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Nonlinear Model Predictive Control

Source of nonlinearity

1 dynamics

2 constraints

3 cost function

4 working ranges (references)
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Introduction and Motivation

Motivation

Current state of research

1 The relationship between model and the behavior of the NMPC is not
clear

2 Solving optimization problem on-line in real-time is always a challenge

3 Computational complexity grows with the length of prediction
horizon, which is usually desired to be long enough
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Introduction and Motivation

An introductory example

y

x0

m2
F

m1
θl

p

Figure: A schematic illustration of the inverted pendulum control problem.

p̈ =
−m1l sin(θ)θ̇2 + m1g cos(θ) sin(θ) + F

m2 + m1 −m1(cos(θ))2
,

θ̈ =
F cos(θ)−m1l cos(θ) sin(θ)θ̇2 + (m2 + m1)g sin(θ)

l(m2 + m1 −m1(cos(θ))2)
,
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Introduction and Motivation

An introductory example

The same system, two control tasks, two different results
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Figure: Left: invert the pendulum;

Right: shake the pendulum.
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Introduction and Motivation

Research Summary

In my thesis,

1 a Curvature-like measure of nonlinearity (CMoN) is proposed for fast
NMPC algorithms

2 a bridge between linear and nonlinear MPC is built using partial
sensitivity update

3 tailored algorithms have been developed for NMPC with a long
prediction horizon

4 an open source NMPC tool is developed for real-time applications
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Part I: NMPC Algorithms Measure of Nonlinearity

Background

To understand our model better, we need a metric called

Measure of Nonlinearity

distance between a nonlinear and a linear system

gap metric between two linearized systems

local curvature measure
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Part I: NMPC Algorithms Measure of Nonlinearity

Curvature like measure of nonlinearity

Consider a nonlinear, at least C 2 continuous and differentiable. The Taylor
expansion of Z at a point x0 with an increment p reads

Z(x0 + p) = Z(x0) +
∂Z
∂x

(x0)p +
1

2!
p>

∂2Z
∂x2

p> +O(‖p3‖),

Classical CMoN

κ̄ :=
‖∂

2Z
∂x2 p

2‖
‖∂Z∂x (x0)p‖2

The proposed CMoN

κ =
‖Z(x0 + p)−Z(x0)− ∂Z

∂x (x0)p‖
‖∂Z∂x (x0)p‖

1 higher order terms are considered.

2 only the first order derivative is needed

3 local MoN is measured
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Part I: NMPC Algorithms Partial Sensitivity Update

A bridge between NMPC and LMPC

For digital processors, NMPC can be seen as LMPC working on systems
with time-varying dynamics

When NMPC? when LMPC?

How to mix NMPC and LMPC?

Automatic mixing scheme possible?
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Part I: NMPC Algorithms Algorithm Framework

Solving Structured QP subproblem

min
∆s,∆u

N−1∑
k=0

(
1

2

[
∆sk
∆uk

]>
H i

k

[
∆sk
∆uk

]
+ g i>

k

[
∆sk
∆uk

]
)

+
1

2
∆s>N H i

N∆sN + g i>
N ∆sN

s.t.∆s0 = x̂0 − s0,

∆sk = Ai
k−1∆sk−1 + B i

k−1∆uk−1 + d i
k−1, k = 1, . . . ,N

C i
k

[
∆sk
∆uk

]
≤ −c ik , k = 0, 1, . . . ,N − 1,

C i
N∆sN ≤ −c iN

where Ai
k = ∂Ξ

∂s
(s ik , u

i
k),B i

k = ∂Ξ
∂u

(s ik , u
i
k) are called sensitivities (linearizations)

Real-Time Iteration (RTI, Diehl, 2002)

The solution manifold after one QP is a tangential predictor of the exact solution of the
Nonlinear Program (NLP) which must be solved on-line
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Part I: NMPC Algorithms Algorithm Framework

Embed CMoN into RTI

“LMPC”

Ai
k = A,B i

k = B, ∀k = 0, 1, . . . ,N − 1, i = 0, 1, . . .

How to mix NMPC and LMPC?

Ai
k = Ai−1

k ,B i
k = B i−1

k , for some k

where i stands for sampling instants.
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Part I: NMPC Algorithms Algorithm Framework

How to mix NMPC and LMPC?

Fixed-Time Updating Logic Q1: FTB-RTI

Update Nf out of N sensitivities with largest CMoN

Advantages:

Computational time for sensitivities is fixed

Most nonlinear part of the predicted trajectory is linearized

Disadvantage:

How to choose Nf ?
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Part I: NMPC Algorithms Algorithm Framework

How to mix NMPC and LMPC

Use a threshold ηpri to access CMoN to be “linear ” or “nonlinear”

Fixed Threshold Updating Logic Q2: CMoN-RTI

Ai
k ,B

i
k =

{
Ai−1
k ,B i−1

k , κik < ηpri , (locally linear),
∂Ξ
∂s (s ik , u

i
k), ∂Ξ

∂u (s ik , u
i
k), κik ≥ ηpri , (locally nonlinear).

Advantages:

Logic Q2 can adapt to system operating conditions

Simple to implement

Disadvantage

How to choose ηpri ?
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Part I: NMPC Algorithms Algorithm Framework

Simulation Results on Inverted Pendulum

Reference changes every 3 seconds

0 5 10 15

Simulation Time[s]

0

5

10

15

20

%

N=20

N=60

N=160

Figure: The percentage of exactly updated sensitivity blocks at each sampling
instant during NMPC simulation using CMoN-RTI, with prediction horizon
lengths N = 20, 60, 160.
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Part I: NMPC Algorithms Algorithm Framework

Simulation Results
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Figure: Effect of the threshold ηpri on the value of objective function, the
averagely and maximally updated sensitivities when N = 60.
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Part I: NMPC Algorithms Algorithm Framework

Automatically mix NMPC and LMPC

Dual CMoN

κ̃ik :=
‖(∇Ξ>(w i

k)−∇Ξ>(w i−1
k ))∆λi−1

k+1‖
‖∇Ξ>(w i−1

k ))∆λi−1
k+1‖

.

Adaptive Threshold Updating Logic Q3: CMoN-RTI

Ai
k ,B

i
k =

{
Ai−1
k ,B i−1

k , κik < ηipri & κ̃ik < ηidual ,
∂Ξ
∂s (s ik , u

i
k), ∂Ξ

∂u (s ik , u
i
k), κik ≥ ηipri or κ̃ik ≥ ηidual .

Advantages:

The thresholds depend on sampling instant i , hence capturing latest
operating condition

Question

How to choose ηipri , η
i
dual ?
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Part I: NMPC Algorithms Accuracy of the QP Solution

Accuracy of the QP Solution

Parametric QP

min
∆w

1

2
∆w>H∆w + g>∆w

s.t. b(w) + (B + P)∆w = 0,

c(w) + C∆w ≤ 0,

where P is the sensitivity error.

Theorem

The “distance to optimum” (DtO) in QP solution is a function of the CMoN
thresholds ηpri and ηdual

Inversely, if we pre-define a tolerance on DtO, we obtain ηpri and ηdual
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Part I: NMPC Algorithms Accuracy of the QP Solution

Simulation Results on Inverted Pendulum

Percentage of exactly updated sensitivities
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Part I: NMPC Algorithms Partial Condensing

Level of Sparsity

The QP subproblem in NMPC is structured and is in general sparse

1 Level 0: fully sparse
→ all state and control variables are decision variables, Hessian is
block diagonal

2 Level 2: fully dense
→ only control variables are decision variables, Hessian is dense and
costs O(N2)

What in between?
Level 1: partially sparse
→ part of state and all control variables are decision variables, Hessian is
block diagonal
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Part I: NMPC Algorithms Partial Condensing

Partial Condensing

In prediction horizon, N points are divided into Nb blocks, each comprising
Nc = N/Nb points

Complexity of partial condensing

The partially sparse H̃ is a function of H,A,B, and costs O(NbN
2
c ) Flops

Complexity of partial condensing after partial sensitivity update

costs at most O(NbN
2
c ) Flops, and is usually less in practice
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Part I: NMPC Algorithms Partial Condensing

Numerical Example on Inverted Pendulum
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Figure: The average CPU time[ms] of partial condensing with partially updated
sensitivities for each sampling instant (left), and the speedup factor w.r.t. the
standard partial condensing algorithms(right).
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Part I: NMPC Algorithms Partial Condensing

Partial Condensing

A CMoN-free variant

costs O(N) Flops → linear in prediction length
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Figure: The average CPU time[ms] for each sampling instant (left), and the
speedup factor w.r.t. the standard partial condensing algorithms(right).
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Part I: NMPC Algorithms Partial Sensitivity ADMM

Solve sparse QP problems
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Solve sparse QP problems

partial sensitivity update

ADMM
For computing the primal step in ADMM
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Part I: NMPC Algorithms Partial Sensitivity ADMM

Solve sparse QP problems

partial sensitivity update

ADMM
For computing the primal step in ADMM

Flop Comparison

proposed

state-of-art
<

Nf

N

where Nf � N is the number of updated sensitivities.
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PART II: Implementation and Applications
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PART II: Implementation and Applications NMPC Tool

MATMPC

MATMPC, a MATLAB-based NMPC Package

State-of-art Automatic Differentiation (AD) tool is employed

No tailored code generation. Codes are written in a modular fashion,
enabling better debugging

C codes are written using MATMPC C API, requiring no library
compilation and being compatible to major platforms

SQP, RTI, Adjoint-RTI, CMoN-RTI are candidate algorithms

MATMPC has a competitive run-time performance with
state-of-the-art NMPC tools, e.g. ACADO, ACADOS and Forces NLP
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MATMPC, a MATLAB-based NMPC Package

State-of-art Automatic Differentiation (AD) tool is employed

No tailored code generation. Codes are written in a modular fashion,
enabling better debugging

C codes are written using MATMPC C API, requiring no library
compilation and being compatible to major platforms

SQP, RTI, Adjoint-RTI, CMoN-RTI are candidate algorithms

MATMPC has a competitive run-time performance with
state-of-the-art NMPC tools, e.g. ACADO, ACADOS and Forces NLP

Open source available on Github!
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PART II: Implementation and Applications Applications

Toy Examples in MATMPC
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Toy Examples in MATMPC

Inverted Pendulum
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Figure: A schematic illustration of the inverted pendulum control problem.
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PART II: Implementation and Applications Applications

Toy Examples in MATMPC
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PART II: Implementation and Applications Applications

Real world applications in MATMPC

Nine DOF Dynamic Driving Simulator
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PART II: Implementation and Applications Applications

Real world applications in MATMPC

Active Seat for Simulator
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PART II: Implementation and Applications Applications

Real world applications in MATMPC

Hexacopter and Quadcopter
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Summary

Summary

Contributions:

1 A curvature-like Measure of Nonlinearity (CMoN) is proposed

2 Efficient algorithms have been proposed for NMPC with long
prediction horizons

partial sensitivity update schemes
partial condensing
partial sensitivity ADMM

3 A NMPC package is developed aiming at real-time solutions

4 NMPC implementations for real-world applications.
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Summary

Thank you!
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