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“Ethical axioms are found and tested

not very differently from the axioms of science.
Truth is what stands the test of experience.”
Albert Einstein






Abstract

The identification of linear second order models of mechanical systems has been
object of intensive research and of several papers in the last decades. In this thesis
the interest is focused on mechanical systems which can be described by a second

order vector model of the following form:
Mi+ D¢+ Kq=f (1)

where M and K are symmetric positive definite while D is only symmetric positive
semidefinite. All current identification techniques operate in discrete time. Noisy
data obtained by sampling the system must be used to estimate the continuous
time physical parameters M, K and D. Since identification operates in discrete
time one needs to convert the discrete time identified system into a continuous
time one. There are structural constraints that need to be imposed to obtain the
second order structure (1).

In short, the procedure is composed of three main steps:

1. Discrete-time Identification, mostly using subspace methods, from sampled

input-output data;

2. Implementation of a set of constraints which force the identified system to
the form (1);

3. Conversion from the discrete to a continuous model and conversion of the

relative system parameters.

The usual procedure assumes that the discrete time identified system is a

Zero-Order-Hold (ZOH) discretization of the underlying continuous time system.



vi

This assumption may lead to serious numerical problems,; since the conversion
discrete-to-continuous (d2c¢) requires the computation of the matrix logarithm of a
2n X 2n matrix, which is well-known to be an ill conditioned problem resulting in
a serious amplification of the noisy errors in the discrete estimates.

The proposed solution to this problem is to introduce a new discretization
technique of the equations of motion of a mechanical systems introduced by
Veselov, and further developed by J.Marsden and co-workers. This technique
has been developed for general mechanical system and leads to discrete systems
characterized by a sort of “discrete mechanical structure”. Unlike the usual
discretization procedures familiar in control, e.g. ZOH, it can lead to linear algebraic
transformation formulas for the recovery of the continuous time parameters from
the discretized model.

In this thesis variational integrators are applied to linear second order mechanical
systems and it is shown that physically meaningful properties of the continuous-time

model, like passivity, are preserved in the discretization.



Sommario

L’identificazione di modelli di sistemi meccanici del secondo ordine e stata oggetto
di un’intensa attivita di ricerca negli ultimi decenni. In questa tesi ci si focalizza
nei sistemi meccanici che si posso descrivere con un modello del secondo ordine del
seguente tipo:

Mi+Dg+Kq=f (2)

dove M e K sono matrici definite positive mentre D i solo semidefinita positiva.
Tutte le attuali tecniche di identificazione operano a tempo discreto. I dati rumorosi
ottenuti dal campionamento del sistema devono essere utilizzati per stimare i
parametri fisici del sistema a tempo continuo M, K e D. Poiche il processo di
identificazione opera a tempo discreto si rende necessaria una conversione del
sistema discreto identificato in uno a tempo continuo. Ci sono vincoli strutturali
che devono essere imposti per ottenere la struttura del secondo ordine (2).

In breve, la procedure si compone di tre parti principali:

1. Identificazione a tempo discreto, per lo pi metodi a sottospazi, dai dati

ingresso-uscita campionati;

2. Implementazione di un set di vincoli che forzi il sistema identificato alla forma

(2);

3. Conversione dal dominio di tempo discreto a quello continuo and conversione

dei relativi parametri del sistema.

La procedura classica prevede che il sistema identificato a tempo discreto sia ot-
tenuto per discretizzazione di tipo Zero-Order-Hold (ZOH) del sottostante modello

continuo. Quest’assunzione porta a gravi problemi di tipo numerico, poiche la



conversione dal discreto al continuo (d2c) richiede il calcolo del logaritmo per una
matrice 2n X 2n. E’ noto che tale operazione comporta problemi di malcondiziona-
mento numerico che producono un amplificazione degli errori di stima nel sistema
discreto.

La soluzione proposta al problema e di introdurre una nuova tecnica di dis-
cretizzazione delle equazioni del moto per sistemi meccanici, introdotta da Veselov,
e successivamente sviluppata da J.Marden e dai suoi collaboratori. Questa tec-
nica ¢ stata sviluppata per sistemi meccanici generici e porta a sistemi discreti
caratterizzati da una sorta di “struttura meccanica discreta”. Diversamente dalle
procedure di discretizzazione classiche, familiari nel mondo del controllo, e.g. ZOH,
tale metodo porta a una formula di trasformazione algebrica lineare per il recupero
dei parametri continui da quelli discreti.

Nella tesi gli integratori variazionali sono applicati ai sistemi meccanici lineari
del secondo ordine e verra provato che nella discretizzazione vengono preservate
proprieta con intrinseco significato fisico del modello a tempo continuo, ad esempio

la passivita.
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Chapter 1

Introduction and Problem

Statement

Of particular interest are systems which can be described by a second order vector

model of the following form:
Mi+Dg+Kq=f (1.1)

where M and K, both symmetric positive definite matrices in R™*"™ have the
interpretation of generalized mass (or inertia) and generalized stiffness coefficient
matrices respectively, while D € R™™ D = DT is a linear (viscous) damping
coefficient which is at least positive semidefinite. The generalized forces f acting
on the system can be expressed as a linear function of a vector of independently

assignable generalized input forces u of dimension £ < n; namely
f=Lu

where the matrix L, which will be assumed to be known, describes the physical
locations at which the input forces u act on the system. Without loss of generality

it may be assumed that L is of full column rank; i.e.

rank L = k. (1.2)



2 Introduction and Problem Statement

For simplicity and for mathematical convenience it will be assumed that a full set of
linear sensors is available to the experimenter; i.e. that all n degrees of freedom are
measured via linear sensors. In particular we shall assume that the measurement
equation is of the form y = Cq where C' is a square invertible matrix, which is
clearly equivalent to assuming that the full generalized displacements vector ¢ is
measured. The case in which the generalized velocities vector ¢, or n independent
linear combinations of the ¢, ¢ variables are measured, can be given an essentially
equivalent treatment. System (1.1) can also be represented in state space form; for

example defining
v:=q, 4", (1.3)

one gets

T T+

0 I
[—M‘lK —M~'D
[[ 0} x.

We shall comment later on the special (passive Hamiltonian) structure of this

0 ] .
ML (1.4)

Y

realization which leads to the inverse second-order polynomial transfer function of
the model (1.1).

Throughout the thesis we shall assume that the system (1.1) with input u is
controllable. See [12] for a direct test of controllability /observability of second
order models of the type considered in this paper. Note that under our assumptions
the system is automatically controllable and observable and hence minimal. This

is a necessary condition for parameter identifiability

Now, system identification deals almost exclusively with discrete-time data and
discrete time models. Nevertheless in several areas of engineering, and especially in
mechanical or structural engineering, the estimation of physical parameters which
pertain to the underlying (physical) continuous time model of the type (1.1)) is
very often required. A typical example is the estimation of the proper modes of
vibration of a mechanical structure. The proper modes are the eigenvalues of a

linear vector second order continuous time system, i.e. are solutions of an algebraic



equation of the form:
det (Ms*+ Ds+ K) = 0. (1.5)

It is a well-known fact that accurate information on these proper values and on
the associated proper vectors may be hard to get from an estimated discretized
system, no matter how accurate the estimates may be. The reason of this difficulty
may be attributed to the ill-conditioning of the discrete-to-continuous conversion

(see the next section for some details).

Moreover in the presence of noise, even with the use of anti-aliasing filters
(which must necessarily be approximated since the true bandwidth of the signal
is not known), oversampling has also the well-known effect of bringing in noise
alias in the estimates and further deteriorates the identification of the discrete-time

model.

Another difficulty with the inverse ZOH discretization is that it is highly non-
linear so that, even when the exponential is theoretically invertible, it does introduce
bias in the estimates of the continuous-time parameters, even when the discrete-time
parameters are unbiased and accurate. For this reason a linear (or “approximately

linear”) discrete-to-continuous conversion would be highly desirable!.

One may add that ZOH does not in general preserve the basic physical properties
of the underlying continuous system such as passivity, which may then be impossible
to recapture when transforming back the discrete to a continuous model. We are
in particular seeking transformations which preserve the second order input-output
structure of the type (1.1), which is indeed a basic characteristic of linear models
of fully observed mechanical systems (Newton law). In general a continuous state-
space realization obtained by the d2c¢ routine from an identified discrete model (1.7)
of a mechanical system, say by standard subspace methods, will never possess the
passive-Hamiltonian structure which is necessary for the input-output relation of
the system to have the second-order form (1.1) and hence to allow for the recovery
of the physical parameters M, D, K. That this is not of purely academic interest
is witnessed by the interest in this problem in the recent mechanical engineering

literature, see e.g. [II, 16, [I5] and the references therein.

1One may argue that the Euler discretization is a well known instance of linear conversion
map but unfortunately the Euler discretization is way too rough to be of use in most situations.
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Of course one may argue that one should use continuous-time identification
directly. Unfortunately according to the current literature on continuous time
identification, see e.g. [24] [7] and the references therein, the existing continuous-
time algorithms do not seem to be of much help for accurate physical parameters
identification. In many cases continuous-time identification algorithms eventually
end up to relay on logarithmic transforms, like inverting the relation z = exp{sh}
which turns out to be equivalent to the MATLAB d2c transformation. For the
reasons given above, these methods are not always reliable and should be avoided.
There is also a quite popular approach based on filtering the continuous time data
by a family of test functions [20], which may or may not be orthonormal. Besides
facing the problem of numerical integration for computing the inner products over
a long period of time, to reach reasonable accuracy these methods require the
computation of inner products of the signals with a large number of test functions.
This is so since each inner product plays eventually the role of a single discrete-time
sample value of the signal. To our knowledge, reliable continuous-time identification
methods which can be applied to concrete multivariable real-world problems seem
still to be missing. Progress still to be made in this area and for the time being we

may have to stick to discrete-time identification.

1.1 Continuous to Discrete conversion

The sampling of the continuous system gives a set of discrete data with sampling

time h
(f(k),q(k)) . (1.6)

Assume data are fitted, by some identification algorithm, by a discrete-time state

space model of the form

(1.7)

If h is short enough one can naturally imagine (1.7) to be related to an underlying
(unknown) continuous-time state space model by some discretization rule. A simple

example is the standard zero-order-hold (ZOH). The ZOH sampler transforms a
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continuous time system into a discrete time one by synchronously sampling the
output of the continuous system once the input signal is approximated by a piecewise
constant function on each sampling interval. The matrices that characterize the

transformation in the discrete state space form are
FZOH = €AT = E_l{(sf — A)_l}t:T,

T
Gzog = </ €ATdT> B = Ail(F — I)B,
7=0

Hzon = C,
Jzou = D.

The state and output signals turn out to be approximate discretizations of the
continuous counterparts and are exact discretizations only when the input is
actually a piecewise constant function of time. If the input function can be
well approximated by a function which is piecewise constant on each sampling
interval the (ZOH) sampler describes the relation between (1.7) and the underlying
continuous time model. The original parameters, say the matrices A and B of a
2n dimensional continuous time model, may then be recovered from estimates of
the parameters (F,G) of the discrete time model (1.7), by inverting the relations
F =expAh, G = foh exp Asds B. This is what is implemented in the d2¢ routine
in MATLAB. In certain circumstances this may however turn into a very ill-
conditioned problem. In particular the recovery of matrix A from the estimated F'
involves the computation of the logarithm of F' which may be a complex matrix
or, for a large sampling period, be undefined as requiring the inversion of the
exponential map in a region of the complex plane where it is not invertible. A
common belief is that the problem should be solvable by choosing a suitably high
sampling frequency, but actually it is easy to see that, even in the trivial example of
a scalar F' subject to a perturbation d F', the relative error incurred when computing
A+ 0A = %log(F—i-éF) is
0A 1 OF
A logF F
a similar formula holding in the matrix case, see [5, Formula 2.3]. Since for h — 0

F — I, the condition number of computing A = % log F' tends to infinity when
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h — 0. This means that when the sampling frequency is very high, the effect of
unavoidable random errors on the estimates of F' (and G) could be dramatically
amplified in computing A by the logarithmic transformation. See [5] and the
references therein. A deeper analysis of this problem will be given in the following

chapters.

The strategy to convert discrete time model into continuous time domain is
the nodal point in the estimation of continuous time model parameters. Giving
the above analysis some specific features of the desired conversion method can
detected:

e Simple, well-conditioned, possible linear conversion functions;
e Hamiltonian like discrete mechanical structure;

e Preservation of characteristic properties of the mechanical system, e.g. pas-

sivity.
The content of the thesis has the following layout:

1. It will be introduced a discretization technique of mechanical systems based
on the idea of variational integrators. This technique leads to linear conversion
formulas from a discrete identified model to the corresponding continuous

input-output model.

2. It will be shown that in an important special case the variational discretization
leads to a well-know continuous-to-discrete transformation used in system
and control, namely the Cayley-Tustin discretization. This discretization is
different from the usual periodic sampling (ZOH). This alternative sampling
technique will be discussed and some related computational problems will be

addressed.

3. The above technique will be used to attack the mechanical system iden-
tification from noisy discrete input-output data. As a preliminary step a
standard discrete-time subspace identification technique will be discussed and
used in order to supply good starting values to a successive Prediction Error

optimization-based algorithm.
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4. A refinement of the subspace identification estimates by a Prediction Error
algorithm which complies with the constraints of second order mechanical

structure will be described. This is the final step of the procedure.

5. Finally, some simulation results are shown and compared with the results

obtained by state of the art identification methods.
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Chapter 2

The Variational Integrators

approach to discretization

A novel twist to the discretization of mechanical systems has been provided by
the theory of variational integrators, see [29], and the recent work of J. Marsden
and co-workers, see e.g. [17]. These techniques seem to be fairly well known to
numerical analysts working with mechanical models but not so familiar to the
system and control community. The key idea is that the discrete equations of
motion should not be derived by attempting a direct discretization of the equations
(1.1) or (1.4) but rather derived by paraphrasing what happens in continuous time;
i.e. by making stationary a discrete action integral defined in terms of a suitable
discrete Lagrangian function. The (discrete) equations of motion should then follow
just like the Euler-Lagrange equations in continuous time. In short, the variational
integrators paradigm is to build from scratching a theory of Lagrangian Discrete

Mechanics.

In (continuous-time) Lagrangian mechanics we are given a Lagrangian function
L(q(t),q(t)) and external forces f1(q(t),q(t),t) and the equations of motion follow
from the Lagrange-d’Alembert principle, equivalent in the conservative case to the
stationary action principle. The Lagrange-D’Alembert principle states that the

trajectory of a mechanical system starting at time ¢y at position gy and arriving at
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time t; at position ¢; must satisfy the variational principle

5/t 1L(q,q’) dt+/tlf(q,q,t) dq(t)dt =0 (2.1)

for arbitrary variations dq(t), while holding the endpoints ¢y and ¢; of the curve
t — q(t) fixed. This leads to the well-known forced Fuler Lagrange equations(see
e.g. [I7, p. 421]):

oL d (0L
—(q¢,9) — = | =—(q,¢ t)=0. 2.2
aq(%Q) dt(aq(Q»Q))+fL() (2.2)
For a quadratic Lagrangian,
. 1+ 1+
L(q(t),4(t)) = 54 Mq— 59 Kq (2.3)
and an external force composed by a dissipation force fp = —Dgq and the actual
(generalized) external force f():
fu(t) == =Dq(t) + f(t), (2.4)

one obtains a linear second order vector differential equation of the form (1.1).

2.1 Brief review of variational integrators

theory

In order to mimic this procedure in discrete time one may first consider a discretiza-
tion {¢x = q(kh) k € [0, N]} and a curve segment {qy 4+1(t); t € [kh, (k+1)h)}
between two configuration points, g, = q(kh) and qry1 = q((k + 1)h), in the

configuration space () C R”, placed h units of time apart.

The discrete (exvact) Lagrangian increment L% (qy, qpy1, h) must contribute to

the action integral along the above curve segment. One defines the ezact (forced)



2.1 Brief review of variational integrators theory 11

discrete Lagrangian and the exact discrete forces on that curve segment as:

. (k+1)h .

Ly (qk, @ry1, h) 3_/ L(qrk+1(t), drp1(t))dt (2.5)
kh

E— o (kDR . ans,kH

fi (@ Gy, h) = Fr(@r (), Gerra(t)) 5 (t)dt, (2.6)
kh qr

. B (k+1)h | D rn

Qs @oga, h) == Fr(@eser1(8), Grps(2)) B (t)dt. (2.7)
kh r+1

where gy +1 is the solution of the forced Euler-Lagrange equations (2.2) with
endpoint conditions g x+1(kh) = g, and g1 ((k + 1)h) = ges1. See [IT, p. 427]

for details.

Consider then the following Discrete Lagrange-D’Alembert principle

N-1

0> L (g qesrs h)+

k=0
N—-1

(fE+<qk1, G h) + FE (g dosn, h)) Sa =0 (2.8)

k=1

where the variation dq(t) of a continuous curve is replaced by a discrete (finite)
sequence of variations {dgy }x—o,.. n, for arbitrary dg;’s. The variation is computed

with fized end points.

The discrete variational principle leads to the (Ezact) Discrete Euler-Lagrange
(EDEL) equations

DzLdE(Qk—la qk, h) + DlLCElJ(qlﬁ qk+1, h)+
"‘fEJr(Qk,l,Qk,h) +fE+(Qk,Qk+1,h) =0. (29)

where D; stands for the partial derivative operator applied to the i-th argument
of the function on which it is acting. These equations should be interpreted as
an algorithm mapping the pair (gx, gx+1) € @ X @ to the next configuration pair
(@rr1, rr2) € Q X Q, iee,

DEL : (qk, @k+1) — (@1, Qrs2) - (2.10)
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If it were possible to compute the integrals (2.5) explicitely, we would have a
discrete model which describes exactly the continuous dynamic at the discrete
time instants ¢ = kh. In general this computation is not possible and we need
to use an approximation both for the discrete Lagrangian and for the discretized
external forces. These approximations are denoted La(qk, qk+1), fif (Qks @rr1, k),

I (@k, qks1, k) without superscripts, i.e:

(k+1)h

Lo qusss h) = / O Lla.d0)d, (2.11)
(k+1)h 0

I (a1 e ) ~ / T, o) 5 0t (2.12)
(k+1)h )

i)~ [ fa®).d0) 500 (2.13)

It is remarkable that although many approximations are possible, the “stationary
action” principle leads in any case to Discrete Euler Lagrange Equations of a

standard form

DoLa(qi-1,qx) + D1La(qr, @res1) + [ (@h-1, @ k) + [ (@, qes1, b+ 1) =0 (2.14)

The specific form of the approximations depends on the specific discretization rule

used for approximating the integrals.

N.B.: The solution of the Discrete Euler Lagrange Equations derived from an
approximate Lagrangian will not any longer be equal to the true configuration
variable sampled at the discrete time instants t = kh. Now ¢ will just be an
approximation of the true g(kh). It is known [I7] that in any case, when no external
forces are applied, the approximation of the flow preserves symplecticity but does

not preserve (generally speaking) energy.

2.2 Midpoint rule discretization

Probably the simplest way to approximate the Lagrangian and the external forces,

is by the so-called (forward) “midpoint rule” which defines the approximate discrete
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13
flow {gr} by the substitution
Gk + Qi1 . Qet1 — Gk
~ = ~ 2.1
q 5 4 h (2.15)
in the (2.11), (2.12) and (2.13) it holds
_l’_ J—
La(Ge, Qo1 b, bk + 1)) := hL(qk+l2 o q’““h q’“) , (2.16)
_ h + —qx hk+h(k+1
f <Qk7 Qk+1, hk, h (k + 1)) pp— —f Qki-f'l Qk7 Qk+1 qk, ( ) , (217>
2 2 h 2
h —qx hk+h(k+1
2 2 h 2
In the quadratic Lagrangian (2.5) this leads to:
Gkt — G\t M Grar — Qi Qrv1 + e\ K Qg1 + g
L — pf(Be —eyT 2 . 2 (e Ty
(G ) = B =By A Bty e by R e Ty
(2.19)

As for the external forces (2.4), the midpoint rule discretization of the general exact
expressions (2.6), (2.7), yields*

i i an, ) = DB R (- 1) + f 00

fJ(Qk7Qk+17k+1) = _D%"‘lz—_q]" +

S

[f(hk) + f(h(k+1))]-

By putting together the above equations with

- h
Di Lalgr, qoss) = —M B — 9k g Gk
N R L o
Dy La(qr—1, qr) = qu‘—h/qkl — 5[{%7

and rearranging the time index, we find the forced discrete Euler Lagrange equations

IDetails of the approximation will be given in the Appendix.
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which are the discrete-time counterpart to system (1.1):

M hK DY - (2M hEK
h 4 9 qk h 9 qk—1

where 5
fa(k) := 7 [f(hk) +2f(h(k=1)) + f(h(k=2))] (2.21)
is an equivalent discrete force. Introducing the discrete mass, damping and stiffness

matrices,

My := % hTK g, (2.22a)
Dy = 4% _ %1 | (2.22b)
o M LKD) 0
equation (2.20) can be rewritten in a convenient second-order form as
Myqr, + Daqr—1 + Kaqr—2 = fa(k), (2.23)
where fy(k) is defined by (2.21) or, equivalently, by
fa(k) = L% [u(hk) + 2u(h(k—1)) + u(h(k—2))] = Lu4(k), (2.24)

the matrix L being the same as in the continuous-time model. Naturally wu(k)
denotes the sampled value of the input force at t = kh. Note that the computation
of the discrete forcing function {fy(k)} (or us(k)) requires adjacent samples at
times k, k — 1 and k — 2 of the sampled external force f (or u) so the input-output
model (2.23) has zeros (or numerator dynamics), contrary to the continuous time
model (1.1). Note that the matrices My, K4 and Dy are symmetric, hence they

need a reduced number of parameter to be completely described. Moreover if h is
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small enough we have

My>0 Myg=M], (2.25a)
K;>0 Ky=K;>, (2.25b)
Dy<0 Dyg=DY. (2.25¢)

The relations (2.22) are linear and invertible. By inverting them, the original
continuous time parameters (M, D, K) can be easily recovered from the parameters

of the discretized model (2.20) by means of the linear relations

h
M = Z[Md + Kd — Dd] s (226&)
D = Md — Kd, (226b)
1
K = 5[Md + Kd -+ Dd] . (226C>

These are nice linear relations much in the spirit of what we wanted to achieve.
Naturally, it must be kept in mind that the solution of (2.20) provides only an
approximation of the exact flow ¢ — ¢(t) sampled at ¢ = kh. The approximation
error for the midpoint rule is of the order of O(h?) see [I7, p. 402]. More about
this will be said in the next section. Use of more complicated approximation
schemes than (2.15) can provide approximations of the exact flow of arbitrarily
high order, see [§]. We can conclude that the (2.22) and (2.26) define linear

invertible continuous-to-discrete conversion for linear mechanical systems.
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Chapter 3

The Midpoint discretization and
the Cayley transform

A discrete system with a reduced number of parameters has been described, and a

¢ 279

discrete 7 ‘mechanical structure”’ has been pointed out. However some questions
need to be answered before using it for identification purpose. It is not clear, in
fact, what kind (if any) of sampling operation on the continuous time data (g, u)
generated by the model (1.1) would lead to the discrete difference equation (2.23).
Still, is the conversion operation better conditioned then the ZOH? In the following

a look into these problems is proposed.

It is a remarkable fact that discretization by the midpoint rule (2.15) applied
to a general linear time-invariant system is equivalent to the well-known Cayley
transformation. Relations with the Cayley transform seem to have been noticed

before; e.g. see [2], but in a rather different context.

3.1 Cayley transformation

Starting from the simple integrator’s differential equation

() = u(t) (3.1)



18 The Midpoint discretization and the Cayley transform

and applying the trapezoidal rule with a time step length h, the trivial following

h h
/i’dt:/ udt (3.2)
0 0
h

() — 2(0) = / udt (3.3)

0

steps

z(h) —z(0) = =(u(h) + u(0)) (3.4)

| >

lead to an approximation of integral action in the time step. Passing through the

zeta transformation one can write

1_hz+1

— ) 3.5
s 2z—1 (3.5)

Inverting, the well known expression that defines the bilinear transformation map

(also named Tustin transformation [11L [9] ) is obtained

22z—1
s = — )
hz+1

(3.6)

It is known that the state space transformation corresponding to the Tustin
transform (3.6) on transfer function is the so-called Cayley transform. Hence

applying the trapezoidal rule to the standard state space model

T = Ax + Bu
(3.7)
y=Cz+ Du
the Cayley transform can be derived. In the interval [0, k] one can write
h
z(h) — z(0) ~ B [Az(h) + Bu(h) + Az(0) + Bu(0)] (3.8)
_ pa%h) +2(0) I g tth) + u(0) (3.9)

2 2 ’
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which leads to a discrete linear equation:

(I - gA) z((k+1)h) = (I + gA) z(kh)

+ 2 (k1)) + u(kn) (3.10)

where Z(kh) is an approximation of the sampled original continuous state z(kh).
Note that z(kh) # x(kh) even if the input function is piecewise-linear on each
sampling interval (in which case the integration of u by the trapezoidal rule would
be exact). Now, I — %A is certainly invertible if h is small enough and we can
solve the equation for Z((k + 1)h). Defining a corresponding approximate output
by y(kh) := Cz(kh) + Du(kh) and the “midpoint rule” sequences

w(le+Dh)+ulkh)
5 7

y(+Dh +yEh)
2

u

(kh):= y1(kh):= (3.11)

=

the discretized state space model is derived, i.e. the Cayley transform of (3.7)

(3.12)

-1 -1
A% = ([— %) ([—i— %) B% = <[— %) B, (3.13)

—1 -1
e fi 1) by (1-Y pp

It’s interesting to note that the system (3.12) describes also the relation from u(kh)
and y(kh). In this case the state is defined by

" (hk) = <1 . %) (k) — %Bu(hk) (3.14)

and the system

(3.15)
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has the same matrices of (3.12)

Ac=A; B.=Bi Cc=Cy, D.=D;. (3.16)

M

The just given relations lead to the following proposition.

Proposition 3.1.1. Variational integration by the midpoint rule (2.15) applied to
the linear mechanical system (1.1) coincides with the Cayley-Tustin discretization.
In other words, the difference equation (2.23) with numerator polynomial defined
by (2.24) acting on the input f(k), is the input-output counterpart of the Cayley

transform (3.13) applied to any (minimal) state space realization of (1.1).

Proof. Let us show that the Tustin transform (3.6) applied to the transfer function
of (1.1) produces the discrete transfer function of the difference equation (2.23).
Denote

G(s) :=[Ms*+ Ds+ K] ™; (3.17)

then it is immediate to check that

4 —1)? 2z—1
G(s)™Y _2emr = (=1 p2z
S=h

- K
=¥l h2(2+1)2+ hz+1+

h
= [My2* 4+ Dyz + K| [I"Z(ZQ +2z+ 1), (3.18)

which is precisely the inverse transfer function of the model (2.20), i.e.

M n hK n D 2M  hK
h 1 9 qk h 9 qk—1

(M hK D

I + T 5) Q-2 = fa(k)

where

RS

Jfa(k) := 2 [f(hk) + 2f (h(k=1)) + f(h(k—=2))],

[]

It is remarkable that the spurious zeros in the Tustin-discretized transfer

function® of the system (1.1) are produced by the midpoint discretization (2.21) of

!These are the analog of the Euler-Frobenius polynomials for ZOH discretization, [26].



3.2 Ill-conditioning of discrete to continuous transformation 21

the external force. This observation will be useful later on.

Remark 1. Going back to the question posed at the beginning of this section, we
shall now address the problem of how one may compute the signal g.

Denote by T'(f) the Tustin transform of a continuous time signal f and let G.(z)
be the Tustin transform of the transfer function G(s); i.e. the discrete transfer

function of (3.15). Since it must apparently be true that

and since the discrete input function in (3.15) is the ordinary sampled input
u(k) = u(kh) (and not the Tustin transform thereof), the signal g is not equal to
the Tustin transform of the continuous-time flow ¢(¢). On the other hand forcing
the input function u(k) = Z='{T(u)} it must be true that ¢, = Z7' {T'(¢)}.

Practical schemes for computing the Tustin transform are discussed in the
literature. See e.g. [21],28]. These schemes are however computationally demanding.

It is well-known that for a wide class of continuous-time functions, for h —
0 the Tustin discretization becomes arbitrarily close to the ordinary sampling
discretization [9] (and in fact both signals tend to the exact discretization ¢%).
Equivalently, when h is chosen small enough the approximation error of the Cayley-
Tustin discretization will be of the same order of magnitude of that of the ZOH
transform. We shall compare approximation errors later on.

Right now, we are mostly interested in comparing the relative error amplification
(conditioning) of the inverse transforms (My, Dy, K4) — (M, D, K) with that of
the ZOH discretization.

3.2 Ill-conditioning of discrete to continuous

transformation

In the section 1.1 a rough analysis of the ill-conditioning has been shown; this gave
an intuition about the ill-conditioning issue using the ZOH conversion method.
What happens with the just found variational methods? Here a simulative analysis

is proposed with the aim to describe the situation in which the ill-conditioning is
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visible, comparing the two different methods.

Consider a scalar second order mechanical system
.od. k 1
i+—q+—q=—Ff (3.19)
m m m
and its state space form

T = Ax + Bu

g=2

A:

?] | (3.20)

The interest is focused on the discrete to continuous conversion. The analysis is
based on measuring the amplification of a perturbation on the discrete model, in
the conversion to the continuous domain. Note that on the contrary of the ZOH
the midpoint conversion is applied directly on the matrices (My, Ky, Dy) and not
on the state space form. This requires a different treatment for the 2 methods and
the comparison will result to give a partial information. However the linearity of
the variational map suggests the possibility of a complete and quite simple analysis
of the ill-conditioning. ZOH sampling is essentially based on logarithmic function
and an analytic analysis is really difficult (see [5]), therefore only a simulation
result will be shown. The procedure to extract a measure of the ill-conditioning

can be summurized by the following points:
1. Pick the discretization of (3.20);

2. Add a perturbation on the parameters. Note that for ZOH means to perturb

all the state space matrices.

3. Convert to continuous time and measure the “distance” from the original

parameter.

In order to give a fair comparison the sampling time must be chosen as multiple

of the in the bandwidth of the system. Hence, given

k d
w2 = —, 2wy, = —, (3.21)
m m



3.2 Ill-conditioning of discrete to continuous transformation 23

pick ¢ < 1, as for most mechanical systems, and compute the 3 dB bandwidth

wp = wn\/l — 2% + \/4C* — 4C% + 2, (3.22)

Now set sampling frequencies and sampling time

2
W= iwg, hi= % i=0,1,2,3.
Wi

3.2.1 ZOH

The following procedure describes how to obtain a simulated characterization of
the ill-conditioning of the ZOH based on model (3.20).

1. Compute {F}, g;} :=c2d{A,b}, for i=0,1,2 3.

2. On each entry of Fj, g; add Gaussian errors with standard deviation equal
to 5 % of the Frobenius norm of F' (pretending subspace method is used to
identify them). Get 50 samples of

F;=F,+0F,  §:=gi+dg (3.23)

3. Compute
dQC{Fi,f]i} = A+ §A;,b+ b, (3.24)

and take the sample averages dA;, 8b;, where

The operator .2 is the square computed element-wise.

4. Compute L o
[0Aill  [lobi]

, . i=0,1,2,3. (3.25)
1Al 0]
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Figure 3.1: Relative error on the matrices A and B compared with
1
ltog(F)l

using Frobenius norms.

Figure 3.1/ shows the result using the ZOH discretization compared with the

condition number of the logarithm that is in this simple scalar case proportional to

1
llog(F3) ||

3.2.2 Conditioning of the Midpoint Rule transformation

Define I and T'; as
M My

= |K|,Ty=|K, (3.26)
D Dy
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and the linear operator T’

h
il Al Sl
— h
T=| 4+ LI —3I|, (3.27)
h
—241 210

where [ is the identity matrix of proper dimensions. The inverse of T is, in

accordance with 2.26,

h h h
hp hp by
_ =1 _
R=T"'=|ir i1 11|, (3.28)
I —-I 0

With this definition the map (M, K, D) — (M, K4, D4) becomes
I,=TT, (3.29)

and the inverse

I = RT,. (3.30)

With this reformulation the ill-conditioning issue can be as a well known linear
algebra problem, i.e the computation of the condition number of a matrix. In our
specific the problem it is the maximum amplification for a perturbation on 'y,
namely o'y, through the linear operator R. Formally

|R™ Tl /| B~ 0T u|

k(R) = max . 3.31
(R) = pax =, 1/15Ta] .

Using the SVD decomposition the solution to the maximization is immediate. R

can be written using the classical notation as
R=UxXV". (3.32)

The maximum of (3.31) is reached when I'y is the right singular vector relative
to the smallest singular value (last row of V') and 4Ty is the right singular vector

relative to the biggest singular value (first row of V). Hence the condition number
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becomes function of the singular values

Omax(R)

K(R) = r(h) = ()

(3.33)

where it’s highlighted that the interest is on the dependence by the sampling time
h.

In the scalar case the matrices become

Loe ] ) [
R= % % }—11 =1k ,Tqg= | ky (3.34)
1 -1 0 d dg
and the singular value of R can be computed explicitly giving the set
48 + 3 ht 2304 — 224 h* 4+ 9 h8
o(R) = 1/8¢§\/ Bl 2T v
48 + 3 h* — /2304 — 224 h* + 9 h8
1/8 \/5\/ i v i (3.35)
72
Therefore the condition number is
oon(R) 1/8 \/5\/48+3 h4+\/23}(2421—224 RF9 A8
k(h) = 22 = (3.36)

p— m JE—
Opmin(R) 1/8 \/5\/48+3 h4—\/232421—224 ioiE  h?

This result points out that the ill-conditioning of the midpoint rule may be even
worse than the ZOH. But some more information can be extracted from the decom-

position computing U and V. They can be written regardless the normalization
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as
—8—1/2h*—1/2+/2304—224 h14-9 h8 —8—1/2 h*41/2/2304—224 h14-9 h8
1/2 RT=16 —1 1/2 h%—16
_ —8—1/2h*—1/2+/2304—224 h*+9 h8 —8—1/2 h*+1/2/2304—224 h1 49 h8
V — 1/2 h4*16 1 1/2 h4716
1 0 1
(3.37)
1 0 1

U=|1/8 4843 h4+\/2321217224 RILORE 3/4 B2 0 1/8 4843 h4f\/2324217224 REFORS 3/4 52

0 1 0
(3.38)

Now it is interesting to note that for A — 0 the singular vectors become really

simple. When normalized these become

1

1 1
BTV TV 001
Vo=l 5 % Up=|1 0 0 (3.39)
1 2
L0 -2 010

Remark 2. This means that if 6Ty = [0mg, 0kg, 0dy] is proportional to [\% \/Lg \% 17,
say a[\/ig \/Lg \%]T, and Tq = [mq, kg, dg] = [—\/L6 — \/Lé \/g]T, OT = [0m, Ok, d]
is ar(h)[0 1 0]T, that is actually
a
Reasoning in the same way it holds:
0d % om < «

Concluding this theoretical analysis, the parameter k is shown to be the most
affected by the disturbance. On the other hand ill-conditioning on m is actually

close to zero.
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Figure 3.2: Ill-conditioning with midpoint method on the 3 parameters
m,d,k

3.2.2.1 Relative errors in simulation

As in the subsection 3.2.1 a simulation procedure is developed for the sake of
validation of the theoretical analysis just given. Remembering the steps proposed,
in this case the c2d conversion is made by the linear operator 7" and the disturbances
are applied directly on the discrete parameters mgy, kg and dy. Then, going back to

the continuous domain through R, one can compute

[oma]l ([0l 10k |
{2 7 1

i=0,1,2,3. (3.40)

In Figure 3.2 is shown the ill-conditioning for the 3 parameters (m,d, k). The
parameter k is the most affected as seen in the theoretical analysis and the slope
of the corresponding line is in accordance with the result in (3.36). Note that m is

not affected by the ill-conditioning as expected.
In general the linear map (My, Ky, Dy) — (M, K, D) cannot be considered
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globally better conditioned than the log function. However, the different structure
of the midpoint model leads to different conditioning behavior for the matrices
M, K, D introducing a new element to be considered. Finally it’s important to
note that it is not known what happens using the midpoint transformation in
identification since it is not known how the estimation errors are distributed in
relation to the singular vectors of R. In short an algorithm has to be pointed out

and then tested to verify the effectiveness in using the midpoint conversion method.

3.3 Preservation of passivity under midpoint
sampling

There is a sizable literature on passivity of sampled (i.e. discretized) continuous
linear systems, see [4, 25 19]. Even if there is a clear axiomatic definition of
passive discrete linear (and nonlinear) systems, it is not immediately clear how to
do sampling in such a way as to preserve passivity. For example, it is well known
that with the standard definition of sampled input-output functions, neither Euler
method nor the Zero-Order-Hold sampling in general preserve passivity, see [10].
Now assume that the linear system (3.7) is passive; i.e. dimy(t) = dimu(t) and

there exist a quadratic energy function V(z) = %xTPx such that

V(z(t)) = V(z(0)) < /0 y' (s)u(s)ds. (3.41)

It is a basic fact of linear systems theory [30] that dissipativity is equivalent to
the existence of symmetric positive semidefinite matrices P solutions of the linear

matrix inequality (LMI)

ATP+PA PB-CT

<0 3.42
C-B'"P D+DT (3.42)

which is in turn equivalent to the fact that the transfer function of a passive system:
G(s) := C(sI — A)~'B + D should be positive-real, see [30] .
Lossless systems are an important special case. For these systems the inequality

in (3.41) is replaced by an equality sign. It can be shown that, under natural
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minimality assumptions for the realization (A, B, C), the LMI (3.42) has a unique
solution P = PT which is strictly positive definite. This function is a bona-fide
total energy of the system. Linear port-controlled Hamiltonian systems (see [27])
are a special case: they are lossless systems with an Hamiltonian structure. It is
shown in [27] that the energy function of these systems is in fact the Hamiltonian
function.

Passivity for discrete linear systems is defined as for the continuous-time case.

A discrete linear system,

x(k+1) = Agz(k) + Bgu(k)

(3.43)
y(k) = Cax(k) + Dgu(k)

is passive if there exist a quadratic energy function V(x) = %xTPx such that
V(z(k+1)) =V (2(k)) < y(k) u(k). (3.44)

It is shown that a linear discrete system in the form (3.43) is passive if and only if

the discrete linear matrix inequality (DLMI):

ATPA;—P AlPB,—C]

<0 3.45
BIPA;—Cy BJPBy— (Dy+D))| ~ (345)

admits symmetric positive semidefinite solution matrices P. The discrete LMI
condition can be generalized to nonlinear systems as reported for example in [13].

The following fact was apparently first discovered by P. Faurre in 1973 and can
be found in an unpublished INRIA report [6].

Theorem 3.3.1 (P. Faurre). Consider a (minimal) linear system (3.7) and its
discrete-time counterpart obtained by the Cayley transform formulas (3.13). Then
one system is passive if and only if the other is, and the energy functions are the
same. Moreover the set of solution of the DLMI is the same of the LMI for the

continuous time model.

Note that this statement per se does not tell how the inputs and outputs of the

continuous system should be “sampled” in order to preserve passivity nor what
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relation the discrete state of the sampled system has with the continuous state.
The midpoint rule interpretation of the bilinear transformation given above answers
these questions.

In particular, the midpoint rule variational integrator is a passive discrete me-
chanical system which is conservative (lossless) if and only if the original continuous-
time system was.

In the discrete domain the lossless systems, in analogy to the continuous case,
are characterized by the equality in (3.44). The definition of energy in this context

is not straightforward but through the discrete Lagrangian a possible definition is

0L

E=5n

(3.46)

In variational integrator theory this quantity has an important role and is related
to the simplectic structure that is guaranteed for each variational integrator. In
particular it is proved that every variational integrator of a lossless system has a
bounded energy that oscillates around the value of the original system. This is a
crucial property in the astronomical field for which the classical integrators does
not preserve a coherent energy behavior.

It is interesting to note that the midpoint rule applied to a lossless linear
mechanical system behaves peculiarly, because it does not present the classical

oscillation but the energy is perfectly conserved.
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Chapter 4
Identification

Assume we have collected sampled data measurements from our continuous system

over a suitably long (discrete) time interval T
{g(k); k=1,2,....,T}, A{u(k); k=1,2,...,T} (4.1)

with sampling period h. From these data one wants to estimate the mechanical
parameters (M, D, K) of the underlying model (1.1). Following the idea exposed
in chapter |1 and in chapter 3, a natural identification procedure should be in three

steps:

1. Estimates the samples of the Tustin transform of u(t) and ¢(t) from the
sampled data (4.1)(Remark 1);

2. Estimate the parameters (Mg, D4, K;), of the discrete-time variational model
(2.23);

3. Recover the corresponding estimates of the continuous time parameters by

using the inverse “input-output midpoint transform” (2.26);

Before discussing this however, a reasonable model is needed for describing the
actual sampled data (4.1). For this reason initially the ZOH model derived by
sampling (1.1) is discussed and later on we shall take upthe identification of the

discrete-time variational model (2.23) will be taken up.
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4.1 Complying with the second-order structure

Since the measurements of ¢(k) will invariably be affected by noise, a stochastic
model needs to be set up. Assuming additive white measurement errors y(k) =
q(k) + w(k) (w(k) white stationary) the input-output ZOH discretization of (1.1)
can be rewritten as a second order stochastic vector difference equation model of

the form
y(k) = Ary(k — 1) + Agy(k — 2) + By f(k — 1) + Bof(k — 2) +e(k)  (4.2)

where the process {e(k)} is given by e(k) = w(k) — Ajw(k — 1) — Asw(k — 2),
which is colored. Since f(k) acts on the system through the one step delay in the
state equation, in this model there is no direct coupling (no By f(k) term) between
the external force input and the output variable. In essence the model (4.2) is a
so-called output error (OE) model whose predictor depends non-linearly on the
parameters and gives rise to a nonlinear estimation problem.

For OE models a PEM identification method which can incorporate various
constraints on the system parameters such as symmetry of the various matrices etc.
is the “grey box” IDGREY algorithm described in the MATLAB System Identification
Toolbox guide [14]. This algorithm however is very sensitive to noise and to the
choice of initial values for the parameters and tends to get easily stuck into local
minima. To obtain reasonable results accurate initial parameter estimates are
absolutely necessary.

In order to compute good initial estimates a natural choice is to run a preliminary
subspace algorithm, say the n4sid algorithm, on the data (4.1), using ordinarily
sampled input-output data (y(k), f(k)) or (y(k), w(k)). This will yield a discrete

innovation model of the type

z(k+1) = Fa(k) + Gf (k) + Ke(k)
y(k) = Hx(k) +e(k) . (4.3)

Since for OE models the state-output dynamics of the stochastic and deterministic
subsystems is the same and we are interested only in the estimation of the “deter-

ministic” subsystem, the estimated Kalman gain K and the innovation covariance
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matrices in the n4sid function, can be forced to zero [14]. Also, since the number
of degrees of freedom is known a priori, the order estimation is not necessary
and the algorithm can be pre-set to return a 2n-dimensional discrete realization
(H, F, G) of the deterministic subsystem. Let us note that in the algorithm the
direct coupling term J f(k) is forced to be zero.

Now consider the model (2.23) describing the variational midpoint approxima-
tion of ¢(k). By the argument exposed in Remark |1, the ideal input and output
data set should be the Tustin transformation of the continuous time signals wu(t)
and y(t). Let (k) = 27 {T(¢)} and f(k) = Z= {T'(u)}.

Actually using the filtered input f; defined by (2.24) with f, avoids including
the spurious polynomial %(1 + 2271 4+ 272) in the input-output model. In this case,

the state space model for (k) has the form

=
oy
+

=
I

Fa(k) + G fa(k) (4.4)
Hax(k) + Jfa(k) +e(k). (4.5)

Y|

—~
7

N~—
Il

and corresponds s to a difference equation
g(k) = Ak — 1) + Asgi(k — 2) + J fa(k) + e(k) (4.6)

where,

A = —M;'Dy, Ayi=-M;'K,, J:=M;". (4.7)

Using the filtered input f; defined by (2.24), the model (4.6) is of the purely
autoregressive (AR) type. Note that in this model J # 0 since in the midpoint
approximation model (2.23) there is a direct coupling between f;(k) and ¢;. In
fact J must actually be equal to Md_l.

Naturally one should account for the fact that the signals 7(k) and f(k) are
not available. In fact reliable estimate of the Tustin transformation using sample
data are difficult to get. A possible procedure based on a cascade of filtering
operations is discussed in [21, p. 688-690] but this approach is not reliable and is
very time-consuming. However the difference between (f,y) and (f,#) is visible
only with increasing h thus the issue of reconstructing the Tustin transformation

can be ignored if h is very small. The samples (4.1) are used in their place.
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Now we present a procedure to compute a preliminary estimate of the parameters
My, D4, K4 from the parameters of the ZOH model (4.2) once the latter is identified

by a subspace algorithm. To this end let us recall the following result; see e.g. [I§].

Lemma 4.1.1. A necessary and sufficient condition for a 2n dimensional discrete
state space model (1.7) with dimy(k) = n, to have an input-output relation described

by a second order vector difference equation is that

H
rank =2n (4.8)
HF
in other words, all the observability indices of the system must be equal to 2.

In practice, for our ZOH system identified by a subspace method, the matrix

H
HF

will almost always be of rank 2n (invertible). Using Q7! as a similarity transforma-

tion one gets the block-companion form

0 I

F21 F22

OFQ! = . HQ = [I o}

where the blocks Fy;, Fy can be computed by solving the equation
HF? — [Fm FQQ] Q.

Hence the identified deterministic ZOH model can be transformed to the form

rab+1) — P? F] ralk) + g £ (4.9)
y(k) = |1 0|zalk). (4.10)

IThis is often called the “shift-invariance” condition in the identification literature.
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Note that the transformed G matrix, equal to

HG
HFG

~

G :=0G = (4.11)

will in general not have the structure necessary to yield a second order input-output
representation of the form (4.2). In general the input-output difference equation
of the system, instead of being of the AR-type as in (2.23), will be of a special
ARMAX form,

y(k) = Avy(k = 1) + Agy(k = 2) + Bif(k = 1) + Baf (k - 2) (4.12)

with B, = @1 and By = Gg — Fgg@l as it follows from the general expressions valid
for a model of the type (4.9)

B1 = él - FQQJ, Bg = GQ - F21J - Fggél (413)

by setting J = 0. Now for h — 0 the ZOH model (4.12) and the deterministic part
of (4.6) should approximately coincide. This means that

[T+ Azt 4+ Az 2] Brz ™t + Boz %) ~

h
[[+M;'Dgz™" + M7 ' Kg27? 7! [M;lz(l +227 277 (4.14)

In particular the gain matrices of the corresponding transfer functions? should
be the same and equal to the continuous time gain, K ', of (1.1). The discrete

mechanical parameters (M, Dy, K;) can then be obtained by solving
J=M;"=B,+ By, M;'Kg=—Fy, M;'Dj=—Fy. (4.15)

These relations yield approximate estimates of (My, Dy, K4), which can be used
as initial values for the parameter updating recursion of the IDGREY algorithm. Of
course the smaller h the better the approximation.

The deterministic model structure for the IDGREY algorithm is taken to be a

2Obtained by evaluating the two members of (4.14) at z = 1.
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block-companion state space structure of the type (4.9) parametrized directly in

terms of the unknown parameters (My, Dy, Ky),

0 I 0
zk+1)= z(k) + fa(k+2) (4.16)
F21 F22 G
gk = [1 0] 2k, (4.17)
where
Fy = -M;'Ky, Fyp:=-M;'D;, G:=M;". (4.18)

clearly in a one-to-one relation with (My, D4, K4). The filtered input f; is shifted
two steps ahead in order to get a zero direct coupling term in the output equation.
This strange two step in advance shift is only the reformulation in state space form
of the second order equation (4.6). In fact it is easy to check the equivalence of
(4.16) and (4.6) with parameters given by (4.7).

One should keep in mind that the parameter estimates are subjected to two
kinds of errors. The first is the unavoidable stochastic estimation error while the
second is the error due to the (deterministic) model approximation by the midpoint
rule inherent in the variational integration approach. In brief we shall refer to
this last source of errors as being “due to the Cayley transform”. Obviously this
(relative) error increases with h as coarse sampling generally corresponds to bad
approximation by the trapezoidal rule. The first kind of error on the discrete
parameters, depends on the measurement noise variance and on a (information)
matrix which describes the sensitivity of the model class to parameter variations. In
the transition from discrete to continuous systems this error can be amplified by a
bad conditioning of the discrete-to-continuous transform as discussed in the previous
chapters. Below we shall argue that despite the ill-conditioning , for a wide range
of sampling intervals the linear inverse midpoint discrete-to-continuous transform
(2.26)), induces in general smaller relative errors on the continuous parameters than
the logarithmic transform. In the next section, the procedure will be compared
with the a state of the art continuous time procedure proposed in [16] in a couple

of simulation examples.
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4.2 The Identification algorithm in 5 steps

Given the previous analysis the whole algorithm can be summarized in the following

sequence of step( scheme on Figure 4.1).

{f(k),q(k)}
n4sid
el e 1. . nd
Initialization

IApproximation

Initial condition bl ey S

IdGrey
Mg, K4, Dy

Structured PEM d2¢ [Midpoint]

M,K,D

Figure 4.1: Scheme of Identification procedure

1. Given the sampled data {f(k), ¢(k)} from the continuous time mechanical
linear system (1.4) with small enough sampling time h. The data are assumed

to be a good approximation of the ideal Tustin transformation of { f(¢), q(t)};

2. Perform n4sid identification from the data {f(k), ¢(k)} and get the system
(4.3); (X4 in the Figure). This system has no specific property or structure;

3. Impose the condition (4.14) and compute the matrices Mt [Kinit pinit
which yield the initialization point for the constrained optimization procedure
based on PEM. Note that they are rough estimation of M, and Dy, Ky;

4. Initialize the Idgrey function with the just found parameters and perform
identification using the data set {f;(k), ¢(k)} where fy(k) is defined (2.24).
The Md, ﬁd, K, so obtained are the best estimates for the ”‘discrete mechan-
ical”* parameter for the model ((2.23)).
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5. Use the midpoint transformation and convert the discrete estimates to the
continuous time M ) ﬁ, K. These estimates are symmetric by construction.

Positive definiteness needs to be checked as a last step.



Chapter 5

Results

The scope of this chapter is to compare variational integrator procedure described
before with a continuous time identification based on the d2¢ conversion. The latter
is applied to a discrete-time state-space model identified by a subspace algorithm
(n4sid) implemented in the identification toolbox . Note that we need to extract a
second order model of the type (1.1) from the continuous state space model obtained
in this way. Unfortunately, for this to be possible certain Hamiltonian-like structural
conditions should be imposed on the identification algorithm. This, although in
principle possible in the continuous version of IDGREY, slows down the algorithm
to the extent to make it practically unusable. The structural conditions need to
be forced upon the identified system by a suitable “projection” procedure such as
that devised by [15] 1] found in the literature. Such a procedure is summarized by

the following points (Figure 5.1):
1. From a continuous time linear system get sampled data {f(k),q(k)} ;

2. Perform a subspace identification method, say a n4sid, using the data
{f(k),q(k)} and get the system X%

3. Convert the system ¥¢ into 3¢ in the continuous domain using the Matlab

function d2c;

4. Manipulate 3¢ in order to obtain a second order continuous model of the
system, following the algebraic procedure described in [I5]. This produces an

estimate of the continuous time parameters M , ﬁ, K.
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{f (k) q(k)}

n4dsid
Zd
d2c [Z0H]
Ec Minit Kinit ﬁim’t
d 7 d 7d
Proj. [Lus] IdGrey
M)K)D Md,Kd,Dd
ndsid + d2c d2c[Midpoint]

M,K,D
Variational Approach

Figure 5.1: Scheme of the two compared identification procedures:
ndsid + d2c is taken from [I5] [16]

5.1 Simulation

The specific implementation of the algotithm requires some more care.

The first step of the algorithm is the sampling of continuous time signals which are
the input and output of a continuous time input-output model. In computer-aided
simulations this sampling cannot be handled directly , except when the analytic
description of the signals is known. In order to approximate an ideal sampler a very
small simulation time 7T is chosen and a first ZOH discretization of the continuous
time mechanical system (1.4) is implemented. In this way we get an approximate
solution of the linear differential equation which is good enough to be considered

continuous-time.

The input sequence is chosen as a PRBS that is a common used signal in
discrete time based identification. Note that, varying the sampling time h, this
input choice does not correspond to a realistic sampling of a continuous time signal.

In noise free condition this simplification could compromise the fair comparison of
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the two different approach but in the following only noisy condition are examined.

5.2 Simulation results

In the following a comparison of the two identification methods is presented. To
compare the quality of the identification, the relative errors of the estimated
continuous time parameters are computed for different values of h. Furthermore
for each h a Monte Carlo method is applied in order to reduce sample variations.
The order of the model is expected to be a crucial factor, hence results for two

different models taken from literature are examined .

5.2.1 A three degrees of freedom system

Consider the example 1 of [I]. A three point masses system (three degrees of

freedom) is simulated moving along a fixed direction in space, with parameters

0.8 0.0 0.0 40 —-1.0 -1.0
M= 10.0 2.0 00}, K=|-10 40 -10
0.0 0.0 1.2 -1.0 —-1.0 4.0
04 -01 -0.1
D=1-01 04 -0.1
-0.1 =01 04

Three sensors measure and record the sampled displacements of the three point
masses with independent (white) measurement noise with SNR 15. Note that such
a noise mimics a difficult realistic condition. An array of 3 x N = 3 x 6000 data
points is collected and used for system identification. The sampling time interval is
chosen to be the most significant range. The results are shown in Figures 5.2, 5.3,
5.4 and 5.5 and the relative errors are presented for the matrices M , K , D and A.

For example the relative error for the matrix M is computed as

[5M]]

Rk (5:1)
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where
M = M +6M. (5.2)

and §M is the estimation error. The matrix A is estimated using the state space
model 1.4.

It is apparent that the relative error with the variational integrator method is
much smaller than that obtained by the n4sid + d2c procedure. Note how, with
this last procedure, the error clearly blows up when A — 0 in accordance with the
ill-conditioning of the c2d conversion. Note the great advantage from the proposed
method in the estimation of the matrix D. A final observation concerns the lower
limit of the sampling time. As described in the previous chapter the initialization
for the constrained PEM is crucial, and if the preliminary n4sid does not give a
reliable result, the PEM cannot be used.

0.15 ¢
= = = nisid+c2d
0.12 Variational Approach
0.09 -y
SIS N
= \
== 0.06 .
\
o
0.03 r N L
~_‘—.~~~—-~_—_
or
0.004 0.00875 0.0135 0.01825 0.023

h

Figure 5.2: Comparing relative error of M based on data of the 3 x 3
model.
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0.15
= = = ni4sid+c2d

0.12 F v Variational Approach

0.09 -
== RN
S| \
=== 0.06 \

N
\ .
0.03 Moo :
TTTNL-o -~ - - :
O L
0.004 0.00875 0.0135 0.01825 0.023

h

Figure 5.3: Comparing relative errors of K based on data of the 3 x 3

model.
0.4 r
‘ = == = ndsid+c2d
\
0.32 F g Variational Approach
\
-\
o 0.24 r Y
g2 '
— 016t AR
. \
N\ - :
0.08 | NN
N - -
———l~~_—~—_‘.
O C 1 N N N IV N N VI N N - N 1 N N N J
0.004 0.00875 0.0135 0.01825 0.023

h

Figure 5.4: Comparing relative errors of D based on data of the 3 x 3
model.
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0.08
= = =nd4sid+c2d
0.064 r Variational Approach
0.048 1
== \
S| Z0032 f S
\
: \
0.016 F ™M :
~-_--_--———"'~ -
O - .
0.004 0.00875 0.0135 0.01825 0.023

h

Figure 5.5: Comparing relative errors of A based on data of the 3 x 3
model.

5.2.2 An eight degrees of freedom system

The second model described in the appendix |A.5 is taken from [I] and has order 8.
Simulations are performed exactly in the same way as before, changing only the
range of sampling times in which the relative errors are observed. The use of a
model with a high order is an interesting test for the algorithm proposed because the
advantage with a high number of parameters is expected to increase. In this more
critical condition the advantages of the variational approach will be more evident.
First of all in Figures 5.6, 5.7, 5.8 and 5.9 the results of an identificaiton over 6000
samples and a 20dB added noise are reported. The graphs show a behavior similar
to the 3 x 3 model, and, observing the values of the relative errors, it is even more
clear the advantage in using the midpoint approach. In particular in the estimation

of matrix D a 5% error is obtained against the 20% of the unstructured approach.
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Figure 5.6: Comparing relative errors of M based on data of the 8 x 8
model.
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Figure 5.7: Comparing relative errors of K based on data of the 8 x 8
model.
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.
] = = = n4sid+c2d
0.48 L L3 Variational Approach
\
1
0.36 1
=|= 1
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Figure 5.8: Comparing relative errors of D based on data of the 8 x 8

model.
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0.001 0.00325 0.0055 0.00775 0.01
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Figure 5.9: Comparing relative errors of A based on data of the 8 x 8
model.
5.2.2.1 [Ill-conditioning consequences in the variational approach

In section 3.2 it has been shown that the midpoint discretization is ill-conditioned
but there is little evidence of this in the results shown up to now. In order to check

these two apparently contrasting facts, a simulation with an ezact initialization of
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the PEM procedure has been performed. In such a way smaller sampling times
are allowed. Figures 5.10, 5.11, 5.12 and 5.13 show the results obtained in the
critical condition of SNR equal to 8dB and a very small sample time. It is very
interesting to note the accordance with the analysis of the section 3.2, The matrix
M is completely insensitive to the ill-conditioning problem and the estimation
increases its accuracy with decreasing h. The other parameters, on the contrary,

present a degradation of the relative errors similar to the one described above.

0.32

0.24

15]]
[M]]

0.16

0.08

O 1 ; . L . . 1 ; . . J
0.0001 0.000325 0.00055 0.000775 0.001

h

Figure 5.10: Relative error of M based on data of the 8 x 8 model with
variational approach. The PEM is initialized exactly.
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0.8

0.6

16K
K]

0.4

0.2

(I - - B - - L - - S - S|
0.0001 0.000325 0.00055 0.000775 0.001
h

Figure 5.11: Relative error of K based on data of the 8 x 8 model with
variational approach. The PEM is initialized exactly.

0.8

0.6

16D]]
1Dl

O = - - H| - - L - - S - - )
0.0001 0.000325 0.00055 0.000775 0.001
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Figure 5.12: Relative error of D based on data of the 8 x 8 model with
variational approach. The PEM is initialized exactly.
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Figure 5.13: Relative error of A based on data of the 8 x 8 model with
variational approach. The PEM is initialized exactly.

5.2.2.2 Error analysis with increasing h

The last open problem addressed in the thesis(see Remark (1)), concerns the
consequences of approximating the Tustin transformation with the sampled signals.
The midpoint structure model does not fit the data exactly and with increasing
values of h the parameter estimates deteriorate. In Figures 5.14 and [5.15| the
relative errors are shown in a range of sampling time that includes greater value of
h for the most significants matrices identified in M and D. The SNR is here very
low, equal to 8dB. A gradual increase of the relative error is evident for the matrix
M at the point that the procedure composed by n4sid and d2c gives a better
result for some values of h. For the matrix D the good quality of the estimation is

confirmed.
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Figure 5.14: Comparing relative errors of M based on data of the 8 x 8
model. The model error is visible.
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Figure 5.15: Comparing relative errors of M based on data of the 8 x 8
model. The model error is not visible.



Chapter 6
Conclusions

In this thesis the variational integrator theory has been recovered and applied for
the first time in the mechanical identification field. This powerful tool defines a
natural way to discretize continuous time mechanical systems, conserving many
of their properties in the discrete domain. Exploiting this prerogative, a new
discretization procedure for the second order Lagrangian equations of a linear
mechanical systems has been described and a discrete mechanical structure has
been defined.

The proposed procedure is based on a rather elementary discretization rule (the
midpoint rule) but more elaborate variational discretizations are possible, which
lead to approximation errors of higher order than O(h?). The use of these higher
order schemes has not been explored and is left to future investigations. Note
that in general also non linear identification can be performed using this kind of

approach.

The ill-conditioning of the midpoint conversion rule has been analyzed and a
peculiar behavior has been detected. A different conditioning has been observed
for the three matrices M, K and D. However the consequential estimation error
amplification has been observed only in forced condition and not in the natural

range of usage of the algorithm.

The simulation results have shown a great advantage in using the proposed
algorithm, mostly in the extreme condition of the approach based on the direct

conversion to the continuous time domain after the n4sid application.
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Two main limits are found and narrow the range of applications of the procedure

proposed:
e The necessity of an initialization step before the constrained optimization;

e The necessity to estimate the Tustin transform of continuous time signal by

means of sampled data for accurate result with high values of h.

These give the stimuli for future extensions and enhancements. For example to
exploit the principle described in [21], converted in the discrete domain, could lead
to estimate accurately the Tustin transform.

The proposed identification procedure should possibly be completed with order

estimation.



Appendix A

A.1 Equivalence of the step-invariant response
discretization and ZOH

Want to prove that the discretization method named step-invariant response [22]
for a piece wise constant input u(t) is equivalent to the classical ¢2d conversion

(ZHO). The step-invariant response discretization is characterized by (A.1).

H(z) = % =(1-zYH2 {L—l {%3)}} (A1)

On the other hand the c2d conversion is defined w.r.t the standard state space
form (A, B,C, D) in (A.2).
x(k+1) = ea(k) + (e — ) A7 Bu(k);

(A.2)

Proof. To prove the equivalence we can apply the step-invariant transformation to

the continuous time system with transfer function :

G(s)=C (s — A" B. (A.3)



56

Hence

e (22

=Z{C (e —1)A'B}

—(1-z)CA (-2 ' B—C(I-2"1)"'A'B

—C(1-=) (== (-2 ) AT

=C <(I — z’leAh)fl -z (I - z’leAhy1 —(I=z"e™) (1 - z’leAh)A) A'B
=210 (e —1) (I- z’leAh)_l A'B

=271C (I — ,z_leAh)_1 (eAh — I) A7'B,

1

(A.4)
That is exactly the transfer function of (A.2). In the proof we exploit that
(I- z_leAh)_l (et —1)=(eM—1)(I - z_leAh)_l : (A.5)
and that
A = A A, (A.6)
O

A.2 More on Discrete Euler-Lagrange (DEL)

equations with forcing

This is taken from [23]. Consider the extended action functional &(q(+),¢(-)) defined

(for strictly increasing function ¢ : [sg, s1] — [to, t1]) as

S(4().10) = [ " Lals).q/(s)/(s)) £ (s)ds. (A7)

S0
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Its first variation can be computed as follow

s =5 | " L (a(s), ¢ ()/2(5)) £ (s)ds

S0

s1 oL e oL //,,8L v rew iamal
_/so H(Tq(q’q/t)(swraq(q’q/”éq/t aq.(q,q/t)qét/(t)]t

+L(q,4'/t) 5t’}d8

! (oL 14t d OL P
:/50 (%(Q’Q/t)_ga-( /) 4 >5qtds+a_5q

* d aL ! ql ! /
+/$0 E(ﬁ_q(q’(” )g—L(q, /75));5”653

+ (Lt -G aam S) o

S1

S0

(A.8)

S0

Now, let ¢¥(t,qo, q1,t0,t1,u(-)) be the solution of the forced Euler-Lagrangian
equations that starts from ¢y at time t; and arrives in ¢; at time ¢; under the

influence of the (generalized) force u(-). We have

5/ (7))dr + /tl u(r) 8q(r)dr = 0. (A.9)

to

Define the exact discrete Lagrangian LY as

LY (0, q1,t0, t1, u(+)) := &(¢" (¢, g0, a1, to, tr, u(+))) (A.10)

and compute its partial derivative with respect to qo, ¢1, t9, and t;. From the

expression of the first variation of & we get

OLY h Oq” (1) oL
a % (QO7q1)t07t17 ()) - _/to U(T> aqo dr — 8_q(q0,q0) (Alla)

and

oLy b 9¢P(r) 0L
8 ¢ (QO Q1>t07t17 ()) - _/t;) U(T) 8q1 dr + a—q(thh) (Al]_b)
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where QD = % qE(t7 qo, 91, to, tl? u('))|t=t0 and (jl = % qE<t7 do, 41, to, t1, u('))|t:t1-

Remark 3. From equations (A.11a) and (A.11b), it is straightforward to derive
the forced DEL equations presented Marsden and West 2001. Indeed, we have

0L g gy OLd /t2 9q" (1)
4 (¢ (t1),¢"(tr)) = 240 (q1,q2, t1, t2,u(-)) + , u(T) o dr. (A.12a)
OL, .\ g, OL% / ho L 9g5(7)
aq (q (tl)u q (t1)> - aql (q07 q1, tO; tl?“’( )) + o 'LL(T) aql dr . (Alzb)

Summing up the two equations above, one gets the desired result, i.e.,

DQLdE(q(]? q17t07t17 U()) + DlLdE<ql7 q2, t17t2’u(.))+
de+(q07q1,t0,t17U(')) + de_(qo,th(),tl,U(')) - 0 (A13)

where

t1
fer(QO,CIl,to,tl,U(')) :—/ u(T) o dr, (A.14a)
1

to

PP (g1, g1, o, (1)) 1= /t S () ir (A.14b)

A.3 Discretization of the external forces

It is here shown how, starting from

f (qo, q1, to, t1, f( /f 3(11 T, (A.15a)
et f0) = [ s >5gq§)>df (A.150)

one arrives at the approximations 2[f(h(k—1))+ f(hk))] and 2[f(h(k))+ f (h(k-+1))].
Consider the exact trajectory ¢”(t; qo, q1, f(+)) in the interval ¢t € [tg,t;]. This
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trajectory satisfies the boundary conditions

“(to; a0, a1, f() = g0, ¢"(t1;90,q1, () = @

and hence

0 0
—q"(to; q0, q1, () = Id, a—qlqE(to; 0,91, f(-)) =0

dqo
L g a f() =0, (g, £()) = Id
aqoq 1540, 41, IR} aqlq 1540, 41,
Now to approximate
b )
T dr *
/to = (x)

one can choose

(t1 —t0)/2 x (f(to)aiqoqE(to; 0, q1, f(+)) + f(t1>8iq0qE(tl; 9,1, f(+)))

which, based on the previous expressions for the derivatives, is equal to

(t1 —to)/2 x f(to).

A “midpoint rule” approximation of (*) is

(t — to) x ((F(to) + F(02))/2 <§%qE<to;qo,th<~>> n a%q%;qo,ql, FO)/2)

which leads to
(tr —to) x (f(to) + f(t1))/4.

This is the formula we wanted to justify.
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A.4 11l conditioning of the n4sid + d2c
approach

The analysis computed in the section |3.2 does face the ill-conditioning of the
logarithmic function in the state space form. No words are spent for the the
propagation of the errors after the projection used in the (ndsid + d2c) (see 77).

In this direction the step 3 and 4 of subsection [3.2.1 are replaced with:

4. Compute

Then, with the same algebraic technique used in the identification proce-
dure [I5], manipulate A, b; and recover estimation of original mechanical

parameters. Thus we have m;, d;, k; and we can compute

N
1
om; = ngzzj((m,-)k—m)2 N =50

1
and the same for dd; and dk;.

5. Compute L -
[0mal|  [[0ds]| [|0F]]
[y I 14 R 17

i=0,1,2,3. (A.17)

The result in Figure A.1 show that, the relative error is propagated on the three
parameters in the same way. The relative errors amplification different for the
parameters, shown in the theoretical analysis of the midpoint conversion is a

peculiarity thereof.
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A.5 Matrices of the 8 x 8 system

1
M:
[27071.1 0
0 17071.1
0 0
1
. 0 0000
—10000 0
0 0
~3535.5 —3535.5
—3535.5 —3535.5
(1364 0
0 86.4
0 0
Lo | 0 —50
—50 0
0 0
177 —17.7
177 —17.7

00 O
100

O O O O O O O
o O O O O O

0

0
27071.1

0
—3535.5

3535.5

—10000

0

0
0
136.4
0
—17.7
17.7
-30
0

0 0 0 0 0 0
0 0 0 0 0 0
100 0 0 0 0 0
0 100 O 0 0 0
0 0 100 O 0 0
0 0 0 100 O 0
0 0 0 0 100 O
0 0 0 0 0 100
0 —10000 0
—10000 0 0
0 —3535.5  3535.5
17071.1  3535.5 —3535.5
3535.5  27071.1 0
—3535.5 0 17071.1
0 0 0
0 0 —10000
0 -30 0 —-17.7
—50 0 —-17.7
0 177 177 —50
86.4 177 =177 0
177 1364 0 0
—17.7 0 86.4 0
0 0 0 136.4
0 0 —50 0

—3535.5
—3535.5
—10000
0
0
0
27071.1
0

—17.7]
177
0
0
0
50
0
86.4

(A.18)

~3535.5]
~3535.5
0
0
0
~10000
0

17071.1
(A.19)

(A.20)
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