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Motivation

Current state of research

@ The relationship between model and the behavior of the NMPC is not
clear

@ Solving optimization problem on-line in real-time is always a challenge

© Computational complexity grows with the length of prediction
horizon, which is usually desired to be long enough
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Introduction and Motivation

An introductory example

Figure: A schematic illustration of the inverted pendulum control problem.
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An introductory example

The same system, two control tasks, two different results
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Figure: Left: invert the pendulum;
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Introduction and Motivation

An introductory example

The same system, two control tasks, two different results
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Figure: Left: invert the pendulum; Right: shake the pendulum.
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Introduction and Motivation

Research Summary

In my thesis,
@ a Curvature-like measure of nonlinearity (CMoN) is proposed for fast
NMPC algorithms
@ a bridge between linear and nonlinear MPC is built using partial
sensitivity update
© tailored algorithms have been developed for NMPC with a long
prediction horizon

@ an open source NMPC tool is developed for real-time applications
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Part I: NMPC Algorithms

Contents

© Part I: NMPC Algorithms
@ Measure of Nonlinearity
@ Partial Sensitivity Update
@ Algorithm Framework
@ Accuracy of the QP Solution
@ Partial Condensing
@ Partial Sensitivity ADMM
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SRR
Background

To understand our model better, we need a metric called

Measure of Nonlinearity
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SRR
Background

To understand our model better, we need a metric called

Measure of Nonlinearity

o distance between a nonlinear and a linear system
@ gap metric between two linearized systems

@ local curvature measure
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Part I: NMPC Algorithms Measure of Nonlinearity

Curvature like measure of nonlinearity

Consider a nonlinear, at least C2 continuous and differentiable. The Taylor
expansion of Z at a point xg with an increment p reads
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Curvature like measure of nonlinearity
Consider a nonlinear, at least C2 continuous and differentiable. The Taylor
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© higher order terms are considered.
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RIS
A bridge between NMPC and LMPC

For digital processors, NMPC can be seen as LMPC working on systems
with time-varying dynamics
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Partial Sensiivity Update
A bridge between NMPC and LMPC

For digital processors, NMPC can be seen as LMPC working on systems
with time-varying dynamics
@ When NMPC? when LMPC?
— CMoN embedded into NMPC algorithms
@ How to mix NMPC and LMPC?
— Sensitivity (linearization) updating logic
@ Automatic mixing scheme possible?
— Parametric Programming
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Algorithm Framework
Solving Structured QP subproblem

N—1 T
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1
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s.t.Asy = Xo — So,

T i it
+ ASN HNASN + &N Asy

Asc = Ai_Asi_ 1+ B A1 +di 1, k=1,...,N
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C,(,ASN < —c,"\,

where A}, = %j(s,’(, u), B = %(s}(7 uy) are called sensitivities (linearizations)
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Ck|:AUk:|S—Ck,k—O,1,...,N 1,
Culsy < —ciy
where A} = %f(s,’;, ul), Bl = %(s};, ul) are called sensitivities (linearizations)
Real-Time Iteration (RTI, Diehl, 2002)

The solution manifold after one QP is a tangential predictor of the exact solution of the
Nonlinear Program (NLP) which must be solved on-line
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Algorithm Framework
Embed CMoN into RTI

“LMPC”
i =ABl =B, Yk=01,.... N—1,i=0,1,...
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Algorithm Framework
Embed CMoN into RTI

“LMPC"
i =ABl =B, Yk=01,.... N—1,i=0,1,...
How to mix NMPC and LMPC?
i= Aj:l, B = Bl’;*l,for some k
where i stands for sampling instants.
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Algorithm Framework
How to mix NMPC and LMPC?

Fixed-Time Updating Logic Q;: FTB-RTI
Update Nr out of N sensitivities with largest CMoN J

O DPARTIMENTO
= DIINGEGNERIA
. DELLINFORMAZIONE

Yutao Chen Supervisor: Prof. Alessandro Bel Efficient NMPC February 26, 2018 14 / 32



Algorithm Framework
How to mix NMPC and LMPC?

Fixed-Time Updating Logic Q;: FTB-RTI
Update Nr out of N sensitivities with largest CMoN J

Advantages:
@ Computational time for sensitivities is fixed

@ Most nonlinear part of the predicted trajectory is linearized

= DPARTIMENTO
— DI INGEGNERIA
= DELLINFORMAZIONE

Yutao Chen Supervisor: Prof. Alessandro Bel Efficient NMPC February 26, 2018 14 / 32



Algorithm Framework
How to mix NMPC and LMPC?

Fixed-Time Updating Logic Q;: FTB-RTI
Update Nr out of N sensitivities with largest CMoN J

Advantages:
@ Computational time for sensitivities is fixed

@ Most nonlinear part of the predicted trajectory is linearized

Disadvantage:

@ How to choose Nf ?

= DPARTIMENTO
— DI INGEGNERIA
= DELLINFORMAZIONE

Yutao Chen Supervisor: Prof. Alessandro Be Efficient NMPC February 26, 2018

14 / 32



Algorithm Framework
How to mix NMPC and LMPC

Use a threshold 7, to access CMoN to be “linear " or “nonlinear”
Fixed Threshold Updating Logic Q>: CMoN-RTI

g _ { A’*1 B’* /ﬁk < Npri, (Iocally linear),
k 35 (sk, uk), Z=(sk u}), Ki = Tpri» (locally nonlinear).
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=T MBI OWANECT TEI  Algorithm Framework

Simulation Results on Inverted Pendulum

Reference changes every 3 seconds
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Figure: The percentage of exactly updated sensitivity blocks at each sampling
instant during NMPC simulation using CMoN-RTI, with prediction horizon
lengths N = 20, 60, 160. [ ]
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Algorithm Framework
Simulation Results
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Figure: Effect of the threshold 7, on the value of objective function, the

averagely and maximally updated sensitivities when N = 60. [
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Automatically mix NMPC and LMPC
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aleenliansieh
Automatically mix NMPC and LMPC

Dual CMoN
ai (V=" (w)) = V=T (w, ) AN
k= — - -
V=T (w, ) AN

()

D DIPARTIMENTO
o DIINGEGNERIA
= DELLINFORMAZIONE

Efficient NMPC

February 26, 2018 18 / 32



aleenliansieh
Automatically mix NMPC and LMPC

Dual CMoN
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Adaptive Threshold Updating Logic Q3: CMoN-RTI
B;( _ { Alil BI? Hk < npn&"{k < ndua/’ ) )
as (5k7 uk)’ ED (Ska “k)v Rl 2 Mpri OF Kie 2 Mgy

D DIPARTIMENTO
= DIINGEGNERIA
= DELLINFORMAZIONE

Yutao Chen Supervisor: Prof. Alessandro Be Efficient NMPC February 26, 2018 18 / 32



aleenliansieh
Automatically mix NMPC and LMPC

Dual CMoN
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Adaptive Threshold Updating Logic Q3: CMoN-RTI
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Advantages:

@ The thresholds depend on sampling instant /, hence capturing latest
operating condition
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Automatically mix NMPC and LMPC

Dual CMoN

_ IOVET () = VET (w )ANG|
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Adaptive Threshold Updating Logic Q3: CMoN-RTI

i—1 _
B/’( _ { A’ B’ Hk < npl’l &Hk < ndua/’ ) )
as (5k7 uk)’ ED (Ska “k)v Rl 2 Mpri OF Kie 2 Mgy

Advantages:

@ The thresholds depend on sampling instant /, hence capturing latest
operating condition
Question P
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Accuracy of the QP Solution
Accuracy of the QP Solution

Parametric QP

min EAWTHAergTAw

Aw 2

s.t.b(w) + (B + P)Aw =0,
c(w) + CAw <0,

where P is the sensitivity error.
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Accuracy of the QP Solution

Parametric QP

min EAWTHAergTAw

Aw 2

s.t.b(w) + (B + P)Aw =0,
c(w) + CAw <0,

where P is the sensitivity error.

Theorem

The “distance to optimum” (DtO) in QP solution is a function of the CMoN
thresholds 1y and Nduai

o
Inversely, if we pre-define a tolerance on DtO, we obtain 7,7 and Nguar = e
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Part I: NMPC Algorithms Accuracy of the QP Solution

Simulation Results on Inverted Pendulum
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Simulation Results on Inverted Pendulum

The accuracy of the QP solution
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Level of Sparsity

The QP subproblem in NMPC is structured and is in general sparse
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R
Level of Sparsity

The QP subproblem in NMPC is structured and is in general sparse

Q Level 0: fully sparse
— all state and control variables are decision variables, Hessian is
block diagonal

© Level 2: fully dense
— only control variables are decision variables, Hessian is dense and
costs O(N?)

What in between?
Level 1: partially sparse
— part of state and all control variables are decision variables, Hessian is
block diagonal
[
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Partial Condensing
Partial Condensing

In prediction horizon, N points are divided into N}, blocks, each comprising
Nc. = N/Njp points
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Part I: NMPC Algorithms Partial Condensing

Partial Condensing

In prediction horizon, N points are divided into N}, blocks, each comprising
Nc. = N/Njp points

Complexity of partial condensing

The partially sparse H is a function of H, A, B, and costs O(NpN2) Flops J
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Part I: NMPC Algorithms Partial Condensing

Partial Condensing

In prediction horizon, N points are divided into N}, blocks, each comprising
Nc. = N/Njp points
Complexity of partial condensing

The partially sparse H is a function of H, A, B, and costs O(NpN2) Flops

v

Complexity of partial condensing after partial sensitivity update

costs at most O(N,N?) Flops, and is usually less in practice
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Part I: NMPC Algorithms Partial Condensing

Numerical Example on Inverted Pendulum
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Figure: The average CPU time[ms] of partial condensing with partially updated
sensitivities for each sampling instant (left), and the speedup factor w.r.t. the
standard partial condensing algorithms(right).
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Part I: NMPC Algorithms Partial Condensing

Partial Condensing

A CMoN-free variant
costs O(N) Flops — linear in prediction length

Computational Time[ms] Speedup Factor
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Figure: The average CPU time[ms] for each sampling instant (left), and the

speedup factor w.r.t. the standard partial condensing algorithms(right). S
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Solve sparse QP problems
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Part I: NMPC Algorithms Partial Sensitivity ADMM

Solve sparse QP problems

partial sensitivity update

ADMM
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Part I: NMPC Algorithms Partial Sensitivity ADMM

Solve sparse QP problems

partial sensitivity update

ADMM

For computing the primal step in ADMM
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EEVS R BN VIOVl Partial Sensitivity ADMM

Solve sparse QP problems

partial sensitivity update

ADMM

For computing the primal step in ADMM

Flop Comparison
proposed N¢
state-of-art =~ N
where N < N is the number of updated sensitivities.
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MATMPC

MATMPC, a MATLAB-based NMPC Package
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MATMPC, a MATLAB-based NMPC Package

State-of-art Automatic Differentiation (AD) tool is employed

No tailored code generation. Codes are written in a modular fashion,
enabling better debugging

C codes are written using MATMPC C API, requiring no library
compilation and being compatible to major platforms

SQP, RTI, Adjoint-RTI, CMoN-RT]I are candidate algorithms

MATMPC has a competitive run-time performance with
state-of-the-art NMPC tools, e.g. ACADO, ACADOS and Forces NLP
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MATMPC

MATMPC, a MATLAB-based NMPC Package
@ State-of-art Automatic Differentiation (AD) tool is employed
@ No tailored code generation. Codes are written in a modular fashion,
enabling better debugging
@ C codes are written using MATMPC C API, requiring no library
compilation and being compatible to major platforms
SQP, RTI, Adjoint-RTI, CMoN-RTI are candidate algorithms

MATMPC has a competitive run-time performance with
state-of-the-art NMPC tools, e.g. ACADO, ACADOS and Forces NLP

Open source available on Github! °
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=
Toy Examples in MATMPC

Inverted Pendulum

Figure: A schematic illustration of the inverted pendulum control problem.
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PART II: Implementation and Applications [EaYslsll{e=Yateli

Toy Examples in MATMPC

Chain of Masses

2 _ T fixed mass
0 e
3 \
N o \ /'(‘ controlled mass
NS

X[m] 15 4 - Vil

= DPARTIMENTO
— DI INGEGNERIA
DELLINFORMAZIONE

February 26, 2018 28 / 32

Yutao Chen Supervisor: Prof. Alessandro Be Efficient NMPC



Gl
Real world applications in MATMPC

Nine DOF Dynamic Driving Simulator
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Gl
Real world applications in MATMPC

Active Seat for Simulator

| J
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Real world applications in MATMPC

Hexacopter and Quadcopter
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Summary

Contributions:
© A curvature-like Measure of Nonlinearity (CMoN) is proposed

@ Efficient algorithms have been proposed for NMPC with long
prediction horizons

o partial sensitivity update schemes
e partial condensing
e partial sensitivity ADMM

© A NMPC package is developed aiming at real-time solutions

@ NMPC implementations for real-world applications.
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Thank you!
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