is the Cholesky factor of Y22 − L21 L>21.

These steps are continuously performed up to i = N . Therefore, computational cost usually

cannot be saved even if part of the Y blocks are constants. However, as indicated in (Domahidi

et al., 2012), the computational cost for factorizing Y is only half of that for computing Y . By

employing the proposed method stated in the previous subsection, the overall computational

cost for solving the normal equation (5.33) can be significantly reduced.

Remarks

We have shown that how the KKT matrix from previous sampling instants can be re-used by

employing splitting methods and block factorization. The Flops needed to compute the KKT

matrix has been reduced as shown in Table 5.1. At this stage, we make some remarks on the

proposed scheme, comparing to the original interior point based algorithms.

1. Splitting methods usually require more iterations to achieve a given accuracy than

interior point methods. In our case, in order to have a time-invariant Hessian, the

algorithm parameter ρ is chosen constant. This may lead to a slow convergence rate

or even cause convergence problems.

2. Interior point methods can usually achieve a given accuracy using just a few iterations,

while the computation for each iteration is relatively expensive.

3. There are two kinds of ideas for solving the convex QP problem (5.2). One is represented

by interior point method which take fewer expensive iterations. The other is represented

by splitting methods which take more cheaper iterations. The proposed scheme employs

even cheaper computations at each sampling instant than the standard splitting methods

by exploiting the structure of the OCP and the partial sensitivity update schemes.



98 Partial Condensing and Matrix Factorization



6
MATMPC: a MATLAB-based Nonlinear MPC

package

After decades of development, many open source MPC software or packages are available

for simulation and experiment purposes. The most popular packages include MATLAB

Model Predictive Control Toolbox (Bemporad, Morari, and Ricker, 2010) and MPT3 (Herceg,

Kvasnica, Jones, and Morari, 2013). An excellent book by (Wang, 2009) gives comprehensive

coding instructions for MPC, which makes the implementation of MPC rather intuitive.

However, there is not much nonlinear MPC software that on the one hand, is easy to use and

debug, and on the other hand, is computationally efficient. The difficulty of upgrading MPC

implementations to NMPC ones rises considerably mainly due to the difficulty of efficient

linearization and the complexity of non-convex optimization. Among the available NMPC

software, ACADO (Houska et al., 2011) automatically generates optimized c codes for the RTI

scheme (Diehl et al., 2002) introduced in Chapter 2, using a user-friendly symbolic interface

in MATLAB and C++. All types of objectives and constraints are supported in ACADO. VIATOC

(Kalmari, Backman, and Visala, 2015) also generates c codes for box constrained problems

using gradient projection methods to solve NLPs on-line. In addition to the code generation

tools, other software exploit general NLP solvers to solve online optimization problems. For

example, CasADi (Andersson, 2013) is mainly a symbolic differentiation tool and embeds

many NLP and QP solvers such as IPOPT (Wächter and Biegler, 2006) and SNOPT (Gill et al.,
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2005). Forces Pro (Domahidi and Jerez, 2014) is freely available for academic users, which

employs CasADi for efficient derivative computations and generates state-of-the-art interior

point methods to solve multi-stage NLPs that are usually observed in NMPC.

The problems of aforementioned software are manifold:

1. The NMPC algorithms are automatically generated which can not be modified or

investigated.

2. It is difficult to debug software and algorithms without a professional knowledge in

computer programming.

3. The type of supported algorithms and functions are limited.

The reason for these problems is that, the available software aims at providing ready-to-use

interfaces for engineers who know little about mathematical algorithms. The task of users is

to tune model and software parameters to make algorithms work. There are few things that

an algorithm developer can do to improve or augment the software unless he/she participates

in the developing team.

Therefore, the author of this thesis believes that it is necessary to develop a NMPC package

that aims at helping algorithm developer. This package should be fully open-source and

commented at the level of algorithms. To this end, we have developed MATMPC, a NMPC

package completely based on MATLAB, which is probably the most frequently used coding

environment by control engineers. Comparing with the aforementioned software, MATMPC

has the following features.

• MATLAB codes are much easier for debugging and maintaining than C or C++ codes.

MATLAB provides a user-friendly environment for algorithmic coding. It is easy and

straightforward to announce new variables, to use matrix and vector operations and to

check type/dimensions. There is no need to worry about memory management and

pointers, which often cause problems in C/C++.

• Almost all numerical linear algebra routines can be found in MATLAB. Efficient numeri-

cal linear algebra are supported in MATLAB, e.g. matrix multiplication, concatenation

and factorization. The users can employ these mature routines or overwrite them with

their self-developed routines. In particular, sparse linear algebra routines are well

supported in MATLAB, which can significantly improve the efficiency of algorithms for

large-scale problems.

• MATLAB has C/C++ API that can improve the computational efficiency of algorithms.

For real-time applications, C codes can be hand coded or automatically generated from

MATLAB builtin M files. A knowledge of C/C++ programming is not necessary.
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MATMPC has two working modes: one works in pure MATLAB which aims at algorithm

developing and debugging, and the other employs mexFunction, which is coded by hand or

generated automatically from M files, which aims at computational efficiency for real-time

applications. MATMPC is freely available on https://github.com/chenyutao36/MATMPC.

6.1 MATLAB Mode

The MATLAB Mode works only in MATLAB environment, with all the routines built in MATLAB

available. The structure of MATMPC is illustrated in Figure 6.1.

Model Discretization Solver Preparation

Solving SubproblemGlobalizationOptimality Check

Figure 6.1: Structure of MATMPC.

Model

MATMPC takes a continuous-time dynamic model as default. The modelling language is based

on CasADi (Andersson, 2013). Almost all kinds of expressions are supported. As a result,

the objective function, the dynamic equation and the constraints are expressed by CasADi

functions, which will be called later when running NMPC algorithms. An code example of

the inverted pendulum 1.1 is shown.

1 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

2 % This f i l e con ta ins the model

3 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

4

5 %% Dimensions

6

7 nx=4; % No . of s t a t e s

8 nu=1; % No . of c o n t r o l s

9 ny=5; % No . of outputs

10 nyN=4; % No . of outputs at the termina l po int

11 np=0; % No . of model parameters

12 nc=2; % No . of c o n s t r a i n t s

13 ncN=1; % No . of c o n s t r a i n t s a t the termina l po int

14

15 %% V ar i ab l e s
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16

17 import casad i .∗
18

19 s t a t e s = SX . sym( ’ s t a t e s ’ , nx ,1 ) ;

20 c o n t r o l s = SX . sym( ’ c o n t r o l s ’ ,nu ,1 ) ;

21 params = SX . sym( ’ paras ’ ,np ,1 ) ;

22 r e f s = SX . sym( ’ r e f s ’ , ny ,1 ) ;

23 refN = SX . sym( ’ r e f s ’ ,nyN ,1 ) ;

24 Q = SX . sym( ’Q ’ , ny , ny ) ;

25 QN = SX . sym( ’QN ’ ,nyN , nyN) ;

26

27 %% Dynamics

28

29 M = 1;

30 m = 0 .1 ;

31 l = 0 .8 ;

32 g = 9.81;

33

34 p=s t a t e s (1) ;

35 the ta=s t a t e s (2) ;

36 v=s t a t e s (3) ;

37 omega=s t a t e s (4) ;

38 u=c o n t r o l s (1) ;

39

40 a=−m∗ l ∗ s i n ( the ta )∗omegâ 2+m∗g∗ cos ( the ta )∗ s i n ( the ta )+u ;

41 b=−m∗ l ∗ cos ( the ta )∗omegâ 2+u∗ cos ( the ta )+(M+m)∗g∗ s i n ( the ta ) ;

42 c=M+m−m∗( cos ( the ta ) )^2;

43

44 x_dot=[v ; omega ; a/c ; b/( l ∗c ) ] ;
45

46 f = Funct ion ( ’ f ’ , { s t a t e s , con t ro l s , params } , { x_dot } ,{ ’ s t a t e s ’ , ’ c o n t r o l s ’ , ’

params ’ } ,{ ’ xdot ’ }) ;

47

48 %% Obje c t i v e s and c o n s t r a i n t s

49

50 h = [p ; the ta ; v ; omega ; u ] ;
51

52 hN = h (1 :nyN) ;

53

54 h_fun=Funct ion ( ’ h_fun ’ , { s t a t e s , con t ro l s , params } , {h } ,{ ’ s t a t e s ’ , ’ c o n t r o l s ’ , ’

params ’ } ,{ ’ h ’ }) ;

55 hN_fun=Funct ion ( ’ hN_fun ’ , { s t a t e s , params } , {hN} ,{ ’ s t a t e s ’ , ’ params ’ } ,{ ’hN ’ }) ;

56

57 ineq=[p ; u ] ;
58 ineqN=p ;
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59 ineq_fun=Funct ion ( ’ ineq_fun ’ , { s t a t e s , con t ro l s , params } , { ineq } ,{ ’ s t a t e s ’ , ’

c o n t r o l s ’ , ’ params ’ } ,{ ’ ineq ’ }) ;

60 ineqN_fun=Funct ion ( ’ ineqN_fun ’ , { s t a t e s , params } , { ineqN } ,{ ’ s t a t e s ’ , ’ params ’ } ,{ ’

ineqN ’ }) ;

61

62 l b_ ineq=SX . sym( ’ lb_ ineq ’ , l ength ( ineq ) ,1) ;

63 ub_ineq=SX . sym( ’ ub_ineq ’ , l ength ( ineq ) ,1) ;

64 lbN_ineq=SX . sym( ’ lbN_ineq ’ , l ength ( ineqN ) ,1) ;

65 ubN_ineq=SX . sym( ’ ubN_ineq ’ , l ength ( ineqN ) ,1) ;

Listing 6.1: MATLAB code example for the model of inverted pendulum

Discretization

The continuous-time optimization problem is discretized using direct multiple shooting (See

Chapter 2) and direct collocation (Von Stryk, 1993). This involves a for-loop where functions

generated by the model are repeatedly called. Take multiple shooting as an example. An

numerical integrator has to be constructed with the ability of sensitivity computation. Users

can employ CasADi for symbolically building such an integrator and generate a function for

later use. An example of an explicit 4th order Runge-Kutta integrator is shown below.

1 s = 1; % No . of i n t e g r a t i o n s t ep s per shoot ing i n t e r v a l

2 DT = Ts/ s ; % Length of one i n t e g r a t i o n s tep

3 X=s t a t e s ;

4 U=c o n t r o l s ;

5 P=params ;

6 z = [ s t a t e s ; c o n t r o l s ] ;
7

8 % e x p l i c i t 4−th order Runge−Kutta i n t e g r a t o r

9 f o r j=1: s

10 k1 = f (X , U, P) ;

11 k2 = f (X + DT/2 ∗ k1 , U, P) ;

12 k3 = f (X + DT/2 ∗ k2 , U, P) ;

13 k4 = f (X + DT ∗ k3 , U, P) ;

14 X=X+DT/6∗(k1 +2∗k2 +2∗k3 +k4) ;

15 end

16 F = Funct ion ( ’ F ’ , {z , params } , {X} , { ’ z ’ , ’ params ’ } , { ’ x f ’ }) ; % i n t e g r a t i o n

r e s u l t s

17 D= F . j acob ian ( ’ z ’ , ’ x f ’ ) ; % s e n s i t i v i t y w. r . t . i n i t i a l s t a t e s and c o n t r o l s

Listing 6.2: MATLAB code example for an explicit 4th order Runge-Kutta integrator
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Solver Preparation

Once the ingredients for a discretized NLP problem (or QP problem) are ready, one may need

to prepare them for a specific solver. For a SQP method, any QP solvers can be employed, e.g.

qpOASES (Ferreau et al., 2014), Ipopt (Wirsching et al., 2006) and Forces Pro (Domahidi

and Jerez, 2014). However, they require different formulation of QP problems. For example,

qpOASES solves a condensed QP problem while Forces Pro and qpDUNES (Frasch et al.,

2015) directly solve a multi-stage one. Ipopt requires all inputs as sparse variables. Therefore,

solver preparations are implemented in MATMPC. For condensing, full, partial (described

in Chapter 5) and null-space (Diehl et al., 2010) condensing algorithms are implemented.

Matrix multiplication and factorization are naturally supported in MATLAB hence these

implementations are intuitive.

Solving Subproblem

To solve a discretized NLP problem like (2.10), an iterative algorithm is usually desired. In

case SQP is used, QP subproblems can be solved by aforementioned solvers. If interior point

method is used, users can either employ existing interior point solver or implement their own

algorithms. Linear systems can be efficiently solved in MATLAB. First order methods can be

efficiently implemented and can be run in parallel using MATLAB’s parallel toolbox.

Globalization

Globalization techniques are desired to find local minimum from arbitrarily initial point. In

MATMPC, efficient line search algorithms using merit functions (Nocedal and Wright, 2006)

and filters (Wirsching et al., 2006) are implemented. These algorithms require function

evaluations and derivative computations provided by CasADi and can be easily implemented

in MATLAB. Users can also employ their own globalization algorithms written in MATLAB.

Optimality Check

The constraint residuals and the first order optimality condition (KKT value) are evaluated at

the end of each iteration. In particular, KKT value, which is the first order derivative of the

Lagrangian of the NLP problem, can be efficiently computed by backward mode of automatic

differentiation provided by CasADi toolbox.
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6.2 MEX Mode

A MATLAB Executable (often called MEX) is a way to call customized C or Fortran codes

directly from MATLAB as if it is a MATLAB built-in function. Computational efficiency can be

significantly improved by re-writing bottleneck computations as MEX. There are two ways of

generating these MEX functions:

1. Writing customized MEX using the MATLAB gateway function

2. Automatically generating MEX from M files using MATLAB Coder

MEX Function

The gateway routine mexFunction is an interface of C code with MATLAB inputs and out-

puts, where a computational routine performs the computations users require. Replacing

computationally extensive steps (e.g. for-loop) in M files by an equivalent MEX function is

recommended to accelerate the computation.

The biggest advantage of using MEX is that MATLAB offers a C Matrix Library API that

deals with matrix construction, deletion and access. This is extremely useful for developing

optimization algorithms that employ considerable vector and matrix operations. In addition,

struct and cell arrays are also supported by MEX.

Numerical linear algebra libraries like Lapack and Blas (Anderson, Bai, Bischof, Blackford,

Demmel, Dongarra, Du Croz, Greenbaum, Hammarling, McKenney, et al., 1999) are included

in MEX libraries and are employed by MATMPC when working in MEX mode. Other efficient

implementation of linear algebra, e.g. openblas (Xianyi, Qian, and Saar, 2016), Intel MKL

(Wang, Zhang, Shen, Zhang, Lu, Wu, and Wang, 2014) can also be used as dynamic libraries.

An example of coding Algorithm 5.1 is shown below, where the inputs are cell arrays.

1 . . .

2

3 /∗ compute G ∗/
4 f o r ( i=0; i<N; i++){
5 ce l l _e l ement = mxGetCell ( prhs [1 ] , i ) ;

6 c e l l = mxGetPr ( ce l l _e l ement ) ; /∗ Bi ∗/
7 B l o c k _ F i l l ( i , i , c e l l , nx , nu ,G,N) ;

8

9 f o r ( j=i+1; j<N; j++){
10 ce l l _e l ement = mxGetCell ( prhs [0 ] , j ) ;

11 c e l l = mxGetPr ( ce l l _e l ement ) ; /∗ Ai ∗/
12 Block_Access ( j −1, i , Gi , nx , nu ,G,N) ;

13 dgemm( nTrans , nTrans , &nx , &nu , &nx , &one_d , c e l l , &nx , Gi , &nx , &

zero , Ci , &nx) ;
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14 B l o c k _ F i l l ( j , i , Ci , nx , nu ,G,N) ;

15 }
16 }
17

18 /∗ compute L ∗/
19 f o r ( i=0; i<N; i++){
20 ce l l _e l ement = mxGetCell ( prhs [0 ] , i ) ;

21 c e l l=mxGetPr ( ce l l _e l ement ) ; /∗ Ai ∗/
22 memcpy(&L [ i ∗nx ] ,& a i [0 ] , nx∗ s i z e o f ( double ) ) ;

23 memcpy(& a i [0] ,&a [ i ∗nx ] , nx∗ s i z e o f ( double ) ) ;

24 memcpy(& L i [0] ,&L [ i ∗nx ] , nx∗ s i z e o f ( double ) ) ;

25 dgemv( nTrans ,&nx ,&nx ,&one_d , c e l l ,&nx , Li ,& one_i ,&one_d , ai ,& one_i ) ;

26 }
27 memcpy(&L [N∗nx ] ,& a i [0 ] , nx∗ s i z e o f ( double ) ) ;

28

29 . . .

Listing 6.3: C code for condensing in MEX mode

Automatic Code Generation

MATLAB Coder generates readable and portable C and C++ code from MATLAB code. It

supports most of the MATLAB language and a wide range of toolboxes. One can integrate the

generated code into his/her projects as source code, static libraries, or dynamic libraries. One

can also use the generated code within the MATLAB environment to accelerate computationally

intensive portions of his/her MATLAB code. Therefore, algorithm developers can relieve

themselves from coding or programming, but instead focusing on mathematics.

CasADi toolbox can also automatically generate C codes for its functions. MATMPC can

call CasADi functions directly when working in MATLAB mode or their C counterparts when

in MEX mode. Significant improvement can be observed by running C codes that implement

automatic differentiation. These C codes can be compiled into MEX functions or dynamic

libraries, which can be employed by external C applications.

6.3 Applications

MATMPC has been used for implementing and examining the proposed algorithms in this

thesis. In addition, MATMPC has been used for simulations of many applications, including

the benchmark problem inverted pendulum 1.1 and the chain of masses connected by linear

1.6 and nonlinear 4.33 springs. Applications for dynamic driving simulators are also presented

(Details are presented in Chapter 7).



7
Applications to Driving Simulator and Motion

Cueing

In this Chapter, we focus on non-trivial applications in automotive industry, based on fast

NMPC algorithms introduced and proposed in previous chapters. The first application is to

control a nine degree of freedom (DOF) dynamic driving simulator described in (Bruschetta

et al., 2017c). The goal is to achieve real-time implementations of a NMPC-based motion

cueing algorithm (MCA), for the tracking of driver perceived sensations. Implementations

based on MATMPC is able to achieve a 100Hz control frequency. The second application is

to implement a Multi-Sensory Cueing Algorithm (MSCA), proposed for a high performance

driving simulator with active seat (Bruschetta et al., 2017b). The control frequency can be

up to 200Hz.

7.1 Nine DOF Driving Simulator

The use of dynamic driving simulator has been increasingly popular in the automotive

community, both in the research and industrial fields. Simulator platforms with different

mechanical structures have been designed to target particular applications and markets. Such

platforms are responsible for reproducing the driver sensations faithfully within their limited

working space, while the mechanical constraints have to be satisfied to avoid hazardous
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situations (Baseggio, Beghi, Bruschetta, Maran, and Minen, 2011; Beghi, Bruschetta, and

Maran, 2012). The strategy for the motion control of platforms are hence called moting

cueing algorithms (MCA).

MCAs based on linear MPC techniques are well developed for the control of a linear

actuated six DOF platforms (Baseggio et al., 2011; Beghi et al., 2012). Human vestibular

models and platform constraints are explicitly taken into account, and optimal control

techniques are employed so that the tuning of the MCA is intuitive. Comparing with classical

schemes based on washout filters, MPC-based MCAs allow for a better exploitation of the

working space and a straightforward implementation of tilt coordination.

However, nonlinearities are introduced by using more complex actuators and exploiting

more DOFs. Therefore, NMPC-based MCAs are good candidates for providing faithful driver

perceptions while considering nonlinear dynamics and constraints. A nine DOF driving

simulator platform DiM 150 has been described in (Bruschetta et al., 2017c). The mechanical

structure of the simulator consists of a hexapod mounted on a tripod, which moves on a flat,

stiff surface sliding on airpads. Such a structure allows for both low and high frequency of

movements. The tripod is able to produce most of the low frequency longitudinal, lateral and

yaw movements within a relatively large working space, while the hexapod provides high

frequency longitudinal, lateral and yaw movements as well as pitch and roll rotations. See

Figure 7.1 for a sketch of the device and Figure 7.2 for the real picture.

The complete dynamic model of DiM 150 consists of a human vestibular model that is

characterized by a state-space realization (Beghi et al., 2013; Maran, 2013) and a reference

transition model.

Human Vestibular Model

The human vestibular system is located in the inner ear and is composed by the semicircular

canals and the otolith organs. The former can sense the angular rotations and the latter linear

motion. We take the transfer functions given in (Baseggio et al., 2011) for semicircular and

otolith as

Wscc =
ω̂(s)
α(s)

= 5.73
80s2

(1+ 80s)(1+ 5.73s)
, (7.1)

Woth =
f̂ (s)
f (s)

= 0.4
1+ 10s

(1+ 5s)(1+ 0.016s)
, (7.2)

where ω̂(s) is the sensed angular velocity, α(s) the acceleration stimulus, f̂ (s) the sensed

force stimulus and f (s) the actual force stimulus. These transfer functions are converted to

state-space realizations and the human vestibular model can be represented by ΣV (Â, B̂, Ĉ , D̂),
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Figure 7.1: Top view sketch of the nine DOF driving simulator DiM 150

Figure 7.2: Real photo for the nine DOF driving simulator DiM 150
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where

Â= blkdiag(ÂS , ÂO), (7.3)

B̂ = blkdiag(B̂S , B̂O), (7.4)

Ĉ = blkdiag(ĈS , ĈO), (7.5)

D̂ = blkdiag(D̂S , D̂O), (7.6)

are state space matrices consisting of semicircular and otolith systems, respectively. The input

and output of ΣV are

uV = [ax , ay , az , ψ̇, θ̇ , φ̇]>, (7.7)

yV = [âx , ây , âz , ˆ̇ψ, ˆ̇θ , ˆ̇φ]>, (7.8)

where ax , ay , az are the actual longitudinal, lateral,and vertical accelerations and ψ,θ ,φ

are roll, pitch and yaw angles. The symbol ·̂ represents the corresponding perceived signals.

Since otoliths are not capable to discriminate between gravitational and longitudinal forces

(Baseggio et al., 2011), the platform can tilt up to a certain angle to provide sustained

accelerations. This strategy is called tilt coordination.

Reference Transition Model

There are four reference frames for the simulator platform:

1. The ground or the world frame {XG , YG , ZG} that is fixed and static. Its origin is defined

as O.

2. The tripod frame {XT , YT , ZT } moves with its bottom disk on the X − Y plane on the

ground. The origin OT is at the center of the bottom disk.

3. The hexapod frame {XH , YH , ZH} moves with its top disk on the top of the tripod. The

origin OH is at the center of the top disk.

4. The drivers frame {XD, YD, ZD} has a origin OD located at the brain of the driver where

the vestibular system lies in. This frame moves and rotates along with the hexapod

frame.

Define the vector pT
H as the translation vector between OT and OH , in the tripod coordinates

(the reference frame is specified by the superscript). It follows that

pG
H = pG

T + RT pT
H , (7.9)
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where RT is the 3× 3 rotation matrix for the tripod using the classical z − y − x convention.

As a result, by taking twice differentiation of (7.9), the acceleration relationship is given by

p̈G
H = p̈G

T + RT p̈T
H + 2ωT × RT ṗT

H +ωT ×ωT × RT pT
H + ω̇T × RT pT

H , (7.10)

where ωT is the instantaneous rotational velocity of the tripod and Ṙ =ω×R. The symbol ×
denotes cross product. Since the tripod only has rotation around the vertical axis, RT = Rz(φT ).

Similarly, we have

p̈G
D = p̈G

H + RT,H p̈H
D + 2ωT,H × RT,H ṗH

D +ωT,H ×ωT,H × RT,H pH
D + ω̇T,H × RT,H pH

D , (7.11)

where pH
D is a constant vector since the driver always moves along with the hexapod. The

rotation matrix RT,H is a compound rotation consisting of the tripod yaw φT and the rotations

of the hexapod. Hence,

RT,H = RT RH = Rz(φT )Rz(φH)R y(θH)Rx(ψH). (7.12)

Equation 7.11 can be simplified to

p̈G
H = p̈G

T +ωT,H ×ωT,H × RT,H pH
D + ω̇T,H × RT,H pH

D , (7.13)

where ωT,H =ωT +ωH . However, the acceleration and angular velocity perception has to be

measured at the driver’s brain in the drivers frame. This can be obtained by a reverse rotation

given by

p̈D
D = R−1

T,H p̈G
D , (7.14)

where R−1
T,H = R>T,H .

Simplified Six DOF Model

In the original paper (Bruschetta et al., 2017c), the acceleration pG
H and pG

T are distinguished

by imposing different tuning weights on them for solving the on-line optimal control problem.

This strategy is not intuitive and does not reflect the fact that they are just low and high

frequency signals. Therefore, we introduce a six DOF model where these two signals are

separated by a low-pass and a high-pass filter, denoted as fl p(·) and fhp(·) respectively.

Define a universal acceleration vector p̈ = [p̈x , p̈y , p̈z]>. It follows that

p̈G
Hx ,y
= fhp(p̈x ,y), (7.15)

p̈G
Tx ,y
= fl p(p̈x ,y). (7.16)
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Note that the vertical acceleration is provided by the hexapod hence p̈z = pG
Hz

. This strategy

is also applied to the separation of angular velocity of yaw ration between the tripod and the

hexapod. We have

φ̇H = fhp(φ̇), (7.17)

φ̇T = fl p(φ̇). (7.18)

Using relationships (7.9) and (7.13) may still result to a complex dynamic model that

is difficult for solver to search for an optimal solution. Several simplifications are thus

introduced.

1. The angular velocity ω and the change rate of the Euler angles, e.g. φ̇ is usually not

equivalent. However, when the Euler angles are sufficiently small, we have (Ardakani

and Bridges, 2010)

ωH = [φ̇H , θ̇H , ψ̇H]
>, (7.19)

ωT = φ̇T . (7.20)

2. The centripetal termωT×ωT×RT pT
H in (7.9) is neglected. This is because the projection

of RT pT
H on the ground plane is sufficiently small given a small displacement pT

H . The

same criterion applies in (7.13).

3. The tangential acceleration ω̇T ×RT pT
H in (7.9) is neglected. This is because the tripod

usually has a low frequency movement and its angular acceleration is sufficiently small.

The tangential acceleration ω̇T,H × RT,H pH
D is neglected by introducing a virtual sensor

in the driver’s brain hence pH
D is 0 (Bruschetta et al., 2017c).

Finally, we obtain a complete dynamic model for the dynamic driving simulator with a

state space

xdim = [x
>
V , pG>

H , ṗG>
H , pG>

T , ṗG>
T , E>H ,ω>H , E>T ,ω>T , s>f ]

>, (7.21)

where xV is the state vector of the vestibular system, EH , ET are Euler angles of the hexapod

and the tripod. The term s f is the state vector of the high-pass and the low-pass filters. The

dimension of xdim is 30+ 6ns where ns is the order of the filters. The input and output of the

model are given by

udim = [p̈
>, ω̇>]> ∈ R6, (7.22)

ydim = [y
>
V , pT>

H , ṗT>
H , pG>

T , ṗG>
T , E>H ,ω>H , E>T ,ω>T , u>dim]

> ∈ R30. (7.23)



7.1 Nine DOF Driving Simulator 113

Note that the input vector of the vestibular system is given by

uV = [R
>
T,H(p̈

D
D + g),ω>T,H]

>, (7.24)

where g is the gravitational acceleration and is used for tilt coordination.

Actuator Constraints

Actuators for the hexapod and the tripod have to satisfy their length limits. However, due

to the interaction among each leg, such constraints are not trivial. In (Bruschetta et al.,

2017c), nonlinear constraints are presented for hexapod and tripod respectively. In Figure

7.3, the mechanical structure of the tripod and the hexapod is shown. Let Ai , Bi , C j , Dj , i =

1, . . . , 6, j = 1, . . . , 3 be the coordinates of the actuator joints positions. Define QH,i the leg

vector from Bi to Ai and QT, j the leg vector from C j to Dj , we have

QH,i = RHAi + pT
H − Bi , (7.25)

QT, j = RT C j + pG
T − Dj , (7.26)

and the length of the actuators computed by qH,i = ‖QH,i‖2, qT, j = ‖QT, j‖2 should satisfy the

length limits. Therefore, the nonlinear constraints can be formulated as

q(xdim) = [qH,i , qT, j]
> ∈ R9. (7.27)

Figure 7.3: Mechanical structure of the DiM platform. Ai , Bi , C j , Dj are the actuator joint
positions; i = 1, . . . , 6 indicate the hexapod actuators, and j = 1, . . . , 3 indicate the tripod
ones.
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NMPC Formulation

The optimal control problem is formulated as

min
xdim(t),udim(t)

∫ T

0

‖ydim(t)− yre f (t)‖2W dt + ‖ydim(T )− yre f (T )‖2WT
(7.28)

s.t. xdim(0) = x̂0, (7.29)

ẋdim(t) = fdim(xdim(t), udim(t)), (7.30)

q ≤ q(xdim(t))≤ q̄, (7.31)

x ≤ xdim(t)≤ x̄ , (7.32)

u≤ udim(t)≤ ū (7.33)

where q, q̄ are lower and upper bounds for q, respectively and x̂0 is the state measurement or

estimation at the current time t = 0. The lower and upper bounds for state variables can be

found in (Bruschetta et al., 2017c).

The control frequency of the DiM application should be at least 100Hz, hence an explicit

4th order RK integrator with integration length t I = 0.01s is employed. The prediction

horizon is chosen to be T = 0.3s. The cut-off frequency of the low-pass and high-pass filters

is fc = 2Hz, and the order for the filters is one. Simulation results show that such choices are

sufficient for a successful separation of the signals, while higher order filters would increase

the dimension of the state space hence make the optimal control problem more difficult to

solve.

Simulation Results

The reference for the perceived signals are generated as described in (Bruschetta et al.,

2017c). Indeed, the reference generation for MCA is not trivial and is important for the

success of MCA. We omit this part since it is beyond the purpose of this thesis. In Figure

7.4, the tracking performance for perceived accelerations and angular velocities are shown.

The most important three references, i.e. longitudinal, lateral accelerations and yaw angular

velocities, are almost perfectly tracked, which leads to a faithful reproduce of the real driving

sensation. At around t = 5, 21s, strong longitudinal accelerations are required. The NMPC is

able to optimally exploit tilt coordination to provide such accelerations, as can be seen in the

subplot for the pitch angle velocity.

Figure 7.5 shows the displacements of the hexapod and the tripod in different DOFs, re-

spectively. The motion of these two devices are clearly separated, i.e. the tripod is responsible

to produce sustained and relatively large signals while the hexapod is responsible to produce
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small but high frequency ones. It is clear that at around t = 5,21s, the hexapod is helping

the tripod to produce sustained longitudinal accelerations by pitch tilt coordination.

Figures 7.6 and 7.7 show the actuator displacements for the hexapod and the tripod,

respectively. During 50s of simulation, the actuators of the tripod do not stroke and the

ones of the hexapod stroke at around t = 43,46s. This causes less accurate tracking of

the perceived vertical acceleration as can be seen in Figure 7.4. However, NMPC is able to

optimally produce the control movements while satisfying the complex actuator constraints.

The implementation is based on the MATMPC package described in Chapter 6. The

real-time iterations scheme (Diehl et al., 2002) is employed using full condensing and the

active-set solver qpOASES (Ferreau et al., 2014) with warm-start. All time critical steps are

coded using MATLAB C language API, and compiled to be mexFunctions. The computational

time for each sampling instant is around 7ms on a PC with Intel core i7-4790 running

at 3.60GHz, Windows 10 platform, which satisfies the real-time requirement. However,

when the actuator constraints are active, the computational time may go far beyond the

real-time limit. Due to the nonlinearities in the constraints, neither block condensing plus

qpDUNES (Kouzoupis et al., 2015b) 1 nor first order methods have potential to improve

the computational efficiency. Future study may focus on building a map from the nonlinear

actuator constraints to simple box bounds for state and control variables. Certainly there will

be a trade-off between working space exploitation and the on-line computational efficiency.

7.1.1 Simulation with CMoN-RTI schemes

Here, an early stage comparison among three different RTI schemes is made, including the

standard RTI (Diehl et al., 2002), LPC-RTI (Algorithm 5.8) and FTB-RTI (Algorithm 3.2).

In order to increase the nonlinearity and complexity, a big yaw angle rotation reference is

given to the DiM system. At every sampling instant, LPC-RTI scheme updates every one

among three sensitivities within the prediction window and FTB-RTI scheme updates 20% of

sensitivities with the biggest CMoN values. The sampling frequency is 200Hz.

In Figure 7.8, the outputs of the DiM system when employing the three schemes are

shown. For the purpose of comparison, the reference signal is not presented. It can be seen

that the yaw angle reach up to about 30 degree and has a change range up to 60 degree.

However, LPC- and FTB-RTI can both grant acceptable control performance. The accelerations

and angular velocities are well tracked, despite that LPC-RTI has a few tracking errors while

compared to the standard RTI. For LPC-RTI, the deviation on displacements of the tripod is

more obvious, while FTB-RTI has almost the same output to that of the standard RTI.

1Nonlinear constraints result in polytopic constraints in QP subproblems, which is not supported yet by
qpDUNES



116 Applications to Driving Simulator and Motion Cueing

These results demonstrate that the proposed schemes in the thesis can not only be applied

to toy examples such as the inverted pendulum (1.1) and the chain of masses (1.6), but

also to real world systems like the DiM driving simulator. The high nonlinearities that are

introduced by the big yaw angle rotations are well captured by updating only a small portion

of the sensitivities.

Future research will be focused on implementations of the such models and algorithms

via MATMPC, especially in MEX mode for real-time simulations.
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Figure 7.4: Tracking performance for perceived accelerations and angular velocities.
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Figure 7.5: Displacements of the hexapod and the tripod in different DOFs, respectively.
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Figure 7.6: Actuator displacements for the hexapod with upper and lower bounds.
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Figure 7.8: Comparison of outputs from the standard RTI, LPC-RTI and FTB-RTI schemes
when applied to big yaw angle rotations. The top three figures are the longitudinal, lateral
displacements and yaw angle of the tripod. The bottom three figures are longitudinal, lateral
accelerations and yaw angular velocities of the tripod.
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7.2 Multi-Sensory Cueing with Active Seat

The contents of this subsection are based on the paper (Bruschetta et al., 2017b). Due to

physical-mechanical limitations, dynamic driving simulators are typically used to reproduce

transient phenomena. The absence of the so-called "sustained accelerations" is one of the

main factors that contributes to increase the conflict between real and virtual environment,

which typically produces sickness in non-trained drivers. An interesting add-on that is capable

of providing the driver with sustained accelerations is the Active Seat (AS) with integrated

Active Belts (AB). Although the application in static simulators is almost straightforward,

its usage in dynamic ones requires a specific algorithm, capable of managing, on-line, the

interaction between platform acceleration and AS.

In the framework of Model Predictive Control (MPC), a Multi-Sensory Cueing Algorithm

(MSCA) is proposed in (Bruschetta et al., 2017b) that computes coordinated references for

the platform and for the AS/AB systems. A dynamic model of a seated human body is used to

relate forces and contact pressures acting on the driver, then coupling it with the vestibular

model and the platform motion. A scheme of the procedure is (Figure 7.9)

1. the vehicle translational accelerations and rotational velocities {a, v} are computed by

using a dynamical simulation engine;

2. signals {a, v} are then pre-processed (according to given application/performance

objectives);

3. the vestibular/pressure model is used to compute the reference for the controller ;

4. the platform displacements and the AS/AB pressures/tensions are computed by means

of an NMPC controller, and then given as reference inputs to the motion controller.
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Figure 7.9: NMPC Scheme for MSCA

The advantages of such approach are manifold:

1. the platform motion, the AS and the AB are perfectly coordinated thanks to a coupled

model;

2. the usage of an optimization based controller allows to have an haptic stimulus that is

as closer as possible to the real one, improving the overall realism;

3. the sickness could be reduced even for untrained simulators’ drivers, extending the

class of potential simulator user;

4. the presence of a unique model makes the tuning procedure easier: the AS/SB system

does not require to be re-tuned every time the motion cueing tuning is modified.

As the crucial factor of MSCA, the AS is a pneumatic system that consists of eight air blad-

ders in specific locations which are inflated with air and controlled by means of proportional

valves (see Figure 7.10). The AB are, more classically, five-point belts tensioned by means of

electric motor.
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(a) (b)

Figure 7.10: Active seat and active belts system

The working principle is quite intuitive: bladders 2 and 5 provide the pressure for the

trunk of driver’s body, 1 and 6 to the legs along the lateral direction, 3 and 4 to the back

for positive longitudinal acceleration and, finally, 7 and 8 to the glutes along the vertical

direction. The bladders are designed to have a distributed contact area and placed to act

on the body similarly to what happens in reality. Proportional valves are used to have a

progressive and continuous variation of pressure, which can be varied in the range [0-1.5]

bar.

Model

The lateral dynamic of the body is characterized by means of a mass-spring-damper model,

represented by the following differential equation:

md̈y + c(dy)ḋy + k(dy)dy = may (7.34)

where dy , ḋy and d̈y represent respectively the position, velocity and acceleration of the center

of mass of the trunk along the lateral direction; m is the driver mass which is subject to lateral

acceleration; c(dy) is a nonlinear viscous damping coefficient; k(dy) is a nonlinear stiffness;

may is the external force that acts on the human body, caused by the lateral acceleration.

The parameters are determined in the sequel. Let us define M the mass of the driver trunk,

with arms and hands, which is assumed to be about the 67% of total body weight. The mass

subject to the lateral acceleration is m = 4/3M (Bruschetta et al., 2017b). The other two
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parameters k(dy) and c(dy) are chosen as polynomial functions of the form

k(dy) = kpdp
y + k0, (7.35)

c(dy) = cpdp
y + c0 (7.36)

where k0 and c0 express the stiffness and the damping of the free trunk, p regulates the

softness of the seat and kp and cp are directly related to the free space between trunk and

seat bends. As an example a possible function for k(dy) is reported in Figure 7.11: driver

is free to move in a range of [-0.02 0.02]m, whereas the seat is providing almost 500N at

0.06m.
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Figure 7.11: Spring function k(dy).

In addition, a dynamic friction model is used. The model is based on the average behaviour

of the bristles, which is denoted here by zm, and modelled as

żm = v −
|v|

h(v)
zm, (7.37)

where v is the relative velocity between the two surfaces. The friction force generated from

the bending of the bristles is described as

F f = σ0z +σ1żm. (7.38)

The dynamic friction model is characterized by the function h and the parameters σ0, σ1. The

function h(v) is positive and depends on many factors such as material properties, lubrication,
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temperature. A common parameterization of h that describes the Stribeck effect is

h(v) = Fd + (Fs − Fd)e
(v/vs)2 , (7.39)

where Fd is the dynamic friction level, Fs is the level of the static friction force and vs is the

Stribeck velocity.

To move the human body, the external force must overtake the static friction force Fs. We

suppose an inclined backrest of angle α with respect to the vertical axis. The normal force

FN is then:

FN = max cos(α) +mg sin(α) (7.40)

where ax is the longitudinal acceleration. The dynamic friction force is

Fd = µd FN . (7.41)

where FN is the same given by (7.40).

The lateral model is completed by taking into account the tilt coordination. As the roll

angle introduces a lateral acceleration perception, the pressure acting on driver is influenced

by the seat inclination angle. A term is thus added to the external force acting on the driver,

i.e.

Ft il t = mg sin(φ),

which, using a small-angle linearization, becomes

Ft il t = mgφ. (7.42)

Finally, the nonlinear system for lateral accelerations can be written as:























d̈y = − c(dy )
m ḋy −

k(dy )
m dy −

F f (x f )
m + ay + gφ

ẋ f = ḋy −
|ḋy |

h(ḋy ,ax )
x f

yp,y =
(k(dy )−k0)

A dy +
(c(dy )−c0)

A ḋy + ūp,y

(7.43)

where φ is the roll angle and F f is taken from (7.38) where zm = x f .

Similarly to the lateral system, longitudinal model is represented by the following spring/-

damper model






d̈x = − cx
m ḋx −

kx
m dx + ax + gθ

yp,x = kx
A dx + ūp,x

(7.44)
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where dx is, as before, the longitudinal trunk displacement, θ is the pitch angle and yp,x the

longitudinal pressure, which is the sum of the pressure induced by platform motion kx
A dx and

the pressure exerted by the AS/AB system on the driver ūp,x . In particular positive values are

used to activate the AS while negative values to tension the belts.

Incorporating the vestibular model into the AS/AB model, the state equation of the overall

NMPC model results to be






































d̈y = − c(dy )
m ḋy −

k(dy )
m dy −

F f (x f )
m + ay + gφ

ẋ f = ḋy −
|ḋy |

h(ḋy ,ax )
dy

d̈x = − c
m ḋx −

k
m dx + ax + gθ

ẋV = AV xV + BV uV

(7.45)

and the input and output vectors are, respectively,

u=
�

ūp,y ūp,x uT
V

�T ∈ R8 (7.46)

y=
�

yp,y yp,x yT
V

�T ∈ R20.

NMPC Implementation

In order to satisfy the hard real-time constraint (200Hz sampling frequency or 5ms sample

time), the RTI scheme (Diehl et al., 2002) is used. As a result, the following NLP problem is

solved on-line at every sampling instant after multiple shooting discretization.

min
x,u

N−1
∑

k=0

||yk − ỹk||2W + ||x
N − x̃N ||2WN

s.t. xk+1 = Ξ(xk,uk)

x ≤ xk ≤ x̄ (7.47)

u≤ uk ≤ ū
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where ỹ, ũ are the reference and Ξ represents the integration of nonlinear dynamics described

in (7.45). The corresponding QP problem reads

min
∆x,∆u

1
2

�

∆x

∆u

�T

H

�

∆x

∆u

�

+ gT

�

∆x

∆u

�

s.t. ∆xk+1 = Ak∆xk + Bk∆uk + ck

x − xk ≤∆xk ≤ x̄ − xk (7.48)

u− uk ≤∆uk ≤ ū− uk

where ∆x = x−xk,∆u = u−uk. The time-varying matrix H is the Hessian of the Lagrangian

of (7.47) and is approximated using Gauss-Newton method here. Matrices Ak, Bk are the

linearizations of system dynamics over the prediction horizon. The solving procedure of the

(7.48) is challenging either in a sparse form (with (N +1)nx +Nnu decision variables) or in a

condensed form (with Nnu decision variables). To further accelerate the on-line computation,

the adjoint sensitivity strategy (Kirches et al., 2012) is used to exploit fixed Ak, Bk computed

off-line. The dynamic model is thus slightly re-parameterized as described in Chapter 5.1.3.

Specifically, the outputs yp,x , yp,y are treated as differential states hence the output y is

linearly dependent on all differential states and control variables. As a result, the Hessian

H is time-invariant. Problem (2.15) can then be solved using Alternating Direction Method

of Multipliers (ADMM) for optimal control problems (O’Donoghue et al., 2013), exploiting

the matrix factorization cached off-line. Since the constraints are never active due to careful

tuning of the parameters, the hard real-time requirement is satisfied by running simulations

using MATMPC on a PC with Intel core i7 3.60Ghz.

Simulation Results

The MSCA is evaluated in the first part of the Calabogie MotorSports Track for the longitudinal

dynamics, and in a double lane change maneuver for the lateral behaviour. In both cases

a comparison between the compact DiM 150 and the greater DiM 700 is proposed (Figure

7.12). As the simulator size increases, the motion system can reproduce higher acceleration

values and the AS/AB has to adapt in real time to the undergoing movement of the platform.

Model parameters are given in (Bruschetta et al., 2017b).

In Figure 7.13 and 7.14 the perceived longitudinal acceleration and the displacement in

the two simulators are reported. As expected in the DiM 700 a greater acceleration peak is

achieved. In Figure 7.15 and 7.16 the excellent tracking performance of AS/AB are shown,

together with the pressure induced by the platform and the one added by the AS/AB system.

It is interesting to note that a perfect coordination between motion and AS/AB system is



128 Applications to Driving Simulator and Motion Cueing

obtained due to a coupled vestibular-pressure model. Moreover, the pressure induced by the

simulator acceleration is significantly different in the two cases, smaller and shorter in the

compact DiM 150. As a consequence the pressure request for the AS/AB is coordinated to

have the same overall pressure. In both cases the need for a MSCA is evident, though, in the

DiM 700, the required AS/AB pressure/tension plays a more relevant role.

In Figure 7.17 and 7.18, AS performances are shown. As in the longitudinal case, reference

pressure signal is perfectly tracked, although in DiM 700 the 1:1 acceleration reproduction

makes the AS unused, validating the correctness of the procedure. In DiM 150, the nonlinear

dynamics of friction are evident, mostly when the reference acceleration crosses the value

zero: it seems that a linearized model would not be representative enough of the friction

phenomena.

Figure 7.12: Top view sketch of DiM 700.
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Figure 7.13: Perceived longitudinal acceleration in a compact vs giant simulator.
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Figure 7.14: Longitudinal position displacement in a compact vs giant simulator.
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Figure 7.15: Longitudinal pressures in a compact simulator.
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Figure 7.16: Longitudinal pressures in a giant simulator.
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Figure 7.17: Lateral pressures in a compact simulator.
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Figure 7.18: Lateral pressures in a giant simulator.
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Conclusions and Outlook

In this thesis, we have presented efficient, tailored on-line optimization algorithms for fast

nonlinear model predictive control using long prediction horizon. The effectiveness of the

proposed algorithms have been demonstrated in several non-trivial simulation studies and

numerical examples. Optimality and local convergence properties of the algorithms have

also been proved. In addition, we implement NMPC algorithms in real-time for real-world

applications.

Contributions

Partial sensitivity update (Chapter 3-4)

A partial sensitivity updating scheme for RTI-based NMPC algorithms has been proposed

in order to reduce computational cost for sensitivity evaluation. This scheme exploits the

multi-stage feature of the optimization problem due to multiple shooting and performs a

block-wise update of the constraint Jacobian, which contains linearizations of state trajectories

in each shooting interval. We define a novel Curvature-like Measure of Nonlinearity (CMoN)

and apply it to access the degree of nonlinearity of each shooting interval. Based on the

CMoN, two updating logic have been developed that result in different numerical and control

performance. The first logic updates a fixed number of sensitivities with largest CMoN values.

The second one introduces a constant threshold for CMoN to distinguish linear and nonlinear

shooting intervals. The proposed scheme is shown to be able to reduce computational cost

while maintain numerical and control performance as close as possible to that of the standard

RTI scheme.

The optimality and local convergence properties have been investigated using theories

in parametric programming. The partial updated, inexact Jacobian is considered as a per-

turbation parameter and its effects on the optimality of the solution has been quantified.

As a consequence, an advanced tuning strategy is developed which converts the tuning of

the threshold to that of the distance to optimum, i.e. the distance between the solutions of

inexact and exact Jacobian QP problems. When considered in the full SQP scenario, the local
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convergence of this advanced strategy has also been proved with a tunable convergence rate.

Simulations studies and numerical examples have demonstrated the correctness of the theory.

Partial condensing and matrix factorization (Chapter 5)

Partial condensing algorithms for QP problems subject to partial sensitivity update have been

developed. These algorithms overcome the shortcoming that full condensing need to be

re-performed after partial sensitivity update and are capable of reducing the computational

cost for condensing. In particular, an algorithm called LPC-RTI is proposed which has a linear

computational complexity in prediction horizon length. Numerical examples show that a

speedup by a factor of 10 is possible.

Alternatively, the QP problems can be solved directly in sparse form. The famous alter-

nating direction method of multipliers (ADMM) is employed for time-varying QP problems in

the scenario of RTI. We show that the KKT system for computing the primal variable can be

partly updated thanks to partial sensitivity updating. Computational cost reduction has been

proved by comparing floating point operations (flops) with classical interior point methods.

Implementations and applications (Chapter 6-7)

One of the contribution of this thesis is that a MATLAB-based NMPC package MATMPC has

been developed that can be used to implement algorithms presented in this thesis. MATMPC

is designed for the purpose of algorithm development hence it has two working modes.

In MATLAB mode, all algorithms are implemented completely in MATLAB language hence

it is quite easy for modification and debugging. Algorithm developers can focus only on

mathematics and relieve themselves from professional coding. In MEX mode, we provide MEX

functions for popular algorithms such as SQP, multiple shooting and (partial) condensing.

MATLAB Coder can also be used to automatically generate C or MEX codes from M files. MEX

mode enables MATMPC to achieve high performance when applied to real-time applications.

We use MATMPC for the application of a nine degree of freedom dynamic driving simulator.

Real-time performance is achieved considering highly nonlinear dynamics and constraints

using the standard RTI scheme. Therefore, algorithms are ready for real experiments on

embedded platforms. A Multi-Sensory motion cueing algorithm is also tested using MATMPC

running the adjoint RTI scheme and the ADMM solver. The real-time availability of the

algorithm has been proved.
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Outlook

Several future developments are expected to improve the results of this thesis. The theoretical

properties of partial sensitivity updating can be further investigated. The stability of NMPC

using such schemes is another interesting topic. In addition, partial update of the Hessian

is expected to significantly reduce the computational cost, especially when exact Hessian

is employed. This requires to evaluate the degree of nonlinearity of the linearized optimal

control problem.

Efficient implementations of the algorithms proposed in this thesis are desired to improve

MATMPC. In particular, the proposed algorithms are naturally suitable for pluralization

hence a parallel implementation is desired. By using multiple processors or GPU, algorithms

presented in this thesis promise to reduce considerably the on-line computational burden.

An important problem that should be solved is that how to manage the data communication

and synchronization.

The developed algorithms and implementations can be applied to real world problems

such as the driving simulator presented in Chapter 7. Real-time NMPC is always our goal

and will show its power in cutting edge industrial applications.
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A
Proofs and Remarks for Chapter 4

A.1 Computation of M , N in (4.7) and (4.8)

For elements in M , we have

∇2LQP = H, (A.1)

∇hk =∇Bk, k = 1, . . . , nI , (A.2)

∇d j(p) =∇G j + Pj,:, j = 1, . . . , nE , (A.3)
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where Pj,: is the jth row of P. For elements in N , we have

∇2
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, (A.4)

∇ph j = O3 ∈ R1×np , j = 0, . . . , nI , (A.5)

∇pd = blkdiag(−W0, . . . ,−WN−1), (A.6)

where O1 ∈ R(nx+nu)×(nx+nu), O2 ∈ R(nx+nu)×nx ,Λ j = Inx+nu
⊗∆λ j and Wk = Inx

⊗∆w>k with

∆w>k ∈ R
1×(nx+nu).

A.2 Derivation of V i
pri in (4.14)

From the updating logic Ω2 by Algorithm 3.3, we can obtain

‖P i+1
k qi

k‖ ≤ 2ηi+1
pri ‖∇Fk(w

old
k )q

i
k‖ (A.7)
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For the full Jacobian matrix, we have
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= 2ηi
pri‖V

i
pri‖. (A.13)

A similar derivation can be conducted for the dual inexactness in (4.19). The details are

hence omitted.

A.3 Boundedness of (αi+1,β i+1) in (4.15) and (4.20)

Given a fixed c1 > 0 and ρi+1 > 0, the larger (αi+1,β i+1) are, the smaller the threshold

upper bounds in (4.24) and (4.25). Hence, there always exist sufficiently large (αi+1,β i+1)

such that the upper bounds of primal and dual thresholds are smaller than or equal to the

smallest nonzero CMoN value min(K i+1
k ), k = 0, . . . , N − 1. As a result, all Jacobian blocks

are updated and the DtO is zero and its tolerance is always respected. Since min(K i+1
k )> 0,

(αi+1,β i+1) can be finite. If there are zero CMoN values for some k, the corresponding

shooting trajectories are linear, and the updating of the corresponding sensitivities does not

affect the Jacobian approximation accuracy, hence the DtO.
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A.4 Rationale of the practical implementation for Algorithm 4.1

Define (ᾱi+1, β̄ i+1) as

ᾱi+1 =
‖∆w(pi+1)‖
‖qi‖

, , β̄ i+1 =
‖∆λ(pi+1)‖
‖∆λ(pi)‖

. (A.14)

Then the following theorem holds.

Theorem A.4.1.

0< cα =
ᾱi+1

αi+1
<∞, , 0< cβ =

β̄ i+1

β i+1
<∞ . (A.15)

Proof. Assuming that P̄ i+1 contains all the nonzero sensitivity blocks of P i+1, then

‖P̄ i+1∆w̄(pi+1)‖= ‖P i+1∆w(pi+1)‖, (A.16)

‖P̄ i+1q̄i‖= ‖P i+1qi‖, (A.17)

‖P̄ i+1>∆λ̄(pi+1)‖= ‖P i+1>∆λ(pi+1)‖, (A.18)

‖P̄ i+1>∆λ̄(pi)‖= ‖P i+1>∆λ(pi)‖, (A.19)

where ∆w̄(pi+1), q̄i ,∆λ̄(pi+1),∆λ̄(pi) are sub-vectors of ∆w(pi+1),qi ,∆λ(pi+1),∆λ(pi) re-

spectively, after removing elements corresponding to zero blocks in P i+1. Then

cα =
ᾱi+1

αi+1
=

‖∆w(pi+1)‖
‖P̄ i+1∆w̄(pi+1)‖

‖P̄ i+1q̄i‖
‖qi‖

, (A.20)

cβ =
β̄ i+1

β i+1
=
‖∆λ(pi+1)‖
‖P̄ i+1>∆λ̄(pi)‖

‖P̄ i+1>∆λ̄(pi)‖
‖∆λ(pi)‖

, (A.21)

By performing singular value decomposition of P̄ i+1, it is easy to prove that

0<
σmin(P̄ i+1)
σmax(P̄ i+1)

≤ (cα, cβ)≤
σmax(P̄ i+1)
σmin(P̄ i+1)

<∞, (A.22)

where σmax(P̄ i+1) > 0,σmin(P̄ i+1) > 0 are the largest and smallest singular value of P̄ i+1

respectively, since P̄ i+1 is nonsingular if P i+1 6= 0. If P i+1 = 0, (cα, cβ) = 1.

From theorem A.4.1, it follows that (ᾱi+1, β̄ i+1) are bounded approximations of (αi+1,β i+1).

Note that P̄ i+1 is block diagonal. As the number of updated Jacobian blocks increases, (cα, cβ )

become smaller and closer to unity, meaning that the approximations are more accurate the

more sensitivities are updated. In the extreme case where all the Jacobian blocks are updated,

P̄ i+1 = 0 and (cα, cβ) = 1, i.e. the approximation is perfect.
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However, (ᾱi+1, β̄ i+1) can only be exploited once the QP problem (4.1) is solved. Given

an appropriate tolerance ēi+1, a reasonable approximation is obtained by using (4.27). Two

remarks are made regarding this approximation. First, information from previous sampling

instants are often good approximations of that at the current sampling instant, when the

system is approaching steady state and the controller is converging “on the fly” (Gros et al.,

2016), e.g. both ᾱi and ᾱi+1 are less than one. Second, note that (ηi+1
pri ,ηi+1

dual) are considerably

underestimated due to the conservative approach adopted to convert (??) into the inequality

(4.12). Hence, c2 can be tuned to modulate the conservativeness of (4.12).

A.5 Proof for Theorem 4.3.1 in Chapter 4

Let the locally exact solution initialized at y i
p be

∆y i
0 = −Ḟ−1(y i

p)F(y
i
p) . (A.23)

Assume that at iteration i, the DtO is satisfied as

‖∆y i
p −∆y i

0‖= ‖e
i‖ ≤ ēi . (A.24)

Let ‖d i
y‖ = ‖y i

p − y i
∗‖ be the distance between the two sequences at the current iteration.

Observe that

Ḟ(y i
p) = Ḟ(y i

∗) + d i>
y F̈(y i

∗) +O(‖d i
y‖

2), (A.25)

F(y i
p) = F(y i

∗) + Ḟ(y i
∗)d

i
y +O(‖d i

y‖
2). (A.26)

Assume that ‖d i
y‖ is sufficiently small and O(‖d i

y‖
2) can be neglected, then by combining

(4.40) and (A.23) it follows that

∆y i
0 −∆y i

∗ = −Ḟ−1(y i
∗)(d

i>
y F̈(y i

∗)∆y i
0)− d i

y . (A.27)

As a result,

‖∆y i
0 −∆y i

∗‖ ≤ g i‖d i
y‖ , (A.28)
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where g i = ‖Ḟ−1(y i
∗)(∆y i>

0 F̈(y i
∗))+I‖. The distance between the two solutions at the current

iteration is

‖∆y i
p −∆y i

∗‖ ≤ ‖∆y i
p −∆y i

0‖+ ‖∆y i
0 −∆y i

∗‖ (A.29)

≤ ēi + g i‖d i
y‖

︸ ︷︷ ︸

‖d i
∆y‖

, (A.30)

and the distance between the two sequences at the next iteration is

‖d i+1
y ‖ := ‖y i+1

p − y i+1
∗ ‖ (A.31)

≤ ‖d i
y‖+ ‖∆y i

p −∆y i
∗‖ (A.32)

≤ ēi + (1+ g i)‖d i
y‖. (A.33)

Since Algorithm 4.1 always starts from ‖d0
y‖ = 0, ‖d i

y‖,∀i > 0 is a linear combination of

(ē0, ē1, . . . , ēi). Therefore, it is always possible to choose a set of scalars {i ∈ N+|ēi ≥ 0},
such that ‖d i

y‖ ≈ 0. Equivalently, the sequence {yp} can be sufficiently close to {y∗} at every

iteration.

Consider now the convergence properties of {yp}. By assumption 2, it follows that

‖y i+1
p ‖ ≤ ‖d i+1

∆y ‖+ κ0‖∆y i
∗‖ (A.34)

≤ ‖d i+1
∆y ‖+ κ0‖d i

∆y‖+κ0‖∆y i
p‖ (A.35)

= κ1 + κ0‖∆y i
p‖ (A.36)

where κ1 = ‖d i+1
∆y ‖+κ0‖d i

∆y‖. Since κ0 < 1 and ‖d i+1
∆y ‖,‖d

i
∆y‖ can be arbitrarily small, there

exists a κ2 satisfying κ0 ≤ κ2 < 1 such that

‖y i+1
p ‖ ≤ κ1 +κ0‖∆y i

p‖ ≤ κ2‖∆y i
p‖ . (A.37)

Therefore, the sequence {yp} is convergent and its convergence rate is at most identical to

that of {y∗}. As proved in (Bock et al., 2007; Diehl et al., 2010), when {yp} does converge, it

converges to the exact limit y+∗ of the sequence {y∗}.
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Partial Condensing Algorithms for Chapter 5

Following the idea of (Andersson, Frasch, Vukov, and Diehl, 2017), we write the coupling

relationship in the mth condensing block by

A[m]∆s[m] = B[m]∆z[m] + a[m]⇔
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(B.1)

In addition, the control variable has the following map

∆u[m] = Ĩ∆z[m]⇔
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Hereafter, the [m] symbol is ignored. The original objective function for this block can be

converted to

1
2
∆u>R∆u+

1
2
∆s>Q∆s+∆s>S∆u+∆u>S>∆s+∆u>gu +∆s>gs

=
1
2
∆z>Hc∆z +∆z>gc (B.3)

where

L = A−1a, (B.4)

G = A−1B, (B.5)

Hc = Ĩ>RĨ + G>QG + G>SĨ + Ĩ>S>G, (B.6)

gc = Ĩ>gu + G>(gs +QL) + Ĩ>S>L. (B.7)

The computation of G and L can be easily performed by implementing Algorithm 5.6 as

presented in (Kouzoupis et al., 2015b). Note that G has the structure as in (5.15). The

computation of gc and Hc can be computed by exploiting the block structure of A and B, and

by introducing W = A−>QG and w= A−>(gs +QL),

gc = Ĩ>gu + B>w+ Ĩ>S>L, (B.8)

Hc = Ĩ>RĨ + B>W + Ĩ>S>G + ( Ĩ>S>G)>. (B.9)

Let’s have a closer look into the components in Hc .

Ĩ>RĨ =
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Ĩ>S>G =
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Assuming that

W =


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where Wi, j ∈ Rnx×nu , we have

B>W =

















W0,0 Onx ,nu

B>0 W1,0 B>0 W1,1 Onu,nu
...

...
...

B>Npc−2WNpc−1,0 B>Npc−2WNpc−1,1 · · · B>Npc−2WNpc−1,Npc−2 Onu,nu
Onu,nu

Onu,nu
· · · Onu,nu

















,

(B.13)

where the lower block triangular part of W can be computed by block-wise backward substi-

tution when solving

A>W =QG. (B.14)

The algorithm for computing Hc is given in Algorithm B.1, where only the lower block

triangular part of Hc is computed.

Algorithm B.1 Calculation of H̃k = H in (5.16) with complexity O(N2
pc)

1: Initialize HNpc ,Npc
← RNpc−1, R−1←Onx

, B−1← Inx

2: for i = 0, . . . , Npc − 1 do
3: WNpc−1,i ←QNpc−1GNpc−1,i

4: HNpc ,i ← S>Npc−1GNpc−1,i

5: for j = Npc − 1, . . . , i + 1 do
6: H j,i ← B>j−1Wj,i + ST

j−1G j−1,i

7: Wj−1,i ← A>j−1Wj,i +Q j−1G j−1,i
8: end for
9: Hi,i ← Ri−1 + B>i−1Wi,i

10: end for

Similarly, we follow the same procedure for computing gc, which is given in Algorithm

B.2.
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Algorithm B.2 Calculation of g̃k in (5.16) with complexity O(Npc)

1: Initialize wNpc−1← g
Npc−1
s +QNpc−1 LNpc−1, g̃

Npc

k ← g
Npc−1
u + S>Npc−1 LNpc−1

2: for i = Npc − 1, . . . , 1 do
3: g i

k← g i−1
u + S>i−1 Li−1 + B>i−1wi

4: wi−1← g i−1
s + A>i−1wi +Q i−1 Li−1

5: end for
6: g̃0

k ← w0

The inequality constraints can be re-written as

C s∆s+ Cu∆u≤ −c (B.15)

⇔ (C sG + Cu Ĩ)∆z ≤ −(c + C s L) (B.16)

⇔ C c∆z ≤ −cc , (B.17)

where

C c =













C c
0,0 C c

0,1

C c
1,0 C c

1,1 C c
1,2

...
...

. . .

C c
Npc−1,0 C c

Npc−1,1 · · · C c
Npc−1,Npc−1 C c

Npc−1,Npc













, (B.18)

cc =







cc
0
...

cc
Npc−1






, (B.19)

are computed according to Algorithm B.3.

Algorithm B.3 Calculation of C̃k = C c and c̃k = cc in (B.18) and (B.19) with complexity
O(N2).

1: for i = 0, . . . , Npc − 1 do
2: C c

i,0← C s
i Gi,0

3: C c
i,i+1← Cu

i
4: for j = i + 1, . . . , Npc − 1 do
5: C c

j,i+1← C s
j G j,i+1

6: end for
7: cc

i ← ci + C s
i Li

8: end for
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