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Linear mechanical systems are typically modeled by a
second-order matrix differential equation

Mq̈ +Dq̇ +Kq = Bu ,

where u is the external forcing and M,D,K ∈ R
n×n satisfy

M = MT > 0 Inertia

D = DT ≥ 0 Damping

K = KT > 0 . Stiffness

Today: B = I (fully actuated system) and y = q (fully observed
system) Can treat more general situations.
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The identification of second order models from sampled
force/displacement measurements can be a challenging task.
Reasons:

● Want accurate estimates of the continuous-time model
parameters (M, D, K) from sampled data.

● State of the art identification software is discrete-time: leads to
discrete time models

xk+1 = Fxk +Guk ,

qk = Hxk + Juk .

● How to get reliable estimates of (M, D, K) from identified
(H, F, G, J) ?
Non-trivial problem.
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This is a well known challenging task, in fact we must deal with:

● deteriorating estimation for very high sampling frequency.
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This is a well known challenging task, in fact we must deal with:

● deteriorating estimation for very high sampling frequency.
● huge number of parameters to be estimated (high

dimensional MIMO systems);

✦ In continuous time we have Hamiltonian structure and a
series of properties (passivity );

✦ What for discrete domain? We would like a “discrete
Hamiltonian structure”.
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This is a well known challenging task, in fact we must deal with:

● deteriorating estimation for very high sampling frequency.
● huge number of parameters to be estimated (high

dimensional MIMO systems);

✦ In continuous time we have Hamiltonian structure and a
series of properties (passivity );

✦ What for discrete domain? We would like a “discrete
Hamiltonian structure”.

● Ill conditioned transformation from discrete to continuous
(d2c) time model (matricial log);
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Let h be the sampling period (t = kh, k = . . . ,−1, 0, 1, 2 . . .)

● Discrete-to-Continuous conversion. Imagine ZOH: recover
matrices A and B of a continuous time model, from estimates of
(F,G) of a discrete time model. Invert (MATLAB d2c)

F = expAh, G = A−1(I − expAh)B
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Let h be the sampling period (t = kh, k = . . . ,−1, 0, 1, 2 . . .)

● Discrete-to-Continuous conversion. Imagine ZOH: recover
matrices A and B of a continuous time model, from estimates of
(F,G) of a discrete time model. Invert (MATLAB d2c)

F = expAh, G = A−1(I − expAh)B

● Ill-conditioning. No matter of how accurate the discrete-time
estimates, the cont. time estimates can be very bad. Ex: Scalar
case,

A+ δA = 1/h log(F + δF ) ,

δA

A
=

1

logF

δF

F

For h → 0, F → I and 1
logF

→ ∞. Errors are amplified!
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Want: discrete models of linear mechanical systems for which the
discrete-to-continuous reconstruction map

ϕh : (H, F, G, J) → (M, D, K)

● guarantees Hamiltonian (second order) structure
● is well conditioned (no dramatic error amplification)

Keep in mind that the map ϕh is always approximate. Ex Euler
discretization

F = I +Ah G = Bh

has well-conditioned inverse but is generally inaccurate.
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General idea: Instead of discretizing the equations of motion,
derive discrete equations from a discrete variational principle.
In continuous time, Lagrange-D’Alembert principle (virtual works)
for a system with external forces f(q, q̇, t) is

δ

∫ tf

t0

L(q, q̇) dt+

∫ tf

t0

f(q, q, t) δq(t) dt = 0 .

for arbitrary variations with fixed end points.
This leads to forced Euler-Lagrange equations

d

dt

∂L

∂q̇
−

∂L

∂q
= f(q, q̇).
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Let qk = q(kh) , k ∈ [0, N ] sampled trajectory solution of EL eqns.

LE
d (qk, qk+1, h) :=

∫ (k+1)h

kh

L(q(t), q̇(t))dt ,

fE−

d (qk, qk+1, h) :=

∫ (k+1)h

kh

f(q(t), q̇(t))
∂q

∂qk
(t)dt ,

fE+
d (qk, qk+1, h) :=

∫ (k+1)h

kh

f(q(t), q̇(t))
∂q

∂qk+1
(t)dt .

where q(·) is the solution of the forced Euler-Lagrange equations
such that q(kh) = qk and q((k + 1)h) = qk+1.
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Discrete Lagrange-D’Alembert principle A continuous variation
δq(t) is replaced by arbitrary discrete variations {δqk}k=0,...,N .

δ

N−1
∑

k=0

LE
d (qk, qk+1, h)

+
N−1
∑

k=1

(

fE+(qk−1, qk, h) + fE−(qk, qk+1, h)

)

δqk = 0 . (1)
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Discrete Lagrange-D’Alembert principle A continuous variation
δq(t) is replaced by arbitrary discrete variations {δqk}k=0,...,N .

δ

N−1
∑

k=0

LE
d (qk, qk+1, h)

+
N−1
∑

k=1

(

fE+(qk−1, qk, h) + fE−(qk, qk+1, h)

)

δqk = 0 . (1)

Leads to Discrete Euler-Lagrange (DEL) equations

D2L
E
d (qk−1, qk, h) +D1L

E
d (qk, qk+1, h)

+ fE+(qk−1, qk, h) + fE+(qk, qk+1, h) = 0 , (2)

which can be interpreted as an algorithm (variational integrator)
DEL : (qk, qk+1) 7→ (qk+1, qk+2).
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Exact discrete Lagrangian + Exact discrete forces impossible to
compute in general.

Ld(qk, qk+1, h) ≈

∫ (k+1)h

kh

L(q(t), q̇(t))d ,

f−

d (qk, qk+1, h) ≈

∫ (k+1)h

kh

f(q(t), q̇(t))
∂q

∂qk
(t)dt ,

f+
d (qk, qk+1, h) ≈

∫ (k+1)h

kh

f(q(t), q̇(t))
∂q

∂qk+1
(t)dt .

Approximate DEL equations

D2Ld(qk−1, qk, h) +D1Ld(qk, qk+1, h)

+ f+(qk−1, qk, h) + f−(qk, qk+1, h) = 0

Q: How good can we make the approximation?
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The midpoint rule: approximate integrals by trapezoidal rule

Ld(qk, qk+1, hk, h(k + 1)) := hL

(

qk+1 + qk
2

,
qk+1 − qk

h

)

f−(qk, qk+1, h k, h (k + 1)) :=
h

2
f

(

qk+1 + qk
2

,
qk+1 − qk

h
,
h k + h (k + 1)

2

)

f+(qk, qk+1, h k, h (k + 1)) :=
h

2
f

(

qk+1 + qk
2

,
qk+1 − qk

h
,
h k + h (k + 1)

2

)

Error on trajectory is O(h2). Can do much better by more
complicated schemes.
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Linear mechanical system with Lagrangian

L(q, q̇) =
1

2
q̇TMq̇ −

1

2
qTKq

and external force f(q, q̇, t) = −Dq̇ + u(t) , D = DT ≥ 0,
Midpoint rule approximate DEL equations,

Md qk+2 +Dd qk+1 +Kd qk = fd(k + 2)

(Discrete Newton Law !) where

Md :=

(

M

h
+
hK

4
+
D

2

)

, Dd :=

(

hK

2
−
2M

h

)

, Kd :=

(

M

h
+
hK

4
−
D

2

)

and

fd(k + 2) := h
u(h(k + 2)) + 2u(h(k + 1)) + u(hk)

4
. Discrete force
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The continuous time parameters (M,D,K) can be recovered by
linear relations

M :=
h

4
[Md +Kd −Dd] ,

D := Md −Kd ,

K :=
1

h
[Md +Kd +Dd] .

Theoretical procedure:

1. Identify Variational integrator (Discrete Newton Law). Get
estimates of (Md. Dd, Kd)

2. Recover Continuous parameter using the above linear relations

This is precisely what we wanted to achieve.
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The data set is {uk, yk}.Assume white measurement noise

yk = qk + wk.

Want to identify

yk = A1yk−1 +A2yk−2 +Bfk + ek , (f ≡ fd)

where

A1 := −M−1
d Dd , A1 := −M−1

d Kd , B := M−1
d ,

with ek = wk −A1wk−1 −A2wk−2 colored noise. A vector Output
Error model.
Nonlinear problem. Constrained PEM (idgrey)
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● Identify the output error model via a nonlinear PEM (idgrey),
imposing symmetry on the parameters (Md, Dd,Kd) and
Hamiltonian structure.

● Good initial condition on parameter estimates are absolutely
necessary! Otherwise local minima!

● Initialize by running a subspace id method (n4sid)
● Must compute good initial estimates of (Md, Dd,Kd) from

identified discrete state-space model....(?)
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1. Firstly we perform a
subspace identification

Σd =

{

xk+1 = Fxk +Guk ,
qk = Hxk + Juk .

2. Keeping constant the
system gain, with algebraic
manipulation we get the
initial condition

qk = (M̂ init
d )−1D̂init

d qk−1+(M̂ init
d )−1K̂init

d qk−2+(M̂ init
d )−1fk

Approximation

IdGrey

n4sid

{u(k), y(k)}

Σd

M̂ init

d
, K̂init

d
, D̂init

d

M̂d, K̂d, D̂d

M̂, K̂, D̂

d2c[MidPoint]

Initialization

Initial condition

Structured PEM

3. With the initial condition just computed the PEM optimization is
performed;

4. Finally it is computed the conversion to continuous time domain
using the just defined transformation.
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Compare with state of the art continuous-time parameters
identification based on the ’d2c’ conversion (matrix logarithm).

● The d2c conversion is applied to a discrete-time state space
model identified via a subspace method (n4sid).

● Then, using a change of coordinate and projection method of
Lus et al. (2003), one gets

d

dt

[

q
q̇

]

=

[

0 I
A21 A22

] [

q
q̇

]

+

[

0
B12

]

u

y =
[

I 0
]

[

q
q̇

]

.

A21 := −M−1K , A22 := −M−1D , B12 := M−1 .
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M =





0.8 0.0 0.0
0.0 2.0 0.0
0.0 0.0 1.2





D =





0.4 −0.1 −0.1
−0.1 0.4 −0.1
−0.1 −0.1 0.4





K =





4.0 −1.0 −1.0
−1.0 4.0 −1.0
1.0 1.0 4.0





● 3 external forces (pseudo-random binary sequence),
● 3 sensors measuring the three positions.
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Comparison of the n4sid+d2c procedure and the Variation
approach for 3× 3 system. SNR = 15.
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Comparison of the n4sid+d2c procedure and the Variation
approach for 8× 8 system. SNR = 25.
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Ill conditioning of the proposed approach for small values of h with
the 8× 8 system.
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Comparison of the approximation error for large values of h with the
8× 8 system.
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● A new discretization procedure for second order Lagrangian
equations of a linear mechanical systems has been proposed
which leads to a much better recovery of the continuous time
mechanical parameters than the usual discretizations.

● The proposed algorithm can deal with non fully-actuated, non
fully-sensed mechanical systems: y = Jq, f = JTu, under
appropriate rank conditions.

● Variational discretization preserves symplectic structure,
preserves conserved physical quantities, passivity etc.
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Thank you for your attention!
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