Algorithms and Applications for Nonlinear Model Predictive Control with a Long Prediction Horizon

Yutao Chen Supervisor: Prof. Alessandro Beghi

February 26, 2018

Yutao Chen Supervisor: Prof. Alessandro Begin [Efficient NMPC](#page-95-0) February 26, 2018 1/32

Contents

[Introduction and Motivation](#page-1-0)

- [Part I: NMPC Algorithms](#page-19-0)
- [Measure of Nonlinearity](#page-20-0)
- **[Partial Sensitivity Update](#page-30-0)**
- **[Algorithm Framework](#page-37-0)**
- [Accuracy of the QP Solution](#page-54-0)
- [Partial Condensing](#page-59-0)
- [Partial Sensitivity ADMM](#page-69-0)

[PART II: Implementation and Applications](#page-75-0)

- **[NMPC Tool](#page-76-0)**
- **•** [Applications](#page-83-0)

Source of nonlinearity

Yutao Chen Supervisor: Prof. Alessandro Be Fefficient NMPC February 26, 2018 3/32

Source of nonlinearity

Source of nonlinearity

2 constraints

Source of nonlinearity

2 constraints

³ cost function

Source of nonlinearity

2 constraints

- ³ cost function
- ⁴ working ranges (references)

Source of nonlinearity

² constraints

- ³ cost function
- ⁴ working ranges (references)
- ⁵ effect of feedback

Motivation

Current state of research

1 The relationship between model and the behavior of the NMPC is not clear

Motivation

Current state of research

- **1** The relationship between model and the behavior of the NMPC is not clear
- ² Solving optimization problem on-line in real-time is always a challenge

Motivation

Current state of research

- **1** The relationship between model and the behavior of the NMPC is not clear
- ² Solving optimization problem on-line in real-time is always a challenge
- **3** Computational complexity grows with the length of prediction horizon, which is usually desired to be long enough

An introductory example

Figure: A schematic illustration of the inverted pendulum control problem.

$$
\ddot{\rho} = \frac{-m_1 l \sin(\theta) \dot{\theta}^2 + m_1 g \cos(\theta) \sin(\theta) + F}{m_2 + m_1 - m_1 (\cos(\theta))^2},
$$
\n
$$
\ddot{\theta} = \frac{F \cos(\theta) - m_1 l \cos(\theta) \sin(\theta) \dot{\theta}^2 + (m_2 + m_1) g \sin(\theta)}{l (m_2 + m_1 - m_1 (\cos(\theta))^2)},
$$

DELL'INFORMAZIONE

An introductory example

The same system, two control tasks, two different results

Figure: Left: invert the pendulum;

An introductory example

The same system, two control tasks, two different results

Figure: Left: invert the pendulum; Right: shake the pendulum.

CELL/INFORMAZIONE

In my thesis,

Yutao Chen Supervisor: Prof. Alessandro Behind the [Efficient NMPC](#page-0-0) February 26, 2018 7 / 32

In my thesis,

1 a Curvature-like measure of nonlinearity (CMoN) is proposed for fast NMPC algorithms

In my thesis,

- **4** a Curvature-like measure of nonlinearity (CMoN) is proposed for fast NMPC algorithms
- 2 a bridge between linear and nonlinear MPC is built using partial sensitivity update

In my thesis,

- **1** a Curvature-like measure of nonlinearity (CMoN) is proposed for fast NMPC algorithms
- 2 a bridge between linear and nonlinear MPC is built using partial sensitivity update
- **3** tailored algorithms have been developed for NMPC with a long prediction horizon

In my thesis,

- **1** a Curvature-like measure of nonlinearity (CMoN) is proposed for fast NMPC algorithms
- 2 a bridge between linear and nonlinear MPC is built using partial sensitivity update
- **3** tailored algorithms have been developed for NMPC with a long prediction horizon
- an open source NMPC tool is developed for real-time applications

Contents

- [Part I: NMPC Algorithms](#page-19-0)
	- [Measure of Nonlinearity](#page-20-0)
	- [Partial Sensitivity Update](#page-30-0)
	- **•** [Algorithm Framework](#page-37-0)
	- [Accuracy of the QP Solution](#page-54-0)
	- [Partial Condensing](#page-59-0)
	- [Partial Sensitivity ADMM](#page-69-0)

[PART II: Implementation and Applications](#page-75-0)

- **[NMPC Tool](#page-76-0)**
- **•** [Applications](#page-83-0)

To understand our model better, we need a metric called

Measure of Nonlinearity

Yutao Chen Supervisor: Prof. Alessandro Bethi [Efficient NMPC](#page-0-0) February 26, 2018 9/32

To understand our model better, we need a metric called

Measure of Nonlinearity

• distance between a nonlinear and a linear system

To understand our model better, we need a metric called

Measure of Nonlinearity

- **o** distance between a nonlinear and a linear system
- **•** gap metric between two linearized systems

To understand our model better, we need a metric called

Measure of Nonlinearity

- **o** distance between a nonlinear and a linear system
- **•** gap metric between two linearized systems
- **o** local **curvature** measure

NEORMAZIONE

Consider a nonlinear, at least C^2 continuous and differentiable. The Taylor expansion of Z at a point x_0 with an increment p reads

$$
\mathcal{Z}(x_0+\rho)=\mathcal{Z}(x_0)+\frac{\partial \mathcal{Z}}{\partial x}(x_0)\rho+\frac{1}{2!}\rho^\top\frac{\partial^2 \mathcal{Z}}{\partial x^2}\rho^\top+\mathcal{O}(\Vert \rho^3 \Vert),
$$

Consider a nonlinear, at least C^2 continuous and differentiable. The Taylor expansion of Z at a point x_0 with an increment p reads

$$
\mathcal{Z}(x_0+\rho)=\mathcal{Z}(x_0)+\frac{\partial \mathcal{Z}}{\partial x}(x_0)\rho+\frac{1}{2!}\rho^\top\frac{\partial^2 \mathcal{Z}}{\partial x^2}\rho^\top+\mathcal{O}(\|\rho^3\|),
$$

Classical CMoN

$$
\bar{\kappa}:=\frac{\|\frac{\partial^2 \mathcal{Z}}{\partial x^2}p^2\|}{\|\frac{\partial \mathcal{Z}}{\partial x}(x_0)p\|^2}
$$

Consider a nonlinear, at least C^2 continuous and differentiable. The Taylor expansion of Z at a point x_0 with an increment p reads

$$
\mathcal{Z}(x_0+\rho)=\mathcal{Z}(x_0)+\frac{\partial \mathcal{Z}}{\partial x}(x_0)\rho+\frac{1}{2!}\rho^\top\frac{\partial^2 \mathcal{Z}}{\partial x^2}\rho^\top+\mathcal{O}(\|\rho^3\|),
$$

Classical CMoN

 $\bar{\kappa} := \frac{\|\frac{\partial^2 \mathcal{Z}}{\partial x^2} p^2\|}{\|\partial \mathcal{Z}_{\mathcal{L}}\|}$ $\|\frac{\partial \mathcal{Z}}{\partial x}(x_0)p\|^2$

The proposed CMoN
\n
$$
\kappa = \frac{\|\mathcal{Z}(x_0 + p) - \mathcal{Z}(x_0) - \frac{\partial \mathcal{Z}}{\partial x}(x_0)p\|}{\|\frac{\partial \mathcal{Z}}{\partial x}(x_0)p\|}
$$

$$
\mathbf{D} \mathsf{D} \mathsf{P} \mathsf{ARTIMENTO} \overline{\mathsf{D} \mathsf{I} \mathsf{INGE} \mathsf{G} \mathsf{NERA}}
$$

Consider a nonlinear, at least C^2 continuous and differentiable. The Taylor expansion of Z at a point x_0 with an increment p reads

$$
\mathcal{Z}(x_0+\rho)=\mathcal{Z}(x_0)+\frac{\partial \mathcal{Z}}{\partial x}(x_0)\rho+\frac{1}{2!}\rho^\top\frac{\partial^2 \mathcal{Z}}{\partial x^2}\rho^\top+\mathcal{O}(\|\rho^3\|),
$$

higher order terms are considered.

Consider a nonlinear, at least C^2 continuous and differentiable. The Taylor expansion of Z at a point x_0 with an increment p reads

$$
\mathcal{Z}(x_0+\rho)=\mathcal{Z}(x_0)+\frac{\partial \mathcal{Z}}{\partial x}(x_0)\rho+\frac{1}{2!}\rho^\top\frac{\partial^2 \mathcal{Z}}{\partial x^2}\rho^\top+\mathcal{O}(\|\rho^3\|),
$$

higher order terms are considered.

2 only the first order derivative is needed

Consider a nonlinear, at least C^2 continuous and differentiable. The Taylor expansion of Z at a point x_0 with an increment p reads

$$
\mathcal{Z}(x_0+\rho)=\mathcal{Z}(x_0)+\frac{\partial \mathcal{Z}}{\partial x}(x_0)\rho+\frac{1}{2!}\rho^\top\frac{\partial^2 \mathcal{Z}}{\partial x^2}\rho^\top+\mathcal{O}(\|\rho^3\|),
$$

- **1** higher order terms are considered.
- 2 only the first order derivative is needed
- **3** local MoN is measured

For digital processors, NMPC can be seen as LMPC working on systems with time-varying dynamics

• When NMPC? when LMPC?

For digital processors, NMPC can be seen as LMPC working on systems with time-varying dynamics

• When NMPC? when LMPC? \rightarrow CMoN embedded into NMPC algorithms

- When NMPC? when LMPC? \rightarrow CMoN embedded into NMPC algorithms
- How to mix NMPC and LMPC?

- When NMPC? when LMPC?
	- \rightarrow CMoN embedded into NMPC algorithms
- How to mix NMPC and LMPC?
	- \rightarrow Sensitivity (linearization) updating logic

- When NMPC? when LMPC?
	- \rightarrow CMoN embedded into NMPC algorithms
- How to mix NMPC and LMPC?
	- \rightarrow Sensitivity (linearization) updating logic
- Automatic mixing scheme possible?

A bridge between NMPC and LMPC

For digital processors, NMPC can be seen as LMPC working on systems with time-varying dynamics

- When NMPC? when LMPC?
	- \rightarrow CMoN embedded into NMPC algorithms
- How to mix NMPC and LMPC?
	- \rightarrow Sensitivity (linearization) updating logic
- Automatic mixing scheme possible?
	- \rightarrow Parametric Programming

Solving Structured QP subproblem

$$
\min_{\Delta s,\Delta u} \sum_{k=0}^{N-1} \left(\frac{1}{2} \left[\frac{\Delta s_k}{\Delta u_k}\right]^\top H_k^i \left[\frac{\Delta s_k}{\Delta u_k}\right] + g_k^{i^\top} \left[\frac{\Delta s_k}{\Delta u_k}\right] \right) \n+ \frac{1}{2} \Delta s_N^\top H_N^i \Delta s_N + g_N^{i^\top} \Delta s_N \ns.t. \Delta s_0 = \hat{x}_0 - s_0, \Delta s_k = A_{k-1}^i \Delta s_{k-1} + B_{k-1}^i \Delta u_{k-1} + d_{k-1}^i, k = 1, ..., N \nC_k^i \left[\frac{\Delta s_k}{\Delta u_k}\right] \leq -c_k^i, k = 0, 1, ..., N - 1, \nC_N^i \Delta s_N \leq -c_N^i
$$

where $A_k^i=\frac{\partial \Xi}{\partial s}(s_k^i,u_k^i), B_k^i=\frac{\partial \Xi}{\partial u}(s_k^i,u_k^i)$ are called *sensitivities* (linearizations)

LINFORMAZIONE

Solving Structured QP subproblem

$$
\min_{\Delta s,\Delta u} \sum_{k=0}^{N-1} \left(\frac{1}{2} \left[\frac{\Delta s_k}{\Delta u_k}\right]^\top H_k^i \left[\frac{\Delta s_k}{\Delta u_k}\right] + g_k^{i^\top} \left[\frac{\Delta s_k}{\Delta u_k}\right] \right) \n+ \frac{1}{2} \Delta s_N^\top H_N^i \Delta s_N + g_N^{i^\top} \Delta s_N \ns.t. \Delta s_0 = \hat{x}_0 - s_0, \Delta s_k = A_{k-1}^i \Delta s_{k-1} + B_{k-1}^i \Delta u_{k-1} + d_{k-1}^i, k = 1, ..., N \nC_k^i \left[\frac{\Delta s_k}{\Delta u_k}\right] \leq -c_k^i, k = 0, 1, ..., N - 1, \nC_N^i \Delta s_N \leq -c_N^i
$$

where $A_k^i=\frac{\partial \Xi}{\partial s}(s_k^i,u_k^i), B_k^i=\frac{\partial \Xi}{\partial u}(s_k^i,u_k^i)$ are called *sensitivities* (linearizations)

Real-Time Iteration (RTI, Diehl, 2002)

The solution manifold after one QP is a tangential predictor of the exact solution of the Nonlinear Program (NLP) which must be solved on-line

Embed CMoN into RTI

"LMPC"

$$
A_k^i = A, B_k^i = B, \forall k = 0, 1, ..., N-1, i = 0, 1, ...
$$

Yutao Chen Supervisor: Prof. Alessandro Be
 [Efficient NMPC](#page-0-0) February 26, 2018 13 / 32

Embed CMoN into RTI

"LMPC"

$$
A_k^i = A, B_k^i = B, \forall k = 0, 1, ..., N - 1, i = 0, 1, ...
$$

How to mix NMPC and LMPC?

$$
A_k^i = A_k^{i-1}, B_k^i = B_k^{i-1},
$$
 for some k

where i stands for sampling instants.

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

How to mix NMPC and LMPC?

Fixed-Time Updating Logic Q_1 : FTB-RTI

Update N_f out of N sensitivities with largest CMoN

Yutao Chen Supervisor: Prof. Alessandro Be February 26, 2018 14 / 32

How to mix NMPC and LMPC?

Fixed-Time Updating Logic Q_1 : FTB-RTI

Update N_f out of N sensitivities with largest CMoN

Advantages:

- **•** Computational time for sensitivities is fixed
- Most nonlinear part of the predicted trajectory is linearized

How to mix NMPC and LMPC?

Fixed-Time Updating Logic Q_1 : FTB-RTI

Update N_f out of N sensitivities with largest CMoN

Advantages:

- **•** Computational time for sensitivities is fixed
- Most nonlinear part of the predicted trajectory is linearized

Disadvantage:

 \bullet How to choose N_f ?

How to mix NMPC and LMPC

Use a threshold η_{pri} to access CMoN to be "linear" or "nonlinear"

Fixed Threshold Updating Logic Q_2 : CMoN-RTI

$$
A_k^i, B_k^i = \begin{cases} A_k^{i-1}, B_k^{i-1}, \kappa_k^i < \eta_{pri}, \text{ (locally linear)}, \\ \frac{\partial \Xi}{\partial s} (s_k^i, u_k^i), \frac{\partial \Xi}{\partial u} (s_k^i, u_k^i), \kappa_k^i \ge \eta_{pri}, \text{ (locally nonlinear)}. \end{cases}
$$

How to mix NMPC and LMPC

Use a threshold η_{pri} to access CMoN to be "linear" or "nonlinear"

Fixed Threshold Updating Logic Q_2 : CMoN-RTI

$$
A_k^i, B_k^i = \begin{cases} A_k^{i-1}, B_k^{i-1}, \kappa_k^i < \eta_{pri}, \text{ (locally linear)}, \\ \frac{\partial \Xi}{\partial s} (s_k^i, u_k^i), \frac{\partial \Xi}{\partial u} (s_k^i, u_k^i), \kappa_k^i \ge \eta_{pri}, \text{ (locally nonlinear)}. \end{cases}
$$

Advantages:

- Logic \mathcal{Q}_2 can adapt to system operating conditions
- Simple to implement

LI INFORMAZIONE

How to mix NMPC and LMPC

Use a threshold η_{pri} to access CMoN to be "linear" or "nonlinear"

Fixed Threshold Updating Logic Q_2 : CMoN-RTI

$$
A_k^i, B_k^i = \begin{cases} A_k^{i-1}, B_k^{i-1}, \kappa_k^i < \eta_{pri}, \text{ (locally linear)}, \\ \frac{\partial \Xi}{\partial s} (s_k^i, u_k^i), \frac{\partial \Xi}{\partial u} (s_k^i, u_k^i), \kappa_k^i \ge \eta_{pri}, \text{ (locally nonlinear)}. \end{cases}
$$

Advantages:

- Logic \mathcal{Q}_2 can adapt to system operating conditions
- Simple to implement

Disadvantage

• How to choose η_{pri} ?

INFORMAZIONE

Simulation Results on Inverted Pendulum

Figure: The percentage of exactly updated sensitivity blocks at each sampling instant during NMPC simulation using CMoN-RTI, with prediction horizon lengths $N = 20, 60, 160$.

LL1NFORMAZIONE

Simulation Results

Figure: Effect of the threshold η_{pri} on the value of objective function, the averagely and maximally updated sensitivities when $N = 60$.

Dual CMoN

$$
\tilde{\kappa}^i_k \coloneqq \frac{\|(\nabla \Xi^\top (w^i_k) - \nabla \Xi^\top (w^{i-1}_k)) \Delta \lambda^{i-1}_{k+1}\|}{\|\nabla \Xi^\top (w^{i-1}_k)) \Delta \lambda^{i-1}_{k+1}\|}.
$$

Dual CMoN

$$
\tilde{\kappa}^i_k \coloneqq \frac{\|(\nabla \Xi^\top (w^i_k) - \nabla \Xi^\top (w^{i-1}_k)) \Delta \lambda^{i-1}_{k+1}\|}{\|\nabla \Xi^\top (w^{i-1}_k)) \Delta \lambda^{i-1}_{k+1}\|}.
$$

Adaptive Threshold Updating Logic Q_3 : CMoN-RTI

$$
A_k^i,B_k^i=\left\{\begin{array}{l} A_k^{i-1},B_k^{i-1},\,\kappa_k^i<\eta_{pri}^i\,\&\,\tilde\kappa_k^i<\eta_{dual}^i,\\ \frac{\partial\Xi}{\partial s}(s_k^i,u_k^i),\frac{\partial\Xi}{\partial u}(s_k^i,u_k^i),\,\kappa_k^i\geq\eta_{pri}^i\,\text{or}\,\tilde\kappa_k^i\geq\eta_{dual}^i.\end{array}\right.
$$

Dual CMoN

$$
\tilde{\kappa}^i_k \coloneqq \frac{\|(\nabla \Xi^\top (w^i_k) - \nabla \Xi^\top (w^{i-1}_k)) \Delta \lambda^{i-1}_{k+1}\|}{\|\nabla \Xi^\top (w^{i-1}_k)) \Delta \lambda^{i-1}_{k+1}\|}.
$$

Adaptive Threshold Updating Logic Q_3 : CMoN-RTI

$$
A_k^i,B_k^i=\left\{\begin{array}{l} A_k^{i-1},B_k^{i-1},\,\kappa_k^i<\eta_{pri}^i\,\&\,\tilde\kappa_k^i<\eta_{dual}^i,\\\ \frac{\partial\Xi}{\partial s}(s_k^i,u_k^i),\frac{\partial\Xi}{\partial u}(s_k^i,u_k^i),\,\kappa_k^i\geq\eta_{pri}^i\,\text{or}\,\tilde\kappa_k^i\geq\eta_{dual}^i.\end{array}\right.
$$

Advantages:

 \bullet The thresholds depend on sampling instant *i*, hence capturing latest operating condition

CELL/INFORMAZIONE

Dual CMoN

$$
\tilde{\kappa}^i_k \coloneqq \frac{\|(\nabla \Xi^\top (w^i_k) - \nabla \Xi^\top (w^{i-1}_k)) \Delta \lambda^{i-1}_{k+1}\|}{\|\nabla \Xi^\top (w^{i-1}_k)) \Delta \lambda^{i-1}_{k+1}\|}.
$$

Adaptive Threshold Updating Logic Q_3 : CMoN-RTI

$$
A_k^i,B_k^i=\left\{\begin{array}{l} A_k^{i-1},B_k^{i-1},\,\kappa_k^i<\eta_{pri}^i\,\&\,\tilde\kappa_k^i<\eta_{dual}^i,\\\ \frac{\partial\Xi}{\partial s}(s_k^i,u_k^i),\frac{\partial\Xi}{\partial u}(s_k^i,u_k^i),\,\kappa_k^i\geq\eta_{pri}^i\,\text{or}\,\tilde\kappa_k^i\geq\eta_{dual}^i.\end{array}\right.
$$

Advantages:

 \bullet The thresholds depend on sampling instant *i*, hence capturing latest operating condition

Question

• How to choose
$$
\eta_{pri}^i, \eta_{dual}^i
$$
 ?

CELL/INFORMAZIONE

Accuracy of the QP Solution

Parametric QP

$$
\min_{\Delta \mathbf{w}} \frac{1}{2} \Delta \mathbf{w}^{\top} H \Delta \mathbf{w} + g^{\top} \Delta \mathbf{w}
$$

s.t. $b(\mathbf{w}) + (B + P) \Delta \mathbf{w} = 0$,
 $c(\mathbf{w}) + C \Delta \mathbf{w} \le 0$,

where P is the sensitivity error.

Yutao Chen Supervisor: Prof. Alessandro Be February 26, 2018 19 / 32

Accuracy of the QP Solution

Parametric QP

$$
\min_{\Delta \mathbf{w}} \frac{1}{2} \Delta \mathbf{w}^{\top} H \Delta \mathbf{w} + g^{\top} \Delta \mathbf{w}
$$

s.t. $b(\mathbf{w}) + (B + P) \Delta \mathbf{w} = 0$,
 $c(\mathbf{w}) + C \Delta \mathbf{w} \le 0$,

where P is the sensitivity error.

Theorem

The "distance to optimum" (DtO) in QP solution is a function of the CMoN thresholds η_{pri} and η_{dual}

Accuracy of the QP Solution

Parametric QP

$$
\min_{\Delta \mathbf{w}} \frac{1}{2} \Delta \mathbf{w}^{\top} H \Delta \mathbf{w} + g^{\top} \Delta \mathbf{w}
$$

s.t. $b(\mathbf{w}) + (B + P) \Delta \mathbf{w} = 0$,
 $c(\mathbf{w}) + C \Delta \mathbf{w} \le 0$,

where P is the sensitivity error.

Theorem

The "distance to optimum" (DtO) in QP solution is a function of the CMoN thresholds η_{pri} and η_{dual}

Inversely, if we pre-define a tolerance on DtO, we obtain η_{pri} and η_{dual}

Simulation Results on Inverted Pendulum

Simulation Results on Inverted Pendulum

The QP subproblem in NMPC is structured and is in general sparse

Yutao Chen Supervisor: Prof. Alessandro Be February 26, 2018 21 / 32

The QP subproblem in NMPC is structured and is in general sparse

1 Level 0: fully sparse

 \rightarrow all state and control variables are decision variables, Hessian is block diagonal

The QP subproblem in NMPC is structured and is in general sparse

1 Level 0: fully sparse

 \rightarrow all state and control variables are decision variables. Hessian is block diagonal

2 Level 2: fully dense

 \rightarrow only control variables are decision variables, Hessian is dense and costs $\mathcal{O}(N^2)$

The QP subproblem in NMPC is structured and is in general sparse

1 Level 0: fully sparse

 \rightarrow all state and control variables are decision variables. Hessian is block diagonal

2 Level 2: fully dense

 \rightarrow only control variables are decision variables, Hessian is dense and costs $\mathcal{O}(N^2)$

What in between?

The QP subproblem in NMPC is structured and is in general sparse

1 Level 0: fully sparse

 \rightarrow all state and control variables are decision variables. Hessian is block diagonal

2 Level 2: fully dense

 \rightarrow only control variables are decision variables, Hessian is dense and costs $\mathcal{O}(N^2)$

What in between?

Level 1: partially sparse

 \rightarrow part of state and all control variables are decision variables, Hessian is block diagonal

In prediction horizon, N points are divided into N_b blocks, each comprising $N_c = N/N_b$ points

In prediction horizon, N points are divided into N_b blocks, each comprising $N_c = N/N_b$ points

Complexity of partial condensing

The partially sparse \tilde{H} is a function of H,A,B , and costs $\mathcal{O}(N_bN_c^2)$ Flops

In prediction horizon, N points are divided into N_b blocks, each comprising $N_c = N/N_b$ points

Complexity of partial condensing

The partially sparse \tilde{H} is a function of H,A,B , and costs $\mathcal{O}(N_bN_c^2)$ Flops

Complexity of partial condensing after partial sensitivity update costs *at most* $\mathcal{O}(N_bN_c^2)$ Flops, and is usually less in practice

NFORMAZIONE

Numerical Example on Inverted Pendulum

Figure: The average CPU time[ms] of partial condensing with partially updated sensitivities for each sampling instant (left), and the speedup factor w.r.t. the standard partial condensing algorithms(right).

A CMoN-free variant

costs $\mathcal{O}(N)$ Flops \rightarrow linear in prediction length

Figure: The average CPU time[ms] for each sampling instant (left), and the speedup factor w.r.t. the standard partial condensing algorithms(right). **DI INGEGNERIA** DELL'INFORMAZIONE

Solve sparse QP problems

Yutao Chen Supervisor: Prof. Alessandro Begin: [Efficient NMPC](#page-0-0) February 26, 2018 25 / 32

Solve sparse QP problems

partial sensitivity update

Yutao Chen Supervisor: Prof. Alessandro Begin: [Efficient NMPC](#page-0-0) February 26, 2018 25 / 32

Solve sparse QP problems

partial sensitivity update

Yutao Chen Supervisor: Prof. Alessandro Begin [Efficient NMPC](#page-0-0) February 26, 2018 25 / 32
Solve sparse QP problems

partial sensitivity update ADMM

Yutao Chen Supervisor: Prof. Alessandro Begin [Efficient NMPC](#page-0-0) February 26, 2018 25 / 32

Solve sparse QP problems

partial sensitivity update ADMM For computing the primal step in ADMM

Yutao Chen Supervisor: Prof. Alessandro Begin [Efficient NMPC](#page-0-0) February 26, 2018 25 / 32

Solve sparse QP problems

partial sensitivity update ADMM For computing the primal step in ADMM Flop Comparison

 $\frac{\text{proposed}}{\text{state-of-art}} < \frac{N_f}{N}$ N

where $N_f \ll N$ is the number of updated sensitivities.

Yutao Chen Supervisor: Prof. Alessandro Begin [Efficient NMPC](#page-0-0) February 26, 2018 25 / 32

DIPARTIMENTO CELL/INFORMAZIONE

Contents

- [Introduction and Motivation](#page-1-0)
	- [Part I: NMPC Algorithms](#page-19-0)
		- [Measure of Nonlinearity](#page-20-0)
		- **[Partial Sensitivity Update](#page-30-0)**
		- **[Algorithm Framework](#page-37-0)**
		- [Accuracy of the QP Solution](#page-54-0)
		- [Partial Condensing](#page-59-0)
		- [Partial Sensitivity ADMM](#page-69-0)

[PART II: Implementation and Applications](#page-75-0)

- [NMPC Tool](#page-76-0)
- [Applications](#page-83-0)

MATMPC, a MATLAB-based NMPC Package

Yutao Chen Supervisor: Prof. Alessandro Be February 26, 2018 27 / 32

MATMPC, a MATLAB-based NMPC Package

State-of-art Automatic Differentiation (AD) tool is employed

Yutao Chen Supervisor: Prof. Alessandro Be February 26, 2018 27 / 32

MATMPC, a MATLAB-based NMPC Package

- State-of-art Automatic Differentiation (AD) tool is employed
- No tailored code generation. Codes are written in a modular fashion, enabling better debugging

MATMPC, a MATLAB-based NMPC Package

- State-of-art Automatic Differentiation (AD) tool is employed
- No tailored code generation. Codes are written in a modular fashion, enabling better debugging
- C codes are written using MATMPC C API, requiring no library compilation and being compatible to major platforms

MATMPC, a MATLAB-based NMPC Package

- State-of-art Automatic Differentiation (AD) tool is employed
- No tailored code generation. Codes are written in a modular fashion, enabling better debugging
- C codes are written using MATMPC C API, requiring no library compilation and being compatible to major platforms
- SQP, RTI, Adjoint-RTI, CMoN-RTI are candidate algorithms

MATMPC, a MATLAB-based NMPC Package

- State-of-art Automatic Differentiation (AD) tool is employed
- No tailored code generation. Codes are written in a modular fashion, enabling better debugging
- C codes are written using MATMPC C API, requiring no library compilation and being compatible to major platforms
- SQP, RTI, Adjoint-RTI, CMoN-RTI are candidate algorithms
- MATMPC has a competitive run-time performance with state-of-the-art NMPC tools, e.g. ACADO, ACADOS and Forces NLP

LL1NFORMAZIONE

MATMPC, a MATLAB-based NMPC Package

- State-of-art Automatic Differentiation (AD) tool is employed
- No tailored code generation. Codes are written in a modular fashion, enabling better debugging
- C codes are written using MATMPC C API, requiring no library compilation and being compatible to major platforms
- SQP, RTI, Adjoint-RTI, CMoN-RTI are candidate algorithms
- MATMPC has a competitive run-time performance with state-of-the-art NMPC tools, e.g. ACADO, ACADOS and Forces NLP

Open source available on Github!

FILINEORMAZIONE

Toy Examples in MATMPC

y

F

Toy Examples in MATMPC

Figure: A schematic illustration of the inverted pendulum control problem.

 \sim 0 $\overline{\times}$

 $m₂$

p

DELL'INFORMAZIONE

Toy Examples in MATMPC

Real world applications in MATMPC

Nine DOF Dynamic Driving Simulator

NINGEGNERIA DELL'INFORMAZIONE

Real world applications in MATMPC

Active Seat for Simulator

Real world applications in MATMPC

Hexacopter and Quadcopter

Contents

[Introduction and Motivation](#page-1-0)

[Part I: NMPC Algorithms](#page-19-0)

- [Measure of Nonlinearity](#page-20-0)
- **[Partial Sensitivity Update](#page-30-0)**
- **[Algorithm Framework](#page-37-0)**
- [Accuracy of the QP Solution](#page-54-0)
- [Partial Condensing](#page-59-0)
- [Partial Sensitivity ADMM](#page-69-0)

[PART II: Implementation and Applications](#page-75-0)

- **[NMPC Tool](#page-76-0)**
- **•** [Applications](#page-83-0)

Contributions:

Yutao Chen Supervisor: Prof. Alessandro Be
[Efficient NMPC](#page-0-0) February 26, 2018 31 / 32

Contributions:

4 A curvature-like Measure of Nonlinearity (CMoN) is proposed

Yutao Chen Supervisor: Prof. Alessandro Be February 26, 2018 31 / 32

Contributions:

- **4** A curvature-like Measure of Nonlinearity (CMoN) is proposed
- ² Efficient algorithms have been proposed for NMPC with long prediction horizons
	- partial sensitivity update schemes
	- partial condensing
	- partial sensitivity ADMM

Contributions:

- **4** A curvature-like Measure of Nonlinearity (CMoN) is proposed
- ² Efficient algorithms have been proposed for NMPC with long prediction horizons
	- partial sensitivity update schemes
	- partial condensing
	- partial sensitivity ADMM
- **3** A NMPC package is developed aiming at real-time solutions

Contributions:

- **4** A curvature-like Measure of Nonlinearity (CMoN) is proposed
- ² Efficient algorithms have been proposed for NMPC with long prediction horizons
	- partial sensitivity update schemes
	- partial condensing
	- partial sensitivity ADMM
- **3** A NMPC package is developed aiming at real-time solutions
- NMPC implementations for real-world applications.

Thank you!

Yutao Chen Supervisor: Prof. Alessandro Be February 26, 2018 32 / 32