Mapping and Coverage Control in Robotics Networks

Andrea Carron

Department of Information Engineering - University of Padova, Italy URL: http://automatica.dei.unipd.it/people/carronan.html

April 1, 2016

Contributors

Luca Schenato

Carli Ruggero

Francesco Bullo

Elisa Franco

Antonio Franchi

Gianluigi Pillonetto

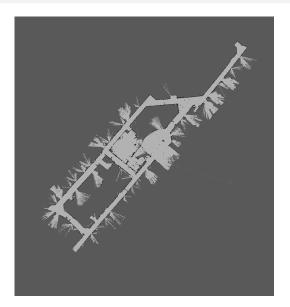
Marco Todescato

Rush Patel

Andrea Antonello

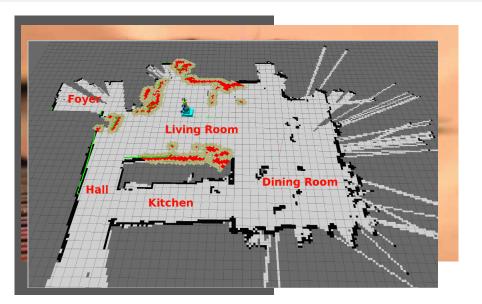
Francesco Branz

Why Localization and Mapping?



Why Localization and Mapping?

Why Localization and Mapping?



Why Multirobot?

- **1** Better localization (error $\frac{\sigma}{\sqrt{N}}$),
- Map building can be N time faster.

But there are some difficulties:

- Coordination
- Integration of the information
- Limited communication

Why Multirobot?

- **1** Better localization (error $\frac{\sigma}{\sqrt{N}}$),
- Map building can be N time faster.

But there are some difficulties:

- Coordination
- Integration of the information
- Limited communication

Andrew Howard. "Multi-robot Simultaneous Localization and Mapping using Particle Filters". In: RSS 15

- S. Shen, N. Michael, and V. Kumar. "Autonomous multi-floor indoor navigation with a computationally constrained MAV" . . In: $ICRA\ 11$
- P. Newman, D. Cole, and K. Ho. "Outdoor SLAM using visual appearance and laser ranging". In: $ICRA\ 06$

How to localize the robots?

- Sensors
- Sensor fusion

How to localize the robots?

- Sensors
- Sensor fusion

A. Carron et al. "Multi-Robot Localization via GPS and Relative Measurements in the Presence of Asynchronous and Lossy Communication". In: ECC 16

M. Todescato et al. "Distributed Localization from Relative Noisy Measurements: a Robust Gradient Based Approach". In: ECC 15

A. Carron et al. "An asynchronous consensus-based algorithm for estimation from noisy relative measurements". In: IEEE TCNS (2014)

A. Carron et al. "Adaptive consensus-based algorithms for fast estimation from relative measurements". In: *IFAC NecSys 13*

Thesis Contributions

Localization:

- efficient
- distributed
- heterogeneous measurements

Mapping:

- efficient
- applied to coverage control
- time-varying functions

Estimation and Coverage

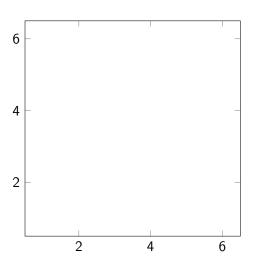
Multi-robots Client-Server Gaussian Estimation and Coverage Control with Lossy Communications

Literature

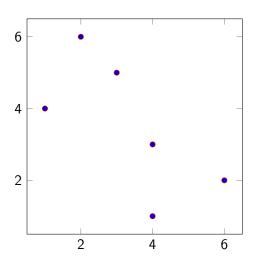
- M. Schwager, D. Rus, and J-J. Slotine. "Decentralized, adaptive coverage control for networked robots". In: *IJRR* (2009)
- A. Carron et al. "Multi-agents adaptive estimation and coverage control using Gaussian regression". In: ECC 15 (2015)
- J. Choi, J. Lee, and S. Oh. "Swarm intelligence for achieving the global maximum using spatio-temporal Gaussian processes". In: ACC 08. 2008
- J. Cortés. "Distributed Kriged Kalman filter for spatial estimation". In: *IEEE Transactions on Automatic Control* (2009)

Contributions

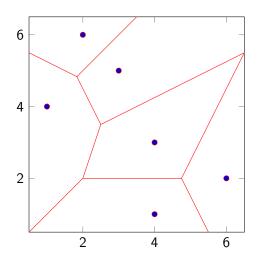
- Estimation from noisy measurements
- Bounds on the estimation error
- Robustness



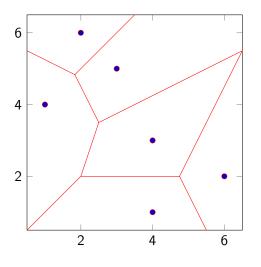
ullet Environment ${\mathcal X}$



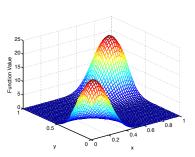
- ullet Environment ${\mathcal X}$
- Agents x_1, \ldots, x_N



- ullet Environment ${\mathcal X}$
- Agents x_1, \ldots, x_N
- Voronoi Partitions $\mathcal{P} = \mathcal{W}(x_1, \dots, x_N)$



- ullet Environment ${\mathcal X}$
- Agents x_1, \ldots, x_N
- Voronoi Partitions $\mathcal{P} = \mathcal{W}(x_1, \dots, x_N)$
- Density Function μ and Centroids $c(\mathcal{P}, \mu)$



Coverage Goal and the Lloyd Algorithm

Goal

Dispatch the N robots to **optimally cover** the environment \mathcal{X} , namely we want to have many robots where $\mu(x)$ is large and few where it is small.

Coverage Goal and the Lloyd Algorithm

Goal

Dispatch the N robots to **optimally cover** the environment \mathcal{X} , namely we want to have many robots where $\mu(x)$ is large and few where it is small.

$$\min_{\mathcal{P}} H(\mathcal{P}, \mu) = \min_{\mathcal{P}} \sum_{i=1}^{N} \int_{\mathcal{P}_i} ||q - c_i(\mathcal{P}_i)||^2 \mu(q) dq$$

Coverage Goal and the Lloyd Algorithm

Goal

Dispatch the N robots to **optimally cover** the environment \mathcal{X} , namely we want to have many robots where $\mu(x)$ is large and few where it is small.

$$\min_{\mathcal{P}} H(\mathcal{P}, \mu) = \min_{\mathcal{P}} \sum_{i=1}^{N} \int_{\mathcal{P}_i} ||q - c_i(\mathcal{P}_i)||^2 \mu(q) dq$$

Solution: Classical Lloyd algorithm

- **1** compute the centroids of the current partition, e.g. $c(\mathcal{P})$
- ② update \mathcal{P} to the partition $\mathcal{W}(c(\mathcal{P}))$

Or more briefly $\mathcal{P}^L(k+1) = \mathcal{W}\left(c(\mathcal{P}^L(k))\right)$.

Sensory Function

- **Unknown** function $\mu: \mathcal{X} \subset \mathbb{R}^2 \mapsto R_+$
- μ is a zero-mean Gaussian random field with covariance $K: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}_+$
- Radial Mercer Kernels
- $K(x,x) = \lambda$

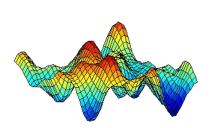


Figure: Gaussian Process

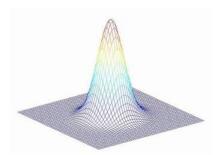


Figure: Gaussian Kernel

Minimum Variance Estimate

The set $I_k = \{x_i, y_i\}_{i=0}^{m_k}$ represents the complete information set available at the BS at iteration k and $m_k = |I_k|$ is its cardinality.

Minimum Variance Estimate

The set $I_k = \{x_i, y_i\}_{i=0}^{m_k}$ represents the complete information set available at the BS at iteration k and $m_k = |I_k|$ is its cardinality.

The minimum variance estimate is

$$\hat{\mu}_k(x) = \mathbb{E}\left[\mu(x)|I_k\right] = \sum_{i=1}^{m_k} c_i K(x_i, x), \ x \in \mathcal{X}$$

Minimum Variance Estimate

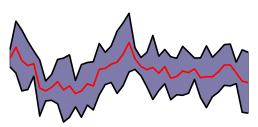
The set $I_k = \{x_i, y_i\}_{i=0}^{m_k}$ represents the complete information set available at the BS at iteration k and $m_k = |I_k|$ is its cardinality.

The minimum variance estimate is

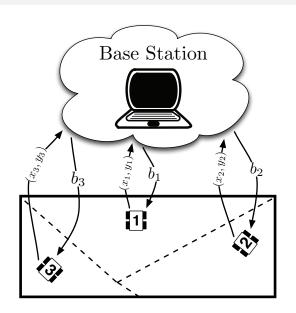
$$\hat{\mu}_k(x) = \mathbb{E}\left[\mu(x)|I_k\right] = \sum_{i=1}^{m_k} c_i K(x_i, x), \ x \in \mathcal{X}$$

An index of the **accuracy** of the estimate is given by the posterior variance

$$V_k(x) = \operatorname{Var}\left[\mu(x)|I_k\right]$$



Problem Formulation



Exploration and Exploitation Dilemma

Goal

The ultimate goal is to position the N robots in the centroids of a good partition that minimizes $H(\mathcal{P}, \mu)$. To do so we need to:

- $oldsymbol{0}$ have a good estimate $\hat{\mu}$ of the sensory function o exploration
- 2 minimize the cost function $H(\mathcal{P},\mu) \to \text{exploitation}$

Exploration and Exploitation Dilemma

Goal

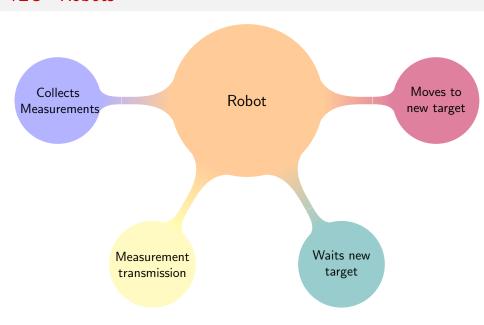
The ultimate goal is to position the N robots in the centroids of a good partition that minimizes $H(\mathcal{P}, \mu)$. To do so we need to:

- $oldsymbol{0}$ have a good estimate $\hat{\mu}$ of the sensory function o exploration
- 2 minimize the cost function $H(\mathcal{P},\mu) \to \text{exploitation}$

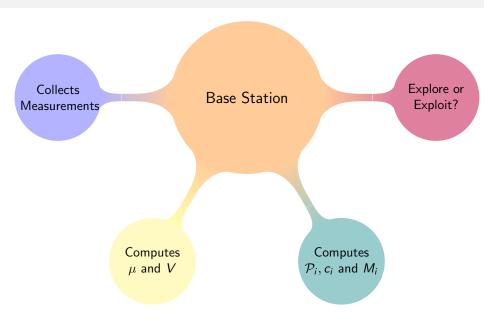
Strategy

- initially promote exploration
- when the estimate is more accurate transit to exploitation
- random approach based on the maximum of the posterior variance

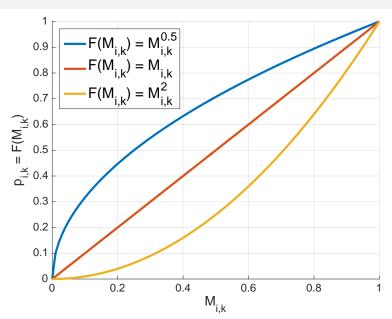
rEC - Robots



rEC - Base Station



rEC - Base Station



Convergence Analysis - Sensory Function

Proposition 1 - Sensory Function Convergence

If:

- $F(M): [0,1] \rightarrow [0,1]$ continuous and monotonically increasing,
- ② F(M) > 0 for M > 0,

Then

$$\widehat{\mu}_k \xrightarrow{P} \mu$$
.

Online Gaussian Estimation

What is the most expensive operation?

Online Gaussian Estimation

What is the most expensive operation?

$$(\bar{K}_{k+1} + \sigma^2 I)^{-1} = \left(\begin{bmatrix} \bar{K}_k & \bar{K}_{k+1,12} \\ \bar{K}_{k+1,12}^T & \bar{K}_{k+1,22} \end{bmatrix} + \sigma^2 I \right)^{-1}$$

How much is its computational complexity?

Online Gaussian Estimation

What is the most expensive operation?

$$(\bar{K}_{k+1} + \sigma^2 I)^{-1} = \left(\begin{bmatrix} \bar{K}_k & \bar{K}_{k+1,12} \\ \bar{K}_{k+1,12}^T & \bar{K}_{k+1,22} \end{bmatrix} + \sigma^2 I \right)^{-1}$$

How much is its computational complexity?

Naive:
$$(\bar{K}_k + \sigma^2 I)^{-1} \rightarrow O(k^3)$$

Schur:
$$\left(\bar{K}_{k+1,22} - \bar{K}_{k+1,12}^T * (\bar{K}_k + \sigma^2 I)^{-1} * \bar{K}_{k+1,12}\right)^{-1} \to O(k^2)$$

Grid Based Approximation

Consider

$$\mathcal{X}_{\mathrm{grid}} := \{x_{\mathrm{grid},1}, \dots, x_{\mathrm{grid},m}\} \subset \mathcal{X}.$$

Given the scalar $\Delta>0$, $\mathcal{X}_{\mathrm{grid}}$ forms a sampled space of resolution Δ if

$$\min_{i=1,\dots,m} \|x_{\mathrm{grid},i} - x\| \le \Delta, \quad \forall x \in \mathcal{X}.$$

Grid Based Approximation

Consider

$$\mathcal{X}_{\mathrm{grid}} := \{x_{\mathrm{grid},1}, \dots, x_{\mathrm{grid},m}\} \subset \mathcal{X}.$$

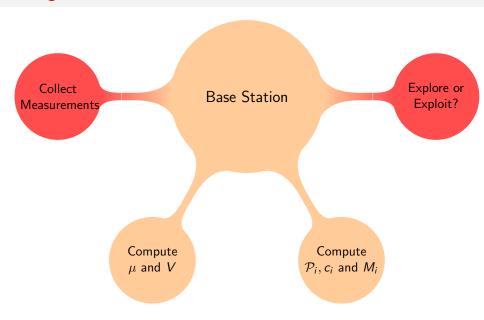
Given the scalar $\Delta>0$, $\mathcal{X}_{\mathrm{grid}}$ forms a sampled space of resolution Δ if

$$\min_{i=1,\dots,m}\|x_{\mathrm{grid},i}-x\|\leq \Delta, \ \forall x\in\mathcal{X}.$$

We define the projector operator

$$\mathcal{X} \longmapsto \mathcal{X}_{\mathrm{grid}} \; : \; x \longmapsto \mathrm{proj}(x) = \arg\min_{a \in \mathcal{X}_{\mathrm{grid}}} \|x - a\| \, .$$

rEC-grid - Base Station



Convergence Analysis - Sensory Function

Proposition 2 - Posterior Variance

If the assumptions of Proposition 3 holds then:

$$\lim_{k\to\infty} V_k(x) = \lambda - k_{\mathrm{grid}}(x) K_{\mathrm{grid}}^{-1} k_{\mathrm{grid}}(x)^{\top}.$$

Convergence Analysis - Sensory Function

Proposition 2 - Posterior Variance

If the assumptions of Proposition 3 holds then:

$$\lim_{k\to\infty} V_k(x) = \lambda - k_{\mathrm{grid}}(x) K_{\mathrm{grid}}^{-1} k_{\mathrm{grid}}(x)^{\top}.$$

The following simple Δ dependent bound holds

$$\lim_{k\to\infty} V_k(x) \le \lambda - \frac{K^2(\Delta)}{\lambda}.$$

Convergence Analysis - Sensory Function

Proposition 2 - Posterior Variance

If the assumptions of Proposition 3 holds then:

$$\lim_{k\to\infty} V_k(x) = \lambda - k_{\text{grid}}(x) K_{\text{grid}}^{-1} k_{\text{grid}}(x)^{\top}.$$

The following simple Δ dependent bound holds

$$\lim_{k\to\infty} V_k(x) \le \lambda - \frac{K^2(\Delta)}{\lambda}.$$

If K is the Gaussian kernel with $K(a,b) = \lambda e^{-\frac{\|a-b\|^2}{\zeta^2}}$, for small Δ we have

$$\lim_{k\to\infty} V_k(x) \le \lambda - \frac{K^2(\Delta)}{\lambda} \approx \frac{\lambda \Delta^2}{\zeta^2}.$$

Simulations Setup

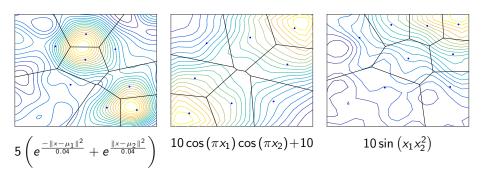
- Team of N = 8 robots
- Domain $\mathcal{X} = [0,1] \times [0,1]$
- Gaussian kernel $K(x,x') = e^{-\frac{\|x-x'\|^2}{0.002}}$
- Exploration-Exploitation trade-off: $F_{\alpha}(M) = M^{\alpha}$
- Sensory function

$$\mu(x) = 5\left(e^{\frac{-\|x - \mu_1\|^2}{0.04}} + e^{\frac{\|x - \mu_2\|^2}{0.04}}\right)$$

where

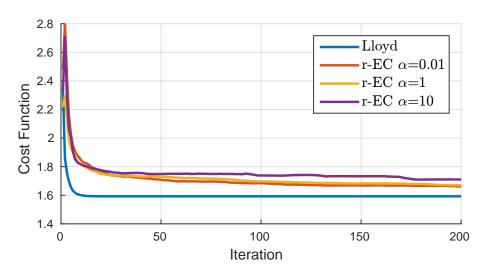
$$\mu_1 = \begin{bmatrix} 0.8 \\ 0.2 \end{bmatrix} \quad \mu_2 = \begin{bmatrix} 0.5 \\ 0.7 \end{bmatrix}$$

Coverage

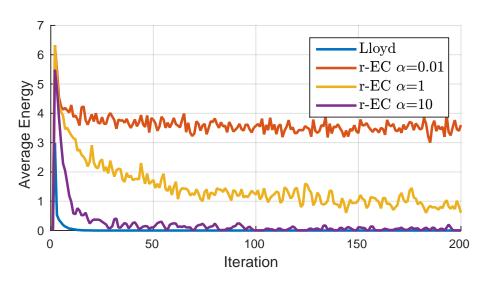


Voronoi partitions computed using the r-EC Algorithm (black lines) for different sensory function $\mu(x)$. Blue dots indicate the locations of the centroids obtained with the r-EC algorithm.

Cost Function



Average Energy



rEC vs rEC-grid

p^2	$\frac{\Delta}{\zeta}$	Max. Posterior (after 400	Min. Max. Posterior	Exe. Time [sec.]
		iterations)	Achievable	
9	1.65	0.9836	0.9836	2.3
16	1.25	0.8418	0.8418	2.4
25	1	0.5769	0.5766	3.9
36	0.83	0.3489	0.3481	4.7
r-EC	_	0.1988	0	865.4

Comparison between the original r-EC algorithm and the grid based approximation for different total number of points p^2 . The table reports the steady state value after 400 iterations and the execution times obtained using the grid based approximation and classic algorithms.

rEC in action!

Conclusions and on-going works

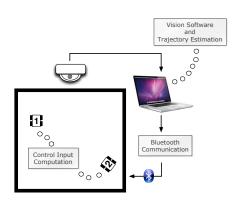
The r-EC/r-EC-grid are shown to be:

- lacktriangledown capable to converge to the optimal estimate of μ ,
- 2 robust to packet losses,
- efficient.

What else can be done?

- **1** consider time varying μ ,
- consider localization errors.

Competitive - Cooperative RHC game



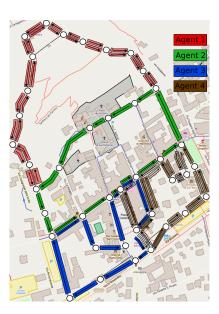
GOAL: minimize a cost function which depends on your state, your input and the opponent input.

RESULTS: closed form solution given the control parameters and stability analysis.

A. Carron and E. Franco. "Receding Horizon Control of a two-agent system with competitive objectives". In: ACC 13

A. Carron and E. Franco. "Analytical Solution of a Two Agent Receding Horizon Control Problem with Auto Regressive State Predictions". In: *Automatica [submitted]*

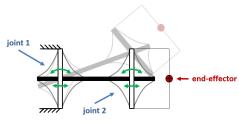
Hitting Time of Multiple Random Walker

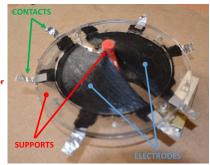


R. Patel, A. Carron, and F. Bullo. "The Hitting Time of Multiple Random Walks". In: SIAM Journal on Matrix Analysis and Applications [submitted]

A. Carron, R. Patel, and F. Bullo. "Hitting time for doubly-weighted graphs with application to robotic surveillance". In: ECC 16

Robotics for Space Applications





A. Antonello et al. "A Novel Approach to the Simulation of On-Orbit Rendezvous and Docking Maneuvers in a Laboratory Environment Through the Aid of an Anthropomorphic Robotic Arm". In: *MetroAeroSpace 14* F. Branz et al. "Kinematics and control of redundant robotic arm based on Dielectric Elastomer Actuators". In: *SPIE Smart Structure* F. Branz et al. "Dielectric Elastomer space manipulator: design and testing". In: *IAC 15*

Thank you

Thank you for your attention!