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Sommario

Fin dagli anni ottanta i problemi di localizzazione e mapping sono stati argomenti molto stu-
diati nell’ambito della robotica. Un’ulteriore spinta è avvenuta negli ultimi dieci anni grazie
all’incremento delle capacità di calcolo dei dispositivi elettronici. Questo ha permesso di porre
nuovi ambiziosi obbettivi, come il controllo di sciami robotici, UAVs, veicolo autonomi e reti
robotiche. Efficienza, robustezza e scalabilità sono tre caratteristiche fondamentali che non pos-
sono mancare negli algoritmi di localizzazione e mapping.

L’efficienza è la capacità di un algoritmo di mininizzare l’utilizzo di risorse, in particolare il
tempo di utilizzo della CPU e la quantità di memoria utilizzata. Nella applicazioni sopra citate
è richiesto l’utilizzo di un mezzo di comunicazione, per robustezza quindi intendiamo algoritmi
asincroni capaci di funzionare anche in presenza di perdite di pacchetto e ritardi. Per finire con
scalabilità intendiamo la capacità di un’algoritmo di funzionare senza drammatiche variazioni di
prestazioni anche quando il numero di dispositivi coinvolti cresce.

Questa tesi si pone l’obbiettivo di studiare metodi parametri e non parametrici applicati ai prob-
lemi di localizzazione e mapping nell’ambito della robotica. In particolare i principali contributi
possono essere riassunti nei seguenti quattro argomenti:

(i) Localizzazione tramite consensus: Il primo argomento affrontato è dato dal problema di
stimare in modo ottimo le posizioni di un gruppo di agenti in una rete. Solamente gli agenti
definiti come vicini nel grafo di comunicazione possono scambiarsi misure vettoriali rumorose
di distanza. Questo requisito si traduce in una limitata complessità ed il vincolo della sola
comunicazione locale, rendendo l’algoritmo indipendente dalla dimensione della rete e dalla
sua topologia. Viene quindi proposto un algoritmo di consensus con memoria che ne per-
mette l’implementazione asincrona. Di questo algoritmo è possibile provare la convergenza
esponenziale ad una soluzione ottima, sotto le ipotesi di utilizzo di semplici protocolli di
comunicazione deterministici o randomizzati e una richiesta minima di trasmissione di pac-
chetti. Nel caso di comunicazione randomizzata è inoltre presente uno studio della velocità
di convergenza in aspettazione e tale risultato viene poi utilizzato per studiare la velocità di
convergenza in media quadratica. In particolare viene mostrato che per grafi regolari, come
i Cayley, i Ramanjuan ed i completi l’algoritmo proposto, e quello asincrono senza memoria,
hanno il medesimo comportamento. Inoltre, l’implementazione asincrona è robusta a ritardi
e perdite di pacchetto. Per finire l’analisi analitica è complementata con risultati numerici,
comparando l’algoritmo proposto con altri algoritmi presenti in letteratura.

(ii) Localizzazione distribuita di veicoli aerei: Successivamente viene studiato il problema
della localizzazione distribuita multiagente in presenza di misure eterogenee e comunicazione
wireless. L’algoritmo proposto integra misure assolute poco precise, come GPS e bussole,
con misure relative più precise, come range e bearing. Le misure assolute sono usate per
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ricostruire la posizione e l’orientazione della formazione, mentre quelle relative sono usate
per ricostruire le posizioni reciproche degli agenti. Viene proposto un algoritmo distribuito
ed asincrono basato su minimi quadrati, che permette di risolvere una versione approssimata
del problema di Massima Verosimiglianza non-lineare inizialmente presentato. Tale algoritmo
è robusto a perdite di pacchetto e ritardi, inoltre l’uso di un protocollo ACK-less broadcast-
based assicura un’efficiente e facile implementazione. Per finire se l’errore sulle misure relative
è sufficientemente piccolo, viene mostrato come l’algoritmo raggiunge una soluzione molto
vicina a quella del problema originale di massima verosimiglianza. I risultati teorici e le
performance dell’algoritmo sono poi verificati attraverso numerose simulazioni Monte-Carlo.

(iii) Stima e Coverage: Il terzo argomento studiato d̀ato dal problema di coverage ottimo di
una regione attraverso più robot. Si assume non nota a propri la sensory function usata per
approssimare la densità di apparizioni degli eventi. Il setup considerato è un’architettura
client-server nella quale ogni robot può comunicare con la base-station attraverso una rete di
comunicazione soggetta a perdita di pacchetti. Proponiamo un algoritmo di stima basato su
regressione Gaussiana che permette di stimare la sensory function con un’accuratezza arbi-
traria. Per risolvere il problema di coverage è presentata una strategia randomica attraverso
la quale i robot mobili e la base-station simultaneamente stimano la distribuzione della den-
sity function collezionando misure rumorose e computando le partizioni di Voronoi. Questa
strategia è progettata per prima promuovere l’esplorazione e solo successivamente incentivare
i robot a spostarsi nel centroide della partizioni di Voronoi stimate. Sotto deboli ipotesi sulla
probabilità di errata trasmissione, proviamo che la strategia proposta garantisce la conver-
genza della density function stimata a quella vera e che le corrispondenti partizioni di Voronoi
convergono asintoticamente andando arbitrariamente vicine a quella di Voronoi ottime. Viene
anche proposta un’approssimazione numericamente efficiente che trova un compromesso tra
la qualità della stima della mappa e le risorse computazionali utilizzate, e.g. memoria e CPU.
Per finire, tramite svariate simulazioni, mostriamo l’efficacia dell’approccio proposto.

(iv) Stima non parametrica di campi spazio-temporali: Affrontiamo per finire il problema
della stima efficiente e ottima di una funzione sconosciuta e tempo variante attraverso la
collezione di misure rumorose. Inquadriamo il problema nel framework della stima non para-
metrica e assumiamo che la funzione sia generata da un processo Gaussiano con covarianza
nota. Sotto deboli ipotesi sul kernel del processo Gaussiano, viene proposta una soluzione
che collega la classica regressione Gaussiana con il filtro di Kalman grazie all’utilizzo di una
griglia su cui vengono prese le misure. Come risultato principale proponiamo un algoritmo ef-
ficiente per stimare funzioni tempo e spazio varianti e che combina i vantaggi della regressione
Gaussiana, e.g. l’assenza di modelli, con quelle del filtro di Kalman, e.g. l’efficienza.



Abstract

Since the eighties localization and mapping problems have attracted the efforts of robotics re-
searchers. However in the last decade, thanks to the increasing capabilities of the new electronic
devices, many new related challenges have been posed, such as swarm robotics, aerial vehicles,
autonomous cars and robotics networks. Efficiency, robustness and scalability play a key role in
these scenarios.
Efficiency is intended as an ability for an application to minimize the resources usage, in particular
CPU time and memory space. In the aforementioned applications an underlying communication
network is required so, for robustness we mean asynchronous algorithms resilient to delays and
packet-losses. Finally scalability is the ability of an application to continue functioning without
any dramatic performance degradation even if the number of devices involved keep increasing.
In this thesis the interest is focused on parametric and non-parametric estimation algorithms ap-
plied to localization and mapping in robotics. The main contribution can be summarized in the
following four arguments:

(i) Consensus-based localization We address the problem of optimal estimating the posi-
tion of each agent in a network from relative noisy vectorial distances with its neighbors by
means of only local communication and bounded complexity, independent of network size
and topology. In particular we propose a consensus-based algorithm with the use of local
memory variables which allows asynchronous implementation, has guaranteed exponential
convergence to the optimal solution under simple deterministic and randomized communi-
cation protocols, and requires minimal packet transmission. In the randomized scenario, we
then study the rate of convergence in expectation of the estimation error and we argue that
it can be used to obtain upper and lower bound for the rate of converge in mean square.
In particular, we show that for regular graphs, such as Cayley, Ramanujan, and complete
graphs, the convergence rate in expectation has the same asymptotic degradation of memo-
ryless asynchronous consensus algorithms in terms of network size. In addition, we show that
the asynchronous implementation is also robust to delays and communication failures. We
finally complement the analytical results with some numerical simulations, comparing the
proposed strategy with other algorithms which have been recently proposed in the literature.

(ii) Aerial Vehicles distributed localization: We study the problem of distributed multi-
agent localization in presence of heterogeneous measurements and wireless communication.
The proposed algorithm integrates low precision global sensors, like GPS and compasses,
with more precise relative position (i.e., range plus bearing) sensors. Global sensors are
used to reconstruct the absolute position and orientation, while relative sensors are used
to retrieve the shape of the formation. A fast distributed and asynchronous linear least-
squares algorithm is proposed to solve an approximated version of the non-linear Maximum
Likelihood problem. The algorithm is provably shown to be robust to communication losses
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and random delays. The use of ACK-less broadcast-based communication protocols ensures
an efficient and easy implementation in real world scenarios. If the relative measurement
errors are sufficiently small, we show that the algorithm attains a solution which is very close
to the maximum likelihood solution. The theoretical findings and the algorithm performances
are extensively tested by means of Monte-Carlo simulations.

(iii) Estimation and Coverage: We address the problem of optimal coverage of a region via
multiple robots when the sensory field used to approximate the density of event appearance is
not known in advance. We address this problem in the context of a client-server architecture
in which the mobile robots can communicate with a base station via a possibly unreliable
wireless network subject to packet losses. Based on Gaussian regression which allows to esti-
mate the true sensory field with any arbitrary accuracy, we propose a randomised strategy in
which the robots and the base station simultaneously estimate the true sensory distribution
by collecting measurements and compute the corresponding optimal Voronoi partitions. This
strategy is designed to promote exploration at the beginning and then smoothly transition to
station the robots at the centroid of the estimated optimal Voronoi partitions. Under mild
assumptions on the transmission failure probability, we prove that the proposed strategy
guarantees the convergence of the estimated sensory field to the true field and that the corre-
sponding Voronoi partitions asymptotically becomes arbitrarily close to an optimal Voronoi
partition. Additionally, we also provide numerically efficient approximation that trade-off ac-
curacy of the estimated map for reduced memory and CPU complexity. Finally, we provide
a set of extensive simulations which confirm the effectiveness of the proposed approach.

(iv) Non-parametric estimation of spatio-temporal fields: We address the problem of
efficiently and optimally estimating an unknown time-varying function through the collection
of noisy measurements. We cast our problem in the framework of non-parametric estimation
and we assume that the unknown function is generated by a Gaussian process with a known
covariance. Under mild assumptions on the kernel function, we propose a solution which
links the standard Gaussian regression to the Kalman filtering thanks to the exploitation of
a grid where measurements collection and estimation take place. This work show an efficient
in time and space method to estimate time-varying function, which combine the advantages
of the Gaussian regression, e.g. model-less, and of the Kalman filter, e.g. efficiency.



1
Introduction

One of the first and biggest challenges that the roboticists tackled more than thirty years ago were
the localization and mapping problems. Along the years these two topics created a new robotics
field known as SLAM (Simultaneous Localization And Mapping). SLAM is a technique that allows
robots to simultaneously create a map of the environment, and localize themselves on that map,
in the presence of both measurement and movement noise. These two problems appear together
because they are strictly connected, in fact, the knowledge of the position of a robot is of primary
necessity to build a map, but at the same time the knowledge of the map is useful to improve the
localization estimate.
During the eighties and nineties the main limitations were not coming from the lack of algorithms
to solve the SLAM problem but from the hardware and software technological constraints. How-
ever in the last decade, thanks to the proliferation of relatively inexpensive devices capable of
communicating, computing, sensing, interacting with the environment and storing information is
promising an unprecedented number of novel applications throughout the cooperation of these de-
vices toward a common goal. A direct consequence of these advancements is the extension of the
SLAM problem into a multi-agent framework.

Figure 1.1: Example of a robotics swarm. Credits: James McLurkin.

This new scenario also pose new challenges, of which efficiency, robustness and scalability are
the major ones. In computer science algorithm efficiency has been studied since the eighteenth
century. The mathematician and pioneer of informatics Ada Lovelace in 1843 highlighted this
aspect:

«In almost every computation a great variety of arrangements for the succession of the pro-
cesses is possible, and various considerations must influence the selections amongst them for the
purposes of a calculating engine. One essential object is to choose that arrangement which shall
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12 CHAPTER 1. INTRODUCTION

tend to reduce to a minimum the time necessary for completing the calculation.»

In other words algorithmic efficiency are the properties of an algorithm which relate to the
amount of computational resources used by the algorithm. In particular is fundamental to mini-
mize th CPU time and the memory space used. The concept of robustness is a cross-referring topic
and a definition associated to the systems is the following:

«Robustness is the ability of tolerating perturbations that might affect the system’s functional
body. In the same line it can be defined as the ability of a system to resist change without adapting
its initial stable configuration. »

In these thesis the meaning of robustness is twofold, first is the intrinsic ability of a multi-agent
system to accomplish a task even if one or more agents exhibit a failure, second is the capability of
the system to overcome issues in communications like packet losses and delays. These two kind of
robustness are typical in robotics and are extensively studied in the literature. Finally scalability is
intended as the ability for an application to continue functioning without any dramatic performance
degradation even if the number of devices involved keeps increasing. In particular, an application
is scalable if it is not necessary to increase hardware resources nor to adopt more complex software
algorithms in each device even if the total number of devices increases.

This thesis is divided in two main parts, one about localization and one about mapping. The
first and the second chapters address the problem of designing algorithms that are capable to
reconstruct the optimal estimate of the location of a device based on noisy absolute measurements
and noisy relative measurements with respect to its neighbors in a connected network. Then it
is shown an application to multi-vehicle localization where the estimate has to be performed in
real-time and communication is achieved via wireless communication. The goal is to integrate less
precise global sensors (GPS and compass) with more precise relative positioning sensors (range and
bearing sensors) in order to achieve global high accuracy. Intuitively, precise range and bearing
sensors would allow for the reconstruction of a relative formation but provides no information
about the global position and orientation of the formation. Differently, compass and GPS installed
in multiple vehicles can provide estimation of the centroid and orientation of the whole formation.
The fusion of these two types of information would allow an accurate global positioning of all
vehicles. Another challenge that we want to address is to provide an algorithm that is totally
distributed, asynchronous and robust to communication losses. In fact, a centralized solution is
not advisable in a scenario where not all vehicles can communicate with each other and a complex
leader-election procedure might be needed. Moreover, synchronous communication is also difficult
to enforce since it requires fine time synchronization among the different vehicles and possible
packet losses might slow down the algorithm since multiple retransmissions are required to deliver
the message.

Figure 1.2: Robots involved in a localization-exploration process. Credits: Universität Osnabrück

In the second part we will focus on the mapping problem using a non-parametric approach
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applied to coverage and partitioning problems. In this context, the coverage and partitioning of
an area of interest is one important and interesting task. In application like surveillance, pollution
monitoring and rescue, just to mention some of them, the ability of a group of robots to sense and
automatically cover the surrounding environment in order to maximize the likelihood of detecting
an event of interest is appealing. On the other hand, knowledge about the spatial distribution of
the event of interest is needed. If this is uniform in space, the optimal partitioning will correspond
to a uniform positioning of the robots in the monitored area. More challenging is the case of
non-uniform sensory functions. Intuitively, the robots should cover more densely regions where the
function is high. Regions where the function is low will be less covered. In this thesis we analyze
the framework of coverage the area of interest while estimating the non-uniform measurable field
of event appearance from noisy measurements collected by the robots. As an academic example,
suppose that we have a number of robots that have to monitor a forest for detecting possible
wildfires. It is reasonable to assume that the probability of a wildfire is proportional to the
temperature in a certain location, therefore robots should more densely cover areas where the
temperature is higher. If the temperature is not known in advance, the robots have to move
around to collect temperature samples in order to reconstruct the temperature profile used to
partition the environment. However, in order to minimize the time to reach a wildfire, the robots
should station near the centroids of these partitions. This simple example clearly exhibits the
classical problem associated with the exploration-exploitation dilemma.

Figure 1.3: Example of a reconstructed map. Credits: CAR, Components, Agents, Robots.

If we also assume that the field to estimate changes over time, it is necessary to study an
algorithm which is capable to learn the dynamics of the spatio-temporal filed in an efficient way.
This is relevant in the wildfire detection problem but also for example to monitor the temperature
in an area of the sea or the level of radiation in a region close by a nuclear accident. Again here the
keyword is efficient because the statistical inverse problem has a computational complexity which
grows with the cube of the number of data, i.e. O(N3), which is unfeasible for any kind of real-time
constraint. On the other hand, the popularity of the state space models is due to the fact that the
inference problem can be solved with a linear time complexity, i.e. O(T ). The holy Grail for the
estimation community is to find an algorithm which combine the best of the two approaches, e.g.
the reduced computational complexity of algorithm as the Kalman filter and the advantage of the
model-less approaches as the Gaussian Regression, or at least try to do that for a wider class of
models.

Literature Review Localization: before stating the novelties introduced in this thesis, we
briefly review a list of works related to our framework. Distributed optimization is the perfect
framework for solving the localization problem since in the past years many problems in large scale
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network have been cast as convex optimization problems. In particular, the localization problem
can be cast as the following unconstrained optimization problem:

min
x1,...,xN

|E|∑

(i,j)∈E

fij(xi − xj) (1.1)

where xi ∈ R`, E represents all the pair of nodes for which are available relative measurements
and fij are convex functions. Many problems can be written in this framework such as sensor
localization [1, 2], sensor calibration [3], clock synchronization [4] and camera localization [5, 6].
For example, in the context of localization from vectorial relative distances in a plane, the cost
functions fij are given by:

fij(xi − xj) = ‖xi − xj − zij‖2

where zij ∈ R` is the noisy measurement of the relative (vector) distance of node i from node j. As
a consequence, the optimization problem in Eqn. (1.1) becomes a distributed least-square problem.
Several scalable distributed solutions to this problem are already available in the literature. In [1, 2]
the authors propose a distributed Jacobi solution based on a synchronous implementation, which
was later extended to account for asynchronous communication and packet losses [1]. The same
approach has been independently proposed in [7] in the context of distributed time synchronization
in wireless sensor networks. Differently, in [3] a broadcast consensus-based algorithm, which is
suitable for asynchronous implementation, is proposed but the local estimates do not converge and
exhibit an oscillatory behaviour around the optimal value. A similar approach has been proposed
in [8, 9] where the local ergodic average of the gossip asynchronous algorithm is proved to converge
to the optimal value as 1/k, where k is the number of iterations. An alternative approach based on
the Kaczmarz method for the solution of general linear systems has been suggested in [10], however
a practical asynchronous implementation for distributed localization from relative measurements
which satisfies the specific edge and node activation probabilities dictated by the algorithm, is not
given, moreover, no robustness analysis in terms of delays is provided.

Literature Review Coverage: another interesting research field is given by the coverage
and partitioning problems. In the classical coverage literature, the sensory function is supposed to
be known by the robots. In this spirit, [11, 12] present a gradient descent strategy for a class of
functions which encode optimal coverage policies. The authors exploit the concept of centroidal
Voronoi partitions to optimally divide the monitored area. In [13] the authors consider the coverage
problem on a line with non-uniform sensory function which is assumed to be perfectly known and
propose a strategy which provides optimal coverage. In the work of [14] only a limited number of
noise-free samples of the sensory function are considered. This is practically and computationally
more appealing but results in only a sub-optimal solution without any proof of convergence. To
address this problem, in [15] the authors presented a bridging step, where cartograms have been
exploited to map a non-uniform distribution onto a uniform distribution which can be used to
apply the strategy proposed in [12].

Some results to the coupled problem, i.e. when both coverage and estimation are considered,
have appeared recently. In [16] the estimation from noisy measurements of a time varying spatial
distribution function is considered. The coverage is performed thanks to a gradient ascent algorithm
which lets the robots move on the maxima of the sensory function. However, proof of convergence
is guaranteed only in the case of noise-free measurements. In [17] the authors analyze the problem
of non parametric estimation of Gaussian processes using Kalman filtering and coverage. The
algorithm proposed consists of two different phases: during the first, based on information on the
posterior variance, the robots are spread throughout the space in order to achieve a good estimate
of the sensory function; when the maximum of the posterior is below a certain threshold, the robots
switch from exploration to the exploitation phase to achieve coverage. A notable advancement is
represented by the work of [18] which propose a distributed consensus-like parametric estimation
from noise-free measurements from which the agent are able to reconstruct the sensory function
distribution. While estimating, the robots move towards the centroids of the Voronoi partition in
order to perform optimal coverage of the area of interest. In [19] the authors extend the work of [13,
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14] by analyzing the problem of non-uniform line partitioning from a non-Euclidean perspective.
Differently from the previous work, only noisy measurements of the sensory function are exploited.
By letting the robots to collect a certain number of noisy samples from the neighbourhood of
their positions, the authors proves convergence in probability to the optimal configuration. More
recently [20] used the concept of stochastic gradient based on noisy measurements of an unknown
sensory function to perform an adaptive deployment of a group of robots. This approach has the
interesting feature that the distribution function is not needed to be estimated.

Literature Review Estimation: concerning the spatio-temporal field estimation many tech-
niques has been proposed in the literature. The subspace identification approach [21, 22] has
been successfully applied in identification of linear time invariant (LTI) systems, however during
the nighties these three approaches have been presented to solve the linear time variant (LTV)
problem. The first is the canonical variate analysis (CVA) [23], the second the multi-variable
output-error state space (MOESP) [24] and the last the numerical algorithms for subspace state
space identification (N4SID) [25]. A unified framework for this three algorithm was proposed in
[26]. If we consider the non-parametric or the Gaussian regression approaches many works are
based on the study of estimation of Gaussian random field varying in time and space [27]. As we
mentioned before, the main issue of the inverse problem is the high computational complexity, so
many solutions has been proposed, as the reduction to into SDE form [28], filtering and smoothing
[29], recursive Bayesian methods [30], kernel recursive least-square [31] and sparse approximation
[32]. Another kind of approach is called Kriging, which essentially is the estimation of a time
variant spatial field. One of the best known solution is the Kriged Kalman Filter (KKF) [33],
presented also in a distributed fashion in [34]. The algorithm proposed in this thesis is similar to
the one proposed in [35] but we extend the class of processes that can be estimated to a wider one.

Statement of contribution: In the first part of the thesis we will focus on a distributed
optimization problem with application in localization of a group of robots given noisy relative
measurements. The main contribution of this chapter is to propose a novel asynchronous algorithm
whose main idea consists in casting the estimation problem as a consensus problem under some
suitable changes of coordinates, and then to add some extra memory variables at each node to
keep track of the estimated location of its neighbors, i.e. the nodes from which they collected
the relative distance measurements. Estimates of these local variables eventually converge to the
estimates of the neighbors, thus guaranteeing the convergence of the whole algorithm, at the price
of some delay. This strategy has several relevant advantages, namely:

i) is scalable,

ii) has proven exponential rate of convergence under mild assumptions,

iii) is robust to packet losses and delays,

iv) requires the transmission of a single broadcast communication packet per each iteration.

This last feature is particularly relevant for Wireless Sensor Networks (WSNs) applications since
agents have a limited energy budget and communication is more expensive than computation from
an energy standpoint. We also study the performance of the proposed algorithm in terms of the
convergence rate. This task is particularly challenging since the proposed algorithm turns out to
be a higher order consensus algorithm, for which analytic tools are available. In fact, the few
works available in the literature, which address the rate of convergence of randomized higher order
consensus algorithms, are limited to the convergence in expectation [36]. We exactly compute
the rate of convergence in expectation of our algorithm for regular graphs, and through extensive
numerical simulations we conjecture that it also provides an upper bound for rate of convergence
in mean square. Moreover, we show that, asymptotically, for many types of regular graphs such as
Caylays, Ramanujan and complete graphs, such rate of convergence in expectation is reduced by a
factor N , where N is the number of nodes, which is the same of standard memoryless asynchronous
consensus algorithms, thus implying that asymptotically in N the reduction of rate of convergence
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due to memory is negligible. We also prove the convergence of the proposed algorithm when
bounded delays and packet losses are present, thus making it particularly suitable for applications
using lossy wireless communication. We finally complement the theoretical results with some
numerical simulations which show that the proposed algorithm has a performance in terms of rate
of convergence per iteration which is slightly slower than the fastest algorithms available in the
literature. However, it greatly outperforms them if the rate of convergence is computed in terms
of number of exchanged messages, i.e, the estimation error obtained by sending a fixed number
of packets is much lower for our proposed algorithm than the other algorithms available in the
literature.

Then, in the second chapter, we propose an asynchronous distributed algorithm for multi-robot
localization that integrates GPS, compass, range and bearing measurements and is robust to packet
losses and random delays. In particular, we show that, if the range and bearing errors are suffi-
ciently small, it is possible to linearize the localization problem achieving a performance which is
very close to the exact maximum likelihood solution. Moreover, such solution can be computed via
a broadcast-based communication protocols that does not require ACK packets and is therefore
fast and easy to implement.

The third chapter of this thesis describes how to map an unknown density function exploiting
an efficient non-parametric approach. This density function is the used to perform a coverage
control task. In particular we present a strategy that is suitable for a client-server communica-
tion architecture in which the robots can communicate with a base station in order to perform
non-parametric estimation of an unknown sensory distribution function from noisy samples while
performing optimal coverage of the area of interest. We consider a realistic scenario where commu-
nication is performed over an unreliable wireless network subject to packet losses or delays. The
contribution is fourfold:

i) differently from [17] the transition from the exploration and the exploitation phases is seam-
less being based on a randomized control law,

ii) almost-sure convergence to the true sensory function, from a collection of noisy measurements,
is guaranteed under mild assumptions on the packet loss probability,

iii) the final configuration of the robots can be arbitrarily close to an optimal partitioning that
would be obtained if the sensory function would be known since the beginning,

iv) we study the computational complexity of the algorithm and we additionally propose an
alternative approximated grid-based algorithm that can trade-offs accuracy on the estimated
map for considerable reduction on CPU and memory requirements.

Finally, in the last chapter, we present an unified framework for Gaussian Regression and
Kalman filtering for optimal estimation of a certain class of processes. The main idea behind this
results is to use a spatial-grid in order to limit the space where the data can be collected. This
transform the infinite dimensional Gaussian regression inverse problem to a finite dimensional one
and the computational complexity is fixed and given by the number of points in the grid. The
contribution is twofold:

i) we present an efficient and optimal grid based estimation for a wide class of Gaussian processes
through a Kalman filter,

ii) an approximated and efficient grid based estimation for all the processes which are not
included in the previous class,

Outline: this thesis is divided as follows. The first part is composed by Chapter 2 and 3, and
deals with localization problems. More precisely, in Chapter 2 we consider the localization of a
group of agents exploiting only noisy relative measurements, while Chapter 3 extend the problem
to a more general framework, where both relative and absolute measurements are available. The
second part of the thesis, composed by Chapter 4 and 5, deals with the estimation of density
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functions. In particular in Chapter 4 we study an efficient algorithm to estimate a density func-
tion to perform coverage control, while Chapter 5 we propose an unified framework for Gaussian
Regression and Kalman filtering for optimal estimation.

Publications: Part of the content of this thesis has already been published in international
conferences and journals. In particular the results of Chapter 2 comes from [37] and [38], while
the original idea behind the algorithm presented in Chapter 4 has been published in [39]. Finally
part of the results obtained in chapter 3 and 5 has been sumbitted and has to be subimtted to
international journals.
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2
Consensus Based Localization

In this chapter we address the problem of designing algorithms that are capable of reconstructing
the optimal estimate of the location of a device based on noisy relative measurements with respect
to its neighbors in a connected network. In particular, we want to design distributed algorithms
that allow each device to reconstruct its own position only from exchanging information with
its neighbors, regardless of the size of the network. First we propose a synchronous distributed
consensus based algorithm and we prove to be exponential convergent to an optimal solution of the
localization optimization problem presented. The main limitation of this approach it is given by
the fact that is applicable only to sensor networks with synchronized and reliable communication.
This means that in a real scenario the presented synchronous algorithm may not converge to the
optimal solution or may not converge at all. The aim of this chapter is to present an alternative
solution capable of solving this limitation. For this reason is presented an asynchronous distributed
consensus algorithm which even has guarantee convergence under mild assumption. Then we
perform a performance analysis with a dedicated section for regular graphs. Finally we prove
the effectiveness of the algorithm also in presence of nonidealities of the communication media
as random delays and packet losses. The chapter is organized as follows. In Section 2.2 we
formulate the problem. In section 2.1 we introduce some basic notation and we review some
useful concepts. In Section 2.3 we introduce the synchronous consensus-based algorithm (denoted
as s-CL). In Section 2.4 we propose a more realistic asynchronous implementation of the s-CL
algorithm (denoted as a-CL). In Section 2.5 we establish the convergence of the a-CL algorithm
and we provide some bounds on the rate of convergence in mean-square. In Section 2.6 we show
that the a-CL algorithm is robust to delays and communication failures. In Section 2.7 we provide
some numerical results comparing the a-CL algorithm to other strategies recently proposed in the
literature.

2.1 Mathematical preliminaries

Before proceeding, we collect some useful definitions and notations. In this paper, G = (V, E)

denotes a directed graph where V = {1, ..., N} is the set of vertices and E is the set of directed
edges, i.e., a subset of V × V . More precisely the edge (i, j) is incident on node i and node j and
is assumed to be directed away from i and directed toward j. The graph G is said to be bidirected
if (i, j) ∈ E implies (j, i) ∈ E .

Given a directed graph G = (V, E), a directed path in G consists of a sequence of vertices
(i1, i2, . . . , ir) such that (ij , ij + 1) ∈ E for every j ∈ {1, . . . , r − 1}. An undirected path in G
consists of a sequence of vertices (i1, i2, . . . , ir) such that either (ij , ij+1) ∈ E or (ij+1, ij) ∈ E for
every j ∈ {1, . . . , r − 1}1. The directed graph G is said to be strongly connected (resp. weakly
connected) if for any pair of vertices (i, j) there exists a directed path (resp. undirected path)
connecting i to j. Given the directed graph G, the set of neighbors of node i, denoted by Ni, is

1Basically, an undirected path is a path from a node to another node that does not respect the orientation of the edges.

19
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given by Ni = {j ∈ V | (i, j) ∈ E}. A directed graph is said to be regular if all the nodes have the
same number of neighbors.

Given a directed graph G = (V, E) with |E| = M let the incidence matrix A ∈ RM×N of G be
defined as A = [aei], where aei = 1,−1, 0, if edge e is incident on node i and directed away from
it, is incident on node i and directed toward it, or is not incident on node i, respectively.

Let 1N be the N -dimensional column vector with all components equal to one. If there is no risk
of confusion we will drop the subscript N . Given a matrix B we denote with B† its pseudo-inverse.
Given a vector v with vT we denote its transpose. A matrix P ∈ RN×N is said to be stochastic
if all its elements are nonnegative and P1 = 1. Moreover it is said to be doubly stochastic if
it is stochastic and, additionally, 1TP = 1T . A stochastic matrix P is primitive if it has only
one eigenvalue equal to 1 and all other eigenvalues are strictly inside the unitary circle. With the
symbol ρess(P ) we denote the essential spectral radius of P (see [40]), namely, the second largest
eigenvalue of P in absolute value.

In graph theory, a regular graph is a graph where each vertex has the same number of neighbors;
a regular graph with vertices of degree d is called a d-regular graph or regular graph of degree d.
A Ramanujan graph is a regular graph whose spectral gap is almost as large as possible. Let G be
a connected d-regular graph with N vertices, and let λ0 ≥ λ1 ≥ . . . ≥ λn−1 be the eigenvalues of
the adjacency matrix of G. A d-regular graph G is a Ramanujan graph if

(max
i
λi) ≤ 2

√
d− 1.

The symbol E denotes the expectation operator. Given two functions f, g : N 7−→ R, we say
that f ∈ o(g) if limn→∞

f(n)
g(n) = 0.

2.2 Problem Formulation

The problem we deal with is that of estimating N variables x1, . . . , xN from noisy measurements
of the form

zij := xi − xj + nij , i, j ∈ {1, . . . , N}, (2.1)

where nij is zero-mean measurement noise. Although all results in this work apply to general
vector-valued variables, for sake of simplicity, in this paper we assume that xi ∈ R, i ∈ {1, . . . , N}.
This estimation problem can be naturally associated with a measurement graph Gm = (V ; Em).
The vertex set V of the measurement graph consists of the set of nodes V = {1, . . . , N} where
N is the number of nodes, while its edge set Em consists of all of the ordered pairs of nodes (i, j)

such that a noisy measurement of the form (2.1) between i and j is available to node i. The
measurement errors on distinct edges are assumed uncorrelated. The measurement graph Gm is a
directed graph since (i, j) ∈ Em implies the measurement zij is available to node i, while (j, i) ∈ Em
implies the measurement zji is available to node j, and these two are in general distinct.

Next we formally state the problem we aim at solving. Let x ∈ RN be the vector obtained by
stacking together all the variables x1, . . . , xN , i.e., x = [x1, . . . , xN ]T , and let z ∈ RM and n ∈ RM ,
whereM = |Em|, be the vectors obtained stacking together all the measurements zij and the noises
nij , respectively. Additionally, let Rij > 0 denote the covariance of the zero mean error nij , i..e,
Rij = E[n2

ij ], and let R ∈ RM×M be the diagonal matrix collecting in its diagonal the covariances
of the noises nij , (i, j) ∈ E , i.e., R = E[nnT]. Observe that Eqn. (2.1) can be rewritten in a vector
form as

z = Ax + n

Now, define the set
χ := argmin

x∈RN
(z−Ax)TR−1(z−Ax).

The goal is to construct an optimal estimate xopt of x in a least square sense, namely, to compute

xopt ∈ χ (2.2)
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Assume the measurement graph Gm to be weakly connected, then it is well known (see [2]) that

χ =
{(
ATR−1A

)†
ATR−1z + α1

}
.

Moreover let
x∗opt =

(
ATR−1A

)†
ATR−1z,

then x∗opt is the minimum norm solution of (2.2), i.e.,

x∗opt = min
xopt∈χ

‖ xopt ‖

The matrix ATR−1A is called in literature the Weighted Generalized Grounded Laplacian [2].

Remark 2.1 Observe that, just with relative measurements, determining the x′is is only possible
up to an additive constant. This ambiguity might be avoided by assuming that a node (say node
1) is used as reference node, i.e., x1 = 0.

2.3 A synchronous distributed consensus based solution

To compute an optimal estimate xopt directly, one needs all the measurements and their covariances
(z, R), and the topology of the measurement graph Gm. In this section the goal is to compute the
optimal solution in a distributed fashion, employing only local communications. In particular we
assume that a node i and another node j can communicate with each other if either (i, j) ∈ Em
or (j, i) ∈ Em. Accordingly, we introduce the communication graph Gc(V, Ec), where (i, j) ∈ Ec if
either (i, j) ∈ Em or (j, i) ∈ Em. Observe that, if (i, j) ∈ Ec then also (j, i) ∈ Ec, namely, Gc is a
bidirected graph. From now on, Ni denotes the set of neighbors of node i in the communication
graph Gc(V, Ec).

In what follows we introduce a distributed solution which is based on standard linear consensus
algorithm. A discussion of the linear consensus algorithm can be found in the review papers
[41, 42], a brief overview can be found in Appendix A. Instead we make the presentation of
the algorithm self-contained. Firstly, we assume that the communications among the nodes are
synchronous, namely, all nodes perform their transmissions and updates at the same instant, and
design the algorithm for this scenario. We refer to this algorithm as the synchronous consensus-
based localization algorithm (denoted hereafter as s-CL algorithm). In section 2.4 we will modify
the s-CL algorithm to make it suitable to asynchronous communications. We assume that before
running the s-CL algorithm, the nodes exchange with their neighbors their relative measurements
as well as the associated covariances. So every node has access to the measurements on the
edges that are incident to it, whether the edge is directed to or away from it. Each node uses
the measurements obtained initially for all future computations. The s-CL algorithm is formally
described as follows.
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Algorithm 1 s-CL

Processor states: For i ∈ {1, . . . , N}, node i stores in memory the measurements
{zij , (i, j) ∈ Em}, and {zji, (j, i) ∈ Em} , and the associated covariances {Rij , (i, j) ∈ Em} and
{Rji, (j, i) ∈ Em}. Moreover node i stores in memory an estimate x̂i of xi.

Initialization: For i ∈ {1, . . . , N}, node i initializes its estimate x̂i(0) to any arbitrary value.

Transmission iteration: For k ∈ N, at the start of the (k + 1)- th iteration of the algorithm,
node i transmits its estimate x̂i(k) to all its neighbors. It also gathers the k-th estimates of its
neighbors, x̂j(k), j ∈ Ni.

Update iteration: For k ∈ N, node i, i ∈ {1, . . . , N}, based on the information received from
its neighbors, updates its estimate as follows

x̂i(k + 1) := pii x̂i(k) +
∑

j∈Ni

pij x̂j(k) + bi

where
bi = ε

∑

(i,j)∈Em

R−1
ij zij − ε

∑

(j,i)∈Em

R−1
ji zji

and where

pij =





ε(R−1
ij +R−1

ji ) if (i, j) ∈ Em and (j, i) ∈ Em
εR−1

ij if (i, j) ∈ Em and (j, i) /∈ Em
εR−1

ji if (j, i) ∈ Em and (i, j) /∈ Em

and
pii = 1−

∑

j∈Ni

pij

being ε a positive constant a-priori assigned to the nodes.

Now, let P ∈ RN×N be the matrix defined by the weights pij above introduced. One can see that
such matrix P is equal to

P = I − εATR−1A.

Moreover let
b = εATR−1z,

and let x̂(k) = [x̂1(k), . . . , x̂N (k)]
T
.. Then the s-CL algorithm can be written in a compact form

as
x̂(k + 1) = P x̂(k) + b

To characterize the convergence properties of the s-CL algorithm, we next introduce two definitions
and a crucial property of the matrix P . First, let dmax = max {|Ni|, i ∈ {1, . . . , N}}. Second, let
Rmin = min {Rij , (i, j) ∈ Em}. Observe that, if 0 < ε < 1/(2dmaxR

−1
min), then the matrix P is

stochastic. If in addition, the measurement graph Gm is weakly connected, and consequently
if communication graph Gc is strongly connected, then the matrix P is primitive. Under these
assumptions, we have the following Proposition:

Proposition 2.2 Consider the s-CL algorithm running over a weakly connected measurement
graph Gm. Let ε be such that 0 < ε < 1/(2dmaxR

−1
min). Moreover let x̂i, i ∈ {1, . . . , N}, be

initialized to any real number. Then the following two facts hold true

(i) the evolution k → x̂(k) asymptotically converges to an optimal estimate xopt ∈ χ, i.e., there
exists α ∈ R, such that

lim
k→∞

x̂(k) = x∗opt + α1;
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where α linearly depends on x̂(0).

(ii) the convergence is exponential, namely, there exists C > 0, ρess < 1 such that

‖x̂(k)−
(
x∗opt+α1

)
‖ ≤ Cρkess(P ) ‖x̂(0)−

(
x∗opt+α1

)
‖.

Proof We start by proving item (i). Let us define the change of variable ξ = x̂ − x∗opt. Since
x∗opt = Px∗opt + b, it is possible to write

x̂(k + 1)− x∗opt = P x̂(k) + b− x∗opt

= P x̂(k) + b− (Px∗opt + b)

= P (x̂(k)− x∗opt)

and, in turn, ξ(k + 1) = Pξ(k). This equation describes the iteration of the classical consensus
algorithm. Since P is a primitive doubly stochastic matrix, we have that

ξ(k)→ 11T

N
ξ(0)

where ξ(0) = x̂(0)− x∗opt. This implies that

x̂(k)→ x∗opt +
11T

N
x̂(0)− 11T

N
x∗opt

The fact that 11T

N x∗opt = 0 concludes the proof of item (i).
Concerning item (ii) it is well known ([40]) that the convergence rate of a consensus algorithm

ruled by a primitive matrix P , is exponential whose delay coefficient is given by the essential
spectral radius ρess(P ). ♦

Remark 2.3 The s-CL algorithm is similar to the algorithm proposed in [8]. However in [8],
the measurement graph is assumed to be undirected, namely, both measurements zij and zji are
available to node i and j under the additional assumption that zij = −zji.

Remark 2.4 The authors in [43] solved the problem formulated in (2.2) proposing a synchronous
algorithm that implements the Jacobi iterative method. The performance of this algorithm, in
terms of rate of convergence to the optimal solution, is similar, for many families of measurement
graphs, to the performance of the synchronous consensus-based algorithm introduced in this
section.

2.4 An asynchronous implementation of distributed
consensus based solution

The distributed algorithm illustrated in the previous section, has an important limitation: it is
applicable only to sensor networks with synchronized and reliable communication. Indeed, the s-CL
algorithm requires that there exists a predetermined common communication schedule for all nodes
and, at each communication round, each node must simultaneously and reliably communicate its
information. The aim of this section is to reduce the communication requirements of the s-CL



24 CHAPTER 2. CONSENSUS BASED LOCALIZATION

algorithm, in particular in terms of synchronization. To do so, we next introduce the asynchronous
Consensus-based Localization algorithm (denoted as a-CL hereafter). This algorithm is based on
an asymmetric broadcast communication protocol. Differently from the s-CL, at each iteration of
the a-CL there is only one node transmitting information to all its neighbors. Since the actual value
of neighboring estimates are not available at each iteration, we assume that each node stores in its
local memory a copy of the neighbors’ variables recorded from the last communication received.
For j ∈ Ni, we denote by x̂(i)

j (k) the estimate of xj kept in i’s local memory at the end of the k-th
iteration. If node j performed its last transmission to node i during h-th iteration, h ≤ k, then
x̂

(i)
j (k) = x̂j(h).
The a-CL algorithm is formally described in Algorithm 2.

Algorithm 2 a-CL

Processor states: For i ∈ {1, . . . , N}, node i stores in memory the measurements zij , zji and
the covariances Rij , Rji for all j ∈ Ni. Moreover node i stores in memory also the estimate x̂i
of xi and, for j ∈ Ni an estimate x̂(i)

j of x̂j .

Initialization: Every node i initializes its estimate x̂i and the variables x̂(i)
j , j ∈ Ni, to arbitrary

values.

Transmission iteration: For k ∈ N, at the start of the (k + 1)-th iteration of the algorithm,
there is only one node, say i, which transmits information to its neighbors; precisely, node i
sends the value of its estimate x̂i(k) to node j, j ∈ Ni.

Update iteration: For j ∈ Ni, node j performs the following actions in order

(i) it sets x̂(j)
i (k + 1) = x̂i(k), while for s ∈ Nj \ {i}, x̂(j)

s is left unchanged, i.e., x̂(j)
s (k + 1) =

x̂
(j)
s (k);

(ii) it updates x̂j as

x̂j(k + 1) := pjj x̂j(k) +
∑

h∈Nj

pjhx̂
(j)
h (k + 1) + bj . (2.3)

Clearly for s /∈ Ni, x̂s is left unchanged during the (k + 1)-th iteration of the algorithm, i.e,
x̂s(k + 1) = x̂s(k).

Remark 2.5 Observe that the Algorithm 2 has been described assuming that the communication
channels are reliable, i.e, no packet losses occur, and that the communication delays are negligible,
i.e., when node i perform a transmission, the estimate x̂i is instantaneously used by its neighbors.
We will come back on these non-idealities in Section 2.6.

Next, we rewrite the updating step of the a-CL in a more compact way. Observe preliminarily
that, under the assumption of reliable communications and by denoting with k̄ the first iteration
after which all nodes have transmitted at least once, then the estimate of node xi stored in the
neighbors of node i is always the same, i.e. for all k ≥ k̄ and `, j ∈ Ni we have x̂(`)

i (k) =

x̂
(j)
i (k). Moreover, if we denote with t′i(k) the iteration during which node i has performed its

last transmission up to iteration k of the a-CL (that is, x̂i(t′i(k)) is the value of x̂i at its last
communication round), then for j ∈ Ni, x̂(j)

i (t′′) = x̂i(t
′
i(k)) for all t′′ such that t′i(k) < t′′ ≤ k.

Now let us define x′i(k) = x̂i(k) and x′′i (k) = x̂i(t
′
i(k)) and, accordingly, let x′(k) = [x′1(k), . . . , x′N (k)]

T

and x′′(k) = [x′′1(k), . . . , x′′N (k)]
T . Moreover let σ(k) denotes the node performing the transmission
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action at the beginning of the k + 1-th iterationlet and let Qσ(k) ∈ R2N×2N be defined as

Qσ(k) =

[
Q

(σ(k))
11 Q

(σ(k))
12

Q
(σ(k))
21 Q

(σ(k))
22

]
(2.4)

where

Q
(σ(k))
11 =

∑

h/∈Nσ(k)

ehe
T
h +

∑

j∈Nσ(k)

(
pjjeje

T
j + pjσ(k)eje

T
σ(k)

)

Q
(σ(k))
12 =

∑

j∈Nσ(k)

ej


 ∑

h∈Nj/σ(k)

pjhe
T
h




Q
(σ(k))
21 = eσ(k)e

T
σ(k)

Q
(σ(k))
22 = I − eσ(k)e

T
σ(k)

being e`, ` ∈ {1, . . . , N}, the N -dimensional vector having all the components equal to zero except
the `-th component which is equal to 1. Observe that, for σ(k) ∈ {1, . . . , N}, Qσ(k) is a 2N -
dimensional stochastic matrix. Finally let

Bσ(k) =

[ ∑
j∈Nσ(k) e

T
j b

0N

]

Assume, without loss of generality, that node σ(k) is the node performing the transmission during
the (k+1)-th iteration of the a-CL. Hence the updating step of a-CL can be written in vector form
as [

x′(k + 1)

x′′(k + 1)

]
= Qσ(k)

[
x′(k)

x′′(k)

]
+Bσ(k), k ≥ k̄ (2.5)

Now let us introduce the auxiliary variable

ξ(k) =

[
x′(k)

x′′(k)

]
−
[

x∗opt
x∗opt

]
.

By exploiting the fact that, for σ(k) ∈ {1, . . . , N},
[

x∗opt
x∗opt

]
= Qσ(k)

[
x∗opt
x∗opt

]
+Bσ(k) (2.6)

we have that the variable ξ satisfies the following 2N -dimensional recursive equation

ξ(k + 1) = Qσ(k)ξ(k). (2.7)

Observe that x̂(k) → x∗opt + α1 if and only if ξ(k) → α1. Moreover, since Qσ(k) is a stochastic
matrix for any σ(k) ∈ {1, . . . , N}, we have that (2.7) represents a 2N -dimensional time-varying
consensus algorithm.

In next sections, we analyze the convergence properties and the robustness to delays and packet
losses of the a-CL algorithm by studying system (2.7) resorting to the mathematical tools developed
in the literature of the consensus algorithms. In particular we will provide our results considering
two different scenarios which are formally described in the following definitions.

Definition 2.6 (Randomly persistent comm. network) A network of N nodes is said to
be a randomly persistent communicating network if there exists a N -upla (β1, . . . , βN ) such that
βσ(k) > 0, for all σ(k) ∈ {1, . . . , N}, and

∑N
σ(k)=1 βσ(k) = 1, and such that, for all k ∈ N,

P [the transmitting node at iteration k is node σ(k)] = βσ(k).
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Definition 2.7 (Uniformly persistent comm. network) A network of N nodes is said to
be a uniformly persistent communicating network if there exists a positive integer number τ such
that, for all k ∈ N, each node transmits the value of its estimate to its neighbors at least once
within the time interval [k, k + τ).

2.5 Performance analysis of a-CL algorithm under
randomly persistent communications

The following result characterizes the convergence properties of the a-CL when the network is
randomly persistent communicating.

Proposition 2.8 Consider a randomly persistent communicating network of N nodes running
the a-CL algorithm over a weakly connected measurement graph Gm. Let ε be such that 0 < ε <

1/(2dmaxR
−1
min). Moreover let x̂i, i ∈ {1, . . . , N}, x̂(i)

j , j ∈ Ni, be initialized to any real number.
Then the following facts hold true

(i) the evolution k → x̂(k) converges almost surely to an optimal solution xopt ∈ χ, i.e., there
exists α ∈ R such that

P
[

lim
k→∞

x̂(k) = x∗opt + α1

]
= 1.

(ii) the evolution k → x̂(k) is exponentially convergent in mean-square sense, i.e., there exist
C > 0 and 0 ≤ ρ < 1 such that

lim
k→∞

E
[
‖x̂(k)− (x∗opt + α1)‖2

]

≤ CρkE
[
‖x̂(0)− (x∗opt + α1)‖2

]
.

Proof The proof of Proposition 2.8 is based on proving the convergence to consensus of (2.7) using
the mathematical tools developed in [44]. Let σ be the random process such that σ(k) denotes the
node performing the transmission action at the beginning of the k+ 1-th iteration. Clearly, in the
randomized scenario we are considering, we have that, for i ∈ {1, . . . , N}, P[σ(k) = i] = βi for all
k. Let

S(k) =

k∏

h=0

Qσ(h).

Observe that S(k) inherits the same block structure of the matrices {Qi}Ni=1, namely we can write

S(k) =

[
S11(k) S12(k)

S21(k) S22(k)

]

As consequence of Theorem 3.1 in [44] the a-CL reaches almost surely consensus if and only if,
for every i and j in V

P [Eij ] = 1, (2.8)

where
Eij = {∃`,∃k |Si`(k)Sj`(k) > 0} .

Now observe that, since the measurement graph is weakly connected, then the communication
graph is a connected undirected graph. This fact together with the fact the diagonal elements of
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Q
(i)
11 are all positive for any i ∈ {1, . . . , N} implies that there exists almost surely k̄ such that, for

all k′ ≥ k̄, all the elements of the matrix S11(k′) are strictly greater than 0. Assume now, without
loss of generality, that σ(k′) = i, for k′ ≥ k. Then, since the i-th row of S21(k′ + 1) is equal to
eie

T
i S11(k′), it turns out that, all the elements of the i-th row of S21(k′ + 1) are strictly greater

than 0. Moreover, it is easy to see that they will remain strictly greater than 0 also for any k′′ ≥ k′.
Hence we can argue that, there exists almost surely, also a k̄′ such that for all k′ ≥ k̄′, all the
elements of the matrix S21(k′) are strictly greater than 0. It follows that the property stated in
(2.8) is satisfied for any k ≥ k̄′ and for any ` ∈ {1, . . . , N}. This concludes the proof of item (i).

Concerning item (ii), we again resort to the results in [44]. Let Ω = I − 1
2N 11T where in

this expression we assume that I is the 2N -dimensional identity matrix and the vector 1 is
2N -dimensional. From the results in [44], it follows that to study the rate of convergence of
E
[
‖ξ(k)− α1‖2

]
is equivalent to study the convergence rate of E‖Ωξ(k)‖2 and in particular of the

linear recursive system
∆(t+ 1) = E

[
QTσ(0)∆(t)Qσ(0)

]

where ∆(0) = Ω. Observe that ∆(t) is the evolution of a linear dynamical system which can be
written in the form

∆(t+ 1) = L(∆(t))

where L : R2N×2N → R2N×2N is given by

L(M) = E
[
QTσ(0)MQσ(0)

]
.

As highlighted in [44], the linear operator L can be represented by the matrix L = E[Qσ(0)⊗Qσ(0)]
T

where ⊗ denotes the Kronecker product of matrices. Following the proof of Proposition 4.3 of [44],
one can see that LT is a primitive stochastic matrix which, therefore, has the eigenvalue 1 with
algebraic multiplicity 1. Moreover, LT(1 ⊗ 1) = (1 ⊗ 1) and (1 ⊗ 1)(Ω ⊗ Ω) = 0, from which
it follows that E‖Ωξ(k)‖2 ≤ Cρess(L

T)E‖Ωξ(0)‖2 where ρess(LT) denotes the essential spectral
radius of LT. ♦

2.5.1 Bounds on the convergence rate of the a-CL algorithm

In this section we provide some insights on the convergence rate of the a-CL algorithm in the
randomly persistent communicating scenario. To do so, we consider Eqn. (2.7) whose performance
in terms of rate of convergence to the consensus can be analyzed following again the treatment
in [44]. Typically, one would like to study the convergence rate of a randomized consensus al-
gorithm by providing a mean-square analysis of the behavior of the distance between the state
and the asymptotic consensus point, namely, by analyzing the rate of convergence of the quantity
E
[
‖ξ − α1‖2

]
. Unfortunately, this is not a trivial task in general. To overcome this difficulty

we study the evolution of Ω ξ. The first consequence of the results obtained in [44] is that the
quantities E

[
‖ξ − α1‖2

]
and E

[
‖Ωξ‖2

]
have the same exponential convergence rate to zero, or,

more formally, given any initial condition ξ(0),

lim sup
k→∞

E
[
‖ξ(k)− α1‖2

]1/k
= lim sup

k→∞
E
[
‖Ωξ(k)‖2

]1/k
.

For this reason, in what follows we study the right-hand expression, which turns out to be simpler
to analyze. In order to have a single performance metric not dependent on the initial condition,
we focus on this worst case exponential rate of convergence

R = sup
ξ(0)

lim sup
k→∞

E
[
‖Ωξ(k)‖2

]1/k

It has been proved in Proposition 4.4 of [44] that
[
ρess(Q̄)

]2 ≤ R ≤ sr(E(QTi ΩQi)). (2.9)
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where Q̄ is the average consensus matrix, namely, Q̄ = E[Qi] =
∑N
i=1 βiQi, and where sr(E(QTi ΩQi))

denotes the spectral radius of the semidefinite positive matrix E(QTi ΩQi), i.e., its largest eigen-
value. Unfortunately, it turns out from a numerical inspection over significant families of graphs,
like Cayley graphs (see [40]) and random geometric graphs, that the upper bound sr(E(QTi ΩQi))

is greater than 1, that is, it is not informative for our analysis. However we have run a number of
MonteCarlo simulations randomized over graphs of different topology and size and over different
initial conditions, and it always resulted that lim supk→∞ E

[
‖Ωξ(k)‖2

]1/k ≤ ρess(Q̄). Based on
this experimental evidence we formulate the following conjecture.

Conjecture 2.9 The quantity ρess(Q̄) is an upper bound for the exponential convergence rate
R, i.e.,

R ≤ ρess(Q̄)

The above conjecture and the fact that
[
ρess(Q̄)

]2 ≤ R motivates to study ρess(Q̄).

Remark 2.10 Notice that equation (2.7) describes a higher order consensus algorithm, for which
few analytic tools are available. In fact, the few works available in the literature which address
the rate of convergence of randomized higher order consensus algorithms are limited to the con-
vergence in expectation [36].

2.5.2 Rate Analysis of a-CL algorithm for regular graphs

In this section we assume that the measurements graph Gm = (V, Em) is a strongly connected
bidirected regular graph such that, for i ∈ {1, . . . , N}, |Ni| = ν. Moreover we assume the following
properties.

Assumption 2.11 We have that

(i) the error measurements covariances are all identical, i.e., Rij = R for all (i, j) ∈ Em;

(ii) ε = R/(2(ν + 1));

(iii) the probabilities {β1, . . . , βN} are uniform, i.e., β1 = . . . = βN = 1/N .

Observe that, from properties (i) and (ii) of Assumption 2.11, it turns out that the matrix
P = I − εATR−1A, associated to the s-CL algorithm, is symmetric and such that Pij = 1/(ν + 1)

for j ∈ Ni ∪ {i}. Let λ1(P ) = 1 > λ2(P ) ≥ . . . ≥ λN (P ) be the eigenvalues of P . Then
ρess(P ) = max {|λ2(P )|, |λN (P )|}. The following Lemma illustrates how the 2N eigenvalues of Q̄
are related to those of P .

Lemma 2.12 Consider the a-CL algorithm running over a bidirected regular graph Gm = (V, Em)

such that, for i ∈ {1, . . . , N}, |Ni| = ν. Assume Assumption 2.11 holds true. Then the 2N

eigenvalues of Q̄ are the solutions of the following N second-order equations

f(s;λi, N, ν) = s2 + (a+ b)s+ (ab+ c) (2.10)

where

a = −
[
N − ν
N

+
λi
N

+
ν − 1

N(ν + 1)

]

b = −N − 1

N
, c = −ν − 1

N2
(λi −

1

ν + 1
)
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Now let s(i)
1 and s(i)

2 denote the two solutions of f(s;λi, N, ν). It easy to see that s(1)
1 = 1 and

s
(1)
2 = 1− ν2+1

N(ν+1) . The following result restricts the search of ρess(Q̄) among the values |s(2)
1 |, |s

(2)
2 |

and 1− ν2+1
N(ν+1) .

Theorem 2.13 Consider the a-CL algorithm running on an bidirected regular graph Gm =

(V, Em) such that, for i ∈ {1, . . . , N}, |Ni| = ν. Assume Assumption 2.11 holds true. Moreover
let
γ∗ =

ν−1+N(ν+1)−
√
N2(ν+1)2−2N(ν3+ν+2)+(ν−1)2+(ν2+1)2

ν+1

then

(i) if 1− ρess(P ) ≤ γ∗ =⇒ ρess(Q̄) = max(|s(2)
1 |, |s

(2)
2 |);

(ii) if 1− ρess(P ) > γ∗ =⇒ ρess(Q̄) = s
(1)
2 = 1− ν2+1

N(ν+1) .

The proofs of Lemma 2.12 and Theorem 2.13 follows from standard algebraic manipulations.
Due to space constraints we do not include them here, but we refer the interested reader to the
document [45].

We provide now an asymptotic result on ρess(Q̄). To do so, consider a sequence of connected
undirected regular graphs GN of increasing size N , and fixed degree ν. Assume Assumption 2.11
holds true for any GN . Then to any GN we can associate a stochastic matrix PN such that
(PN )ij = 1/(ν + 1) for all j ∈ Ni ∪ {i}. Let us assume the following property.

Assumption 2.14 Consider the sequence of matrices PN associated to the sequence of graphs
GN above described and assume that

ρess (PN ) = 1− ε(N) + o(ε(N)) (2.11)

where ε : N→ R is a positive function such that ε(N)→ 0 as N →∞.

Important families of matrices satisfying the above assumption (2.11) are given by the matrices
built over the d-dimensional tori and the Cayley graphs (see [40]). It is worth remarking that the
tori and the Cayley graphs have been shown to exhibit important spectral similarities with the
random geometric graphs [46], which is a family of graphs that, during the last years, has been
successfully used to model wireless communication in many applications [47]. Now, let the matrix
Q̄N represent the average matrix associated to the a-CL algorithm running over GN . The following
result characterizes the asymptotic behavior of ρess

(
Q̄N
)
, with respect to ρess (PN ).

Proposition 2.15 Consider the sequence of graphs GN described above. Consider the a-CL
algorithm running over GN . Assume Assumption 2.11 and Assumption 2.14 hold true. Then

ρess
(
Q̄N
)

= 1− ν(ν + 1)

N(ν2 + 1)
ε(N) + o

(
ε(N)

N

)
. (2.12)

Proof Let γi = 1− λi, then we can rewrite Eqn. (2.10) as:

f(s;λi, N, ν) = d(s;N, ν) + γin(s;N, ν) , g(s; γi, N, ν)
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so that g is an explicit function of γi, where

d(s;N, ν) = s2 − 2N(ν + 1)− (ν2 + 1)

N(ν + 1)
s+ 1− ν2 + 1

N(ν + 1)

n(s; sN, ν) =
s

N
+
ν −N
N2

Note that

lim
N→∞

γ∗(ν,N) =
ν2 + 1

(ν + 1)2

therefore, according to Theorem 2.13 and assumption 2.14, for N sufficiently large, ρess(Q̄N ) is
given by (i). Since γ2 = 1− λ2 + ε(N) + o(ε(N)), then s(2)

1 = s̄
(2)
1 + αε(N) + o(ε(N)) and s(2)

2 =

s̄
(2)
2 + βε(N) + o(ε(N)) for some scalar α, β, where λ2 = ρess(PN ) and s̄(2)

1 , s̄
(2)
2 are the solutions

of second order equation g(s; 0, N, ν) = 0. It is easy to verify that s̄(2)
1 = 1 and s̄(2)

2 = 1− ν2+1
N(ν+1) .

Since |s̄(2)
1 | > |s̄

(2)
2 |, then for N sufficiently large and by continuity we have ρess(Q̄N ) = |s(2)

1 |. We
are therefore interested in explicitly computing the scalar α. Since





g(1; 0, N, ν) = 0
∂g
∂s

∣∣∣
(1,0,N,ν)

6= 0

it is possible to exploit the implicit function theorem that allows us to write:

s
(2)
1 = 1− ∂g

∂γi

(
∂g

∂s

)−1
∣∣∣∣∣
(1,0,N,ν)

(ε(N) + o(ε(N)))

= 1− ν(ν + 1)

N(ν2 + 1)
ε(N) + o

(
ε(N)

N

)

which means that ρess(Q̄) can be expressed as

ρess(Q̄) = 1− ν(ν + 1)

N(ν2 + 1)
ε(N) + o

(
ε(N)

N

)
(2.13)
♦

Thank to [44], we know that the rates of convergence are lower bounded by ρess(Q̄N )2, while we
recall we conjecture that R ≤ ρess(Q̄N ). From the above Proposition we can get the following result
which compares the convergence rate R of the a-CL algorithm with respect to the convergence rate
of the s-CL algorithm.

Corollary 2.16 Consider a sequence of graphs GN as in Proposition 2.15. Consider the a-CL
algorithm running over GN . Assume Assumption 2.11 and Assumption 2.14 hold true. Then, for
N � 1,

1− ρess(Q̄N )

1− ρess(PN )
' ν(ν + 1)

N(ν2 + 1)

and
1−

[
ρess(Q̄N )

]2

1− ρess(PN )
' 2

ν(ν + 1)

N(ν2 + 1)

namely, assuming Conjecture 2.9 holds true, the a-CL algorithm slows down of a factor 1/N with
respect to the synchronous implementation.

Observe that the fact the rate of convergence in expectation is reduced by a factor N , is not
surprising because in the a-CL there is only one node transmitting information at each iteration.
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Remark 2.17 It is worth remarking that also standard memoryless asynchronous consensus
algorithms based on asymmetric broadcast communication protocols, slow down their convergence
rate by a factor 1/N with respect to the standard synchronous consensus implementations, see
[48]. In other words, the presence of memory storage in the a-CL does not further deteriorate the
convergence rate with respect to standard memoryless asynchronous consensus algorithms.

Remark 2.18 A similar analysis can be provided also for other relevant families of regular
graphs like the complete graphs and, more in general, the Ramanujan graphs [49]. Let us recall
the asymptotic lower bound proved by Alon and Boppana for doubly stochastic matrices built
over ν-regular bidirected graphs. Specifically, if A denotes the adjacency matrix of a ν-regular
bidirected graph, let P be the doubly stochastic matrix defined as P = ν−1A, then

lim inf
N→∞

ρess(P ) ≥ 2
√
ν − 1

ν

where the lim inf is taken along the family of all ν-regular bidirected graphs having N vertices.
Ramanujan graphs are those ν-regular bidirected graphs which achieves the previous bound,
i.e., such that ρess(P ) = 2

√
ν−1
ν . Hence through the Ramanujan graphs it is possible to keep

the essential spectral radius bounded away from 1, while keeping the degree fixed. Exploiting
Theorem 2.13, it is possible to prove that, for the a-CL algorithm running over Ramanujan graphs,
it holds ρess(Q̄) = 1− α(ν)/N , where α(ν) ≤ 1 depends only on the degree ν, and, in turn,

1− ρess(Q̄)

1− ρess(P )
' α(ν) ν

N
√
ν + 1

In other words also for the Ramanujan graphs, the a-CL algorithm is slowered down by a factor
of 1/N with the respect to the synchronous implementation. Concerning the complete graphs we
have that ρess(P ) = 0 and, again from Theorem 2.13, that ρess(Q̄) = 2(N−1)

N . Hence it follows
that, for N � 1,

1− ρess(Q̄)

1− ρess(P )
' 1.

namely, the a-CL algorithm is not slowered down by a factor N . This is due to the fact that,
when a complete graph is employed, the number of neighbors of each node linearly increases with
the size of the graph. Due to space constraints, we do not include here all the details of the
analysis related to the Ramanujan graphs which, however, can be found in [45].

It is worth remarking that, even though there are plenty of Ramanujan graphs, it is still an
open problem if for any pair N and ν there exist Ramanujan graphs with N vertices and of
degree ν. Moreover, even if they exist, their construction is quite complex, thus making them of
marginal interest from an application standpoint.

Remark 2.19 Following Remark 2.4, it is worth stressing that also the Jacobi-like strategy
introduced in [2] is amenable of asynchronous implementation, see [1]. However, to the best of
our knowledge, no theoretical analysis of the rate of convergence of the asynchronous version,
introduced in [1], has been proposed in the literature.
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2.6 Robustness properties of the a-CL algorithm with
respect to packet losses and delays

In section 2.4 we have introduced the a-CL algorithm assuming that the communication channels
are reliable, i.e., no packet losses occur, and that the transmission delays are negligible. In this sec-
tion we relax these assumptions and we show that the a-CL algorithm still converges provided that
the network is uniformly persistent communicating and the transmission delays and the frequencies
of communication failures satisfy mild conditions which we formally describe next.

Assumption 2.20 (Bounded packet losses) There exists a positive integer L such that the
number of consecutive communication failures between every pair of neighboring nodes in the
communication graph Gc is less than L.

Assumption 2.21 (Bounded delay) Assume node i broadcasts its estimate to its neighbors
at the beginning of iteration k, and, assume that, the communication link (i, j) does not fail.
Then, there exists a positive integer D such that the information x̂i(k) is used by node j to
perform its local update not later than iteration k +D.

Loosely speaking Assumption 2.20 implies that there can be no more than L consecutive packet
losses between any pair of nodes i, j belonging to the communication graph. Differently, Assump-
tion 2.21 consider the scenario where the received packets are not used instantaneously, but are
subject to some delay no greater than D iterations.

Clearly, in this more realistic scenario, it turns out that the implementation of the a-CL is
slightly different from the description provided in Section 2.4. Specifically, consider the k-th itera-
tion of the a-CL algorithm and, without loss of generality, assume node i is the transmitting node
during this iteration. Due to the presence of packet losses and delays, it might happen that the
set of updating nodes is, in general, different from the set Ni. In fact, for j ∈ Ni, node j does
not perform any update since the packet x̂i(k) from node i is lost or simply because the update
is delayed. Moreover there might be a node h /∈ Ni which, during iteration k, decides to perform
an update since it received a packet x̂s, s ∈ Nh, within the last D iterations. This scenario can be
formally represented by the set of nodes V ′(k) ⊆ V which decide to perform an update at iteration
k. Then, Eqn. (2.3) can be rewritten as

x̂j(k + 1) := pjj x̂j(k) +
∑

h∈Nj

pjhx̂h(k′h) + bj , (2.14)

for all j ∈ V ′(k), where k− (τL+D) ≤ k′h ≤ k, i.e. loosely speaking when an update is performed,
the local estimate of the neighbouring nodes cannot be older than τL + D iterations2. Indeed, if
L = D = 0, then we recover the standard a-CL algorithm where V ′(k) = Ni.

The following result characterizes the convergence properties of the a-CL in presence of delays,
packet losses and when the network is uniformly persistent communicating.

Proposition 2.22 Consider a uniformly persistent communicating network of N nodes running
the a-CL algorithm over a weakly connected measurement graph Gm. Let Assumptions 2.20 and
2.21 be satisfied. Let ε be such that 0 < ε < 1/(2dmaxR

−1
min). Moreover let x̂i, i ∈ {1, . . . , N},

x̂
(i)
j , j ∈ Ni, be initialized to any real number. Then the following facts hold true

2Recall we are assuming the network is uniformly persistent communicating, namely, for all k ∈ N, each node performs
at least one transmission within the time interval [k, k + τ).
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(i) the evolution k → x̂(k) asymptotically converges to an optimal estimate xopt ∈ χ, i.e., there
exists α ∈ R such that

lim
k→∞

x̂(k) = x∗opt + α1;

(ii) the convergence is exponential, namely, there exists C > 0 and 0 ≤ ρ < 1 such that

‖x̂(k)−
(
x∗opt + α1

)
‖ ≤ Cρk‖x̂(0)−

(
x∗opt + α1

)
‖.

Proof First we review the result stated in Proposition 1 in [50]. In [50], the authors consider the
following consensus algorithm with delays3

xi(k + 1) =

m∑

j=1

aij(k)xj(k − tij(k)) (2.15)

where xi denotes the state of node i, i ∈ {1, . . . ,M}, the scalar tij(k) is nonnegative and it represents
the delay of a message from agent j to agent i, while the scalar aij(k) is a nonnegative weight that
agent i assigns to a delayed estimate xj(s) arriving from agent j at time k. It is assumed that the
weights aij(k) satisfy the following assumption.

Assumption 2.23 There exists a scalar η, 0 < η < 1 such that

(i) aii(k) ≥ η for all k ≥ 0;

(ii) aij(k) ≥ η for all k ≥ 0, and all agents j whose (potentially delayed) information xj(s)

reaches agent i during the k-th iteration;

(iii) aij(k) = 0 for all k ≥ 0 and j otherwise.

(iv)
∑m
j=1 a

i
j(k) = 1 for all i and k.

For any k let the information exchange among the agents may be represented by a directed graph
(V, Ek), where V = {1, . . . ,m} with the set Ek of directed edges given by Ek =

{
(j, i)|aij(k) > 0

}
.

The authors impose a connectivity assumption on the agent system, which is stated as follows.

Assumption 2.24 The graph (V, E∞) is connected, where E∞ is the set of edges
(j, i) representing agent pairs communicating directly infinitely many times, i.e., E∞ =

{(j, i)|(j, i) ∈ Ek for infinitely many indices k}.

Additionally it is assumed that the intercommunication intervals are bounded for those agents
that communicate directly. Specifically,

Assumption 2.25 There exists an integer B ≥ 1 such that for every (j, i) ∈ E∞, agent j sends
information to its neighbor i at least once every B consecutive iterations.

Finally, it is assumed that the delays tij(k) in delivering a message from an agent j to any
neighboring agent i is uniformly bounded at all times. Formally

3We adopt the notations of paper [50].
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Assumption 2.26 Let the following hold:

(i) tii(k) = 0 for all agents i and all k ≥ 0.

(ii) tij(k) = 0 for all agents j communicating with agent i directly and whose estimates xj are
not available to agent i during the k-th iteration.

(iii) There is an integer B1 such that 0 ≤ tij(k) ≤ B1 − 1 for all agents i, j, and all k.

The result illustrated in Proposition 1 of [50] is recalled in the following Proposition.

Proposition 2.27 Let Assumption 2.23, 2.24, 2.25, 2.26 hold. Then the sequences
{
x(i)(k)

}
,

i = 1, . . . ,m, generated by Equation (2.15) converge exponentially to a consensus.

Thanks to this fact we show that a-CL algorithm in presence of delays and packet losses can be
rewritten as a consensus with delays that satisfies Assumptions 2.23, 2.24, 2.25, and 2.26 beforehand
reported.

To this aim, let δj(k) = x̂j(k)− [x∗opt]j where [x∗opt]j denotes the j-th component of the vector
x∗opt. Recalling that x∗opt = Px∗opt + b and, according to (2.14) we have that, if j ∈ V ′(k)

δj(k + 1) := pjjδj(k) +
∑

h∈Nj

pjhδh(k′h), (2.16)

otherwise
δj(k + 1) = δj(k).

The above equations describe a consensus algorithm on the variables δ1, . . . , δN which satisfies
Assumptions 2.23, 2.24,2.25,2.26. Indeed Assumption 2.23 on the weights is trivially satisfied.
Assumption 2.24 follows from the facts that the communication graph Gc is connected, the network
is uniformly persistent communicating and from Assumptions 2.20 and 2.21. Assumption 2.25 is a
consequence of the fact that the network is uniformly persistent communicating and Assumption
2.20; in our setup we have B = Lτ . Finally Assumption 2.26 follows from Assumption 2.21 and
equation (2.16). Hence the variables δ1, . . . , δN converge exponentially to a consensus value α
which, in turn, implies that x̂ converge exponentially to x∗opt + α1. ♦

Remark 2.28 We believe that the analysis of the robustness to packet losses of the a-CL algo-
rithm might be performed also in the randomized scenario considered in Section 2.5 assuming
that each transmitted packet might be lost with a certain probability. We leave this analysis
as future research. However in the numerical section, specifically in Example 2.30, we show the
effectiveness of the a-CL algorithm also in presence of random communication failures when the
network is randomly persistent communicating.

Remark 2.29 Also the Jacobi-like strategy has been shown to be robust to packet losses, see
[1]. Instead, concerning the other algorithms recently proposed in the literature, see [7, 10], to
the best of our knowledge, no analysis considering the non-idealities introduced in this section
has been proposed in the literature.
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2.7 Numerical Results

In this Section we provide some simulations implementing the localization consensus-based strategy
introduced in this paper.

Example 2.30 In this example we consider a random geometric graph generated by choosing
N = 100 points randomly placed in the interval [0, 1]. Two nodes are connected and take mea-
surements if they are sufficiently close, i.e more specifically, both measurements zij and zji are
available provided that |xi−xj | ≤ 0.15. This choice resulted in networks with an average number
of neighbours per node of about 7. Every measurement was corrupted by Gaussian noise with co-
variance σ2 = 10−4. In this example we assumed that the network is randomly persistent commu-
nicating with uniform communication probabilities (β1, . . . , βN ), namely, β1 = . . . = βN = 1/N .
Moreover the possibility of communication failure is taken into account. Specifically, supposing
node i is transmitting, each node j ∈ Ni with a certain probability i.e., pf , can not receive the
sent packet.

In Figure 2.1 we plotted the behavior of the error

J(k) = log (‖A(x̂(k)− x∗)‖)

for different values of the failure probability pf .
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Figure 2.1: Behavior of J for a randomly persistent communicating network in a random geometric graph,
for different values of the probability failure pf .

The plot reported is the result of the average over 1000 Monte Carlo runs, randomized with
respect to both the measurement graph4 and the initial conditions. Observe that the trajectory
of J decreases exponentially.

Example 2.31 In this example we tested the validity of conjecture 2.9. In Figure 2.2 (top panel)
it is show the simulation considering a set of 2-dimensional torus graphs of increasing size N ,
while in Figure 2.2 (bottom panel) the simulation is performed considering a family of Random
Geometric graphs. What we show is a comparison between the empirical rate of convergence of
the algorithm, its lower bound, represented by esr(Q̄)2, and the esr(Q̄).
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Figure 2.2: Trend of the rate of convergence, of the esr(Q̄)2 and of the esr(Q̄) for 2− d torus (top panel)
and for random geometric graphs (bottom panel) of increasing size N .

Example 2.32 In this example we provide a numerical comparison with some well known algo-
rithms proposed in literature which, for sake of the completeness, we briefly recall (Table 2.1).

Algorithm Sent packets per iteration
a-CL 1
a-GL 1
BC |Ni|+ 1

REK |Nj |+ 5

Table 2.1: Number of sent packets per iteration for each algorithm.

The first algorithm considered, hereafter called a-GL algorithm, is proposed in [3]. Similarly
to the a-CL algorithm, during its k-th iteration one node, say h, transmits its variable x̂h to all
its neighbors. For l ∈ Nh, node l, based on the information received from node h, performs the
following update

x̂l(k + 1) = 1/2 (x̂l(k)+x̂h(k)+1/2(zlh−zhl))
= x̂l(k)+1/2 (x̂l(k)−x̂h(k)+1/2(zlh−zhl))

while for l /∈ Nh the state remains unchanged, i.e., x̂l(k + 1) = x̂l(k). Note that just one packet
is transmitted at each iteration. Moreover, since this algorithm is known to reach mean square
convergence [8], then its ergodic mean has been proposed as a possible estimator of the state.
The second algorithm, denoted hereafter as BC algorithm, is proposed in [7]. It requires a
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coordinated broadcast communication protocol meaning that, during k-th iteration one node,
say h, asks the variable x̂l to all its neighbors l ∈ Nh. When it receives the current state val-
ues, it performs the following greedy local optimization based on the current status of the network:

x̂h(k + 1) := argminx̂h
∑|E|

(i,j)∈E ‖x̂i(k)− x̂j(k)− zij‖2

= 1
2|Nh|

∑
l∈Nh (2x̂l(k)− zlh + zhl)

Note that the number of communications performed during one iteration are |Nh|+1, since there
is a broadcast packet sent by node h, and |Nh| packets sent by all its neighbours. We stress the
fact that the Jacobi-like algorithm proposed [1] is indeed the same algorithm proposed in [7].
The last algorithm that we considered is the Randomized Extended Kaczmarz, hereafter called
REK algorithm, presented in [10], consisting of two different update steps. The first step is an
orthogonal projection of the noisy measurements onto the column space of the incidence matrix A
in order to bound the measurements error. The second step is similar to the standard Kaczmarz
update. Since a distributed implementation is not formally presented in [10], we propose the
following. More specifically, let s ∈ RM be the current projection of the noisy measurements
onto the column space of A. Similarly as above, we denote with a little abuse of notation the
e-th entry of s with the corresponding edge, i.e. se = sij . Then, the REK algorithm proposed
in [10] for general least-squares problems, reduces in our setting to randomly and independently
selecting a node h and an edge (i, j) at each iteration k according to the following probabilities:

ph =
|Nh|+ 1

2M
; pij =

1

M

and then to performing the following local updates:

s`h(k+1) = s`h(k)+

∑
m∈Nh(shm(k)−smh(k))

|Nh|+1
, ∀` ∈ Nh

sh`(k+1) = sh`(k)−
∑
m∈Nh(shm(k)−smh(k))

|Nh|+1
, ∀` ∈ Nh

x̂i(k + 1) = x̂i(k) +
zij − sij(k)− (x̂i(k)− x̂j(k))

2

x̂j(k + 1) = x̂j(k)− zij − sij(k)− (x̂i(k)− x̂j(k))

2

We point out that, since in the updating step only local information is required, the algorithm is
implemented in a distributed fashion and it exactly requires |Nj | + 5 communication rounds to
perform an iteration. Specifically the first |Nj | + 2 are due to the update of the variable s and
the last 3 are needed to update x̂.
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Figure 2.3: Comparison of various algorithms considering the number of iteration (top panel) and number
of sent packets (bottom panel).

In this example we consider a random geometric measurement graph G built as in the previous
example. In Figure 2.3 we plot the behavior of J respect to the number of iterations and sent
packets. From these simulations, we observe that from an energy point of view the a-CL algorithm
is the most convenient since the effective number of sent packets to achieve a certain estimation
error, is lower. On the other hand if no energy constraint is imposed, then BC is the fastest
algorithm, although not substantially faster than REK and a-CL.
As observed in [3] the local estimates of a-GL algorithm do not converge to the optimal solution,
but they oscillate around it. However, a-GL exhibits the fastest transient among all algorithms
and it is also energetically efficient. In our recent work, we thus proposed to combine the a-
CL algorithm with the a-GL algorithm in order to have fast transient as well as guaranteed
exponential asymptotic convergence by using suitable switching strategies [38].



3
Multi-Robot Localization via GPS and Relative

Measurements

In this chapter we address the problem of multi-vehicle localization where the estimate has to be
performed in real-time and communication is achieved via wireless communication. We propose
to integrate less precise global sensors (GPS and compass) with more precise relative positioning
sensors (range and bearing sensors) in order to achieve global high accuracy. Intuitively, precise
range and bearing sensors would allow for the reconstruction of a relative formation but provides
no information about the global position and orientation of the formation. Differently, compass
and GPS installed in multiple vehicles can provide estimation of the centroid and orientation of
the whole formation. The fusion of these two types of information would allow an accurate global
positioning of all vehicles. The chapter is organized as follows. In Section 3.1 we introduce some
mathematical notation useful later on. In Section 3.2 we present the measurement model and we
formulate the maximum likelihood estimator and a possible linear approximation. In Section 3.3
we present a distributed and asynchronous solution of the problem highlighting its resilience to
packet losses. Section 3.4 reports the numerical results.

3.1 Mathematical Preliminaries

Resorting to standard graph theory, the estimation problem can be naturally associated with an
undirected measurement graph Gm = (V ; Em) where V ∈ {1, . . . , N} represents the nodes and
Em ⊂ V × V contains the unordered pairs of nodes {i, j} which are connected to and measure
each other. We denote with Ni ⊆ V the set {j | {i, j} ∈ Em}, i.e. the neighboring set of
node i. An undirected graph Gm is said to be connected if for any pair of vertices {i, j} a path
exists, connecting i to j. In the problem at hand, we consider a communication graph among the
nodes which coincides with the measurements graph Gm. Moreover, broadcast and asynchronous
communications are assumed among the nodes. We denote with | · | the modulus of a scalar.
Assuming M to be the cardinality of Em, the incidence matrix A ∈ RM×N of Gm is defined as
A = [aei], where aei = {1,−1, 0}, if edge e is incident on node i and directed away from it, is
incident on node i and directed toward it, or is not incident on node i, respectively. We denote
with the symbol ‖ · ‖ the vector 2-norm and with [·]T the transpose operator. The symbol �
represents the Hadamard product. Given a vector v ∈ R2, the function atan2(·) : R2 → [0, 2π]

returns its angle, i.e., v = ‖v‖ej atan2(v). Given a matrix v ∈ R2×n, with vctr. we denote the vector
centroid, i.e., vcrt. = 1

n

∑n
i=1 vi, where vi is the i- th row of the matrix. The symbol σx denotes the

standard deviation of the generic measurement x. The operator E[·] denotes the expected value,
while proj(·) : R → R2 denotes the function proj(θ) =

[
cos θ sin θ

]T
. Finally, I denotes the

identity matrix of suitable dimensions.

39
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3.2 Problem Formulation

Consider the problem of estimating the 2D positions, expressed in a common reference frame, of N
nodes of a sensor network. Each node of the network is endowed with a set of sensors that provide
both relative and absolute measurements.
In the following, firstly, we introduce the statistical models exploited for each type of measure-
ments. Secondly, we formulate the non linear Maximum-Likelihood estimation problem. Thirdly,
we introduce a suitable linear and convex reformulation.

3.2.1 Measurement Model

We assume that the N nodes are provided with a GPS module, a compass, a relative range sensor,
and a relative bearing sensor. We denote with pi = (xi, yi), i ∈ V , the 2D position of node i in a
common inertial frame, and with θi its orientation with respect to the inertial North axis, which
in the following we assume to coincide with the x-axis. Each sensor is described by the following
statistical model:

(i) The GPS measurement pGPS
i = (xGPS

i , yGPS
i ) represents a noisy measurement of pi = (xi, yi).

We assume a normal distribution of the GPS measurements, that is pGPS
i ∼ N (pi, σ

2
pI).

(ii) The compass provides a noisy measurement θCi of θi. This is modelled according to an
angular Gaussian distribution (see, e.g., [51]) which approximates the Langevin distribution
[52]. This reads as proj(θCi ) ∼ N

(
proj(θi), σ

2
θI
)
.

(iii) The range sensor returns a noisy measurement rij of the distance between nodes i and j,
which is modelled according to a normal distribution, that is rij ∼ N (‖pi − pj‖, σ2

r).

(iv) The bearing sensor returns a noisy measurement δij of the bearing angle of the node j in the
local frame of node i. For δij we adopt an angular Gaussian distribution model which reads
as proj(δij) ∼ N

(
proj(atan2(pj − pi)− θi), σ2

δI
)
.

Remark 3.1 Observe that, in order to reduce the set-up cost, each node has access to highly
noisy absolute measurements together with relative measurements that are less prone to noise
than the absolute ones. In particular, the GPS sensors are usually characterized by a standard
deviation σp = 2 [m] [53],[54], while the compass by a standard deviation σθ = 0.05 [rad][55]. To
retrieve information about range and bearing different methods can be used, e.g., depth-camera,
laser, ultrasound. Acceptable values for the standard deviation of these measurements might be
σr = 0.1 [m] and σδ = 0.03 [rad]. Due to the variability in the accuracy of the available sensors,
we will test our algorithm in a sufficiently wide range of standard deviation values.
For the sake of simplicity, we consider that all the nodes are endowed with a GPS module.
However, a simple reformulation of the problem would still guarantee that all the results hold
even if a reduced number of nodes are provided with a GPS.

3.2.2 Maximum-Likelihood Estimator

We assume that all the measurements are independent and their probability distributions are
given in the previous section. It is possible to formulate the localization problem as a Maximum-
Likelihood (ML) estimation problem [56]. Let us define the state and measurements sets, respec-
tively, as

x = {p, θ} = {pi, θi with i ∈ V } ,
y =

{
pGPS
i , θCi , rhk, δhk with i ∈ V, (h, k) ∈ Em

}
,
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where p := [p1, . . . , pN ]T and θ := [θ1, . . . , θN ]T . Then, the negative log-likelihood cost function
can be written as

J(x) := − log f
(
y |x

)
= Jp + Jθ + Jr + Jδ + c, (3.1)

where

Jp =

N∑

i=1

‖pi − pGPS
i ‖2

2σ2
p

,

Jθ =

N∑

i=1

∥∥proj(θCi )− proj(θi)
∥∥2

2σ2
θ

,

Jr =

M∑

(i,j)=1

(rij − ‖pi − pj‖)2

2σ2
r

,

Jδ =

M∑

(i,j)=1

‖proj(δij)− proj (atan2(pj − pi)− θi)‖2

2σ2
δ

,

and c is a constant term that does not depend on x and y. The minimization of the function
in (3.1) would provide the maximum-likelihood estimator for the nodes absolute positions and
orientations, i.e.:

x̂ML = argminx J(x). (3.2)

The ML estimator benefits of some properties regarding its mean and its asymptotic behavior.
In particular, consider the following equivalent parametrization of agents’ positions using their
centroid pctr. and corresponding deviation ∆pi. This reads as

pi = pctr. + ∆pi,
∑

i

∆pi = 0, (3.3)

Let us also define ∆p = (∆p1, . . . ,∆pN ). Thanks to the new parametrization, equation (3.2) is
equivalent to:

{
p̂ML

ctr.,∆p̂ML, θ̂ML
}

= argmin
{pctr.,∆p,θ}

J(pctr.,∆p,θ), (3.4)

s.t.
∑

i

∆pi = 0.

The previous reformulation allows us to prove the following lemma, which suggests how the ML
estimator exploits the GPS information to solve for the absolute positioning of the formation
centroid:

Lemma 3.2 Consider the negative log-likelihood cost function (3.1). Then, the maximum like-
lihood solution x̂ML which solves (3.4) is such that

p̂ML
ctr. = pGPS

ctr. , (3.5)

where p̂ML
ctr. := 1

N

∑N
i=1 p̂i and p

GPS
ctr. := 1

N

∑N
i=1 p

GPS
i .

Proof Observe that only the term Jp of the log-likelihood cost function depends on pctr.. Indeed,
Jθ is not a function of pi; while, both Jr and Jδ depend only on the difference between pi and pj
which, thanks to the equation (3.3) reads as

pi − pj = pctr. + ∆pi − pctr. −∆pj = ∆pi −∆pj .
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It is then possible to consider only the log-likelihood relative to the GPS measurements. Specifically,
if we define pGPS

i = pGPS
ctr. + ∆pGPS

i , it is possible to write

2σ2
pJp =

N∑

i=1

‖pctr. + ∆pi − (pGPS
ctr. + ∆pGPS

i )‖2

=

N∑

i=1

(
‖pctr. − pGPS

ctr. ‖2 + ‖∆pi −∆pGPS
i ‖2 + 2(∆pi −∆pGPS

i )T (pctr. − pGPS
ctr. )

)

= N‖pctr. − pGPS
ctr. ‖2 +

N∑

i=1

‖∆pi −∆pGPS
i ‖2,

where we used the facts
∑
i ∆pi = 0 and

∑
i ∆pGPS

i = 0. To minimize the first term on the right
hand side we must have

pctr. = pGPS
ctr. ,

which proves the lemma. ♦

We can also state some limit behavior in a scenario where range, bearing and compass noises are
very large or very small:

Lemma 3.3 For fixed GPS variance σp we have

(i) lim
max{σθ,σr,σδ}→0

p̂ML
i = pGPS

ctr. + ∆pi ,

(ii) lim
min{σr,σδ}→+∞

p̂ML
i = pGPS

i .

Proof In the first scenario max{σθ, σr, σδ} → 0. This implies that the distributions for compass,
range and bearing measurements converge to delta distributions, implying that

rij → ‖pi − pj‖, θCi → θi, δij → θi + atan2(pj − pi).

From these expressions it easily follows that

p̂j − p̂i → pj − pi = rije
j(δij−θCi ), {j, i} ∈ Em ,

i.e., the relative vectorial distances among the communicating nodes are perfectly known. Since
the graph is connected, it is possible to compute the exact vectorial difference among any two
agents in the network, and therefore also the exact distance of any agent from the true centroid
since:

∆p̂i = p̂i −
1

N

∑

j

p̂j =
1

N

∑

j

(p̂i − p̂j)→
1

N

∑

j

(pi − pj) = ∆pi.

Since p̂i = p̂ctr. + ∆p̂i and from Lemma 3.2 we have p̂ctr. = pGPS
ctr. , then it follows the first part of

the lemma.
In the second scenario when min{σr, σδ} → +∞ becomes arbitrary large, the probability distribu-
tion of range and bearing degenerate into an uniform distribution with infinite support. As so, the
terms Jr and Jδ become negligible as compared to Jp and Jθ. Since the positions pi do not appear
in Jθ, it follows that p̂i results from the minimization of Jp, which gives p̂i = pGPS

i and, therefore,
the claim of the lemma. ♦
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Scenario 1) of Lemma 3.3 states that in the case where max{σθ, σr, σδ} → 0, the shape of the for-
mation is perfectly retrieved. In this case the only source of error between the estimated formation
and the ground-truth is given by the error between GPS centroid and the true centroid. Scenario
2) states that if the relative measurements accuracies deteriorate, the ML estimator will “trust”
the GPS measurements only.
Unfortunately problem (3.2) is highly non linear and hard to solve. In particular, it is known that,
if the angles are noise-free, the problem is linear [2]. Conversely, if the angles are not known, the
problem presents many local minima [57, 58]. One possible way to tackle it, is using a standard
gradient descent approach since the gradient vector of the log-likelihood function can be computed
in closed form using (3.1). However, such approach heavily suffers of bad initialization. In fact,
the presence of multiple local minima in the cost function (3.1) causes the algorithm to stop in the
wrong minimizer.
In the following, we resort to a suitable approximation which let us reformulate the problem in a
classical linear-least square framework.

3.2.3 An Approximated Linear Least-Squares Formulation

An approximated solution for the problem stated in (3.2), which exploits a suitable model lineariza-
tion, is now presented. The idea is to move from the polar coordinate system to the equivalent
Cartesian representation.
Indeed, assuming a perfect knowledge of range, bearing and compass, it is possible to express the
displacement dij between agent i and j as

dij := pi − pj = rij

[
cos(δij + θi)

sin(δij + θi)

]
. (3.6)

Since the measurements are affected by noise, it is necessary to map the noise of range, bearing
and compass into the equivalent noise in Cartesian coordinates. Namely, given the noisy version
of (3.6), that is

dij = pi − pj + nij , (3.7)

where nij is the noise in Cartesian coordinate, we want to find the expression for its covariance,
E[nijn

T
ij ] = Σij , in terms of the statistical description of range, bearing and compass measurements

noises. After a first order expansion we obtain

Σij =

[
σ2
x(i, j) σxy(i, j)

σyx(i, j) σ2
y(i, j)

]
, (3.8)

where

σ2
x(i, j) = σ2

r cos2(δij + θi) + r2
ij(σ

2
δ + σ2

θ) sin2(δij + θi),

σ2
y(i, j) = σ2

r sin2(δij + θi) + r2
ij(σ

2
δ + σ2

θ) cos2(δij + θi),

σxy(i, j) =
(
σ2
r − r2

ij(σ
2
δ + σ2

θ)
)

sin(δij + θi) cos(δij + θi).

Remark 3.4 Since the linear approximation introduced is based on a first order expansion, its
validity holds under the assumption of sufficiently small measurement errors.

Remark 3.5 Note that Σij is a function of the true values of range, bearing and compass. Since
it is not possible to have access to these data, in a real setup these quantities must be replaced
by their corresponding measured values.
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Once computed the displacements, it is possible to define the weighted residuals as

Jd =
1

2

∑

{i,j}∈Em

‖pi − pj − dij‖2Σ−1
ij

.

Thanks to this, it is possible to define an approximation of the negative log-likelihood in (3.1),
which accounts for the GPS measurements and the displacements, as

JLS(p) = Jp + Jd. (3.9)

The minimization problem becomes

p̂LS = argminp JLS(p) , (3.10)

which is a linear least-squares problem, thus convex, which can be solved in closed form. Specifi-
cally, assuming Gm connected, the optimal estimate is given by

p̂LS = (Σ−1
GPS +ATΣ−1A)−1(Σ−1

GPSpGPS +ATΣ−1d), (3.11)

where ΣGPS = σ2
pI, Σ is the matrix which accounts for all the Σij , and d and pGPS are the

vectors obtained stacking together all the relative distances defined in (3.7) and the GPS absolute
positions, respectively.

Remark 3.6 Note that the LS estimates only the absolute positions p without providing any
estimate of the absolute orientations. These are retrieved using the compass and exploited to
project the noise in rectangular coordinates.

Remark 3.7 Observe that, even if the linear least-squares problem returns an approximate
solution for the problem of equation (3.2), since the problem of equation (3.10) is convex, its
solution is unique.

For the LS estimator it is possible to show an optimal result similar to the one stated in Lemmas
3.2 and 3.3 for the ML estimator. We state the following:

Lemma 3.8 Consider the cost function (3.9). Then, the optimal solution p̂LS which solves (3.10)
is such that

p̂LS
ctr. = pGPS

ctr. . (3.12)

Moreover, for fixed GPS variance σp we have

lim
max{σθ,σr,σδ}→0

p̂LS
i = pGPS

ctr. + ∆pLS
i ,

lim
min{σr,σδ}→+∞

p̂LS
i = pGPS

i .

Proof The result follows with arguments similar to those used in Lemma 3.2 and 3.3. ♦

Observe that, to compute p̂LS as in equation (3.10), one needs all the measurements, their covari-
ances and the topology of Gm to be available to a central computation unit. In the following section
we present a solution which is amenable for a distributed and asynchronous implementation. We
assume that a nodes i and j can communicate with each other only if {i, j} ∈ Em. Remarkably,
the solution is robust to packet losses and delays in the communication channel.
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3.3 Distributed and Asynchronous Algorithm

In this section we present a distributed and asynchronous solution for the minimization prob-
lem (3.10), which is robust to communication delays and packet losses. The implementation pre-
sented is inspired by [37], where is shown that this strategy is efficient both in terms of number of
iterations and number of sent packets per communication round, compared to existing alternative
strategies.
In the following:

(i) by distributed, we mean that there is no central unit gathering all the measurements pGPS

and d, having global knowledge of the graph Gm and computing p̂LS directly; instead, each
node has limited computational and memory resources, and can communicate only with its
neighbors;

(ii) by asynchronous, we mean that there is no common reference time (generated, e.g., by a
centralized clock source) which keeps all the updating/transmitting actions synchronized
among all the nodes.

The algorithm we propose is based on a standard gradient descent strategy and employs an asyn-
chronous broadcast communication protocol; specifically during each iteration of the algorithm
there is only one node which transmits information to all its neighbors in the graph Gm. Fur-
thermore, the time between two consecutive iterations does not have to be constant. We refer
to this algorithm as the asynchronous gradient-based localization algorithm (denoted hereafter as
a-GL algorithm). For the sake of simplicity, from now on, the superscript LS in the single node
estimates will be dropped.
We assume that every node has access to its own measurements and the ones of its neighbors
nodes, as well as the associated covariances. Additionally we assume that node i, i ∈ V , stores in
memory an estimate p̂i of pi and, for j ∈ Ni, an estimate p̂(i)

j of p̂j .
The a-GL algorithm is shown in Algorithm 3. Let t0, t1, t2, . . . be the time instants in which the
iterations of the a-GL algorithm occur.

Algorithm 3 a-GL Algorihtm
Require: Node i ∈ V store in memory the measurements pGPS

i , dij , j ∈ Ni, the variances σp, Nij and the neighbors
estimates p̂(i)

j , j ∈ Ni.
1: for t = t0, t1, t2, . . . do
2: # Random node selection
3: Node i ∈ V wakes-up
4: # Node i self update
5: p̂i ← p̂i − α(i)� ∂JLS

∂pi
6: # Self-update broadcasting
7: p̂i broadcast to j, j ∈ Ni
8: # neighbors memory update
9: p̂

(j)
i ← p̂i , ∀j ∈ Ni

In Algorithm 3, α(i) = [αx(i) αy(i)]T is a suitable scale factor for the gradient step. Through
standard algebraic computations, one can see that:

∂JLS

∂pi
=
pi − pGPS

i

σ2
p

+
∑

j∈Ni

Σ−1
ij (pi − pj − dij) .

Observe that in order to compute ∂JLS

∂pi
, node i requires information only from its neighbors. This

makes the algorithm amenable for a distributed implementation. Since every node has available in
memory a copy of the neighbors estimate, a natural way to evaluate the gradient is

∂JLS

∂pi
=
p̂i(t)− pGPS

i

σ2
p

+
∑

j∈Ni

Σ−1
ij (p̂i(t)− p̂(i)

j (t)− dij) ,
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It is possible to show that JLS does not increase if

0 < αx(i) ≤


 1

σ2
p

+
∑

j∈Ni

(γx(i, j) + γx(j, i))



−1

, (3.13a)

0 < αy(i) ≤


 1

σ2
p

+
∑

j∈Ni

(γy(i, j) + γy(j, i))



−1

, (3.13b)

where γx(h, k) and γy(h, k) represent the diagonal elements of Σ−1
ij . In particular, if α(i) coincides

with the RHS of (3.13a) then the minimum of JLS is attained.
In the following we analyze the convergence properties and the robustness to packet losses and
delays of the a-GL algorithm.

3.3.1 Convergence Analysis in Presence of Packet Losses and
Communication Delays

In Algorithm 3 is presented a way to compute the linear least-squares solution of (3.10) in a
distributed and asynchronous fashion. In this section we consider an even more realistic scenario:
presence of delays and packet losses in the communication channel. Convergence of the a-GL
algorithm to the optimal LS solution is proven, provided that the network is uniformly persistent
communicating and the transmission delays and the frequencies of communication failures satisfy
mild conditions which we formally describe next. We introduce the following definition.

Definition 3.9 (Uniformly persistent comm. network) A network of N nodes is said to
be a uniformly persistent communicating network if there exists a positive integer number τ such
that, for all t ∈ N, each node perform lines 5 and 7 of the a-GL algorithm at least once within
the iteration-interval [t, t+ τ).

Moreover, the following assumptions characterize the communication non-idealities.

Assumption 3.10 (Bounded packet losses) There exists a positive integer L such that the
number of consecutive communication failures between every pair of neighboring nodes in the
graph Gm is less than L.

Assumption 3.11 (Bounded delays) Assume node i broadcasts its estimate to its neighbors
during iteration t, and, assume that, the communication link (i, j) does not fail. Then, there
exists a positive integer D such that the information p̂i(t + 1) is used by node j to perform its
local update not later than iteration t+D.

Loosely speaking, Assumption 3.10 implies that there can be no more than L consecutive packet
losses between any pair of nodes i, j belonging to the communication graph. Differently, Assump-
tion 3.11 considers the scenario where the received packets are not used instantaneously, but are
subject to some delay no greater than D iterations.
The following result characterizes the convergence properties of the a-GL algorithm in the scenario
described by Definition 3.9 under Assumptions 3.10 and 3.11.
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Proposition 3.12 (Proposition V.3 in [59]) Consider a uniformly persistent communicating
network of N nodes running the a-GL algorithm over a connected measurement graph Gm. Let
Assumptions 3.10 and 3.11 be satisfied. Assume the weights α(i) satisfy Equations (3.13a)–
(3.13b). Moreover, assume that p̂i, i ∈ {1, . . . , N}, p̂(i)

j , j ∈ Ni, be initialized to pGPS. Then the
following facts hold true

(i) the evolution t→ p̂(t) asymptotically converges to the optimal estimate p̂LS, i.e.,

lim
t→∞

p̂(t) = p̂LS;

(ii) the convergence is exponential, namely, there exists C > 0 and 0 ≤ ρ < 1 such that

‖p̂(t)− p̂LS‖ ≤ Cρt‖p̂(0)− p̂LS‖. (3.14)

Proof The proof can be found in [59]. ♦

3.4 Simulations

In this section, we test the effectiveness of the proposed algorithm. We consider a group of robots:

• placed on a 2D lattice formation;

• regularly spread with an inter-node distance of 4 meters.

We assume each agent to be endowed with:

• a GPS sensor characterized, according to [53],[54], by σp = 2 [m];

• a compass sensor characterized by, according to [55], by σθ = 0.05 [rad];

• a range and a bearing sensors with standard deviations σr and σδ, respectively. Acceptable
values are σr = 0.1 [m] and σδ = 0.03 [rad]. However, due to their variability, we test our
algorithm in a sufficiently wide range of standard deviation values.

The reminder of the section is organized as follows:

(i) in Section 3.4.1, we briefly describe the performance measures used, later on, to test our
algorithms;

(ii) in Section 3.4.2, we analyze the steady state behavior of the a-GL algorithm with respect to
the ground truth, for increasing number of nodes N and for different values of σr and σδ;

(iii) in Section 3.4.3, we analyze the transient behavior (convergence analysis) of the a-GL algo-
rithm in terms of number of iterations with respect to the optimal configuration obtained
from (3.11).

3.4.1 Performance Measures

For the steady state analysis of Section 3.4.2, the estimated positions are compared with the
ground truth in terms of Mean Squared Error (MSE). Specifically, by denoting the generic vector
of positions estimate p̂ = [p̂1, . . . , p̂N ]T where p̂i = (x̂i, ŷi), the MSE of the positions is equal to

MSE(p̂,p) = E
[
‖p̂− p‖2

]
. (3.15)
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By defining the centroids of the estimated x and y coordinates as

x̂ctr. :=
1

N

N∑

i=1

x̂i , ŷctr. :=
1

N

N∑

i=1

ŷi ,

and those of the true x and y coordinates as

xctr. :=
1

N

N∑

i=1

xi , yctr. :=
1

N

N∑

i=1

yi ,

the MSE can be rewritten as

MSE(p̂,p) = E
[ N∑

i=1

(
(x̂i − x̂ctr.)− (xi − xctr.) + (x̂ctr. − xctr.)

)2
+

(
(ŷi − ŷctr.)− (yi − yctr.) + (ŷctr. − yctr.)

)2]
.

It is convenient to define the displacements from the centroid and the difference between the
centroids for the x coordinate as

∆xi := xi − xctr., ∆x̂i := x̂i − x̂ctr., ∆xctr. := x̂ctr. − xctr. ,

and similarly ∆yi, ∆ŷi and ∆yC those for the y coordinate. We recall the fact that
N∑

i=1

∆xi =

N∑

i=1

∆yi =

N∑

i=1

∆x̂i =

N∑

i=1

∆ŷi = 0 .

After some algebraic manipulations it is possible to write

MSE(p̂,p) = MSECtr. +MSERel.Disp. ,

where
MSECtr. := E

[
∆x2

C + ∆y2
C

]
, (3.16a)

MSERel.Disp. := E

[
N∑

i=1

(∆x̂i −∆xi)
2 + (∆ŷi −∆yi)

2

]
, (3.16b)

represent theMSE of the centroids and of the relative displacement from the centroid, respectively.
Note that the

MSECtr. =
σ2
p

N
,

so, it scales with the number of nodes and tends to zero as N →∞.
For the transient analysis of Section 3.4.3, we compare the performance of the a-GL algorithm
with the steady state estimate obtained with the LS centralized algorithm, i.e.,

‖p̂(t)− p̂LS‖. (3.17)

As shown in equation (3.14), the a-GL exponentially converges to the centralized solution.

Remark 3.13 (Numeric MSE) Observe that the theoretic MSE cannot be exactly com-
puted. In the following, we plot the numeric MSE computed via Monte Carlo simulations.

Remark 3.14 (Dependence between σr and σδ) In the following we test the proposed al-
gorithm as a function of the relative measurements standard deviations, σr and σδ. We vary only
the range standard deviation since the bearing measurements accuracy is assumed to depend
on the range accuracy as σδ = atan2(σr,

4
3 ) which let us approximately draw samples in a ball

centered in the true positions.
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3.4.2 Steady State Analysis

In this section, we analyze the steady state behavior of the a-GL algorithm for increasing N and
for different values of σr and σδ.
Figure 3.1 shows the absolute positions of the GPS measurements, the a-GL estimate and the
minimizer of the log-likelihood, respectively. It can be seen how, thanks to the additional relative
information, the estimates outperforms the GPS measurements.

x-axis [m]
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y
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x
is

[m
]
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Nodes Positions

True Positions
a-GL
min ML
GPS

Figure 3.1: Absolute positions for a formation of robots with N = 9, σr = 0.1 [m] and σδ = 0.03 [rad]. The
black dashed line highlights the shape of the real formation.

Remark 3.15 As outlined, the ML estimation problem is highly non-linear and characterized
by many local minima. Then, the ML estimate has been computed by exhaustive search around
the ground truth.

Figure 3.2 shows the behavior of the MSE of equation (3.15) for increasing N . Specifically, the
MSE has been split into its components related to the centroid and the relative displacement,
equations (3.16a)–(3.16b), respectively. It can be seen how theMSECtr. tends to zero for N →∞,
while MSERel.Disp. remains almost constant and on the same order of magnitude of σ2

r . From the
plot, it can be understood that there are mainly two sources of error: one related to the absolute
position reconstruction, which is obtained from the GPS information; one depending on the relative
information. Thanks to accurate relative information, it is possible to reconstruct the shape of the
formation with an error comparable to that of the relative measurements. The absolute formation
position, which is recovered from the GPS, for small number of agents is the greater source of error,
but improves with the number of robots as 1

N . As already outlined, the proposed solution can be
used seamlessly in scenario where not all the robots are equipped with GPS sensors. In this case,
the absolute positions error scales with the number of agents equipped with a GPS module.
Figure 3.3 shows the absolute positions MSE, equation (3.15), for increasing values of σr. The

plot shows the behavior of the a-GL algorithm (red line) compared with the behavior of the
maximum likelihood estimator (green line). Moreover, some limit behaviors are plotted: theMSE
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Figure 3.2: Absolute positions MSE, computed via Monte Carlo simulations, as function of the number of
nodes for σr = 0.1 [m] and σδ = 0.03 [rad].

of the GPS measurements (blue dashed line); the MSE of the mean of the GPS measurements
(black dashed line). The limit behaviors, according to Lemma 3.8, are due to the following facts:

• for increasing values of σr the relative sensors information becomes useless and the estimator
will “trust” mainly the GPS measurements;

• for small values of σr the shape of the formation is “perfectly” known. So, the only source
of error is due to the displacement of the GPS mean from the ground truth mean.

Figure 3.3 shows how the a-GL algorithm behaves similarly to the ML estimator for the whole
range of σr. In addition to this, for values of σr within 0.1÷ 0.5 [m], which characterize practical
operating sensors range, the a-GL algorithm mimics almost perfectly the ML estimator.

<r [m]
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Figure 3.3: Absolute positions MSE, computed via Monte Carlo simulations, as function of σr
(
σδ =

atan2(σr,
4
3

)
)
for N = 9. The dark orange vertical dashed-dotted line highlights the behavior corresponding

to σr = 0.1 [m].

3.4.3 Transient Analysis

In this section we analyze the transient behavior of the a-GL algorithm in presence of packet
losses and communication delays. At each iteration, a node, randomly chosen, wakes up, updates
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its state and communicates its estimate to node j ∈ Ni. We assume independent communication
links between neighboring nodes, each of them characterized by a certain failure probability. Figure
3.4 plots, in logarithmic scale, the error in (3.17) between the a-GL estimated formation and the
optimal LS solution, computed using (3.11). The different lines correspond to different percentages
of packet losses. As expected, the higher is the losses the slower is the convergence. Note that, in
a real set-up, different nodes could wake up and update their estimates at the same time. This
could increase the possibility of communication collision but at the same time could speed up the
convergence rate.
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Figure 3.4: Comparison between the a-GL solution and the optimal centralize LS solution, for different
percentages of packet losses.
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4
Coverage

In this chapter we analyze the framework of coverage the area of interest while estimating the non-
uniform measurable field of event appearance from noisy measurements collected by the robots. We
consider a realistic scenario where communication is performed over an unreliable wireless network
subject to packet losses or delays. In particular we start from the Voronoi optimization problem,
which can be solved using the Lloyd algorithm, however it requires the knowledge of a sensory
function that it may not be known in advance. Under a client-server communication scheme we
present an algorithm capable of estimating the unknown sensory function and perform the coverage
in a complete robust fashion. The estimate is proved to converge to the real sensory function and
the final configuration of the robots can be arbitrarily close to an optimal partitioning that would be
obtained if the sensory function would be known since the beginning. The estimation is performed
through the classical Gaussian regression and to overcome its limitation on the computational
complexity we also present an approximated solution based on a grid. This approach is shown to
be much more efficient and also guarantees the convergence of the estimated sensory function to
the real one in all the points of the grid. The chapter is organized as follows. In Section 4.1 some
mathematical preliminaries and notions on Voronoi partitioning and coverage control are recalled.
In Section 4.2 we formulate the problem at hand, and in Section 4.3 we briefly review Gaussian
non-parametric estimation. Section 4.4 presents the main algorithm and its convergence analysis.
In Section 4.5 we discuss numerical considerations and we present an approximated algorithm and
its properties. In Section 4.6 we test the proposed algorithms via extensive numerical simulations.

4.1 Mathematical Preliminaries

In this section we recall some mathematical preliminaries which will be useful later on.

4.1.1 Bernoulli Trial

In probability theory a Bernoulli trial is a random experiment with exactly two possible outcomes,
“success” and “failure” , in which the probability of success is the same every time the experiment is
conducted [60]. More formally, given a value η ∈ [0, 1], then a Bernoulli trial η ∼ B(η), η ∈ {0, 1}
is defined as

η =

{
1 with probability η ,

0 with probability 1− η.

4.1.2 Voronoi Partitions

Let X be a compact and convex polygon in R2 an let ‖ · ‖ denote the Euclidean distance function.
Let µ : X → R>0 be a distribution sensory function defined over X . Within the context of this
paper, a partition of X is a collection of N convex polygons P = (P1, . . . ,PN ) with disjoint interiors

53



54 CHAPTER 4. COVERAGE

whose union is X . Given the list of N distinct points in X , x = (x1, . . . , xN ), we define the Voronoi
partition W(x) = {W1(x), . . . ,WN (x)} generated by x as

Wi(x) = {q ∈ X | ‖q − xi‖ ≤ ‖q − xj‖, ∀j 6= i} . (4.1)

which can be shown to be convex [61]. Given a partition P = (P1, . . . ,PN ), for each region Pi,
i ∈ {1, . . . , N}, we define its centroid with respect to the sensory function µ as

ci(Pi) =

(∫

Pi
µ(q)dq

)−1 ∫

Pi
qµ(q)dq.

We denote by
c(P) = (c1(P1), . . . , cN (PN ))

the vector of regions centroids. A partition P = (P1, . . . ,PN ) is said to be a Centroidal Voronoi
partition of the pair (X , µ) if

P =W(c(P)) ,

namely if P coincides with the Voronoi region generated by c(P).
Given a partition P = {P1, . . . ,PN} and a sensory function µ we introduce the Coverage function
H(P;µ) defined as

H(P;µ) =

N∑

i=1

∫

Pi
‖q − ci(Pi)‖2µ(q)dq .

For a fixed sensory function µ, it can be shown that the set of local minima of H coincides with
the Centroidal Voronoi partitions of the pair (X , µ) [61].

4.1.3 Coverage Control Algorithm

Let X be a convex and closed polygon in R2 and let µ be a sensory function defined over X .
Consider the following optimization problem

min
P

H(P;µ).

The coverage algorithm we consider is a version of the classic Lloyd algorithm [62] based on
“centering and partitioning” for the computation of Centroidal Voronoi partitions. Given an initial
condition P(0) the algorithm cycles iteratively the following two steps:

(i) computes the centroids of the current partition, namely c(P);

(ii) updates P to the partition W(c(P)).

In mathematical terms, for k ∈ N, the algorithm is described as

PL(k + 1) =W(c(PL(k))) , (4.2)

where the upperscript L indicates the sequence generated by the Lloyd algorithm. Clearly, by
construction PL(k) are all Voronoi partitions for k ≥ 1. It can be shown, [63], that the function
H(P;µ) is monotonically non-increasing along the solutions of (4.2) and that all the solutions of
(4.2) converge asymptotically to the set of centroidal Voronoi partitions. It is well known, [63],
that the set of centroidal Voronoi partitions of the pair (X , µ) are the critical points of the coverage
function H(P;µ).

4.2 Problem Formulation

We consider a group of N robots, all with sensing capabilities and communicating with a Base
Station (BS). They are displaced and allowed to move in an area represented by the convex set
X . Their goal is to simultaneously estimate an unknown map µ : X → R and to provide a good
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partitioning P for minimizingH (P;µ). To be more precise µ is modelled as the realization of a zero-
mean Gaussian random field with covarianceK : X×X → R. Without loss of generality, we restrict
our attention to radial Mercer kernels, i.e. K(a, b) = h(‖ a− b ‖), such that if ‖ a− b ‖≤‖ c− d ‖
then h(‖ a − b ‖) ≤ h(‖ c − d ‖) and K(x, x) = λ, ∀x ∈ X . The function µ is assumed to be
unknown to both the robots and the BS. Each agent i ∈ {1, . . . , N} is required to have the following
basic computation, communication and sensing capabilities:

(C1) it can identify itself to the BS and can send information to the BS, however the transmission
can fail with probability 1− β with β > 0;

(C2) it can measure the function µ in the position it occupies; specifically, if xi denotes its current
position, it can take the noisy measurement

y(xi) = µ(xi) + νi,

where νi v N(0, σ2) is independent of the unknown function µ and of all other measurement
noises νj ;

(C3) it can move to a target-point bi transmitted by the BS.

The BS must have the following capabilities:

(C4) it can store all the measurements taken by all the robots;

(C5) it can store the last position of all the robots;

(C6) it can compute centroids and Voronoi regions of all the robots;

(C7) it can send information periodically to all robots every T seconds;

(C8) it can send information to each robot i, however the transmission can fail with probability
1− γ with γ > 0;

(C9) it can compute and store an estimate µ̂ of the function µ and its posterior variance V .

We also assume a simple robots’ dynamics with the following discrete update law:

xi,k+1 = xi,k + ui,k, ∀i ∈ {1, . . . , N}, (4.3)

where xi,k = xi(kT ), i.e., each robot can move from location xi,k at time t = kT to any desired
location xi,d = xi,k+1 at time t = (k + 1)T . The ultimate goal is to position the robots in the
centroids of a good partition that minimizes H(P;µ). This is a challenging problem since we have
to deal with the well known exploration-exploitation dilemma:

(i) to have a good partition with respect to µ we need a good estimate of µ which implies having
the robots moving around the environment in order to explore it;

(ii) as mentioned in the introduction, to minimize the expected weighted time to monitor a new
event, it is necessary to position the robots in the centroids of a specific partition and to keep
them idle.

Intuitively, a good strategy should initially promote exploration and later, as the estimate µ̂ of the
true map µ becomes more accurate, the robots should transition to exploitation. As shown later,
the strategy that we propose smoothly transitions from the exploration phase to the exploitation
phase as suggested by this intuition. We address this problem in the context of a client-server
architecture, see Figure 4.1, under a communication model which takes into account possible packet
losses on both ways, i.e. from robots to BS and BS to robots.
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Figure 4.1: The figure illustrates the setup used in the simulations.

4.3 Function Estimation and Posterior Variance
Computation

We assume that each robot takes only one measurement within the time window (kT, (k + 1)T )

we indicate this measurement as yi,k = y(xi,k). Once the measurement is taken, it is immediately
transmitted to the BS. We also define with βi,k ∈ {0, 1} and γi,k ∈ {0, 1} the variables that indicate
whether the k-th message from the i-th robot to the BS, and k-th message from the BS to the
i-th robot have been received, respectively, i.e., βi,k = 1 (resp. γi,k = 1) if the k-th message from
the i-th robot to the BS (resp. from the BS to the i-th robot) has been received successfully and
βi,k = 0 (resp. γi,k = 0) otherwise. We define with Jk the set of measurements successfully received
by the BS, i.e

Jk := {(xi,k, yi,k) |βi,k = 1, i = 1, . . . , N},

and the complete information set Ik available at the base station as follows:

Ik = Ik−1 ∪ Jk, ∀k ≥ 1,

where I0 = ∅.
Let mk be the cardinality of the set Ik, i.e., mk = |Ik|, and, for notational convenience, let us
relabel Ik as

Ik =
{(
x(h), y(h)

)
|h ∈ {1, . . . ,mk}

}
,

where
(
x(h), y(h)

)
= (xi,t, yi,t) for some i ∈ {1, . . . , N} and some t ∈ {1, . . . , k} such that βi,t = 1.

As shown by [64] and [65], the minimum variance estimate of µ given Ik can be computed as:

µ̂k(x) = E [µ(x)|Ik] =

mk∑

i=1

c(i)K(x(i), x), x ∈ X , (4.4)

where 

c(1)

...
c(mk)


 = (K̄k + σ2I)−1



y(1)

...
y(mk)


 ,
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and

K̄k =



K(x(1), x(1)) . . . K(x(1), x(mk))

...
...

K(x(mk), x(1)) . . . K(x(mk), x(mk))


 . (4.5)

The a posteriori variance of the estimate, in a generic input location x ∈ X , is

Vk(x) = Var [µ(x)|Ik] = K(x, x)−

[
K(x(1), x) . . . K(x(mk), x)

]
(K̄k + σ2I)−1



K(x(1), x)

...
K(x(mk), x)


 .

(4.6)

4.4 r-EC Algorithm

To achieve the goal described in Section 4.2, we propose the robust Estimation and Coverage algo-
rithm described in Algorithm 4 (denoted hereafter as r-EC algorithm). The algorithm is divided in
two parts, the first is the code executed by the BS and the second is the code executed by the robots.

For each k ∈ N the BS stores in memory the estimate µ̂k(x) of the function µ(x) and its posterior
Vk(x), a partition Pk = {P1,k, . . . ,PN,k}, the corresponding list of centroids ĉk = {ĉ1,k, . . . , ĉN,k},
the positions of the robots (x1,k, . . . , xN,k) and all the measurements received up to k by the robots,
Ik. The BS collects the new positions xi,k and the sensed function µ in xi,k, i.e. yi,k = µ(xi,k)+νi,k,
for all robots i who transmit successfully. The BS, based on the newly gathered measurements and
on the past measurements, computes a new estimate µ̂k of µ exploiting the technique explained
in Section 4.3. Additionally, the BS updates the partition Pk, setting Pk = W(ĉk−1) and the
corresponding new centroids ĉk. It is quite intuitive that in order to improve the quality of the
estimate of the function µ, the measurements have to be taken to reduce as much as possible the
posterior variance Vk(x). To do so the r-EC algorithm uses a monotonically increasing function
F (Mi,k), as for example F (x) = x, where Mi,k is the maximum of the posterior in the Voronoi
region of the agent i at time k. The algorithm decides whether a robot has to perform exploration
or to move to the centroid, using a randomized strategy based on the value F (Mi,k), i.e. the higher
the value of F (Mi,k), the higher is the probability to perform an exploration step, and vice-versa.
If an agent i is selected to perform exploration, the BS identifies the next target point for this
agent by determining the point with maximum posterior variance in its current patrolling region
Pi,k. The target points are then sent by the BS to each robot every period T . The communication
between the BS to a single robot is not realiable and packets can be lost. If the agent receives
the target point, then it moves there to take the next sample measurement, otherwise it takes no
measurement and remains still till the next target point arrives, therefore robots do not need to
be synchronized with the BS.

4.4.1 Convergence Analysis

In this section we provide the mathematical characterisation of the proposed r-EC algorithm. The
following proposition states that, if the packet loss probability is smaller than unity and under a
mild condition on the threshold policy F (·) which determines whether an agent has to perform
either an exploitation or an exploration step, the estimated map µ̂k converges to the true map µ.

Proposition 4.1 Let us consider the r-EC algorithm. Let F (M) : [0, 1]→ [0, 1] be a continuous
and monotonically increasing function such that F (M) > 0 for M > 0. If P[βi,k = 1] = β > 0

and P[γi,k = 1] = γ > 0. Then
µ̂k

P−→ µ,

where the convergence is in the space of the continuous functions (sup-norm).
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Algorithm 4 r-EC Algorithm
1: BASE STATION

Require: The BS stores in memory µ̂k,Vk(x), Ik, and has a clock that triggers an event every T
seconds.

2: if k = nT, n ∈ N then
3: Listen:
4:

5: for i=1,. . . ,N do
6: if BS ← (xi,k, yi,k) then
7: Ik = Ik ∪ {xi,k, yi,k}

8: Estimate update:
9: Pi,k =Wi(ĉk−1), eq.(4.1)
10:

11: µ̂k(x) = E [µ(x) | Ik], eq.(4.4)
12:

13: Vk(x) = Var [µ(x) | Ik], eq.(4.6)
14:

15: ĉi,k = (
∫
Pi,k µ̂k(q)dq)−1

∫
Pi,k qµ̂k(q)dq.

16: Target-Points computation:
17:

18: Mi,k =
maxx∈Pi,k Vk(x)

λ , ∀i
19:

20: pi,k = F (Mi,k)

21:

22: ηi,k ∼ B(pi,k)

23: if ηi,k = 1 then
24: bi,k = argmaxx∈Pi,kVk(x)

25: else
26: bi,k = ĉi,k

27: Target-Points Transmission:
28:

29: xi,k+1 = bi,k (i.e. ui,k = bi,k − xi,k), ∀i

30: ROBOTS
Require: A clock with sample time T or a submultiple of T .
31: if k = nT, n ∈ N then
32: Measurement collection: yi,k = µ(xi,k) + vi,k

33: Measurement transmission: (xi,k, yi,k) −→ BS

34: Listen:
35: if BS → bi then
36: xi,k+1 = bi (alternatively ui,k = bi,k − xi,k)

37: Move to the new target-point.
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Proof Without loss of generality, a system with only one agent is considered. For every ε > 0,
define the process x̄k as follows:

x̄k =





xk if Mk ≥ ε
Ck with probability (1− pε)β if Mk < ε

Ek with probability pεβ if Mk < ε

x̄k−1 with probability 1− β if Mk < ε

(4.7)

where pε = minx∈[ε,1] F (x), β is the probability that an agent transmits successfully a packet to the
base station, Ck is the location of the centroid and Ek is the location where the posterior variance
attains its maximum. We also define Īk as the set of measurements collected by the process x̄k
up to instant k, V̄k(x) = Var

[
µ(x)|Īk

]
the posterior variance at the input location x associated to

the process x̄k and M̄k the maximum of V̄k w.r.t. x. First, we prove that ∀ε ≥ 0,∀δ ∈ (0, 1] there
exists k0 such that, ∀k ≥ k0, one has:

P [Mk ≤ ε] ≥ 1− δ.

Note that one always has
P
[
M̄k ≤ ε

]
= P [Mk ≤ ε] , (4.8)

since the two processes xk and x̄k coincide up to time instant k and, after k, both Mk and M̄k are
less than ε due to definition (4.7). In view of (4.8), our strategy is to prove that x̄k satisfies the
desired condition which then will immediately extend to xk. As also clear in the sequel, the key
advantage of using x̄k, in place of xk, is that it avoids the introduction of conditional probability
measures difficult both to define and to handle.

Now, consider the subsequence x̄kj extracted by x̄k such that ki < ki+1for every i and for every
kj the agent is moving to Ekj . The length of this subsequence is infinite with probability one since
x̄k can move to the the maximum posterior variance location with probability at least pεβ at every
k. It is an elementary algebraic fact that, for every ε > 0, there exists a pair ᾱ and m̄ such that:

λ− (λ− ᾱ)2

λ+ σ2

m̄

≤ ε.

By the continuity of the kernel, there exists a finite partition, function of ε, ᾱ, m̄, given by all the
subsets Dj ⊆ X such that K(x, x∗) ≥ λ − ᾱ, ∀x, x∗ ∈ Dj (recall that K(x, x) = λ). Since there
is a finite number of subsets Dj , at least one of them is visited infinite times by the subsequence
x̄kj with probability one. This implies that, with probability not smaller than 1− δ, there always
exists a time instant ka such that Dj has been visited at least m̄ times and another instant kb > ka
where Dj is visited again. Now it is not restrictive consider only m̄ measurements falling in Dj ,
denoted by zj1, . . . , z

j
m̄ and collected on the input locations x̄j1, . . . , x̄

j
m̄. Let K̄j be the m̄×m̄ kernel

matrix with (k, i) entry
[K̄j ]ki = K(x̄jk, x̄

j
i ),

i.e. obtained sampling the kernel K on the input locations falling in Dj . We have Tr(K̄j) =∑
Λ(K̄j) = mλ, where Λ(K̄j) is the set of real and non negative eigenvalues of K̄j . Then, one has

K̄j � m̄λI so that

(K̄j + σ2) � (m̄λ+ σ2)I⇒ (K̄j + σ2)−1 � (m̄λ+ σ2)−1I.

It comes that, with probability at least 1− δ, for every input location x ∈ Dj one has

Var [µ(x)|Ik] ≤ Var
[
µ(x)|zj1, . . . , z

j
m̄

]
= K(x, x)−

[
K(x̄j1, x) . . . K(x̄jm̄, x)

]
(K̄j + σ2I)−1



K(x̄j1, x)

...
K(x̄jm̄, x)


 ≤

≤ λ−
∑m̄
h=1K(x̄jh, x)2

m̄λ+ σ2
≤ λ− m̄(λ− ᾱ)2

m̄λ+ σ2
= λ− (λ− ᾱ)2

λ+ σ2

m̄

≤ ε.
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The above equations show that, with probability not smaller than 1− δ, maxx∈Dj V̄ka(x) ≤ ε and
M̄kb ≤ ε. In fact, since at instant kb the subset Dj is visited again, the input location where V̄kb is
maximized falls again in Dj and can not exceed ε. In view of (4.8), this implies that Var [µ(x)|Ik]

is converging uniformly to zero in probability. Now, define µ̃k = µ − µ̂k. From the Chebyshev
inequality, we have that for every x

P
[
|µ̃k(x)| ≤ sd | Var [µ(x)|Ik] = d2

]
≥ 1− 1

s2
∀x, s. (4.9)

Note that the conditioning event is the posterior variance of the reconstruction error which has
been just proved to go uniformly to zero in probability. Now, fix another arbitrary ε > 0, 0 < δ < 1

and define δ̄ = 1−
√

1− δ. Then, we can find k0 such that ∀k ≥ k0, with probability at least 1− δ̄,
one has

max
x

Var [µ(x)|Ik] ≤ δ̄ε2.

Setting s2 = 1/δ̄ in the Chebyshev inequality above, since the conditioning event holds with
probability at least 1− δ̄, we obtain that ∀k ≥ k0 the event

|µ̃k(x)| ≤ sd =
ε
√
δ̄√
δ̄

= ε

has probability not smaller than (1−s−2)(1− δ̄) = (1− δ̄)2 = 1−δ. This shows that, in probability,
µ̃k is going to zero in the sup-norm topology and concludes the proof. ♦

We remark that the choice for the function F (·) leaves a certain degree of freedom to the designer
since it allows to regulate exploration versus exploitation, as it will be shown in the simulations. For
example, the previous proposition include as a special case, the strategy that performs exploration
only, i.e. F (M) = 1,∀x. As so, the proposed algorithm can also be interpreted as a cooperative
strategy for optimal sampling. It is also possible to show that the trajectory generated by the

proposed algorithm eventually behaves as the traditional Lloyd algorithm. This is formally stated
in the following proposition:

Proposition 4.2 Let assumptions of Proposition 4.1 hold and F (0) = 0. For any 0 < δ < 1, ε >

0 and integer N , there exists a sufficiently large k̄ such that, if cL
k̄

= ĉk̄, then

P
[∥∥∥ĉk̄+k − cLk̄+k

∥∥∥ ≤ ε
]
≥ 1− δ, k = 0 . . . , N. (4.10)

Proof Let U be the set of all the continuously differentiable sensory functions defined over X . Let
U be equipped with a norm ‖ · ‖, for instance, ‖µ‖ = maxx∈X µ(x).

Let us define G (c;µ) : XN × U 7→ XN as

G (c;µ) = c (W (c)) ,

where the operator c computes the centroids according to the sensory function µ. It is known
that the map G, above defined, is continuous on both arguments (see [66]). Observe that cLk+1 =

G
(
cLk ;µ

)
and ĉk+1 = G (ĉk; µ̂k).

We can write

‖ĉk+1 − cLk+1‖ = ‖G (ĉk; µ̂k)−G
(
cLk ;µ

)
‖

= ‖G (ĉk; µ̂k)−G (ĉk;µ) +G (ĉk;µ)−G
(
cLk ;µ

)
‖

≤ ‖G (ĉk; µ̂k)−G (ĉk;µ) ‖+ ‖G (ĉk;µ)−G
(
cLk ;µ

)
‖ .

Since the operator G is continuous on XN and since XN is a compact set, it follows that there
exists Lµ > 0 such that

‖G (ĉk;µ)−G
(
cLk ;µ

)
‖ ≤ Lµ‖ĉk − cLk ‖.
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On the other hand, since G is continuous on U it follows that there exists Lµ;ĉk such that

‖G (ĉk; µ̂k)−G (ĉk;µ) ‖ ≤ Lµ;ĉk‖µ̂k − µ‖.

Let L̄µ = maxc∈XN Lµ;c, then,

‖G (ĉk; µ̂k)−G (ĉk;µ) ‖ ≤ L̄µ‖µ̂k − µ‖.

Summarizing we have obtained that

‖ĉk+1 − cLk+1‖ ≤ Lµ‖ĉk − cLk ‖+ L̄µ‖µ̂k − µ‖.

Assuming that there exists a positive integer k̄ such that ‖µ̂k−µ‖ ≤ ξ for all k ≥ k̄, and such that
ĉk = cLk , then it follows, for k ≥ k̄,

‖ĉk − cLk ‖ ≤
k∑

j=k̄

L(j−k̄)
µ L̄µξ .

From Proposition 4.1, it follows that for any positive integer N , positive real number ε and real
number δ such that 0 < δ < 1, there exist a positive real number ξ > 0 and a positive integer
number k̄ such that the following two facts are verified

• P
[
‖µ̂k − µ‖ ≤ ξ for all k ∈

{
k̄, . . . , k̄ +N

}]
≥ 1− δ,

•
∑N
j=k̄ L

(j−k̄)
µ L̄µξ ≤ ε.

This concludes the proof. ♦

Proposition 4.2 states that for sufficiently large k, since the sensory function can be estimated
with arbitrary accuracy, then the r-EC algorithm mimics in probability, with arbitrary accuracy,
the Lloyd algorithm. Equivalently, the centroid sequence generated by Lloyd and the one generated
by the r-EC algorithm evolve arbitrarily close to each other for an arbitrary long but finite time.
See Figure 4.2 for an intuitive graphical representation.

cLk̄ = ĉk̄

ĉk

cLk̄+1

ĉk̄+1

cLk̄+N

ĉk̄+N

ε

Figure 4.2: Graphical illustration of what stated in Proposition 4.2.

4.5 Numerical Considerations

In this section we outline some aspects regarding the numerical implementation of the estimation
process of Section 4.3. First, we present a convenient procedure to speed up the Gaussian estimation
process. Second, to further speed up the algorithm execution time, we introduce an approximated
version of the r-EC algorithm which relies on a discretization of the working area X . Accordingly,
the result stated in Proposition 4.1 will be relaxed.

4.5.1 Online Gaussian Estimation

In this section we present a method to reduce the execution time of equations (4.4) and (4.6) used
to estimate the sensory function µ and to compute the posterior variance, respectively. From a
time computational complexity point of view, the most expensive operation is represented by the
matrix inversion

(K̄k + σ2I)−1 .
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Observe that, at iteration k, the dimension of the sampled kernel, K̄, is equal to mk ×mk where
mk is the number of measurements taken by the robots up to iteration k. By recalling the fact
that the computational complexity for the inversion of a n× n matrix is approximately O(n3), it
follows that the computational complexity of the r-EC algorithm grows as the cube of the number
of measurements collected. In order to speed up the computational time, it is worth noting that the
K̄ matrix does not entirely change at each iteration. Indeed, recalling equation (4.5) and denoting
with K̄k the sampled kernel matrix at iteration k, we have that

K̄k+1 =

[
K̄k K̄k+1,12

K̄T
k+1,12 K̄k+1,22

]
, (4.11)

where

K̄k+1,12 =



K(x(1), x(mk+1)) · · · K(x(1), x(mk+1))

...
K(x(mk), x(mk+1)) · · · K(x(mk), x(mk+1))


 ,

K̄k+1,22 =



K(x(mk+1), x(mk+1)) · · · K(x(mk+1), x(mk+1))

...
K(x(mk+1), x(mk+1)) · · · K(x(mk+1), x(mk+1))


 .

Equation (4.11) highlights a recursive way to build the sampled kernel matrix K̄ which, at each
iteration, does not have to be entire recomputed. In order to take advantage of the same recursive
structure for the inverse operation, it is convenient to exploit the Schur complement to compute
the block matrix inversion which, given a block symmetric matrix

M =

[
A B

BT D

]
,

lets us compute the inverse as

M−1 =

[
A−1 +A−1B(D −BTA−1B)−1BTA−1 −A−1B(D −BTA−1B)−1

−(D −BTA−1B)−1BTA−1 (D −BTA−1B)−1

]
. (4.12)

In our case, the block A−1 corresponds to (K̄−1
k +σ2I)−1, while D is of dimension (mk+1−mk)×

(mk+1−mk) and depends only on the new measurements taken during iteration k+1. So, to com-
pute the inverse of the matrix (K̄k+1+σ2I) only the inversion ofD plus some matrix multiplications
are required. Observe that, in average, the number of new measurements taken during an iteration
of the algorithm, is β̄N and, hence, mk ' kβ̄N . Thanks to this implementation the computational
complexity of the r-EC algorithm can be reduced from O(k3β̄N3) to O(k2β̄3N3) where the latter,
represents the computational complexity of the most expensive matrix multiplication in the inverse
computation of equation (4.12). Finally, observe the computational complexity per iteration is not
constant but grows quadratically in the number of iterations, i.e., the computational complexity
is unbounded. To overcome this problem, in the next section we provide a modified version of the
proposed algorithm whose computational complexity per iteration is constant.

4.5.2 Grid Based Approximation

In this section we present a modified version of the r-EC algorithm which is light and fast and
then suitable for numerical implementation. We refer to it as the r-EC-grid algorithm. The idea
relies on a spatial discretization of the continuous convex domain X . In particular, we constrain
the robots to collect measurements from a set of predetermined finite number of input locations
which are obtained thanks to a discretization of X . To do so, we now introduce a sampled version
of the original space X .
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Definition 4.3 (Sampled Space) Consider the finite set of m input locations Xgrid :=

{xgrid,1, . . . , xgrid,m} ⊂ X where X ⊂ R2 is a convex and closed polygon. Given the scalar
∆ > 0, we say that set Xgrid forms a sampled space of resolution ∆ if

min
i=1,...,m

‖xgrid,i − x‖ ≤ ∆, ∀x ∈ X (4.13)

Moreover, we introduce the following projection operator that projects x ∈ X onto its closest
point in Xgrid.

Definition 4.4 (Projection Operator) Given a convex and closed polygon X and its sampled
version Xgrid, we define the projection operator of x ∈ X onto Xgrid as

X 7−→ Xgrid : x 7−→ proj(x) = arg min
a∈Xgrid

‖x− a‖ . (4.14)

To force the evolution of the robots on Xgrid, Algorithm 4 must be changed. In particular, the
BS has to compute a control input in order to drive the robots only on input locations which own
to Xgrid. To accomplish this task, lines 19 and 21 of Algorithm 4 can be changed as follows:

line 19 7−→ bi,k = argmaxx∈Pi,k∩Xgrid
Vk(x) ,

line 21 7−→ bi,k = proj(ĉi,k) .

Note that lines 19 and 21 are substantially different from each other. Indeed, line 21 simply
says to project the centroids, ĉ ∈ X , onto the closer points owing to Xgrid. Conversely, exploiting
line 19, the BS directly computes the input location owing to Xgrid which maximizes the posterior
variance restricted on the grid, for each Voronoi region. This is in general different from the
projection onto the grid of the input location where the posterior variance maximum is located.
That is,

argmaxx∈Pi,k∩Xgrid
Vk(x) 6= proj

(
argmaxx∈Pi,kVk(x)

)
.

This precaution is fundamental to ensure convergence of the estimator of µ on Xgrid which is stated
in the following proposition.

Proposition 4.5 Let us consider the r-EC-grid algorithm. If F (M) : [0, 1]→ [0, 1] is a continu-
ous and monotonically increasing function such that F (M) > 0 for M > 0, then

µ̂k(x)
P−→ µ(x), ∀x ∈ Xgrid. (4.15)

The proof of Proposition 4.5 can be found together with the proof of Proposition 4.6.
The following result instead characterizes the asymptotic performance of the estimator on a generic
input location, possibly falling outside Xgrid. Before stating it, some useful notation is introduced.
The m×m covariance matrix of the function µ sampled on Xgrid is denoted by Kgrid, i.e.

[Kgrid]ki = K(xgrid,k, xgrid,i).

Given a generic x, we also use kgrid(x) to denote the row vector

kgrid(x) = [K(x, xgrid,1) . . . K(x, xgrid,m)] .

Below, recall also that K(a, b) = h(‖ a− b ‖) and λ = K(x, x).
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Proposition 4.6 Let the assumptions of Proposition 4.5 hold, with the probabilities of success-
fully transmitting and receiving a packet given by β, γ > 0, respectively, and F (0) = 0. If Xgrid

is a sampled subset of the space X of resolution ∆, as in Definition 4.3, one has

lim
k→∞

Vk(x) = λ− kgrid(x)K−1
gridkgrid(x)>, (4.16)

where convergence is in probability and holds also uniformly w.r.t. x. In addition, the following
simple ∆ dependent bound holds

lim
k→∞

Vk(x) ≤ λ− h2 (∆)

λ
. (4.17)

Finally, if K is the Gaussian kernel with K(a, b) = λe
− ‖a−b‖

2

ζ2 , for small ∆ we have

lim
k→∞

Vk(x) ≤ λ− h2 (∆)

λ
≈ λ∆2

ζ2
. (4.18)

Proof As already noticed in Section 4.5.2, when measurements can be collected only over the
input locations contained in the finite set Xgrid, the estimation process at a generic instant k is
equivalent to reconstructing the function µ from measurements

wi,`i = µ(xgrid,i) + νi.

Above, conditional on the process history up to instant k, the noise variances νi are zero-mean
Gaussian with variance σ2

i = σ2

`i
where `i is the number of visits at xgrid,i. The proof of Proposition

4.1 can be now followed just replacing the function domain X with Xgrid, with the Voronoi regions
covering the entire X defined at every instant k by a map having as arguments only the estimates
of the m random variables µ(xgrid,i). One then obtains that `i → ∞ for i = 1, . . . ,m, i.e. the
posterior variances of all the µ(xgrid,i) go to zero. Hence, equations (4.15,4.16) immediately follow.
To obtain equation (4.17), note the following two facts. First, given any x ∈ X there exists
xgrid,i ∈ Xgrid such that ‖x − xgrid,i‖ ≤ ∆. Second, the r.h.s. in (4.17) is exactly the posterior
variance of µ(x) conditional on the perfect knowledge of µ(xgrid,i) with ‖x−xgrid,i‖ = ∆. Eq. (4.17)
is then obtained recalling that, by assumption, if ‖ a−b ‖≤‖ c−d ‖ then h(‖ a−b ‖) ≤ h(‖ c−d ‖)
and K(x, x) = λ, ∀x ∈ X . Finally, eq. 4.18 is just the expansion of the r.h.s. of (4.17) around
∆ = 0 in the Gaussian kernel case. ♦

When adopting the grid-based strategy, measurements can be collected only over the input
locations contained in the finite set Xgrid. Using basic results on estimation of Gaussian processes,
one can see that equation (4.16) is the posterior variance of µ conditional on the perfect knowledge
of the function on the grid. Hence, the above result shows that our update mechanism ensures
convergence to the minimum possible error compatible with Xgrid. Equation (4.17) then shows how
the posterior variance can be made uniformly and arbitrarily small by choosing a ∆ sufficiently
small. In particular, from eq. (4.18) one sees that the error converges to zero at least quadratically
in ∆ when a Gaussian kernel is adopted.

Since the grid is composed by a finite number of locations, new measurements can fall exactly
over the same input location. Let n ≤ m be the number of distinct input locations on the grid
visited at least once up to instant k, denoted simply by x1, ..., xn (they coincide with the set
{xgrid,i}mi=1 defined above when n = m). Let also yi be the `i-th measurement taken in the
input location xi ∈ Xgrid and define the virtual measurement wi,`i as the average of the first `i
measurements associated to the input location xi. To avoid storing all the measurements up to yi,
it is possible to compute wi,`i in a recursive way exploiting only the current measurement yi and
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the previous virtual measurements wi,`i−1. In particular, one has

wi,`i =
`i − 1

`i
wi,`i−1 +

1

`i
yi.

Accordingly, we define the variance associated to the virtual measurement wi,`i as σ2
i = σ2

`i
and

with Σ a diagonal matrix collecting these noise variances, i.e. Σ = diag({σ2
i }ni=1). Once we collect

two or more measurements in the same input location, the size of the sampled Kernel (4.5) does
not vary. It instead increases when an input location on the grid is visited for the first time. When
all of these locations are visited at least once, the sampled kernel does not change any more: it
reaches its maximum possible size, becoming the matrix Kgrid previously defined. Instead, every
time a new measurement is achieved, one has to update the variance matrix Σ and the vector with
the virtual measurements w = [w1,`1 , . . . , wn,`n ]T with n ≤ m. The function estimate can then be
computed as follows:

µ̂k(x) = E [µ(x)|Ik] =

n∑

j=1

cjK(xj , x), x ∈ X , n ≤ m (4.19)

where 

c1
...
cn


 = (K̄k + Σ)−1



w1,`1
...

wn,`n




and

K̄k =



K(x1, x1) . . . K(x1, xn)

...
...

K(xn, x1) . . . K(xn, xn)


 . (4.20)

The posterior variance becomes

Vk(x) = Var [µ(x)|Ik] = K(x, x)−
[
K(x1, x) . . . K(xn, x)

]
(K̄k + Σ)−1



K(x1, x)

...
K(xn, x)


 . (4.21)

In Algorithm 4 lines 11 and 12 must be computed using equations (4.19) and (4.21) instead of
(4.4) and (4.6), respectively. Finally, Figure 4.3 shows the behaviour of the bound of the posterior
variance of equation (4.16).
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Figure 4.3: Evolution of the max of the posterior variance as function of ∆
ζ

for a Gaussian kernel with standard
deviation ζ (Equation (4.16)).
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4.6 Simulations

In this section we provide some simulations showing the performances of the r-EC algorithm. We
run all the simulations in MATLAB on a desktop computer with a processor Intel Core i7-4790
and 8Gb of RAM. We consider a team of N = 8 robots and a squared domain X = [0, 1] × [0, 1].
Moreover, we use the Gaussian kernel

K(x, x′) = e−
‖x−x′‖2

0.002 .

Unless differently specified, the unknown sensory function µ is a combination of two bi-dimensional
Gaussian:

µ(x) = 5

(
e
−‖x−µ1‖

2

0.04 + e
‖x−µ2‖

2

0.04

)
,

where

µ1 =

[
0.8

0.2

]
µ2 =

[
0.5

0.7

]
.

For computational reasons, the function µ and the posterior variance are evaluated over a grid
with 65 points per side. However, the centroids and the input locations are not approximated.
The Voronoi regions are always computed with respect to the last value of the centroids. Finally,
we analyze the behaviour of the r-EC algorithm using

Fα(M) = Mα ,

being the max of posterior variance M normalized between [0, 1]. The tuning parameter α lets us
control the trade-off between exploration and exploitation. In particular, for 0 ≤ α < 1 the robots
are more prone to exploration; for α = 1 the probability that the robots perform exploration or
exploitation linearly varies with M ; while for α > 1 the robots are more prone to exploit the
estimated sensory function to perform coverage control. In the following we choose a value of
α = 2, unless differently specified.

4.6.1 r-EC Algorithm Analysis

In this subsection we analyze the behaviour of the r-EC algorithm. Figure 4.4(a) shows the coverage
cost function, H(P, µ), for the standard Lloyd’ algorithm and for the r-EC algorithm. It can be
seen how the r-EC algorithm converges to a different value than the standard Lloyd algorithm.
This is because the initial conditions in any single run are randomized and the robots can reach a
configuration corresponding to a different local minimum. The behavior for three different values
of α are shown. Observe that for small value of α the cost function converges more rapidly. This
is due to the fact that the robots are more prone to explore the environment and, consequently,
the estimated sensory function is a better approximation of the true function. So, since the cost
function is computed with respect to the centroids of the Voronoi regions, a better estimate implies
a better approximation of the centroids and consequently a lower value of the cost function. This
trend is inverted increasing the value of α. On the other hand, the average energy spent by the
robots at iteration k, i.e., 1

N

∑N
i=1 ‖ui,k‖2, decreases for increasing α, as shown in Figure 4.4(b).

This is due to the following two facts:

(i) when a sufficiently accurate estimate of the true sensory function is reached, the function
Fα(M) which describes the probability of the robots to perform exploration or coverage,
forces the robots to be more prone to perform coverage control;

(ii) since the estimate is sufficiently accurate, the Voronoi’s partition of the working area does
not substantially change, so their centroids do not change as well. Consequently, the robots,
which are forced to move towards the centroids, do not move.
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(b) Average energy spent by the robots.

Figure 4.4: Comparison between the Llyod and r-EC algorithms. The plot shows a single run for different
value of the tuning parameter α.

The posterior variance evolution shows how the estimate improves at each iteration. Figure 4.5
reports the max, the min and the average of the posterior variance, i.e.,

Vmax = max
x∈X

Vk(x) ; Vave =

∫
X Vk(x)dx∫
X dx

; Vmin = min
x∈X

Vk(x) .
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Figure 4.5: Evolution of the min, the average and the max of the posterior variance of the estimate.

Remark 4.7 Note that the curves of Figure 4.5 scale with the number of robots. That is
increasing the number of robots, the max, the average and the min of the posterior variance tend
to zero more rapidly. In particular the curves scale as 1√

N
.

Figure 4.6 reports a single realization of the r-EC algorithm for three different sensory functions
µ. In particular, the sensory function to which correspond the plot in the left panel is spanned
by the kernel since it is a combination of gaussians. Conversely, the sensory function used in the
middle and right panels are obtained from sinusoidal curves thus they are not spanned by the
kernel. However, the algorithm performs really well. This must not seem surprising since it is
known that using a gaussian kernel it is possible to retrieve a very good estimate for almost any
the sensory function. In the figure, the blue dots show the locations of the centroids obtained using
the r-EC algorithm, while the black lines identify the Voronoi’ partitions borders.

4.6.2 Packet Losses Analysis

In this section we show the effectiveness and the robustness of the r-EC algorithm against lossy
communications. In particular, we test the algorithm for different percentage of packet losses
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(a) µ(x) =

5

(
e
−‖x−µ1‖

2

0.04 + e
‖x−µ2‖

2

0.04

) (b) µ(x) =

10 cos (πx1) cos (πx2)+10

(c) µ(x) = 10 sin
(
x1x2

2

)

Figure 4.6: Voronoi partitions computed using the r-EC Algorithm (black lines) for different sensory function
µ(x). Blue dots indicate the locations of the centroids obtained with the r-EC algorithm.

assuming, for the sake of simplicity, that the losses probabilities, β, γ, are equal among the nodes
and within the same node. That is the probability of either successfully transmit to or receive data
from the BS is the same. It is worth noting that this assumption does not compromise the well
behavior of the algorithm which can be easily implemented assigning different losses probability.
Figure 4.7(a) and 4.7(b) plot the evolution of the posterior variance and of the cost function,
respectively, corresponding to four values of packet loss probability, namely 0%, 25%, 50% and
75%. It can be seen how the convergence rate is reduced due to the packet loss. However, the
convergence of the r-EC algorithm holds.
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Figure 4.7: Behaviour of the r-EC algorithm for different values of the packet loss probability averaged over
100 Monte Carlo runs.

4.6.3 Grid Based Approximation Analysis

In this section we show a numerical comparison between the original r-EC algorithm of Section 4.4
and its grid based approximation presented in Section 4.5.2. Since X has been chosen to be equal
to a a square set, [0, `]2, with edge of length ` = 1, it is convenient to let the sampled space Xgrid

be a uniform sampled grid defined as

Xgrid =
{
x11, . . . , xpp | xij = (xij,1, xij,2) with xij,1 =

`

p− 1
(i− 1),

xij,2 =
`

p− 1
(j − 1) , i, j = 1, . . . , p

}

where the integer p > 0 represents the desired number of points per edge. In particular, Figure
4.8 (left panel) shows the performance, in terms of max of the posterior variance, of the algorithms
for different level of space discretization, i.e., different total number of points p2. It can be seen that
the grid based approximation is slightly faster during the first iterations but it reaches convergence
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in more or less 150 iterations. Conversely, in the original implementation the max of the posterior
variance keeps decreasing since it converges to zero asymptotically. However, in terms of execution
time the r-EC-grid algorithm is much lighter than the r-EC algorithm, see table in Figure 4.8 (right
panel). This represents the major advantage of using this implementation since given a desired
final accuracy on the max of the posterior variance, according to Proposition 4.6, the execution
time can be reduced of different order of magnitudes. Finally, as stated by Proposition 4.6, in
the grid based approximation, the finer is the grid the lower is the final value of the max of the
posterior variance, see Figure 4.8 (left panel).
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Figure 4.8: Comparison between the original r-EC algorithm and the grid based approximation for different
total number of points p2. The left panel shows the evolution of the max of the posterior variance averaged
over 100 Monte Carlo runs. The table in the right panel reports the steady state value after 400 iterations and

the execution times obtained using the grid based approximation and classic algorithms.

4.6.4 Parameters tuning and scaling

The previous algorithms require the choice of some design parameters. Here we provide some
sideline based on the extensive simulative experiments that we performed. The first design choice
is the Kernel to be used. A common choice is to use Gaussian Kernels, i.e.

K(a, b) = λe
‖a−b‖2

ζ2

where λ represents the a-priori uncertainty variance of the map µ, and ζ is the standard deviation
of the Kernel. The choice of Gaussian Kernels is motivated by their good representative features,
although other choices are possible [67]. The parameters λ and ζ based on the a-priori knowledge
of the map to be learned. For example, if the map to be identified is a temperature map, one might
know in advance that it must be within a certain range, therefore λ could be set to the square half
of the maximum range, i.e.

λ ≈ maxµ2(x)

4

The parameter ζ is related to how rapidly the map µ(x) changes over the space, therefore if one
knows the typical distance beyond which the temperature is uncorrelated with the temperature
taken at a specific point, let us call it δµ, then a reasonable choice is given by:

ζ ≈ δµ
10

For what concern the size of the sampling grid ∆ in the grid-based approximated algorithm, this is
to be chosen based on the desired a-posteriori steady state error variance that one wants to have.
Based on Fig. 4.3, then ∆ should be chosen around

∆ ≈ ζ

3

although a good partitioning is obtained already for ∆ ≈ ζ.
Another important design choice is given by the desired tradeoff between exploration and

exploration. We found that the suggested function

F (M) = Mα
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is sufficiently flexible and easy to use, where α = 1 would provide a good general compromise in
terms of this trade-off.

Finally, we would like to summarize the scaling properties of the proposed algorithm in terms
of its ability to estimate the unknown map µ(x). In fact the average estimation error scales
approximately as follows in terms of the different parameters of the system:

|µ(x)− µ̂k(x)| ≈
√
λ

(
1√
Nk

+
∆

ζ

)
(4.22)

where the first term is obtained by assuming to divide the exploration region in N subregions of
equal size and then perform uniform sampling, while the second term is due to the error given
by the approximating grid given in equation (4.18). This expression clearly shows the benefit of
a larger number of agents N , how the error scales with time k, and the impact of the size of the
approximating grid.



5
Kalman Filter meets Gaussian Regression

In this chapter we address the problem of designing algorithms that are capable to obtain the
optimal estimate of a Gaussian process in an efficient manner. In particular we define a class
of Kernels for which the exact estimate can be obtained through a Kalman filter and we also
propose an approximate algorithm to estimate processes generated by Kernels that do not belong to
aforementioned class. In Section 5.1 we introduce the key aspects of the non-parametric estimation
while in Section 5.2 we introduce the main aspects of the Kalman filtering. In Section 5.3 we present
our main results and we show its effectiveness through some simulations in Section 5.4.

5.1 Nonparametric Estimation

In this section we review some key aspects regarding the nonparametric estimation in the Gaussian
regression framework.

Let f : A 7→ R be a zero-mean Gaussian field with covariance, also called kernel, K : A×A → R,
where A is a compact set. Assume to have a set of N ∈ N noisy measurements, i.e. {ai, yi}Ni=1, of
the form

yi = f(ai) + vi, (5.1)

where vi is a zero-mean Gaussian noise with variance σ2, i.e. vi ∼ N (0, σ2), independent of
the unknown function. Given the data-set {ai, yi}Ni=1, exploiting known results on estimation of
Gaussian random fields , one obtains that the estimate of f is a linear combination of the kernel
sections K(ai, ·). In particular, for any a it holds that

f̂(a) = E
[
f(a)|{ai, yi}Ni=1

]
=

N∑

i=1

ciK(ai, a), (5.2)

where the expansion coefficients ci are obtained as


c1
...
cN


 = (K̄ + σ2I)−1



y1

...
yN


 ,

while the matrix K̄ is obtained evaluating the kernel at the input-locations, i.e.

K̄ =



K(a1, a1) · · · K(a1, aN )

...
. . .

...
K(aN , a1) · · · K(aN , aN )


 .

Finally, the posterior variance of the estimate at a generic input location a ∈ A is

V (a) = Var
[
f(a)|{ai, yi}Ni=1

]
= K(a, a)−

[
K(a1, a) · · · K(aN , a)

]
(K̄ + σ2I)−1



K(a1, a)

...
K(aN , a)


 .

71
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To apply this approach in a context where new data arrive as time increases, one can see that
more and more input-locations and output values must be stored and processed at each iteration
to compute the estimate. Indeed, the most expensive operation is the inversion of a N ×N matrix
which requires O(N3) operations. This eventually leads to a memory and computational consum-
ing process growing unbounded with N .

Observe that, in spatial Gaussian processes, a denotes a spatial variable defining a spatial
location. Analogously, in temporal Gaussian processes, a typically represents time. In the rest
of the paper, we are interested in spatio-temporal processes, where time-varying functions are
considered so that f(a) = f(x, t) with a now incapsulating both a spatial and a temporal quantity.
The domain set can thus be decomposed as A := X × R+, with X and R+ indicating the spatial
and temporal domain, respectively. We will also assume X to be a compact set.

5.2 Kalman Filter for Finite Dimensional State Linear
Estimation

In this section we briefly recall some basic notions on Kalman filtering in finite-dimensional state-
space linear systems. Consider the following discrete-time linear dynamical system

sk+1 = Ask + wk,

yk = Cksk + vk,
(5.3)

where sk ∈ Rn is the state vector, yk ∈ Rm the output vector, wk ∈ Rn and vk ∈ Rm are i.i.d.
zero-mean Gaussian random vectors with covariance matrices Q ≥ 0 and R > 0, respectively.
A ∈ Rn×n is the state matrix and Ck ∈ Rm×n is the time-varying output matrix. As commonly
done, we assume both the process and measurement noise to be uncorrelated with respect to each
other, i.e. E

[
wTk vs

]
= 0 ∀k,s. We also assume that the initial condition s0 is a Gaussian vector of

zero-mean and covariance Σ0. Furthermore, we define

ŝk+1|k+1 = E [sk+1|y0, . . . , yk+1] .

Under the stated assumptions, the Kalman Filter is then described by the following equations

ŝk+1|k = E
[
sk+1|ŝk|k, yk

]
= Aŝk|k

Σk+1|k = AΣk|kA
T +Q

ŝk+1|k+1 = E
[
sk+1|ŝk+1|k, yk

]
= ŝk+1|k +Kk+1

(
yk+1 − Ckŝk+1|k

)

Σk+1|k = Σk+1|k −Kk+1CkΣk+1|k

Kk+1 = Σk+1|kC
T
k

(
CkΣk+1|kC

T
k +R

)−1

(5.4)

where we set ŝ0|−1 = E[s0] = 0 and Σ0|−1 = Cov[s0] = Σ0. It is well known, [68], that if we assume
the output matrix constant, i.e. Ck = C, under the hypothesis of stabilizability of the pair (A,Q)

and detectability of the pair (A,C) the estimation error covariance of the Kalman filter converges
to a unique value from any initial condition.

5.3 Kalman Regression on a Finite Dimensional Grid

In this section we show how to combine the two approaches described in the previous sections
to estimate a time-varying function on a finite dimensional grid. The next section will be then
devoted to extend the results to perform estimation on any point of the spatial domain.
As already mentioned, Gaussian regression turns out appealing, especially when no precise infor-
mation on f is available, e.g. just smoothness. However, the computational and storage burden
is high, both scaling as O(N3). On the other hand the Kalman filter algorithm is recursive and
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it requires to store only the last state estimate, poster variance and measurements. Our next
developments illustrate a way to bridge nonparametric estimation and Kalman filtering.

Consider a function f : X ×R+ → R modeled as a zero-mean Gaussian Process with covariance
K. Hereby, to simplify notation, ft(x) is used in place of f(x, t). Let us also define a spatial
discretization of X , as described below.

Definition 5.1 (Sampled Space) Letting X ⊂ R2, we denote with Xgrid ⊂ X a finite set
containing M input locations, i.e. Xgrid := {x1, . . . , xM}.

With this definition in mind, unless differently specified, in the rest of this section all the
spatial input locations where data are collected are assumed constrained on Xgrid whereas the
time variable t can assume any value in R+. Note however that, even under this restriction, the
Gaussian estimator in general suffers of high computational and storage burden. This is essentially
due to the non Markovian nature of the process f w.r.t. the temporal variable. To overcome this
problem, our main idea is to define a new class of Markovian kernels through a suitable yet rich
class of state space models. This will pave the way to the use of Kalman filtering for function
reconstruction. For this purpose, it is useful to define ft as the vector with components given by
ft(x) sampled on Xgrid, i.e. ft = [ft(x1), . . . , ft(xM)]

T .

Assumption 5.2 The covariance of the Gaussian process ft(x) is separable in time and space
and stationary in time, i.e.

K(x1, x2, t1, t2) = λK1(x1, x2)K2(τ), τ = t2 − t1.

In addition, the power spectral density of K2(τ), denoted by

S(ω2) = F [K2(τ)] ,

is a rational function of order r.

Example 5.3 To help the reader’s intuition we now introduce two examples of stationary kernels
K2 which model time correlation, the first one will satisfy Assumption 5.2 while the second one
will not admit a rational representation.
First, consider the exponential kernel

K2(τ) = e−σt|τ |.

The associated spectral density is given by

S(ω2) = F [K2(τ)] =
2λσt

ω2 − σ2
t

=

√
2λσt

(ω − σt)

√
2λσt

(ω + σt)

which is rational of order 1. Instead, if we consider the squared exponential kernel

K2(τ) = λe−σ
2
t τ

2

,

its spectral density is not rational, i.e.

F [K2(τ)] =
√
π
λ

σt
e−( w

2σt
)2 .

So this kernel does not satisfy Asssumption 5.2.
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We are now ready to present our first result which links the process ft(x) to an equivalent state
space representation.

Proposition 5.4 Let λK1(x1, x2)K2(τ) a kernel which satesifies Assumption 5.2 and with spec-
tral density of K2(τ) of the form

S(ω2) = W (iω)W (−iω)

where

W (iω) =
bm(iω)m + bm−1(iω)m−1 + · · ·+ b0
an(iω)n + ba−1(iω)n−1 + · · ·+ a0

.

Then the process ft(x) admits, constrained on Xgrid, the following strictly proper state-space
representation 




ṡjt = Fsjt +Gwjt

zjt = Hsjt

ft = K1/2Zt

j = 1, . . . ,M, (5.5)

where j is an index cycling through all the inputs locations of Xgrid, E
[
sits

j
t

]
= 0 ∀t with i 6= j,

Zt =
[
z1
t , . . . , z

M
t

]T , K is such that its (i, j)-th entry is Kij = K1(xi, xj) with xi, xj ∈ Xgrid, w
is zero-mean white Gaussian noise, s(0) ∼ N (0, λ(HTH)†HTH(HTH)†) where λ is the variance
of z and the model matrices are

F =




0 1 0 . . . 0

0 0 1 . . . 0
. . .

0 0 0 . . . 1

−a0 −a1 −a2 . . . an



, G =




0

0
...
0

1




H =
[
b0 b1 b2 . . . bn

]
.

Proof The process ft is a Gaussian process, because wt is Gaussian and the solution of a linear
differential equation is a linear operation on the input. Now we need to prove that the covariance
of ft is KK2(τ). The first two equations of model (5.5) are the state space representation of the
rational power spectral density S(ω) thus E

[
zjt+τz

j
t

]
= K2(τ). So we can state that the covariance

of the process ft is E [ft+τ ft] = K1/2 [I ·K2(τ)]
(
K1/2

)T
= KK2(τ). ♦

Example 5.5 We continue the previous example and we see how to compute the matrices F,H
and K1/2 necessary to implement the state space model of the process to estimate. Consider a
zero-mean Gaussian process ft(x) with covariance

K(x1, x2, τ) = λK1(x1, x2)K2(τ) = λe−σx(x1−x2)2e−σt|τ | (5.6)

which, as we showed in Example 5.3, satisfies Assumption 5.2. Then, thanks to Proposition 5.4,
we know that process ft(x) admits a state space representation on Xgrid. So, to get the state and
the output matrices F and H, we compute the state space representation of the spectral density
of K2, i.e. S(ω2) = F [K2(τ)], which in this case is

F = −σt, H =
√

2λσt.

Finally we compute the matrix K1/2 as the Cholesky factorization of the kernel K1 sampled on
the input location of Xgrid. However, even if the kernel who generates ft(x) does not satisfies
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Assumption 5.2, it is possible to get a state-space process which approximated the original func-
tion ft(x). Consider in fact the squared exponential kernel that has a spectral density which
does not satisfy Assumption 5.2, its density can always be approximated with a rational function
exploiting to Taylor expansion or Pade approximation. One example is given by

F [K2(τ)] (ωt) =
√
π
λ

σt
e−( w

2σt
)2 ≈

√
π λ
σt

1 + ( w
2σt

)2 + 1
2 ( w

2σt
)4
,

and with this approximation we can write a second order state space system.

Assume to have a sampling time of T seconds, the discretization of (5.5) is




sjk+1 = F̄ sjk + wjk

zjk = H̄sjk

fk = K1/2Zk

j = 1, . . . ,M, (5.7)

where
F̄ = eFT , H̄ = H

and wjk is a zero-mean white Gaussian noise and s0 ∼ N (0, λ(HTH)†HTH(HTH)†).

Example 5.6 We complete Example 5.5 giving the discrete state space representation of a zero-
mean Gaussian process fk(x) with covariance given by (5.6), with sampling time T . In particular
Q,H and K1/2 do not change while the state amatrix becomes

F = e−σtT .

To complete the state model of equation (5.7) and bring it to the form of equation (5.3), we need
to provide an explicit measurement model, like the one of equation (5.1). In particular, at every
iteration k, we assume to be able to collect mk measurements of the form (5.1) from different input
locations on Xgrid. We define the set of selected input locations asM(k) := {xj1 , . . . , xjmk

} ⊆ Xgrid.
This leads to

yk = Ckfk + vk, (5.8)

where Ck ∈ {0, 1}mt×M is the time-varying output matrix used to select mk measurements corre-
sponding to theM(k) input locations. Finally, vk is an i.i.d. zero-mean Gaussian random vector
with covariance R = σ2I, independent from wk. In Figure 5.1 is depicted the an example of mea-
surments collection on a grid of 5 sensors while in Figure 5.2 is reported a scheme which explain
the process formation. Now it is possible to apply Kalman filtering to the state space model of
equations (5.7) and (5.8) to compute best unbiased linear estimation of fk which exactly correspond
to the nonparametric estimate given by equation (5.2). This result is concisely presented in the
following

Corollary 5.7 Consider Proposition 5.4 and the state space model of equations (5.7) and (5.8).
Then,

f̂k := E
[
fk|{xi, yi}Ni=1

]
= E [fk|ŝk−1, yk] .
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Figure 5.1: This plot shows time versus space. In particular the red crosses highlight the grid input locations,
the black circles the measurements taken at each iteration and the gray square an example of prediction off-time

and off-grid.
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Figure 5.2: This plot shows the process formation in a grid with five input locations.

Remark 5.8 Exploiting the Kalman filter for the estimation makes the complexity cubic on the
number of the state of the linear system incited of cubic in the number of measurements. This is
incredibly efficient and energy saving when the dealing with big data sets or long time series.

5.4 Numerical Results

In this section we provide some numerical results to validate the performances of the estimation
methods proposed. We run all the simulation in MATLAB on a laptop with a 2.4 GHz Intel Core
2 Duo processor and 8 Gb of RAM. For all the simulations we choose a grid with a cardinality of
M = 100 points equally spaced over the interval [1, 100], a sampling time of T = 0.2 seconds.

Example 5.9 First we analyze the estimation of a process that is generate by a kernel which
satisfies Assumption 5.2. In particular the kernel used is a sum of exponentials for modeling the
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time covariance multiplied by a squared exponential for modeling the space covariance, e.g.

K(x1, x2, τ) = λ(e−σ1|τ | + e−σ2|τ |)e−(x1−x2)2σx ,

where λ = 10, σ1 = 0.01, σ2 = 0.05 and σx = 0.2. Figure 5.3 shows that the estimation of the
last iteration obtained from the standard non-parametric algorithm is exactly the same of the
one obtained from the last iteration of the Kalman filter. This figure show only the estimation
in a given iteration, so on the x-axis we do not have the time but the space, i.e. the 100 different
input locations.
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Figure 5.3: In solid black is shown the original process while in solid blue and dashed red are shown the
estimation through the non-parametric estimator and the Kalman filter respectively both at the last iteration.

The two estimate are exactly the same as stated in the previous section.

Figure 5.4 shows the complete behavior of the Kalman filter over time and space in a 3D plot.
Obviously this is also the behavior of the non-parametric estimator being the estimate exactly
the same.
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Figure 5.4: Reconstruction in a 3D plot of the Kalman estimate.

The second plot in figure 5.5 shows the fit of a non-parametric estimator which uses only a reduced
set of measurements with respect to estimate obtained through the Kalman filter. In particular
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this estimator uses only the last MemoryStesps∗M that in our case is equal to MemoryStesps∗100.
The fit is computed as follow

Fit(f̂1, f̂2) =
|f̂1 − f̂2|
|f̂2|

100,

where f̂1 is the estimate obtained with the reduced set of measurements and f̂2 is the estimate
obtained with the Kalman filter. As we can see when all the measurements are used the fit is, as
expected, of 100%, which means that the estimate are the same.
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Figure 5.5: In black is shown the fit of the non-parametric estimator which uses a variable amount of
memory, e.g. an increasing number of measurements. The red dashed line is the baseline represented by the

Kalman filter estimate.

Example 5.10 In this second example we consider the estimation of a process generated by a
kernel which not satisfies Assumption 5.2, e.g.

K(x1, x2, τ) = λe−σtτ
2

e−(x1−x2)2σx ,

in particular this power spectral density is not a rational function. As stated in the previous
section, a simple way to overcome this issue is to find a good rational approximation of the of
the spectral density and a smart way to do that is to solve the following minimization problem

min
a0,...,bm

(
S(ω2)−W (iω)W (iω)

)2

where

W (iω) =
bm(iω)m + bm−1(iω)m−1 + · · ·+ b0
an(iω)n + ba−1(iω)n−1 + · · ·+ a0

,

S(ω2) is the p.s.d. associated to the kernel K(x1, x2, τ), λ = 10, σt = 0.2 and σx = 0.5. In
figure 5.6 there is a comparison between the estimate obtained using the Kalman filter and the
non-parametric estimator with variable memory. In particular on the x-axis we find for the
Kalman filter the order of the approximation while for the non-parametric estimator the number
of measurements used for the estimation divided by the number of input locations, e.g. M = 100.
To be more precise for the Kalman filter we exploited 6 models, for the first order to the sixth
order. For the non-parametric estimator the simulations are run starting from 100 measurements
to 600. On the y-axis it is shown the fit to our baseline which is the estimate obtained using the
non-parametric estimator that uses all the measurements, and it is computed as in the previous
example. We can see from the plot that the Kalman filter with a fourth order model already has
a fit close to 100%. Even if the two curves are not so straightforwardly comparable the Kalman
filter exhibits a good behavior also with low order models while the non-parametric estimator
need many data to guarantee good performances.
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Figure 5.6: In red is shown the fit of the Kalman filter to the non-parametric estimator which uses all the
measurements while in black the fit of the non-parametric estimator which uses a reduced set of measurements.

The plot is the result of a Monte Carlo simulation over 1000 runs.

Example 5.11 In this last example we show why is more convenient to use the algorithm that
exploit the Kalman filter than the standard Gaussian regression. The reason is due to the fact
that the Kalman filter, thanks to its iterative form, it is more efficient from a computational point
of view. Consider a process generate by a kernel like the following

K(x1, x2, τ) = λ(e−σ1|τ | + e−σ2|τ |)e−(x1−x2)2σx ,

where λ = 10, σ1 = 0.01, σ2 = 0.05 and σx = 0.2. We measured the execution time for the
algorithm that exploit the Kalman filter and for the one which relies on the standard Gaussian
regression. What we can see is that the complexity of the latter is much higher with respect to the
former. In particular from the theory we have the the Gaussian regression has a complexity which
is cubic in the number of measurements, that in this case are 100 by the number of iterations. The
Kalman filter also has cubic complexity, but it the state dimension which in this particular case is
2, and it has a complexity linear in time. In Figure 5.7 is reported the time needed to execute the
estimate for a given number of iterations, e.g. and obviously a given number of measurements.
As we can see the Kalman filter is much faster.
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Figure 5.7

The plot is the result of a Monte Carlo simulation over 1000 runs.
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6
Conclusions

In this dissertation we propose novel algorithms for the localization and mapping in robotics net-
works.

In Chapter 2 we propose a consensus based strategy to localize a group of agents using only local
relative noisy measurements. This algorithm is thus efficient, scalable and even robust to packet
losses and delays. The asynchronous implementation is shown to be exponentially convergent
under simple communication protocols. In the randomized scenario, we performed a theoretical
analysis of the rate of convergence in mean square, providing general lower and upper bounds.

We presented another algorithm for localization purposes in Chapter 3 which solves the problem
of absolute position reconstruction of a multi-robots formation. In particular, it is assumed each
agent to be endowed with standard noisy GPS and compass modules and finer relative range and
bearing sensors. Combining the absolute and relative information, we showed how the absolute
global formation can be reconstructed. Specifically, a fast distributed and asynchronous Linear
Least-Squares algorithm which solves an approximation of the Maximum Likelihood estimation
problem is presented. Moreover, the algorithm is shown to be robust to delays and packet losses
in the communication channel. Exhaustive numerical simulations show how, for sufficiently small
relative errors, the approximated solution behaves like the ML estimator. As future research di-
rections, we will investigate the impact of the formation shape and of the communication graph
on the relative formation reconstruction. Moreover, a solution which, filtering the absolute and
relative angles measurements, could provide a better estimate of the robots absolute rotations will
be analyzed.

In Chapter 4 we addressed the problem of simultaneously mapping and coverage with multiple
robots. In particular we analyzed the problem of optimal coverage of a region using a formation
of robots assuming the sensory field which approximate the sensory distribution of events is un-
known. We proposed an algorithm in the context of a client-server architecture which is guaranteed
to asymptotically exactly estimate the unknown sensory function and to achieve a partition which
is arbitrarily close to a Lloyd partition even in the presence of lossy communication and noisy
measurements. We also provided an approximated algorithm that, at the price of a (quantifiable)
error in the sensory function estimation, has dramatic reduction in terms of memory and CPU
requirements. We also suggested simple guidelines to tune the parameters of the algorithm and
we tested the performance of the algorithms via extensive numerical simulations. Future research
directions include the extension of this work to dynamic scenarios, i.e. scenarios in which the
sensory function is not constant but time-varying, and to scenarios where also the positions of the
robots are not perfectly known. Another very challenging avenue of research is the extension of
non-parametric estimation tools similar to those adopted here in the context of distributed explo-
ration and partitioning where there is no server involved and the robots have to collaborate only
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via local lossy communication.

Finally in Chapter 5 we found a class of kernels such that the standard non-parametric esti-
mation can be rewritten as a Kalman filter. In particular we analyzed the problem of estimating
functions which varies both in time and space. This is possible thanks to the exploitation of a grid
which transform the infinite dimensional problem of the regression to a finite dimensional one. The
main advantage of this approach is given by efficiency, e.g. reduced computational complexity, of
the Kalman filter. For all the kernels which does not belong to the aforementioned class we also
presented an approximation that allows to exploit the algorithm based on the Kalman filter. A
future research directions include the extension of the estimation to input locations that does not
belong to the grid and time instant that are not integer multiple of the sampling time.



A
Consensus

Consider a graph G = (V, E), where the set of vertexes V = {1, . . . , N} represents the agents and
the set of edges E ⊂ V ×V represent the connections among the agents. The cardinality of the set
E , i.e. |E|, measures how many connections are on the graph. We also define the transition matrix
P , which satisfies

Pij ≥ 0,
∑

j

Pij = 1,

which is equivalent to
P1 = 1,

where 1 is the vector of all ones. If we consider the discrete time system described by the equation

xk+1 = Pxk, (A.1)

the consenus problem studies how and how fast the components on the state xk find an agreement,
i.e. xk → α1 where α ∈ R is a constant, varying the matrix P and the underlying graph. The
adjacency matrix E is defined as

Eij =

{
1 if(i, j) ∈ E
0 otherwise

.

If we consider the case when P > 0, being the transition matrix stochastic, we have that P1 = 1,
thus 1 is the eigenvalue associated to the right eigenvector 1. If we call with w the left eigenvector
of P associated to the eigenvalue 1, we can factorize P as follow

P =
[
1 V

] [1 0

0 Λ

] [
wT

W

]
,

where V and W are part of the Jordan transformation matrices and Λ is a matrix containing the
eigenvalues of P but one. Now, if we consider the initial problem A.1, we write it as follow

xk+1 = Pxk = P kx0 = 1wT + V ΛkW

Being the eigenvalues on Λ all less than one, when k goes to infinity we have

lim
k→∞

xk = lim
k→∞

P kx0 = 1wTx0 = α1.

As we can see from the previous equation we reach consensus as a linear combination of the initial
conditions, and the linear combinator is the left eigenvector of the transition matrix, which is
related to coefficients of the matrix P and to the kind of graph that we are using. A similar result
can be obtained even if the matrix P is not definite positive, but it is such that there exists an
integer k such that P k > 0. A sufficient condition to have convergence to consensus is that the
graph G has to be strongly connected, namely for every pair of vertexes i, j ∈ G there exists a path
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which connect them.
One important aspect in consensus problems is the speed needed to reach consensus, also called
rate of convergence. This kind of analysis is related to the second largest eigenvalue of the matrix
P , being the one which drives the dynamics of the transient of the system. One of the possible
way to estimate the rate of convergence is to study the dynamics of

vk , ||xk − x∞|| = ||
(
1wtV ΛtW

)
x0 − 1wtx0|| = ||V ΛtWx0||,

when k goes to infinity vk goes to zero, being the sum of exponential with argument strictly less
than one.



B
Kalman Filter

Consider the following discrete time-invariant stochatic system:
{

xk+1 = Axk + wk

yk = Cxk + vk

where vk ∼ N (0, R), wk ∼ N (0, Q) and x0 ∼ N (x̂0, P0). These three variable are Gaussian, not
correlated to each other. Moreover we assume

E [vkvh] = Rδ(h− k)

E [wkwh] = Qδ(h− k),

where δ(x) is the Kronecker delta. The Kalman filter is defined as

x̂k+1|k+1 = E [xk+1|yk+1, yk, . . . , y0] = E
[
xk+1|yk+1, Y

k
]
, (B.1)

where Y k = (yk, yk−1, . . . , y0) and its implementation is the recursive formulation of (B.1). Under
the assumption aforementioned, it returns the optimal estimate of the state x. The filter has two
steps, the first is a prediction of the state based on the model and the previous state

{
x̂k+1|k = Ax̂k|k

Pk+1|k = APk|kA
T +Q

(B.2)

where x̂k+1|k is the estimate of the state and Pk+1|k the estimated covariance in x̂k+1|k. From
equation (B.2) we can see that the estimate depends only on the state and on the model, i.e. it is
an open loop estimate, and its goodness will depend on the accuracy of A. The notaion k + 1|k
means that at time k + 1 is based on information up to time instant k. From the second equation
in (B.2) we can see that the covariance can only increase being the sum of two positive definite
matrices. As soon as a new noisy measurement yk+1 is available we can proceed with the second
step of the Kalman estimation, which is called update. First we compute the so called innovation

ek+1 = yk+1 − Cx̂k+1|k,

which is the difference between what the sensors measure and what the sensors are predicted to
measure. Second we compute the Kalman gain

Kk+1 = Pk+1|kC
T
(
CPk+1|kC

T +R
)−1

which maps the innovation into a correction for the predicted state. The update state is then given
by

x̂k+1|k+1 = x̂k+1|k +Kk+1ek+1

Pk+1|k+1 = Pk+1|k −Kk+1HPk+1|k
(B.3)
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where the Kalman gain optimally tweak the innvoation in order to improve the estimate. In
(B.3) we can notice that, differently from (B.2), the uncertainty decreases since the second term is
subtracted to the covariance obtained in the prediction step. To get the best performance from the
Kalman filter is importanat to set the correct initial conditions, which are application dependent,
i.e. {

x̂0|−1 = x̄0

P0|−1 = P̄0

.

We can make some useful consideration:

(i) The process can be non-stationary and the system can be time-variant,

(ii) the hypothesis of incorrelation between vk and wk can be relaxed,

(iii) the matrix R can be semidefinite positive, but it is necessary to substitute the inverse with
the pseudoinverse,

(iv) all the random variables can have a mean different from zero,

(v) the update equation is affine in the measurements,

(vi) all the information up the instant k − 1 is encapsulated in the state xk−1|k−1,

(vii) the gain Kk is time-variant even if the system is time-invariant,

(viii) the signal vk and wk must be white and Gaussian.

An alternative formulation of the Kalman filter is given by the Information form which allows to
reduce computational complexity when the number of collected measurements, say m, is bigger
than the state dimension, say n. This can be computed applying the inversion lemma, and at the
end we get two new equations for the update step:

Pk+1|k+1 =
(
P−1
k+1|k + CTR−1C

)−1

,

x̂k+1|k+1 = Pk+1|k+1

(
Pk+1|k−1x̂k+1|k + CTR−1yk+1

)
.

From the equations of the information filter we can see that now we need to invert the matrix
P−1
k+1|k +CTR−1C which is of dimension m×m instead of the inversion of Pk+1|k+1 which has the

dimension of the state, i.e. n × n. So it is convenient to choose the Kalman filter in information
form when m < n.



C
Tikhonov Regularization

Let f : X → R denote an unknown deterministic function defined on a compact X ⊂ Rd. Assume
to have a measurement model as the following

y = f(x) + v,

where x ∈ X and x is a generic input location in the compact X . Given the data set {xi, yi}Ni=1,
where N is the number of measurements collected, one of the most used approaches to estimate f
is the so called Tikhonov Regularization, which relies on the Tikhonov regularization theory [64].
The hypothesis space is usually given by given by a Reproducing Kernel Hilbert Space (RKHS)
defined by a Mercer Kernel K : X ×X → R. In the following is reported the Representer theorem,
which states that the optimal estimate of a function can be represented as a linear combination of
basis functions.

Theorem C.1 (Representer theorem) Consider Φ : H 7→ R where H is a generic Hilbert
space, defined as

Φ(f) = F
(
L1f, . . . , Lmf, ‖f‖2H

)
(C.1)

where F : Rm+1 7→ R and where the Li’s are linear and bounded functionals. The map is thus the
composition of three different maps: F , the norm in H, and the linear and bounded functionals
Li. The last assumption is that Φ is strictly monotonically increasing w.r.t. the last argument,
i.e. it is strictly monotonically increasing w.r.t. ‖f‖2H . Define

f̂ = arg min
f∈H

Φ(f) . (C.2)

Assume that there exists at least one solution of the previous problem (i.e. that the solution exists
but may be not unique). Then it has the form

f̂ =

m∑

i=1

cigi (C.3)

where the gi’s are the representers of the various Li’s, i.e. Lif = 〈f, gi〉H for all f ∈ H.

The Tikhonov regularization problem is comprised in this formulation, in fact the typical cost
function is of the form

J(f) =

N∑

i=1

(yi − f(xi))
2 + γ||f ||2K

where || · ||K is the norm defined in the RKHS and γ is the regularization parameter that trades
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off empirical evidence and smoothness information on f . The estimate of the unknown function is

f̂ = arg min
f∈HK

J(f),

where HK is the associated RKHS. It is known form the literature that f̂ admits the structure of
a Regularization Network, see [69], being the sum of N basis functions with expansion coefficients
obtainable by inverting a system of linear equations. More precisely, one has

f̂(x) =

N∑

i=1

ciK(xi, x), (C.4)

where the expansion coefficients ci are obtained as


c1
...
cN


 = (K̄ + σ2I)−1



y1

...
yN


 ,

while the matrix K̄ is obtained evaluating the kernel at the input-locations, i.e.

K̄ =



K(x1, x1) · · · K(x1, xN )

...
. . .

...
K(xN , x1) · · · K(xN , xN )


 .

The estimate of f admits also a Bayesian interpretation in fact, if f is modeled as the realization
of a zero-mean Gaussian random field with covariance K, the noise v is Gaussian, independent of
the unknown function and with variance σ2, setting γ = σ2 one has

f̂(x) = E
[
f(x)|{xi, yi}Ni=1

]

and the associated posterior variance of the estimate at a generic input location x ∈ X is

V (x) = Var
[
f(a)|{ai, yi}Ni=1

]
= K(x, x)−

[
K(x1, x) · · · K(xN , x)

]
(K̄ + σ2I)−1



K(x1, x)

...
K(xN , x)


 .

From a computational point of view one can see that to compute f̂ , O(N3) operations are required
and this approach become unfeasible when the number of measurements increase.



Bibliography

[1] P. Barooah and J. P. Hespanha, “Distributed estimation from relative measurements in sensor
networks,” in Proceedings of the 2nd International Conference on Intelligent Sensing and
Information Processing, Dec. 2005. 14, 31, 34, 37

[2] P. Barooah, “Estimation and control with relative measurements: Algorithms and scaling
laws,” Ph.D. dissertation, University of California, Santa Barbara, 2007. 14, 21, 31, 43

[3] S. Bolognani, S. D. Favero, L. Schenato, and D. Varagnolo, “Consensus-based distributed
sensor calibration and least-square parameter identification in WSNs,” International Journal
of Robust and Nonlinear Control, vol. 20, no. 2, pp. 176–193, 2010. 14, 36, 38

[4] R. Solis, V. Borkar, and P. R. Kumar, “A new distributed time synchronization protocol for
multihop wireless networks,” in 45th IEEE Conference on Decision and Control (CDC’06),
San Diego, December 2006, pp. 2734–2739. 14

[5] D. Borra, E. Lovisari, R. Carli, F. Fagnani, and S. Zampieri, “Autonomous calibration algo-
rithms for networks of cameras,” in Proceedings of the Americal Control Conference, ACC’12.,
July 2012. 14

[6] R. Tron and R. Vidal, “Distributed image-based 3-d localization of camera sensor networks,”
in Proceedings of the 49th IEEE Conference on Decision and Control CDC’09, 2009, pp.
901–908. 14

[7] A. Giridhar and P. Kumar, “Distributed clock synchronization over wireless networks: Al-
gorithms and analysis,” in Decision and Control, 2006 45th IEEE Conference on, 2006, pp.
4915–4920. 14, 34, 36, 37

[8] W. Rossi, P. Frasca, and F. Fagnani, “Transient and limit performance of distributed relative
localization,” in Decision and Control (CDC), 2012 IEEE 51st Annual Conference on, 2012,
pp. 2744–2748. 14, 23, 36

[9] C. Ravazzi, P. Frasca, H. Ishii, and R. Tempo, “A distributed randomized algorithm for
relative localization in sensor networks,” in Proceedings of European Conference on Control
(ECC’13), 2013. 14

[10] A. Zouzias and N. Freris, “Randomized extended Kaczmarz for solving least-squares,” Uni-
versity of Toronto, Tech. Rep., 2013. 14, 34, 37

[11] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control for mobile sensing net-
works,” Robotics and Automation, IEEE Transactions on, vol. 20, no. 2, pp. 243–255, April
2004. 14

89

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1284411&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1284411&tag=1


90 BIBLIOGRAPHY

[12] J. Cortés and F. Bullo, “Coordination and geometric optimization via distributed dynamical
systems,” SIAM Journal on Control and Optimization, vol. 44, no. 5, pp. 1543–1574, 2005.
14

[13] N. Leonard and A. Olshevsky, “Nonuniform coverage control on the line,” in Decision and
Control and European Control Conference (CDC-ECC), 2011 50th IEEE Conference on.
IEEE, 2011, pp. 753–758. 14, 15

[14] P. Davison, M. Schwemmer, and N. Leonard, “Distributed nonuniform coverage with limited
scalar measurements,” in Communication, Control, and Computing (Allerton), 2012 50th
Annual Allerton Conference on. IEEE, 2012, pp. 1455–1460. 14, 15

[15] F. Lekien and N. Leonard, “Nonuniform coverage and cartograms,” in Decision and Control
(CDC), 2010 49th IEEE Conference on. IEEE, 2010, pp. 5518–5523. 14

[16] J. Cortés, “Distributed Kriged Kalman filter for spatial estimation,” Automatic Control,
IEEE Transactions on, vol. 54, no. 12, pp. 2816–2827, 2009. 14

[17] J. Choi, J. Lee, and S. Oh, “Swarm intelligence for achieving the global maximum using
spatio-temporal Gaussian processes,” in American Control Conference, 2008. IEEE, 2008,
pp. 135–140. 14, 16

[18] M. Schwager, D. Rus, and J.-J. Slotine, “Decentralized, adaptive coverage control for net-
worked robots,” The International Journal of Robotics Research, vol. 28, no. 3, pp. 357–375,
2009. 14

[19] P. Davison, N. Leonard, M. Schwemmer, A. Olshevsky, et al., “Nonuniform Line Coverage
from Noisy Scalar Measurements,” arXiv preprint arXiv:1310.4188, 2013. 14

[20] J. L. Ny and G. Pappas, “Adaptive deployment of mobile robotic networks,” Automatic
Control, IEEE Transactions on, vol. 58, no. 3, pp. 654–666, 2013. 15

[21] P. Van Overschee and B. De Moor, Subspace identification for linear systems : theory, im-
plementation, applications. Boston: Kluwer Academic publ, 1996. 15

[22] L. Ljung, Ed., System Identification (2Nd Ed.): Theory for the User. Upper Saddle River,
NJ, USA: Prentice Hall PTR, 1999. 15

[23] W. Larimore, “Canonical variate analysis in identification, filtering, and adaptive control,”
in Decision and Control, 1990., Proceedings of the 29th IEEE Conference on, 1990. 15

[24] M. Verhaegen, “Identification of the deterministic part of mimo state space models given in
innovations form from input-output data,” Automatica, 1994. 15

[25] P. V. Overschee and B. D. Moor, “N4sid: Subspace algorithms for the identification of
combined deterministic-stochastic systems.” Automatica, 1994. 15

[26] ——, “A unifying theorem for three subspace system identification algorithms.” Automatica,
vol. 31, 1995. 15

[27] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning (Adaptive
Computation and Machine Learning). The MIT Press, 2005. 15

[28] F. Lindgren, J. Lindström, and H. Rue, “An explicit link between gaussian fields and gaussian
markov random fields; the spde approach,” Tech. Rep., 2010. 15

[29] K. Ni and G. Pottie, “Sensor network data fault detection with maximum a posteriori selection
and bayesian modeling,” ACM Trans. Sen. Netw., 2012. 15

http://arxiv.org/pdf/math/0305433.pdf
http://arxiv.org/pdf/math/0305433.pdf
http://arxiv.org/pdf/1104.0457.pdf
http://www.princeton.edu/~naomi/publications/2012/AllertonDavison2012.pdf
http://www.princeton.edu/~naomi/publications/2012/AllertonDavison2012.pdf
http://www.princeton.edu/~naomi/publications/2009/LekienLeonard09.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5325717
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4586480
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4586480
http://web.mit.edu/nsl/www/preprints/Adaptive_Coverage08.pdf
http://web.mit.edu/nsl/www/preprints/Adaptive_Coverage08.pdf
http://arxiv.org/pdf/1310.4188.pdf
http://arxiv.org/pdf/1310.4188.pdf
http://www.georgejpappas.org/papers/06286993.pdf
http://dl.acm.org/citation.cfm?id=293154


BIBLIOGRAPHY 91

[30] P. Hiltunen, S. Särkkä, I. Nissilä, A. Lajunen, and J. Lampinen, “State space regularization in
the nonstationary inverse problem for diffuse optical tomography,” Inverse Problems, vol. 27,
2011. 15

[31] P. Zhu, B. Chen, and J. C. PrÃncipe, “A novel extended kernel recursive least squares
algorithm.” Neural Networks, vol. 32, 2012. 15

[32] J. Quiñonero Candela and C. E. Rasmussen, “A unifying view of sparse approximate gaussian
process regression,” J. Mach. Learn. Res., 2005. 15

[33] 15

[34] J. Cortes, “Distributed kriged kalman filter for spatial estimation,” Automatic Control, IEEE
Transactions on, Dec 2009. 15

[35] S. Särkkä, A. Solin, and J. Hartikainen, “Spatiotemporal learning via infinite-dimensional
Bayesian filtering and smoothing,” IEEE Signal Processing Magazine, vol. 30, no. 4, pp.
51–61, 2013. 15

[36] J. Liu, B. Anderson, M. Cao, and A. S. Morse, “Analysis of accelerated gossip algorithms,”
in Proceedings of the IEEE Conference on Decision and Control CDC’09, 2009, pp. 871–876.
15, 28

[37] A. Carron, M. Todescato, R. Carli, and L. Schenato, “An asynchronous consensus-based
algorithm for estimation from noisy relative measurements,” Control of Network Systems,
IEEE Transactions on, 2014. 17, 45

[38] ——, “Adaptive consensus-based algorithms for fast estimation from relative measurements,”
in 4th IFAC Workshop on Distributed Estimation and Control in Networked Systems (Nec-
Sys’13), 2013. 17, 38

[39] A. Carron, M. Todescato, R. Carli, L. Schenato, and G. Pillonetto, “Multi-agents adaptive
estimation and coverage control using gaussian regression,” in European Control Conference
(ECC’15), 2015. 17

[40] R. Carli, F. Fagnani, A. Speranzon, and S. Zampieri, “Communication constraints in the
average consensus problem,” Automatica, vol. 44, no. 3, pp. 671–684, 2008. 20, 23, 28, 29

[41] R. Olfati-Saber, J. Fax, and R. Murray, “Consensus and cooperation in networked multi-agent
systems,” Proceedings of the IEEE, vol. 95, no. 1, pp. 215–913, 2007. 21

[42] F. Garin and L. Schenato, Networked Control Systems, ser. Lecture Notes in Control and
Information Sciences. Springer, 2011, vol. 406, ch. A survey on distributed estimation and
control applications using linear consensus algorithms, pp. 75–107. 21

[43] P. Barooah and J. Hespanha, “Estimation on graphs from relative measurements: Distributed
algorithms and fundamental limith,” IEEE Control Systems Magazine, vol. 27, no. 4, 2007.
23

[44] F. Fagnani and S. Zampieri, “Randomized consensus algorithms over large scale networks,”
IEEE Journal on Selected Areas in Communications, vol. 26, no. 4, pp. 634–649, 2008. 26,
27, 30

[45] R. Carli, A. Carron, L. Schenato, and M. Todescato, “An exponential-rate consensus-based
algorithms for estimation from relative measurements: implementation and performance
analysis,” University of Padova, Tech. Rep., 2013. 29, 31

[46] S. Boyd, A. Ghosh, D. Prabhakar, and D. Shah, “Randomized gossip algorithms,” IEEE
Transactions on Information Theory, vol. 52, no. 6, pp. 2508–2530, 2006. 29



92 BIBLIOGRAPHY

[47] M. Franceschetti and R. Meester, Eds., Random networks for communication. Cambridge
University Press, Cambridge, 2007. 29

[48] F. Fagnani and P. Frasca, “Broadcast gossip averaging: interference and unbiasedness in large
abelian cayley networks,” IEEE Journal of Selected Topics in Signal Processing, vol. 5, no. 4,
pp. 866–875, 2011. 31

[49] M. R. Murthy, “Ramanujan graphs,” Journal of Ramanujan Mathematical society, vol. 18,
no. 6, pp. 1–20, 2003. 31

[50] A. Nedic and A. Ozdaglar, “Convergence rate for consensus with delays,” Journal of Global
Optimization, vol. 47, no. 3, pp. 437–456, 2008. 33, 34

[51] N. I. Fisher, T. Lewis, and B. J. J. Embleton, Statistical analysis of spherical data. Cam-
bridge Univ Pr, 1993. 40

[52] P. Langevin, “Sur la théorie du magnétisme,” Journal de physique théorique et appliquée,
1905. 40

[53] M. S. Grewal, L. R. Weill, and A. P. Andrews, Global Positioning Systems, Inertial Naviga-
tion, and Integration. Wiley-Interscience, 2007. 40, 47

[54] H. Abbott and D. Powell, “Land-vehicle navigation using gps,” Proceedings of the IEEE,
1999. 40, 47

[55] R. Racz, C. Schott, and S. Huber, “Electronic compass sensor,” in Sensors, 2004. Proceedings
of IEEE, 2004. 40, 47

[56] J. Pfanzagl, Parametric statistical theory. Walter de Gruyter, 1994. 40

[57] H. Wang, G. Hu, S. Huang, and G. Dissanayake, “On the structure of nonlinearities in pose
graph slam.” in Robotics: Science and Systems, 2012. 43

[58] L. Carlone and A. Censi, “From angular manifolds to the integer lattice: Guaranteed orien-
tation estimation with application to pose graph optimization,” IEEE Trans. on Robotics,
2014. 43

[59] A. Carron, M. Todescato, R. Carli, and L. Schenato, “Distributed localization from relative
noisy measurements: a packet losses and delays robust approach,” 2014, [Online] Available
at http://automatica.dei.unipd.it/people/carron/publications.html. 47

[60] A. Papoulis and S. Pillai, Probability, random variables, and stochastic processes. Tata
McGraw-Hill Education, 2002. 53

[61] Q. Du, V. Faber, and M. Gunzburger, “Centroidal Voronoi tessellations: applications and
algorithms,” SIAM review, vol. 41, no. 4, pp. 637–676, 1999. 54

[62] S. Lloyd, “Least squares quantization in PCM,” Information Theory, IEEE Transactions on,
vol. 28, no. 2, pp. 129–137, Mar 1982. 54

[63] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control for mobile sensing net-
works,” Automatica, vol. 20, no. 2, pp. 243–255, 2004. 54

[64] A. Tikhonov and V. Arsenin, Solutions of Ill-Posed Problems. Washington, D.C.: Win-
ston/Wiley, 1977. 56, 87

[65] F. Cucker and S. Smale, “On the mathematical foundations of learning,” Bulletin of the
American mathematical society, vol. 39, pp. 1–49, 2001. 56

[66] F. Bullo, R. Carli, and P. Frasca, “Gossip Coverage Control for Robotic Networks: Dynamical
Systems on the Space of Partitions,” SIAM Journal on Control and Optimization, vol. 50,
no. 1, pp. 419–447, 2012. 60

http://automatica.dei.unipd.it/people/carron/publications.html
http://www.mhhe.com/engcs/electrical/papoulis/
http://www.jstor.org/stable/2653198?seq=1#page_scan_tab_contents
http://www.jstor.org/stable/2653198?seq=1#page_scan_tab_contents
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1056489
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1284411&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1284411&tag=1
http://www.jstor.org/discover/10.2307/2006360?sid=21104922558061&uid=4&uid=3738296&uid=70&uid=2129&uid=2
http://www.ams.org/journals/bull/2002-39-01/S0273-0979-01-00923-5/S0273-0979-01-00923-5.pdf
http://epubs.siam.org/doi/abs/10.1137/100806370
http://epubs.siam.org/doi/abs/10.1137/100806370


BIBLIOGRAPHY 93

[67] B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector Machines, Regulariza-
tion, Optimization, and Beyond, ser. (Adaptive Computation and Machine Learning). MIT
Press, 2001. 69

[68] P. S. Maybeck, Stochastic models, estimation and control. Volume I., A. Press, Ed., 1979. 72

[69] F. Girosi, M. Jones, and T. Poggio, “Regularization theory and neural networks architec-
tures,” Neural Computation, vol. 7, pp. 219–269, 1995. 88

[70] D. Gu and H. Hu, “Spatial Gaussian process regression with mobile sensor networks,” Neural
Networks and Learning Systems, IEEE Transactions on, vol. 23, no. 8, pp. 1279–1290, 2012.

[71] B. Lu, J. Oyekan, D. Gu, H. Hu, and H. Nia, “Mobile sensor networks for modelling envi-
ronmental pollutant distribution,” International Journal of Systems Science, vol. 42, no. 9,
pp. 1491–1505, 2011.

[72] P. Ogren, E. Fiorelli, and N. Leonard, “Cooperative control of mobile sensor networks: Adap-
tive gradient climbing in a distributed environment,” Automatic Control, IEEE Transactions
on, vol. 49, no. 8, pp. 1292–1302, 2004.

[73] K. Lynch, I. Schwartz, P. Yang, and R. Freeman, “Decentralized environmental modeling by
mobile sensor networks,” Robotics, IEEE Transactions on, vol. 24, no. 3, pp. 710–724, 2008.

[74] T. Söderström and P. Stoica, Ed., System Identification. Upper Saddle River, NJ, USA:
Prentice-Hall, Inc., 1988.

[75] T. Chen, H. Ohlsson, and L. Ljung, “On the estimation of transfer functions, regularizations
and Gaussian processes,” Automatica, vol. 48, no. 8, pp. 1525 – 1535, 2012.

[76] G. Pillonetto, A. Chiuso, and G. D. Nicolao, “Prediction error identification of linear systems:
A nonparametric Gaussian regression approach,” Automatica, vol. 47, no. 2, pp. 291 – 305,
2011.

[77] G. Pillonetto, F. Dinuzzo, T. Chen, G. D. Nicolao, and L. Ljung, “Kernel methods in system
identification, machine learning and function estimation: A survey,” Automatica, vol. 50,
no. 3, pp. 657 – 682, 2014.

[78] T. Poggio and F. Girosi, “Networks for approximation and learning,” in Proceedings of the
IEEE, vol. 78, 1990, pp. 1481–1497.

[79] S. Smale and D. Zhou, “,” Constructive Approximation, vol. 26, pp. 153–172, 2007.

[80] ——, “Online learning with Markov sampling,” Analysis and Applications, vol. 07, no. 01,
pp. 87–113, 2009.

[81] F. Bach and M. Jordan, “Predictive low-rank decomposition for kernel methods,” ICML, pp.
33–40, 2005.

[82] F. Cucker and S. Smale, “On the mathematical foundations of learning,” Bulletin of the
American Mathematical Society, vol. 39, pp. 1–49, 2002.

[83] F. Dinuzzo, “Analysis of Fixed-Point and Coordinate Descent Algorithms for Regularized
Kernel Methods,” Trans. Neur. Netw., vol. 22, no. 10, pp. 1576–1587, Oct. 2011.

[84] N. List and H. Simon, A General Convergence Theorem for the Decomposition Method, ser.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2004, vol. 3120.

[85] B. Kulis, M. Sustik, and I. Dhillon, “Learning low-rank kernel matrices,” in In ICML. Mor-
gan Kaufmann, 2006, pp. 505–512.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6218781
http://cswww.essex.ac.uk/staff/hhu/Papers/IJSS-V42-I9-2011-1491-1505.pdf
http://cswww.essex.ac.uk/staff/hhu/Papers/IJSS-V42-I9-2011-1491-1505.pdf
http://users.isr.ist.utl.pt/~ahaeusler/material/papers/Cooperative_Control_of_Mobile_Sensor_Networks_Adaptive_Gradient_Climbing_in_a_Distributed_Environment.pdf
http://users.isr.ist.utl.pt/~ahaeusler/material/papers/Cooperative_Control_of_Mobile_Sensor_Networks_Adaptive_Gradient_Climbing_in_a_Distributed_Environment.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4542870
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4542870
http://dl.acm.org/citation.cfm?id=59617
http://www.sciencedirect.com/science/article/pii/S0005109812001999
http://www.sciencedirect.com/science/article/pii/S0005109812001999
http://www.sciencedirect.com/science/article/pii/S0005109810004875
http://www.sciencedirect.com/science/article/pii/S0005109810004875
http://www.sciencedirect.com/science/article/pii/S000510981400020X
http://www.sciencedirect.com/science/article/pii/S000510981400020X
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=58326&tag=1
http://link.springer.com/article/10.1007theory estimates via integral operators and their approximations
http://www6.cityu.edu.hk/ma/doc/people/zhoudx/SmaleZhou0708.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.431.7339
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.129.1553
http://dx.doi.org/10.1109/TNN.2011.2164096
http://dx.doi.org/10.1109/TNN.2011.2164096
http://dx.doi.org/10.1007/978-3-540-27819-1_25
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.73.9403


94 BIBLIOGRAPHY

[86] N. Leonard, D. Paley, F. Lekien, R. Sepulchre, D. Fratantoni, and R. Davis, “Collective
Motion, Sensor Networks, and Ocean Sampling,” Proceedings of the IEEE, vol. 95, no. 1, pp.
48–74, Jan 2007.

[87] A. Carron, M. Todescato, R. Carli, L. Schenato, and G. Pillonetto, “Multi-agents adaptive
estimation and coverage control using Gaussian regression,” ArXiv, 2014.

[88] Q. Shi, C. He, H. Chen, and L. Jiang, “Distributed wireless sensor network localization via
sequential greedy optimization algorithm,” IEEE Transactions on Signal Processing, 2010.

[89] R. Aragues, L. Carlone, G. Calafiore, and C. Sagues, “Distributed centroid estimation from
noisy relative measurements,” Systems & Control Letters, 2012.

[90] G. Calafiore, L. Carlone, and M. Wei, “A distributed technique for localization of agent a
distributed technique for localization of agent formations from relative range measurements,”
IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, 2012.

[91] T. Eren, O. Goldenberg, W. Whiteley, Y. R. Yang, A. Morse, B. D. O. Anderson, and P. Bel-
humeur, “Rigidity, computation, and randomization in network localization,” in INFOCOM
2004. Twenty-third AnnualJoint Conference of the IEEE Computer and Communications
Societies, 2004.

[92] E. Olson, J. Leonard, and S. Teller, “Robust range-only beacon localization,” IEEE Journal
of Oceanic Engineering, 2006.

[93] K. Dogancay, “Bearings-only target localization using total least squares,” Signal Processing,
2005.

[94] G. Mao, B. Fidan, , and B. D. O. Anderson, “Wireless sensor network localization techniques,”
Computer Networks, 2007.

[95] S. Lupashin, A. Schollig, M. Hehn, and R. D’Andrea, “The flying machine arena as of 2010,”
in Proceedings of IEEE International Conference on Robotics and Automation, 2011.

[96] R. Ritz, Muller, M.W., M. Hehn, and R. D’Andrea, “Cooperative quadrocopter ball throwing
and catching,” in Proceedings of International Conference on Intelligent Robots and Systems
(IROS), 2012.

[97] K. Sreenath and V. Kumar, “Dynamics, control and planning for cooperative manipulation
of payloads suspended by cables from multiple quadrotor robots,” in Proceedings of Robotics:
Science and Systems, 2013.

[98] A. Kushleyev, D. Mellinger, C. Powers, and V. Kumar, “Towards a swarm of agile micro
quadrotors,” Autonomous Robots, 2013.

[99] F. Augugliaro, S. Lupashin, M. Hamer, C. Male, M. Hehn, M. Mueller, J. Willmann, F. Gra-
mazio, M. Kohler, and R. D’Andrea, “The flight assembled architecture installation: Coop-
erative construction with flying machines,” IEEE Control Systems Magazine, 2014.

[100] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical Meth-
ods. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1989.

[101] G. Calafiore, L. Carlone, and M. Wei, “Position estimation from relative distance measure-
ments in multi-agents formations,” in Control Automation (MED), 2010 18th Mediterranean
Conference on, 2010.

[102] G. Picci, Filtraggio statistico (Wiener, Levinson, Kalman) e applicazioni. Progetto Libreria,
2007.

[103] K. Yildirim, R. Carli, and L. Schenato, “Proportional-integral synchronization in wireless
sensor networks,” ACM Transactions on Sensor Networks (submitted).

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4118466
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4118466
http://arxiv.org/abs/1407.5807
http://arxiv.org/abs/1407.5807


BIBLIOGRAPHY 95

[104] R. B. Millar, “Maximum likelihood estimation and inference: With examples in r, sas, and
admb by russell b. millar,” International Statistical Review, 2012.

[105] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping: part i,” Robotics
Automation Magazine, IEEE, 2006.

[106] A. Franchi, G. Oriolo, and P. Stegagno, “Mutual localization in multi-robot systems using
anonymous relative measurements,” The Int. Journal of Robotics Research, 2013.

[107] S. Lee, Y. Diaz-Mercado, and M. Egerstedt, “Multirobot Control Using Time-Varying Density
Functions,” Robotics, IEEE Transactions on, vol. 31, no. 2, pp. 489–493, April 2015.

[108] R. Shah, S. Roy, S. Jain, and W. Brunette, “Data MULEs: modeling a three-tier architecture
for sparse sensor networks,” in Sensor Network Protocols and Applications, 2003. Proceedings
of the First IEEE. 2003 IEEE International Workshop on, May 2003, pp. 30–41.

[109] A. A. de Menezes Pereira, H. K. Heidarsson, C. Oberg, D. A. Caron, B. H. Jones, and G. S.
Sukhatme, “A Communication Framework for Cost-effective Operation of AUVs in Coastal
Regions,” in The 7th International Conference on Field and Service Robots, Cambridge,
Massachusetts, 2009.

[110] R. Patel, P. Frasca, J. W. Durham, R. Carli, and F. Bullo, “Dynamic Partitioning and Cover-
age Control with Asynchronous One-To-Base-Station Communication,” Control of Network
Systems, IEEE Transaction on, 2015, to appear.

[111] J. W. Durham and R. Carli and P. Frasca and F. Bullo, “Discrete partitioning and coverage
control for gossiping robots,” Robotics, IEEE Transactions on, vol. 28, no. 2, pp. 364–378,
2012.

[112] S. Bhattacharya, R. Ghrist, and V. Kumar, “Multi-robot Coverage and Exploration on Rie-
mannian Manifolds with Boundary,” International Journal of Robotics Research, vol. 33,
no. 1, pp. 113–137, January 2014.

[113] ——, “Multi-robot coverage and exploration in non-euclidean metric spaces,” in Proceedings
of The Tenth International Workshop on the Algorithmic Foundations of Robotics, 2012.

[114] M. Neve, G. D. Nicolao, and L. Marchesi, “Nonparametric identification of population
models via gaussian processes,” Automatica, vol. 43, no. 7, pp. 1134 – 1144, 2007.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7050337
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7050337
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1203354
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1203354
http://robotics.usc.edu/publications/619/
http://robotics.usc.edu/publications/619/
http://motion.me.ucsb.edu/pdf/2013w-pfdcb.pdf
http://motion.me.ucsb.edu/pdf/2013w-pfdcb.pdf
http://motion.me.ucsb.edu/pdf/2009w-fdcb.pdf
http://ijr.sagepub.com/content/early/2013/10/22/0278364913507324
http://ijr.sagepub.com/content/early/2013/10/22/0278364913507324


96 BIBLIOGRAPHY



Acknowledgments

This thesis would not have been possible without the support of several people who, in one way or
another, contributed to its completion. I would like to express my gratitude to all those people to
give me the possibility to complete it.

First of all I would like to thank Luca Schenato for being a devoted and very competent ad-
visor. I appreciate his dedication and his great capabilities and I hope to have learned a piece of
his great knowledge and experience. I would also like to express my gratitude to my co-advisor
Ruggero Carli, he is a brilliant and admirable researcher and always able to motivate his students.
I wish to acknowledgments also Gianluigi Pillonetto, one of the finest researcher I ever met, with
outstanding mathematical capabilities.

I am deeply indebted to my supervisors Antonio Franchi, Elisa Franco and Francesco Bullo for
give me the chance to spend more than one year in their laboratories, providing me also guide and
advice during all my periods abroad.

A special thanks to Rush Patel for his unbelievable patience, for answering to all my questions
and doubts with the fastest and clearest answers.

Thanks to Marco Todescato, a colleague but first a friend. I shared with him most of the time
during my Ph.D. He is a very skilled guy always willing to listen. Without him I would never
reached these results.

I would like to thank Diego, a mate, a friend for more than 8 years. There are no words to
describe how much I am grateful for him to accept, stand and bear me.

A special thanks to Chiara, Giulia, Giulia (Gipsy), Irene, Nicoletta, Giacomo, Michele and
Chen. Their arrival brought a breath of fresh air in our office. All the memories of the last year
with you are awesome and I hope to have the chance to spend other time with you all.

Thanks also to Fabio, Gian Antonio, Guido and Mattia the experienced post-doc. I have to be
grateful also with you if I had the opportunity to start my new and exciting job.

Another special thank to Giulio and Francesco. They are great friends, I will never forget the
time spent talking and enjoying together.

It is mandatory mention Simone. My buddy always willing to listen my never-ending problems,
to support me with patience and understanding. I have great memories with him and I hope to

97



98 BIBLIOGRAPHY

share much more in the future.

Last but not least, many thanks to my family: without their support, I should have never been
where I am now; thank you, for having always struggled to give me the best. In particular I want
to say thank you to my parents, Massimo and Giuliana, for all the advices, to my sister Valentina,
to my uncles Sergio, Silvia, Marco, Silvia, Mario and Franca and to my grandparents Gina and
Fulvio.


	Introduction
	Consensus Based Localization
	Mathematical preliminaries
	Problem Formulation
	A synchronous distributed consensus based solution
	An asynchronous implementation of distributed consensus based solution
	Performance analysis of a-CL algorithm under randomly persistent communications
	Bounds on the convergence rate of the a-CL algorithm
	Rate Analysis of a-CL algorithm for regular graphs

	Robustness properties of the a-CL algorithm with respect to packet losses and delays
	Numerical Results

	Multi-Robot Localization via GPS and Relative Measurements
	Mathematical Preliminaries
	Problem Formulation
	Measurement Model
	Maximum-Likelihood Estimator
	An Approximated Linear Least-Squares Formulation

	Distributed and Asynchronous Algorithm
	Convergence Analysis in Presence of Packet Losses and Communication Delays

	Simulations
	Performance Measures
	Steady State Analysis
	Transient Analysis


	Coverage
	Mathematical Preliminaries
	Bernoulli Trial
	Voronoi Partitions
	Coverage Control Algorithm

	Problem Formulation
	Function Estimation and Posterior Variance Computation
	r-EC Algorithm
	Convergence Analysis

	Numerical Considerations
	Online Gaussian Estimation
	Grid Based Approximation

	Simulations
	r-EC Algorithm Analysis
	Packet Losses Analysis
	Grid Based Approximation Analysis
	Parameters tuning and scaling


	Kalman Filter meets Gaussian Regression
	Nonparametric Estimation
	Kalman Filter for Finite Dimensional State Linear Estimation
	Kalman Regression on a Finite Dimensional Grid
	Numerical Results

	Conclusions
	Consensus
	Kalman Filter
	Tikhonov Regularization
	References

