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Linear mechanical systems

Linear mechanical systems are typically modeled by a
second-order matrix differential equation

Mg+ Dq+ Kq= Bu,

where u is the external forcing and M, D, K € R"*" satisfy

M=M">0 Inertia
D=D">0 Damping
K=K">0. Stiffness

Today: B = I (fully actuated system) and y = ¢ (fully observed
system) Can treat more general situations.
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Problem statement

The identification of second order models from sampled
force/displacement measurements can be a challenging task.
Reasons:

e \Want accurate estimates of the continuous-time model
parameters (M, D, K) from sampled data.

e State of the art identification software is discrete-time: leads to
discrete time models

T = Fop + Guy
qr = Hxp + Juyg .

e How to get reliable estimates of (M, D, K) from identified
(H, F, G, J)?
Non-trivial problem.
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Malin difficulties

This is a well known challenging task, in fact we must deal with:

o deteriorating estimation for very high sampling frequency.
e huge number of parameters to be estimated (high
dimensional MIMO systems);

O In continuous time we have Hamiltonian structure and a
series of properties (passivity );

O What for discrete domain? We would like a “discrete
Hamiltonian structure”.

e |ll conditioned transformation from discrete to continuous
(d2c) time model (matricial log);
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Main difficulties: Ill conditioning

Let A be the sampling period (¢t = kh, k=...,—1,0,1,2...)

Discrete-to-Continuous conversion. Imagine ZOH: recover
matrices A and B of a continuous time model, from estimates of
(F,G) of a discrete time model. Invert (MATLAB d2c)

F = exp Ah, G=A"1'I—-expAh)B

lll-conditioning. No matter of how accurate the discrete-time
estimates, the cont. time estimates can be very bad. Ex: Scalar
case,

A+0A=1/hlog(F +JF),
0A 1 OF
A logF F

Forh — 0, F — I and ﬁ — 00. Errors are amplified!
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Key point: Discretization

Want: discrete models of linear mechanical systems for which the
discrete-to-continuous reconstruction map

on: (H, F,G,J) — (M, D, K)

e guarantees Hamiltonian (second order) structure
e is well conditioned (no dramatic error amplification)

Keep in mind that the map ¢, is always approximate. Ex Euler
discretization
F =1+ Ah G = Bh

has well-conditioned inverse but is generally inaccurate.
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Discrete Mechanics

General idea: Instead of discretizing the equations of motion,
derive discrete equations from a discrete variational principle.

In continuous time, Lagrange-D’Alembert principle (virtual works)
for a system with external forces f(q, ¢, t) is

by ty
5/ L(q,q)dt + flg,q,t)dq(t)dt =0.
t

0 to

for arbitrary variations with fixed end points.
This leads to forced Euler-Lagrange equations

9/28



Introduction

Discrete Mechanics
(Variational Integrators)

0 Discrete Mechanics

O Exact discrete
Lagrangian
00 The Discrete

Euler-Lagrange
Equations

O Approximate discrete
Lagrangian

O Simplest
Approximation: The
Midpoint Rule

O Midpoint rule
variational integrator
for linear systems

O Discrete-to-
Continuous

Identification

Conclusions

Exact discrete Lagrangian

Let qx = q(kh), k € |0, N] sampled trajectory solution of EL eqgns.

(k+1)h
LE (qs qrsns h) = /k O La0.de)r,
- (k+1)h aq
5= (g, Qg1 h) = /k N CORTOF-ROE
(E+1)h )
FE ) = [ fa®.d0) 5 (0t

where ¢(-) is the solution of the forced Euler-Lagrange equations
such that g(kh) = g and q((k + 1)h) = qx11.
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The Discrete Euler-Lagrange Equations

intoduction __ Discrete Lagrange-D’Alembert principle A continuous variation
el 5q(t) is replaced by arbitrary discrete variations {6qx }x—o.... -

0 Discrete Mechanics
O Exact discrete
Lagrangian

O The Discrete
Euler-Lagrange

N—1
EQUation . 5 Z L Qk Qk‘l—l? h)
k=0

O Approximate discrete
Lagrangian

O Simplest
Approximation: The

et e + Z ( (qk—1,q8,h) + F7 (ar, qrsa, h)) dgr, = 0. (1)
variational integrator

for linear systems
O Discrete-to-

Continuous Leads to Discrete Euler-Lagrange (DEL) equations
Identification
Conclusions DQLdE(QI{—lv qr, h) -+ Dng (gk:; dk+1, h)

+fE+(Qk—17Qk7h)+fE+<QI€7Qk+17h) :Oa (2)

which can be interpreted as an algorithm (variational integrator)
DEL (Qka Qk—l—l) = (Qk+17Qk+2>-
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Approximate discrete Lagrangian

Exact discrete Lagrangian + Exact discrete forces impossible to
compute in general.

(k+1)h

LG @i, h) ~ / L)

(k+1)h aq

7 (G G, ) /k O Ha®.d0) g i,

(k+1)h O
(@ s, h) = / Fla(t), d(t)) =212

kh aC]l~c+1

Approximate DEL equations

D2Li(qr—1,qx,h) +D1La(qr, qry1, h)
+ f+(q1<:—17Qk7 h) + f_(QkHQki—l—l? h) =0

Q: How good can we make the approximation?
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Simplest Approximation: The Midpoint
Rule

The midpoint rule: approximate integrals by trapezoidal rule

+ _
Laq(qk, qey1, bk, h(k 4+ 1)) := hL(Qk+12 Qk’ Qk:+1h C]k)

h + —qr hk+h(k+1
F (s s, Rl B (k4 1)) o= = f( DA TGk Ahtd 7 Gk (k+1)

2 2 h 9

h + —qr hk+h(k+1
(@, qogr, hk b (k+1)) = §f<%+12 Qk7Qk+1h qk7 2( ))

Error on trajectory is O(h?). Can do much better by more
complicated schemes.
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Midpoint rule variational integrator
for linear systems

Linear mechanical system with Lagrangian

. 1. 1
L(q,q) = §qTMq — §qTKq

and external force f(q,q,t) = —Dq +u(t), D = D' >0,
Midpoint rule approximate DEL equations,

Mg qi+2 + Daqrs+1 + Kaqr = fa(k + 2)

(Discrete Newton Law !) where

M hK D WK oM M hK D
= —+t—+—= = — Kgi=—+———
Ma <h+4+2>’ Da (2 h)’ d (h+4 2>

and

h(k 4+ 2)) + 2u(h(k + 1)) + u(hk) |

1 Discrete force

falk+2) =
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Discrete-to-Continuous

The continuous time parameters (M, D, K) can be recovered by
linear relations

h
M = Z[Md+Kd—Dd]7

DZ:Md—Kd,

1
K = E[Md—I—Kd—I—Dd].

Theoretical procedure:

1. Identify Variational integrator (Discrete Newton Law). Get
estimates of (M. Dy, Kg)

2. Recover Continuous parameter using the above linear relations

This is precisely what we wanted to achieve.
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|dentification

The data set is {u, yx } Assume white measurement noise

Yk = gk + Wg.
Want to identify
Yk = Aryk—1 + Asyr—2 + Bfr + ek, (f = fa)
where
Ay = —M;"'Dy, Ay =-M;"Ky, B:=M;",

with e, = wy, — Ajwr_1 — Aswy_o colored noise. A vector Output
Error model.
Nonlinear problem. Constrained PEM (i dgr ey)
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|dentification method

e Identify the output error model via a nonlinear PEM (i dgr ey),
iImposing symmetry on the parameters (Mg, Dy, K4) and
Hamiltonian structure.

e Good initial condition on parameter estimates are absolutely
necessary! Otherwise local minimal

e Initialize by running a subspace id method (n4si d)

e Must compute good initial estimates of (Mg, Dy, K4) from
identified discrete state-space model....(?)
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|dentification method: algorithm

1.

Firstly we perform a
subspace identification

5 = T = Fop + Guy
qr. = Hxp + Juy .

Keeping constant the
system gain, with algebraic
manipulation we get the
Initial condition

qr = (Mznzt) Dznthk_1+(Mznzt)

Initialization

Initial condition

Structured PEM

{u(k),y(k)}
ndsid
Ed

IApproximation

Adé””,1{7”t Lynu
IdGrey

Mgy, K4, Dy

d2c [MidPoint]
M,K.,D

K'antqk_2_|_(M7,n'Lt) fk:

With the initial condition just computed the PEM optimization is

performed,;

Finally it is computed the conversion to continuous time domain
using the just defined transformation.
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Compare with n4si d+d2c

Compare with state of the art continuous-time parameters
identification based on the 'd2c¢’ conversion (matrix logarithm).

e The d2c conversion is applied to a discrete-time state space
model identified via a subspace method (n4sid).

e Then, using a change of coordinate and projection method of
Lus et al. (2003), one gets

d |q| 0 I q 0
dt IQI A A22] IQI - [312] !
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Numerical results: 3x3

0.8 0.0 0.0]
M=1| 00 20 0.0
0.0 0.0 1.2]

0.4 —0.1 —0.1]
D= |-01 04 -0.1
-0.1 -01 04

4.0 —1.0 —1.0]
K= |-1.0 40 -1.0
1.0 1.0 4.0

3 external forces (pseudo-random binary sequence),
3 sensors measuring the three positions.
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Numerical results: 3x3
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S 0.08 0.15 [
Identification — — —ndsidicad = = =ndsid+c2d
O Identification 0.064 | Variational Approach 0.12 F = Variational Approach
O Identification method
O Identification method: 0.048 1 009y .
) —_ . =|—
algorithm 5‘20.032 L M i = 006 | \\
0 Compare with ‘\ - \
n4si d+d2c I N
_ 0.016 ‘_~~_ 0.03 1 Seo
O Numerical results: 3x3 e e el T TN et e ee_ -
O Numerical results: 3x3 o ol
00 Numerical results: 8x8 0.004 0.00875 0.0135 0.01825 0.023 0.004 0.00875 0.0135 0.01825 0.023
0 Numerical results: h h
lll-conditioning 0.4 1 0.15 r
O Numerical results: = = —ndsidtc2d = = =ndsid+c2d
Approximation error 0.32 ,“ Variational Approach 0.12 F Variational Approach
\
Conclusions o “ 009y
NS \ = A
== 016 | \ S1= 006y
\ N
\ ~
0.08 | TNl 0.03 Yool
S=-s - Detili NSO
- - ~ " N o m et —
0t o
0.004 0.00875 0.0135 0.01825 0.023 0.004 0.00875 0.0135 0.01825 0.023
h h

2228



Introduction

Discrete Mechanics
(Variational Integrators)

Identification

O Identification

O Identification method

O Identification method:
algorithm

0O Compare with
n4si d+d2c

O Numerical results: 3x3
O Numerical results: 3x3

O Numerical results: 8x8

O Numerical results:
Ill-conditioning

O Numerical results:
Approximation error

Conclusions

Numerical results: 8x8

Comparison of the n4si d+d2c procedure and the Variation

0.01

0.01

0.1y
1 = = =n4sid+c2d
0.08 -1 Variational Approach
1
1
0.06
NE] '
== o004 N
\
-
0.02 | ~ O T e -
0 L
0.001 0.00325 0.0055 0.00775
h
0.6 1
1 = = =n4sid+c2d
0.48 F 1 Variational Approach
|}
1
0.36 \
= \
NS
== L ~ ~ - ~
0.24 <L - PASEIPRNY
= - - - -
0.12
~——
0 i i i
0.001 0.00325 0.0055 0.00775
h

[5M]]
]|

[6K]|
[

0.25

0.2

0.15

0.1

0.05

0.001

0.25

0.2

0.15

0.1

0.05

0.001

1

1
1
1
1
[}

approach for 8 x 8 system. SNR = 25.

= = =n4sid+c2d
Variational Approach

N e ma =

0.00325

0.0055 0.00775 0.01

h

= = =ndsid4c2d

== Variational Approach

0.00325

0.0055 0.00775 0.01

h
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Numerical results: lll-conditioning

[l conditioning of the proposed approach for small values of A with
the 8 x 8 system.

1r 0.4 -
0.8 1 0.32
0.6 | o2t
5= 5E
T 047 =016
02| 0.08 | '
; 1 1 I 1 . Jl%\/l
0.0001 0.000325 0.00055 0.000775 0.001 0.0001 0.000325 0.00055 0.000775 0.001
h h
1 1r
0.8 1 0.8
06t 06t
3z 2=
o 0.4t - 0.4
0.2 1 0.2 F
0 I I i J 0 I f i J
0.0001 0.000325 0.00055 0.000775 0.001 0.0001 0.000325 0.00055 0.000775 0.001
h h
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Numerical results: Approximation error

Comparison of the approximation error for large values of h with the

8 X 8 system.

0.1r . 0.25 ]
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1 1
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—__ == \
I= ! SE
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.02
0.0 0.05
0 L
; ; ; j 0t ; ; ; j
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h h
0.6 . 0.25 ,
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0.48 | 1 Variational Approach 0.2 F 1 == Variational Approach
1 \
~ -~ - - .
0.36 | N R R 0.15 |
o= > P SN 7 ? =
g‘i =3 i \
0.24 = 0.1F i
‘ —~
~ -
0.12 0.05 ;:;—-/—"‘_'/_
0 1 1 L J O L 1 1 1 J
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h h

25/28



Introduction

Discrete Mechanics
(Variational Integrators)

Identification

Conclusions

O Conclusions
0 End

Conclusions

26/28



Introduction

Discrete Mechanics
(Variational Integrators)

Identification

Conclusions

O Conclusions

0 End

Conclusions

e A new discretization procedure for second order Lagrangian
equations of a linear mechanical systems has been proposed
which leads to a much better recovery of the continuous time
mechanical parameters than the usual discretizations.

e The proposed algorithm can deal with non fully-actuated, non
fully-sensed mechanical systems: y = Jgq, f = J! u, under
appropriate rank conditions.

e Variational discretization preserves symplectic structure,
preserves conserved physical quantities, passivity etc.
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Conclusions

[1]

2]

A new discretization procedure for second order Lagrangian
equations of a linear mechanical systems has been proposed
which leads to a much better recovery of the continuous time
mechanical parameters than the usual discretizations.

The proposed algorithm can deal with non fully-actuated, non
fully-sensed mechanical systems: y = Jgq, f = J! u, under
appropriate rank conditions.

Variational discretization preserves symplectic structure,
preserves conserved physical quantities, passivity etc.
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Thank you for your attention!
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