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Summary
The main topic of this thesis is the analysis of static and dynamic models in which

some variables, although directly influencing the behavior of certain observables, are

not accessible to measurements. These models find applications in many branches of

science and engineering, such as control systems, communications, natural and biological

sciences and econometrics. It is well-known that models with unaccessible - or latent
- variables, usually suffer from a lack of uniqueness of representation. In other words,

there are in general many models of the same type describing a given set of observables

say, the measurable input-output variables. This is well-known and has been well-studied

for a special class of linear models, called state-space models. In this thesis we shall focus

on two particular classes of stochastic systems with latent variables: the generalized factor
analysis models and errors-in-variables models. For these classes of models there are still

some unresolved issues related to non-uniqueness of the representation and clarifying

these issues is of paramount importance for their identification. Since mathematical

models usually need to be estimated from experimental data, solving the non-uniqueness

problem is essential for their use in statistical inference (system identification) from

measured data.

Generalized factor analysis models

The first class of models discussed in this thesis constitutes a generalization of the classical

factor analysis models. It was first proposed in the 80’s by econometricians for the purpose

of describing capital asset pricing in large markets. In recent years, it has been extended

to the dynamic context, attracting much attention from the econometrics and system

identification communities. These models describe observations of infinite cross-sectional

dimension. Quite surprisingly, in this generalized context the inherent non-uniqueness

of classic factor analysis models does not occur. In our opinion, the reasons for this

have not been spelled out clearly in the literature. We shall argue that the uniqueness

is due to a different splitting of the variables into a factor and noise component which

is based on the concepts of aggregate sequences and idiosyncratic noise. We describe

conditions which are necessary and sufficient for the latent variables of the model to

be uniquely recoverable. In particular, for stationary sequences,we show that there is a

natural interpretation of generalized factor analysis models in terms of the well-known

Wold decomposition and show that a stationary sequence admits a (unique) generalized

factor analysis decomposition if and only if two rather natural conditions are satisfied.

Part of this work is focused on possible applications of generalized factor analysis
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models to various fields of engineering. We present some scenarios in which this new

modeling paradigm may be used in order to model the behavior of multi-agents systems

consisting of a very large number of interacting random agents. We show that in a

description by generalized factor analysis models the latent factor component has an

interpretation as a flocking component of the ensemble while the idiosyncratic noise

component models the local interactions among neighboring agents.

Motivated by the need of modeling the effects of the latent variables on the observ-

ables, one chapter is dedicated to the study of the properties of tall linear systems, i.e.

systems with more outputs than inputs. In fact, in order to keep the model complexity

low, in the context of generalized factor models it is desirable to deal with zero-free

models, i.e. linear systems with no invariant zeros. For this reason, after reviewing some

recent literature, we study the zero properties of discrete-time linear systems, assuming

multirate outputs. In the literature the zero properties of these systems are defined as

those of their corresponding time-invariant blocked systems. Hence, the focus is on

the zero properties of blocked systems resulting from blocking of linear systems with

multirate outputs. In particular, we study the zero properties of tall blocked systems

under a generic setting, i.e. for generic parameter matrices. We demonstrate that tall

blocked systems generically have no finite nonzero zeros. Moreover, we show when tall

blocked multirate systems can generically be zero-free at the origin of the complex plane

and at infinity and when they must have zeros at those aforementioned points.

Errors-in-variables models

The second class of systems studied in this thesis are errors-in-variables models. In partic-

ular, we discuss identifiability of dynamic single-input-single-output errors-in-variables

models with white measurement errors. Although this class of models turns out to be

generically identifiable, it has been pointed out that in certain circumstances there may

be two errors-in-variables models which are indistinguishable from external input-output

experiments. This lack of (global) identifiability may be prejudicial to identification

and needs better understanding. The identifiability conditions found in the literature

guarantee uniqueness under certain coprimality assumptions on the (rational) transfer

function of the ideal “true” system and the spectral density of the noiseless “true” in-

put. Unfortunately these conditions are not testable since they concern precisely the

unknowns of the problem which are not available to the experimenter. We provide new

identifiability conditions which are instead expressible in terms of the external description

of the observable signals, namely their joint power spectral densities.

Motivated by the need of providing a tool for estimating the power spectra densities,
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which is a preliminary step for testing the identifiability of errors-in-variables models, we

present a new regularized kernel based approach for the estimation of the second order

moments of stationary stochastic processes. The correlation functions are assumed to be

summable and estimated as the solution of a Tikhonov-type variational problem. The

hypothesis space is a reproducing kernel Hilbert space induced by a recently introduced

stable spline kernel. In this way, the information on the decay to zero of the functions

to be reconstructed is incorporated in the estimation process. We show that the overall

complexity of the proposed estimator scales linearly with the number of available samples

of the processes. An application to the identification of transfer functions in the case of

white noise input is also presented. We provide numerical simulations to show that the

proposed method compares favorably with respect to standard nonparametric estimation

algorithms that exploit an oracle-type tuning of the parameters.
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Sommario
L’argomento principale di questa tesi è l’analisi di modelli statici e dinamici in cui alcune

variabili non sono accessibili a misurazioni, nonostante esse influenzino l’evoluzione

di certe osservazioni. Questi modelli trovano applicazione in molte discipline delle

scienze e dell’ingegneria, come ad esempio l’automatica, le telecomunicazioni, le scienze

naturali, la biologia e l’econometria e sono stati studiati approfonditamente nel campo

dell’identificazione dei modelli. È ben noto che sistemi con variabili inaccessibili - o latenti,
spesso soffrono di una mancanza di unicità nella rappresentazione. In altre parole, in

generale ci sono molti modelli dello stesso tipo che possono descrivere un dato insieme di

osservazioni, come ad esempio variabili misurabili di ingresso-uscita. Questo è ben noto,

ed è stato studiato a fondo per una classe speciale di modelli lineari, chiamata modelli a
spazio di stato. In questa tesi ci si focalizza su due classi particolari di sistemi stocastici a

variabili latenti: i modelli generalized factor analysis e i modelli errors-in-variables. Per

queste classi di modelli ci sono ancora alcuni problemi irrisolti legati alla non unicità

della rappresentazione e chiarificare questi problemi è di importanza fondamentale per

la loro identificazione. Poiché solitamente i modelli matematici necessitano ti essere

stimati da dati sperimentali, è essenziale risolvere il problema della non unicità per il

loro utilizzo nell’inferenza statistica (identificazione di modelli) da dati misurati.

Modelli generalized factor analysis

La prima classe di modelli discussa in questa tesi costituisce una generalizzazione dei

modelli ad analisi fattoriale classici. È stata proposta inizialmente negli anni ottanta

dagli econometrici allo scopo di descrivere il capital asset pricing in grandi mercati.

Recentemente, essa è stata estesa al caso dinamico, attirando l’attenzione delle comunità

di econometria e identificazione dei sistemi. Lo scopo di questi modelli è la descrizione di

osservazioni la cui dimensione trasversale è infinita. Abbastanza sorprendentemente, la

non unicità intrinseca dei modelli ad analisi fattoriale classici non si verifica. È nostra

opinione che in letteratura le ragioni di tale unicità non sono state spiegate in modo

chiaro. Si dimostra che l’unicità è dovuta ad un modo differente di dividere le varaibili

nella somma di una componente fattore e una rumore, basandosi sui concetti di aggregate
sequences e idiosyncratic noise. Si descrivono quali condizioni sono necessarie e sufficienti

affinché le variabili latenti siano univocamente identificabili. In particolare, per sequenze

stazionarie, si dimostra che esiste un’interpretazione naturale dei modelli generalized

factor analysis in termini della nota decomposizione di Wold, mostrando che una sequenza

stazionaria ammette una (unica) decomposizione in termini di generalized factor analysis
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se e solo se sono soddisfatte due condizioni alquanto naturali.

Parte di questo lavoro si focalizza sulla descrizione di possibili applicazione per i

modelli generalized factor analysis in diversi campi dell’ingegneria. Si presentano alcuni

scenari in cui può essere possibile applicare questo nuovo paradigma per modellizzare il

comportamento di sistemi multiagente costituiti da un numero molto frande di agenti

interagenti in modo casuale. Si mostra che la componente dei fattori latenti ammette

un’interpretazione in termini di componente di flocking del comportamento complessivo

del gruppo, mentre il rumore idiosincratico modellizza in modo naturale le interazioni

locali tra agenti vicini tra loro.

Motivati dalla necessità di modellizzare l’effetto delle variabili latenti sulle mis-

urazione, si dedica un capitolo allo studio delle proprietà dei sistemi lineari alti, ossia

sistemi con più uscite che ingressi. Infatti, allo scopo di mantenere la complessità del

modello bassa, nel contesto dei generalized factor model è desiderabile avere modelli

zero-free, cioè sistemi lineari senza zeri invarianti. Per questo motivo, dopo aver rivisitato

la letteratura più recente, si studiano le proprietà degli zeri dei sistemi lineari a tempo

discreto, assumendo che le uscite di tipo multirate. In particolare, si studiano le proprietà

degli zeri di sistemi blocked alti in condizioni generiche, ossia per parametri matriciali

generici. Si dimostra che i sistemi blocked alti genericamente non presentano alcuno zero

finito. Inoltre, si mostra quando i sistemi blocked alti possono essere genericamente privi

di zeri nell’origine del piano complesso e all’infinito e quando invece devono giocoforza

presentare degli zeri in tali punti.

Modelli errors-in-variables

La seconda classe di sistemi studiati in questa tesi sono i modelli errors-in-variables. Si

discute in particolare l’identificabilità di modelli errors-in-variables (EIV) SISO con errori

di misura bianchi. Sebbene questa classe di modelli sia genericamente non identificabile,

è stato osservato che in certe circostanze ci possono essere due modelli EIV i quali sono

indistinguibili tramite misurazioni esterne di ingresso-uscita. Questa mancanza di identifi-

cabilità (globale) può pregiudicare il processo di identificazione e necessita dunque di una

maggiore comprensione. Le condizioni sull’identificabiltà trovate in letteratura garantis-

cono unicità sotto certe ipotesi di coprimalità della funzione di trasferimento (razionale)

del sistema ideale “vero” e della densità spettrale dell’ingresso “vero”, cioè privo di ru-

more. Purtroppo, queste condizioni non sono verificabili, poiché riguardano esattamente

le incognite del problema, le quali non sono disponibili a chi effettua l’esperimento. Si

forniscono nuove condizioni di identificabilità che sono invece esprimibili in termini di

descrzione esterna dei segnali misurabili, vale a dire la loro densità spettrale congiunta.
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Motivati dalla volontà di fornire uno strumento per la stima di densità spettrali,

la quale rappresenta il passo iniziale per il test dell’identificabilità dei modelli EIV, si

presenta un nuovo approccio per la stima di momenti del secondo ordine di processi

stocastici stazionari, basato su kernel regolarizzatori. Si ipotizza che le funzioni di

correlazione siano sommabili; esse sono stimate risolvendo un problema variazionale

á lá Tikhonov. Lo spazio delle ipotesi è uno spazio di Hilbert a nucleo riproducente

indotto dagli stable spline kernel, recentemente introdotti in letteratura. In questo modo,

si incorpora nel procedura di stima l’informazione sulla sulla decadenza a zero delle

funzioni da ricostruire. Si dimostra che la complessità computazionale complessiva

dello stimatore proposto scala in modo lineare con il numero di campioni disponibili del

processo. Si presenta anche un’applicazione all’identificazione di funzioni di trasferimento

nel caso in cui l’ingresso sia rumore bianco. Si forniscono delle simulazioni numeriche

che mostrano che il metodo proposto fornisce prestazioni analoghe ad algoritmi non

parametrici standard di stima, i quali però sfruttano un oracolo per la regolazione dei

propri parametri.
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1
Introduction

Mathematical models are nowadays of paramount importance in applied sciences and

engineering. Often models cannot be derived by physical deductions and reasoning

and there is a need for automatic instruments which can build models starting from

observations or measurements of the phenomena of interest. This is precisely the scope of

the discipline called system identification. It deals with the development of algorithms and

methodologies for automatic model building from observed data. In this thesis we shall

discuss the statistical approach to system identification, which leads to the construction

of stochastic models, namely models in which the input-output quantities are random

variables or random processes (depending on whether we are working in a static or

dynamic setting). This is the mainstream approach to system identification, which has

many well-known advantages and a rich literature.

Any identification procedure requires some prior knowledge or assumptions on the

phenomenon to be modeled. For instance, one typically assumes that a linear time-

invariant model (either static or dynamic) should be appropriate to describe the system.

Other assumptions that need to be considered regard the data and the data acquisition

process, especially the presence of noise, its distribution etc.. In particular, when dealing

with input-output models, an hypothesis which is very often implicitly made is that the

exogenous inputs to the system are accessible via exact measurements (no measurement

errors or noise). This is likely a consequence of the uncritical habit in applied statistics of
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modeling almost everything by regression models, where by definition the exogenous

variables are exactly known. However, in many realistic situations the inputs cannot be

considered exactly measurable and one should model the system as if only a noisy version

of the signal was available. In fact, sometimes the input signal cannot be measured at

all. The “true” hidden input then becomes a latent variable, and the underlying model

becomes a model with latent variables. This brings up a fundamental difficulty, since

there are in general several latent variables models of the same type which can describe

equally well the external measurable variables of the system but involve radically different

combinations of true inputs plus noise configurations. This fact makes the identification of

these models an ill-posed problem. In general models with latent variables are commonly

said to suffer from a lack of identifiability, meaning that there does not exist a unique

model structure in the predefined model class describing the data1. For state space

models this difficulty has been well-known for a long time. In this case the universally

adopted solution is to choose the unique class of models for which the state variable is a

function of the past input noise. These are the so-called innovation models; they bear a

strict relation to the Kalman steady-state predictor.

The latent variables models which we shall discuss in this thesis are errors-in-variables
(EIV) and factor analysis (FA) models. For these models a canonical choice like that for

state space models is not obvious and in the literature somewhat restrictive assumptions

on the model class are often made. For EIV models, to single out a unique model class,

one often assumes white additive and uncorrelated noises on the true external signals

(both inputs and outputs) and often (especially in FA models) the noise variances are

assumed to be equal. Clearly these assumptions may not lead to model classes general

enough to satisfactorily fit the data.

In this thesis we shall study the identifiability of dynamic EIV models with white

additive noise, and a generalization of FA models, called the generalized factor analysis
(GFA) models, both in a static and dynamic settings. The latter will be considered first.

Generalized factor analysis

As suggested by the name, GFA models are a generalization of the classical FA models

which will be surveyed in Section 3.2. Factor analysis models have a long history; they

were apparently first introduced by psychologists and successively been studied and

applied in various branches of statistics and econometrics. Nowadays they are widely

1Usually identifiability is defined as parameter identifiability; i.e. one-to-one parametrization of a given
model class. In our case the concept has to do instead with the uniqueness of a model class to describe the
external data. Once a unique model class is chosen, it can always be parametrized in a one-to-one way, at
least locally.
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employed for data analysis in various fields such as psychology, econometrics, chemistry,

biology, geosciences, etc. The scope of FA is to describe a large set of observations in

terms of few common regressors plus additive noise. The regressors are meant to catch

the correlation between the observations, while the noise explains their differences.

This class of models may appear to be similar to regression models. However, there is

a substantial difference, that is, the regressors, called latent factors, are unaccessible to

measurement. Even their number is generally unknown. This lack of prior knowledge

makes these models difficult to handle because of non-uniqueness, i.e. lack of identi-

fiability. In practice this appears also as parameter unindentifiability since in practical

estimation procedures, say maximum likelihood, it always looks like there are too many

parameters to estimate. This difficulty is approached by a plethora of ad hoc tricks in the

literature, none of which seems to be really satisfactory. Actually the fact is that there are

generically many (maybe infinitely many) non-equivalent FA representations which can

describe the same set of random observables equally well. This is the key identifiability

issues for FA models.

In GFA the basic structural assumptions of factor analysis are relaxed, allowing for

1. an infinite number of observables;

2. an additive noise term whose components instead of being uncorrelated (or inde-

pendent) may allow for a sort of weak correlation.

In this thesis, we shall see that, once the above “weak correlation” is properly specified,

there is a one-to-one correspondence between the data and their GFA representation, and

hence identifiability.

One may argue that the assumption of an infinite number of observables is unrealistic,

making GFA models difficult to apply in real scenarios. Actually, we shall present several

applications where there is a very large number of random observables which can be

modeled as the result of a common, low dimensional, random latent input plus a noise

term describing local interactions. Generalized factor analysis can in fact help in capturing

certain underlying simple structure in these phenomena. The key point is that, in all

these applications, once the noise term is separated out, there is a simple parsimonious

model which describes the collective behavior of the ensemble. We shall call this the

flocking component of the model.

Modeling dynamic factor models: zeros of tall linear systems

In the econometric literature, dynamic versions of factor analysis models have also

been introduced. In recent years, we have been witnessing a revival of interest in
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these models, motivated on one hand by the need of modeling very large dimensional

vector time series. Vector autoregressive moving average (ARMA) models are inadequate

for modeling signals of large cross-sectional dimension, because they involve a huge

number of parameters to estimate which may sometimes turn out to be larger than the

sample size. Likewise the static case, there are identifiability issues for dynamic factor

models. For this reason, recently a generalized version of dynamic factor models has

been introduced, following the same principles of generalized factor analysis. Still, when

modeling the effects of the latent factor on the observations, one can see that the number

of parameters to be estimated is very large. More generally, whenever one has to deal

with the identification of systems where the number of outputs is much larger than the

number of inputs, the variance of the estimates can be high and hence the estimation of

the parameters unreliable.

Motivated by these reasons, a part of this thesis is dedicated to the study of tall linear

systems, i.e. systems with more outputs than inputs. In particular, we are interested on

their zero properties. In fact, if it is a priori known that the system to be identified has

no invariant zeros, linear autoregressive (AR) models can be adopted to describe the

dynamics. In this way, the number of parameters to be estimated decreases considerably,

as does the variance of the estimates. Our attention is focused on multirate systems, i.e.

systems in which we assume that two output streams are available at different rates.

Errors-in-variables

In this thesis, we shall also discuss dynamic errors-in-variables (EIV) models with white
measurement errors. Although this model class is rather restricted, it appears to be a

natural and tractable generalization of output-error (OE) models. Several identification

algorithms have been developed for estimating the system transfer function and the noise

variances in these models. This has been possible because it is known that this model

class is generically identifiable, in the sense that, given a pair of input-output signals, one

can almost always uniquely associate only one EIV model with them. However, it has

been pointed out that in certain circumstances there may actually be two EIV models

which are indistinguishable from external input-output experiments.

Motivated by this fact, in this thesis we develop novel conditions for testing the

identifiability of EIV models with white measurement errors. In particular, we show that

identifiability may be not guaranteed if a linear-affine relation between the input and the

output spectra holds. The sufficiency of this condition is also addressed. In contrast to

the existing literature, our identifiability conditions can be utilized in practical situations,

since they rely upon available information, namely the joint input-output spectral density.
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Nonparametric spectrum estimation

In system identification, the power spectral density (or spectrum) is a statistical description

of paramount importance for stationary stochastic processes. Several identification

algorithms and identifiability tests, among which the ones employed in stochastic systems

with latent variables, rely upon a preliminary estimation of the spectrum of the input

and output processes. However, there are many other practical problems of time series

analysis where the power spectrum is employed for data analysis, for example signal

processing, control systems design, econometrics and mathematical finance.

The problem of estimating a spectrum can be summarized as follows: Given a finite
array of data samples of a stochastic stationary process, estimate its spectrum.

The development of tools for estimating the spectrum has been object of research

since the beginning of the last century, generating many algorithms to solve this problem.

The solutions can be roughly grouped into parametric and nonparametric methods. In

the first case, the curve obtained is a closed-form function depending on few parameters

which determine its shape. In the second case, one gets a curve which is explicitly

pointwise defined on the frequency domain.

Usually, in control systems and system identification it is preferable to have parametric

solutions, as the goal is to obtain simple models capable to describe the system behavior,

which are then studied in order to properly design the system controller. However, in

recent years, the nonparametric paradigm has become increasingly important also in

system identification and control design algorithms. This is because new nonparametric

identification techniques, which perform significantly better than the classic parametric

ones, have been developed.

For this reason, it appears reasonable to follow these novel nonparametric techniques

for developing new spectrum estimation algorithms which are able to provide better

results than other classical methods.

Summary of the thesis and acknowledgements

The topics treated in this thesis can be divided in four parts, corresponding to Chapters 3,

4, 5 and 6. A short summary of some preliminary concepts is made in Chapter 2.

In Chapter 3 we introduce and analyze GFA models. We show that this class of

model provides a well-defined description of an infinite collection of random variables by

decomposing the observations as the sum of an idiosyncratic sequence and an aggregate
sequence. The first type of sequences arises from a proper definition of weakly correlated
noise, which we show to correspond to an infinite number of random variables whose
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covariance matrix can be interpreted as a bounded linear operator in separable Hilbert

spaces. For the latter type of sequences, which explains the effect of the latent factors on

the observations, we give necessary and sufficient conditions which ensure the estimability

of the latent factors. For stationary sequences, we show also that there is a natural

interpretation of generalized factor analysis models in terms of Wold decomposition of

stationary processes. A stationary sequence admits a (unique) generalized factor analysis

decomposition if and only if two rather natural conditions are satisfied. Furthermore,

we present some possible applications in which generalized factor models may help

in providing explanations of observed phenomena. The key point is that, in all these

applications, the observable variables are the result of local interactions plus a common,

simple behavior. We associate with the latter the concept of flocking, which will be defined

in Chapter 3. We discuss how to extract the flocking component of a random field for

a simple class of separable random fields. The content of this chapter is taken from

(Bottegal & Picci, 2011), (Picci & Bottegal, 2012), (Bottegal & Picci, 2013a) and (Bottegal

& Picci, 2013b).

In Chapter 4 we focus on exploring the zero properties of tall linear systems. As

has been pointed out previously, this type of systems arise when one has to deal with

modeling of the actions of the latent factors in a dynamic GFA context. Part of the chapter

is dedicated to a review of some recent results on the zeros of tall linear time-invariant

systems, and on the zeros of tall blocked linear systems, i.e. systems obtained by grouping

inputs and outputs at different time instants. The main result of this part is that these

classes of systems are generically zero-free, where by generically we intuitively mean

“for almost all the systems”. The, we dedicate to analyzing the zero properties of tall

multirate linear systems, i.e. systems where two output streams available at different

rates are collected. We show that, quite surprisingly, even in a generic setting, there may

be situations in which these systems present zeros at the origin of the complex plane or

at infinity. We show that the presence of these zeros depends on the dimensions of the

state, the input, the output and the rates at which the outputs are available. The contents

of this chapter are taken from (Zamani et al., 2012a) and (Zamani et al., 2012b).

In Chapter 5 we discuss the problem of checking the identifiability of dynamic SISO

errors-in-variables models, under the assumption that the measurement errors are white.

First, we provide a mathematical formulation of EIV models, according to the literature.

Then, we focus on the problem of finding identifiability conditions. Although this class of

models has been proven to be generically identifiable, it is well-known that, under certain

conditions on the noiseless input and transfer function, there exist two non-equivalent

EIV models which describe the relation between the input and the output equally well. In
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the literature, identifiability conditions are not testable since they concern precisely the

unknowns of the problem which are not available to the experimenter. We provide a new

necessary condition for non-identifiability of EIV models. Such a condition is expressible

in terms of the external description of the observable signals, namely their joint power

spectral densities, and is rather simple and easily checkable. Then, we address the

problem of analyzing when this condition is also sufficient, showing that unidentifiability

of EIV models is a rather exceptional case. Finally, we provide numerical examples that

confirm the theory developed in the chapter, and a simulation that suggests how to build

an identifiability test using the stated condition. The contents of this chapter are taken

from (Bottegal et al., 2011).

In Chapter 6 we propose a novel algorithm for spectrum estimation. It relies upon

nonparametric kernel based techniques, which exploit prior knowledge on the function

to be estimated. Instead of working in the frequency domain, we address this task in

the time domain. Thus, we solve the problem of estimating autocorrelation functions,

exploiting the prior information on their zero-decaying for large time lags. This is

made by searching the solution in a reproducing kernel Hilbert space as hypothesis

space, induced by the recently introduced stable spline kernel. The natural estimator

for this kind of problems arises from the solution of Tikhonov-type variational problems.
We show that such a problem can be solved with a computational complexity scales

linearly with the number of observed process samples. The estimation of the optimal

hyperparameters characterizing the problem is made using a cross-validation strategy.

Furthermore, this method can be adopted for identifying the transfer function of a linear

time-invariant system, still with a lower computational complexity compared to other

novel nonparametric kernel based identification techniques. Finally, we present the

results of several numerical experiments, which show that our proposed method results

comparable to the standard Matlab algorithm “Spatial Spectrum Estimator” (SPA), and

often also better than the “Empirical transfer function estimator” (Etfe) algorithm, also

available in Matlab, even if these methods are equipped with an oracle that determines

the optimal smoothing parameters by exploiting the knowledge of the true correlation

function. The contents of this chapter are taken from (Bottegal & Pillonetto, 2012a) and

(Bottegal & Pillonetto, 2012b).

After the presentation of these contributions, we end this dissertation with some

conclusions in Chapter 7.



8 Introduction



2
Notation and preliminaries

In this chapter we introduce some concepts which will be used throughout the dissertation.

In particular, we recall notions on Hilbert spaces and theory of functionals and operators,

for which we refer to (Akhiezer & Glazman, 1961) and (Rudin, 1991), and on stochastic

processes and related systems, which are treated in (Doob, 1990), (Rozanov, 1967) and

(Lindquist & Picci, 2011).

2.1 Hilbert spaces, functionals, operators

A metric space is called complete if every Cauchy sequence of elements in such a space

converges to some element of the space. A Banach space is a normed space which is a

complete metric space with respect to the metric generated by the norm. A Hilbert space
H is a inner product space which is a complete metric space with respect to the metric

generated by the inner product. Examples of Hilbert spaces, which will be widely used in

this thesis, are:

• the space `2 of the sequencs {f(n)}n∈N such that
∑

n |f(n)|2 <∞;

• the space L2(A), whereA ⊆ Rn, of the functions f(t), t ∈ A, such that
∫
A |f(t)|2dt <

∞. In this thesis, A will be either the intervals [0, 1] or [−π, π].
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• the spaceH(y), where y is a finite variance random vector or a stationary stochastic

process, given by all the possible linear combinations of the components of y (see

next section).

A Hilbert space is separable if and only if it admits a countable orthonormal basis.

Those infinite dimensional Hilbert spaces which are separable are therefore isometrically

isomorphic to `2. Other spaces of interest are the Banach space `1 of the infinite sequences

{f(n)}n∈N such that
∑

n |f(n)| <∞, and the Banach space `∞ of the infinite sequences

{f(n)}n∈N such that |f(n)| < M, M ∈ R. We recall that the chain of inclusions `1 ⊂ `2 ⊂
`∞ holds.

When f is a infinite sequence, sometimes we shall use the (infinite dimensional)

vector notation

f :=


f(1)

f(2)
...

 ,
which naturally extends to the transpose f> :=

[
f(1) f(2) . . .

]
and the conjugate

transpose f∗ :=
[
f∗(1) f∗(2) . . .

]
.

Projections

Another useful concept is the projection of an element on a subspace. We use the symbol

⊕ to denote the orthogonal sum between subspaces. Let S ⊆ H be a closed subspace

and S⊥ its orthogonal complement (which is closed as well), i.e. the subspace satisfying

S ⊕ S⊥ = H. Then every f ∈ H has an unique decomposition

f = fS + fS⊥ ,

where fS ∈ S and fS⊥ ∈ S⊥. Moreover, fS and fS⊥ are such that

fS = arg min
g∈S
‖f − g‖H , fS⊥ = arg min

g∈S⊥
‖f − g‖H .

Functionals and operators

Let D denote a subset of H. A function L which relates to each element f ∈ D a definite

complex number L[f ] is called a functional in the space H with domain D. A functional
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is linear if the usual property of linearity holds. A functional is bounded if

sup
f∈D, ‖f‖H≤1

|L[f ]| <∞ .

A functional is continuous if and only if it is bounded and linear. For linear functionals,

the following theorem holds.

Theorem 2.1.1. [Riesz’s theorem] Each linear functional in the Hilbert space H can be
expressed in the form

L[f ] = 〈h, f〉H

where h is an element of H which is uniquely determined by the functional L.

Typical examples of functionals are:

• L[f ] =
∫
A f(t)dt, if A is compact and f ∈ L2(A);

• L[f ] = f(x), x ∈ A, where L is defined over the subset D ⊂ L2(A) of the continu-

ous pointwise defined functions;

• Li[f ] =
∫ +∞

0 u(ti − s)f(s)ds, ti ∈ R+, representing the ouput of a linear time-

invariant system, whose impulse response is f(t), evaluated at the instant ti and

driven by an uniformly bounded input u(t).

A function T which relates to each element f ∈ D a particular element Tf = g, g ∈ H
is called operator in the space H with domain D. Also for operators the usual concept of

linearity holds. A linear operator T is bounded if

sup
f∈D, ‖f‖H≤1

‖Tf‖H <∞ ;

the left member of the inequality is called norm of the operator. A bounded linear operator

is continuous; conversely, if a linear operator is continuous at some point of D, then it is

bounded.

Let H be a separable Hilbert space and consider an othonormal basis of its; introduce

the infinite matrix 
a11 a12 a13 . . .

a21 a22 a23 . . .

a31 a32 a33 . . .

. . . . . . . . . . . .

 . (2.1)

Then the following theorem holds.
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Theorem 2.1.2. In order that (2.1) represent a bounded linear operator defined everywhere
in H, it is necessary and sufficient that, for some constant M , the inequality∣∣∣∣∣∣

∞∑
i=1

∞∑
j=1

ajixiy
∗
j

∣∣∣∣∣∣ ≤M
√√√√ ∞∑

i=1

|xi|2
√√√√ ∞∑

j=1

|yj |2

holds for any elements x = {xi}∞i=1 and y = {yi}∞i=1.

Given a bounded linear operator T over H, there exists a unique bounded linear

operator T ∗, called adjoint of T , such that 〈f, Tg〉H = 〈T ∗f, g〉H for any f, g ∈ H. If

T = T ∗, then T is self-adjoint. If TT ∗ = T ∗T , then T is normal. For normal operators,

Theorem 2.1.2 holds for any x = y.

Reproducing kernel Hilbert spaces

In this dissertation, the theory of reproducing kernel Hilbert spaces (RKHS) will be used

in Chapter 6. Let H be a Hilbert space of continuous pointwise well defined functions on

a compact set X . Under the assumption that all the point-wise evaluations are bounded

linear functionals on H, i.e.

∀x ∈ X , ∃Cx > 0 : |g(x)| ≤ Cx‖g‖H, ∀g ∈ H. (2.2)

the RKHS family is obtained, as formalized below.

Definition 2.1.3 (RKHS). A reproducing kernel Hilbert space (RKHS) over a non-empty

set X is a Hilbert space of functions f : X → R such that (2.2) holds.

As suggested by the name, the concept of RKHS is strongly linked with that of positive

semidefinite kernel (Aronszajn, 1950).

Definition 2.1.4 (Positive semidefinite kernel). Let X denote a non-empty set. A sym-

metric function K : X ×X → R is called positive semidefinite kernel (or Mercel Kernel) if,

for any finite natural number l, it holds

l∑
i=1

l∑
j=1

cicjK(xi, xj) ≥ 0, ∀(xi, ci) ∈ (X ,R)

Theorem 2.1.5. (Aronszajn, 1950) Let K : X × X → R be a Mercel kernel and X be a
compact set in Rα. Then there exists a unique Hilbert space H which satisfies:

1. K(x, ·) ∈ H ∀x ∈ X ;
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2. f(x) = 〈K(x, ·), f(·)〉H ∀x ∈ X , ∀f ∈ H.

The functions in the spaceH can be expressed as combinations of the kernel evaluated

at certain points of the domain, namely

f(·) =
n∑
i=1

aiK(xi, ·) , ai ∈ R , n ∈ N (2.3)

and the norm endowed with H is

‖f‖2H = a>K̄a , a := [ a1, . . . , an ]> , K̄ s.t. K̄{i, j} = K(xi, xj) . (2.4)

The above result shows that a reproducing kernel Hilbert space H is completely charac-

terized by its Mercel kernel. One can also show that properties such as smoothness and

integrability of the kernel directly transfer to every function of the space H.

2.2 Stochastic variables and processes

In this dissertation, boldface symbols will normally denote random arrays, either finite or

infinite, and random processes.

Random variables

A real random variable v is a real-valued measurable function defined on some underlying

probability space {Ω, A, P} (P is the probability measure on Ω and A the σ-algebra of

events). The symbol E [v] :=
∫

Ω vdP denotes mathematical expectation, or mean, of

the random variable v. We shall always consider zero-mean random variables. Random

variables which have finite second moment, E [|v|2] <∞, are commonly called second

order random variables.

We shall consider the standard inner-product space of random variables linearly

generated by the scalar components [v1, . . . ,vn, . . .] of a (possibly infinite) random string

v and denoted by H(v) := span {v1 . . . ,vn, . . .}, equipped with the inner product

〈x, y〉 := E [xy] , x, y ∈ H(v)

and thus with norm

‖x‖2 := var [x] ,
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The covariance matrix of a random vector v = [v>1 v>2 ]> is denoted by

Σv := E [v1v
>
2 ] :=

[
Σv1 Σv1v2

Σv2v1 Σv2

]
,

where Σv1v2 = Σ>v2v1
. Given a vector v and assuming Σv > 0 (i.e. positive definite) the

optimal linear estimate of a random variable x given v is

x̂ := E [x|v] = ΣxvΣ−1
v v ,

which corresponds to the orthogonal projection of a random variable x on the space

H(v), denoted by E[x|H(v)].

We say that two variables x and y of a Hilbert space H(v) are conditionally orthogonal
given a vector v if

〈x− E [x|H(v)], y − E [y|H(v)]〉 = 0 . (2.5)

This can be extended to subspaces, in the sense that the spaces H(x) and H(y) are

conditionally orthogonal given H(v) if (2.5) holds for every x ∈ H(x), y ∈ H(y). In this

case, H(v) is a splitting subspace.

Random processes

A stochastic process y is an ordered collection of random variables (or vectors) y := {y(t)},
all defined in the same probability space. The time variable t will in general be discrete

(t ∈ Z), but occasionally we shall also deal with continuous-time processes (t ∈ R). The

mean of y is the signal E [y(t)] and will be assumed identically equal to zero. We shall be

interested on the autocovariance function

Σ(t, s) := E [y(t)y(s)>] ,

which is a positive semidefinite matrix when t = s (Σ(t, t) ≥ 0). Usually we shall deal

with stationary processes, for which it holds that

Σ(t, s) = Σ(τ) , τ := t− s .

The spectral density, or spectrum, of y is the matrix function

S(ω) =

∫ ∞
−∞

Σ(τ) exp(−jωτ)dτ
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for the continuous time case, or

S(ω) :=
+∞∑

τ=−∞
Σ(τ) exp(−jωτ) ,

for the discrete time processes. In the latter case, it is positive semidefinite, defined of

the interval [−π, π] and can be extended analitically on the entire complex plane. If the

components of y are linearly independent, meaning that H has dimension equal to the

size y, then S(ω) > 0 almost everywhere. In this case we say that y is a full rank process.

We say that the processes y(t) and v(t) are uncorrelated if E [y(t)v(s)>] = 0 for every

t, s.

When t ∈ Z, we associate with y the following separable Hilbert spaces:

• H(y) := span {y(t), t ∈ Z};

• H−t (y) := span {y(s), s < t};

• H+
t (y) := span {y(s), s ≥ t}.

We denote by Ht(y) the space spanned by the random vector y(t); when Ht(y) =

H(y) we say that y is purely deterministic (PD). Defining the remote past of y as

H−∞(y) =
⋂
t≤k

Ht(y) ,

we say that y is purely non deterministic (PND) if and only if H−∞(y) = 0. Szegö-

Kolmogorov theorem states that a full rank process with an absolutely continuous spec-

trum is PND if and only if its spectral density satisfies∫ π

−π
log detS(ω)dω > −∞.

Conversely, if the integral diverges, the process is PD. Every process y admits a unique

decompisition y = ŷ+y̌, where ŷ is PD and y̌ is PND; moreover, ŷ and y̌ are uncorrelated.

This is known as the Wold decomposition.
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3
Generalized factor analysis: modeling and

applications

3.1 Introduction

Factor analysis has a long history; it has apparently first been introduced by psychologists

(Spearman, 1904; Burt, 1909) and successively been studied and applied in various

branches of Statistics and Econometrics (Ledermann, 1937, 1939; Bekker & de Leeuw,

1987; Lawley & Maxwell, 1971). With a few exceptions however, (Kalman, 1983; van

Schuppen, 1986; Picci, 1987; Picci & Pinzoni, 1986; Deistler & Zinner, 2007; Ning &

Georgiou, 2011), little attention has been payed to these models in the control engineer-

ing community. Dynamic versions of factor models have also been introduced in the

econometric literature, see e.g. (Geweke, 1977; Peña & Box, 1987; Peña & Poncela, 2006;

Hu & Chou, 2004) and references therein.

Recently, we have been witnessing a revival of interest in these models, motivated on

one hand by the need of modeling very large dimensional vector time series. Vector AR

or ARMA models are inadequate for modeling signals of large cross-sectional dimension,

because they involve a huge number of parameters to estimate which may sometimes

turn out to be larger than the sample size. On the other hand, an interesting general-

ization of dynamic factor analysis models allowing the cross-sectional dimension of the
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observed time series to go to infinity, has been proposed by Chamberlain, Rothschild,

Forni, Lippi and collaborators in a series of widely quoted papers (Chamberlain, 1983;

Chamberlain & Rothschild, 1983; Forni et al., 2000; Forni & Lippi, 2001). This new

modeling paradigm is attracting a considerable attention also in the engineering system

identification community (Deistler et al., 2010; Anderson & Deistler, 2008; Deistler &

Zinner, 2007; Peña & Poncela, 2006). These models, called generalized dynamic factor
models are motivated by economic and econometric applications. We shall argue that,

with some elaboration, they may be quite useful also in engineering applications.

Contribution of the work

In this chapter, we want to address both theory and applications of generalized factor

analysis models. First, we focus on understanding the theory of GFA; in particular, we

study what conditions guarantee identifiability of GFA models, i.e. when the decomposi-

tion latent factor plus idiosyncratic noise is unique. To this end, we introduce the novel

concept of aggregate sequence, which incorporates necessary and sufficient conditions for

uniqueness of a GFA decomposition. We show that the covariance matrix of idiosyncratic

noise can be interpreted as a bounded linear operator on separable Hilbert spaces. These

concepts are used to elaborate a method for extracting the latent factors from an infinite

set of observations. Then, we focus on stationary GFA, linking the concept of Wold

decomposition for stochastic process to the one of GFA decomposition.

After addressing the structure theory of GFA, we present some possible applications

in which this decomposition may help in providing understanding of certain underlying

phenomena. The key point is that, in all these applications, the observable variables are

the result of a common, simple behavior plus local interactions. We shall address this as

flocking behavior.

Flocking is a commonly observed behavior in gregarious animals by which many equal

individuals tend to group and follow, at least approximately, a common path in space.

The phenomenon has similarities with many scenarios observed in artificial/technological

and biological environments and has been studied quite actively in recent years (Brockett,

2010; Veerman et al., 2005; Olfati-Saber, 2006; Cucker & Smale, 2007). A few examples

are described below.

The mechanism of formation of flocks is also called convergence to consensus and has

been intensely studied in the literature, see e.g. (Fagnani & Zampieri, 2008; Olfati-Saber

et al., 2007; Tahbaz-Salehi & Jadbabaie, 2010), and there is now a quite articulated

theory addressing the convergence to consensus under a variety of assumptions on the

communication strategy among agents etc..
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In this chapter we want to address a different issue: given observations of the

motion of a large set of equal agents and assuming statistical steady state, decide

whether there is a flocking component in the collective motion and estimate its structural

characteristics. The reason for doing this is that the very concept of flocking implies an

orderly motion which must then admit a much simpler mathematical description than

the whole ensemble. Once the flocking component (if present) has been separated, the

motion of the ensemble splits naturally into flocking plus a random term which describes

local random disagreements of the individual agents or the effect of external disturbances.

Hence extracting a flocking structure is essentially a parsimonious modeling problem.

The organization of the chapter is as follows. In Section 3.2 we review static finite-

dimensional factor analysis; in Section 3.3 we discuss the basic ideas leading to represen-

tations of infinite dimensional strings of variables by generalized factor analysis models.

The problem of representation by GFA models is discussed in Section 3.4. The restriction

to stationary sequences is discussed in Section 3.5; the relation of GFA with the Wold

decomposition, the main theme of this section, is believed to be completely original.

Then, we formalize the problem of modeling a flocking behavior given set of observations

and we present some possible applications of GFA to this type of problems. Also original

is the content of Section 3.7 where the extraction of the flocking component for a class of

space-time random is finally discussed.

3.2 A review of static factor analysis models

A (static) factor analysis model is a representation

y = Fx + e, (3.1)

of N observable random variables y = [y1 . . . yN ]>, as linear combinations of q common
factors x = [x1 . . . xq ]>, plus uncorrelated “noise” or “error” terms e = [ e1 . . . eN ]>. An

essential part of the model specification is that the N components of the error e should

be (zero-mean and) mutually uncorrelated random variables, i.e.

E [xe>] = 0 , E [ee>] = diag {σ2
1, . . . , σ

2
N} . (3.2)

The aim of these models is to provide an “explanation” of the mutual interrelation

between the observable variables yi in terms of a small number of common factors, in

the sense that, setting

ŷi := f>i x, (3.3)
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where f>i is the i-th row of the matrix F , one has exactly

E [yiyj ] = E [ŷiŷj ] , (3.4)

for all i 6= j. This property is just conditional orthogonality (or conditional independence

in the Gaussian case) of the family of random variables {y1, . . . ,yN} given x and is a

characteristic property of the factors. It is in fact not difficult to see that y admits a

representation of the type (3.1) if and only if x renders {y1, . . . ,yN} pairwise condition-

ally orthogonal given x, (Picci, 1987; Bartholomew, 1984). We stress that conditional

orthogonality given x is actually equivalent to the orthogonality (uncorrelation) of the

components of the noise vector e.

Unfortunately these models, although providing a quite natural and useful data com-

pression scheme, in many circumstances, suffer from a serious non-uniqueness problem.

In order to clarify this issue we first note that the property of making {y1, . . . ,yN} con-

ditionally orthogonal is really a property of the subspace of random variables linearly

generated by the components of the vector ŷ := Fx, denoted X := H(ŷ) and it will

hold for any set of generators of X. Any set of generating variables for X can serve as a

common factors vector and there is no loss of generality to choose the generating vector

x for X of minimal cardinality (a basis) and normalized, i.e. such that E [xx>] = I,

which we shall always do in the following. A subspace X making the components of y

conditionally independent is called a splitting subspace for {y1, . . . ,yN}. The so-called

“true” variables ŷi are then just the orthogonal projections ŷi = E [yi | X].

We may then call q = dimx = dimX the dimension of the model. Hence a model of

dimension q will automatically have rankF = q as well. Two FA models for the same

observable y, whose factors span the same splitting subspace X are equivalent. This is a

trivial kind of non-uniqueness since two equivalent FA models will have factor vectors

related by a real orthogonal transformation matrix.

The serious non-uniqueness comes from the fact that there are in general many

(possibly infinitely many) minimal splitting subspaces for a given family of observables

{y1, . . . ,yN}. This is by now well known (Picci, 1987; Lindquist & Picci, 2011). Hence

there are in general many nonequivalent minimal FA models (with normalized factors)

representing a fixedN -tuple of random variables y. For example, one can choose, for each

k ∈ {1, . . . , N}, a splitting subspace of the form X := span {y1 . . . yk−1 yk+1 . . . yN },
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and thereby obtain N “extremal” FA models called elementary regressions of the form

y1 = [ 1 . . . 0 ]x + 0
...

yk = â>k x + ek
...

yN = [ 0 . . . 1 ]x + 0

, (3.5)

where â>k = E [ykx
>](E [xx>])−1, which are clearly non equivalent. In this example the

factor subspaces are spanned by N − 1 observable variables. A subspace X contained

in the data space H(y) := span {y1, . . . , ym} (i.e. generated by linear functionals of

y) is called internal. Accordingly, factor analysis models whose factor x is made of

linear functionals of y, are called internal models. Clearly, generically FA models are

noninternal.

Note that a factor analysis representation induces a decomposition of the covariance

matrix Σ of y as

Σ = FF> + diag {σ2
e1 , . . . , σ

2
eN
} := FF> + ∆ (3.6)

which can be seen as a special kind of low rank plus sparse decomposition of a covariance

matrix (Chandrasekaran et al., 2011), a diagonal matrix being, in intuitive terms, as

sparse as one could possibly ask for. The following Proposition characterizes noninternal

FA models.

Proposition 3.2.1. All internal factor analysis models are regressions. All nontrivial factor
analysis models with ∆ > 0 are noninternal.

The following Theorem describes how to express the latent variables x starting from

y and from the knowledge of the matrices F and ∆ of the structured covariance matrix

of the data.

Theorem 3.2.2. Every normalized latent factors vector for the FA model y = Fx + e has
the form

x = F>Σ−1y + z ,

where z is a q-dimensional zero-mean random vector orthogonal to H(y) with covariance
Iq − F>Σ−1F .

The inherent nonuniqueness of FA models is called “factor indeterminacy”, or uninden-

tifiability in the literature and the term is usually referred to parameter unidentifiability

as it may appear that there are always “too many” parameters to be estimated. It may
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be argued that once a model, in essence, a splitting subspace, is selected, it can always

be parametrized in a one-to-one (and hence identifiable) way. Unfortunately, the clas-

sification of all possible minimal FA representations and an explicit characterization of

minimality are, to a large extent, still an open problem. The difficulty is indeed a serious

one.

Since, as we have argued, in essence non-uniqueness is just a consequence of uncorre-

lation of the noise components, one may try to get uniqueness by giving up or mitigating

the requirement of uncorrelation of the components of e. This however tends to make the

problem ill-defined as the basic goal of uniquely splitting the external signal into a noise-

less component plus “additive noise” is made vacuous, unless some extra assumptions

are made on the model and on the very notion of “noise”. Quite surprisingly, as we shall

see, for models describing an infinite number of observables a meaningful weakening of

the uncorrelation property can be introduced, so as to guarantee the uniqueness of the

decomposition.

3.3 Aggregate and idiosyncratic sequences

In this section we shall review the main ideas of generalized factor analysis, drawing quite

heavily on the papers (Chamberlain & Rothschild, 1983; Forni & Lippi, 2001) although

with some non-trivial original contributions. We shall restrict for now to the static case.

Consider a zero-mean finite variance stochastic process y := {y(k), k ∈ Z+}, which

we shall normally represent as a random column vector with an infinite number of com-

ponents. The index k will later have the interpretation of a space variable. Convergence

shall always mean convergence in the norm topology of the spaceH(y) linearly generated

by the components of y. We want to describe the process as a linear combination of a

finite number of common random components plus “noise”, i.e.

y(k) =

q∑
i=1

fi(k)xi + ỹ(k) , k = 1, 2, . . . (3.7)

where the random variables xi , i = 1, . . . , q are the common factors and the deterministic

vectors fi are the factor loadings. The xi can be taken, without loss of generality, to be

orthonormal so as to form a q-dimensional random vector x with E [xx>] = Iq. The ỹ(k)’s

are zero mean random variables orthogonal to x. We shall list the linear combinations

ŷ(k) :=
∑
fi(k)xi as the components of an infinite random vector ŷ and likewise for the
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noise terms ỹ(k) so that (3.7) can be written

y = ŷ + ỹ (3.8)

for short. Which specific characteristics qualify the process ỹ as “noise” is a nontrivial

issue which will be one of the main themes of this section and will be made precise later

(see the definition of idiosyncratic noise below).

The infinite covariance matrix of the vector y is formally written as Σ := E[yy>]. We

let Σn indicate the top-left n× n block of Σ, equal to the covariance matrix of the first

n components of y, the corresponding n-dimensional vector being denoted by yn. The

inequality Σ > 0 means that all submatrices Σn of Σ are positive definite, which we shall

always assume in the following.

Letting Σ̂ := E[ŷŷ>] and Σ̃ := E[ỹỹ>], the orthogonality of the noise term and the factor

components implies that

Σ = Σ̂ + Σ̃ , (3.9)

that is, Σn = Σ̂n + Σ̃n , ∀n ∈ N . Even imposing Σ̂ of low rank, this is a priori a highly

non unique decomposition. There are situations/examples in which the Σ̃ is diagonal as

in the static factor analysis case, but these situations are exceptional.

Idiosyncratic sequences

Let `2(Σ) denote the Hilbert space of infinite sequences a := {a(k), k ∈ Z+} such that

‖a‖2Σ := a>Σa <∞.

Definition 3.3.1 (Forni, Lippi). A sequence of elements {an}n∈N ⊂ `2 ∩ `2(Σ) is an

averaging sequence (AS) for y, if limn→∞ ‖an‖2 = 0.

We say that a sequence of random variables y is idiosyncratic if limn→∞ a
>
ny = 0 for any

averaging sequence an ∈ `2 ∩ `2(Σ).

Whenever the covariance Σ is a bounded operator on `2 one has `2(Σ) ⊂ `2; in this

case an AS can be seen just as a sequence of linear functionals in `2 converging strongly

to zero.

Example 3.3.2. The sequence of elements in `2

an =
1

n
[ 1 . . . 1︸ ︷︷ ︸

n

0 . . . ]> (3.10)

is an averaging sequence for any Σ. On the other hand, let Pn denote the compression

of the n-th power of the left shift operator to the space `2; i.e. [Pna](k) = a(k − n) for
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k ≥ n and zero otherwise. Then limn→∞ Pna = 0 for all a ∈ `2 (Halmos, 1961) so that

{Pna}n∈N is an AS for any a ∈ `2.

Example 3.3.3. Let 11 be an infinite column vector of 1’s and let x be a scalar random

variable uncorrelated with ỹ, a zero-mean weakly stationary ergodic sequence. Consider

the process

y = 11x + ỹ

and the averaging sequence (3.10). Since limn→∞
1

n

∑n
k=1 ỹ(k) = E [ỹ(k)] = 0 (limit

in L2) we have limn→∞
1

n

∑n
k=1 y(k) = x ; hence we can recover the latent factor by

averaging. More generally, if ỹ is idiosyncratic, then limn→∞ a
>
n ỹ = 0 for any averaging

sequence and one could recover x from AS’s such that limn→∞ a
>
n 11 exists and is nonzero.

The following definition is meant to capture the phenomenon described in the previous

example.

Definition 3.3.4. Let z ∈ H(y). The random variable z is an aggregate (of y) if there

exists an AS {an} such that limn→∞ a
>
ny = z. The set of all aggregate random variables

in H(y) is denoted by G(y).

The space G(y) is called the aggregation subspace of H(y). The following Lemma

characterizes its structure.

Lemma 3.3.5. (Forni & Lippi, 2001) The aggregation subspace G(y) is closed.

Clearly, if y is an idiosyncratic sequence then G(y) = {0}. In general it is possible to

define an orthogonal decomposition of the type

y = E[y | G(y)] + u , (3.11)

where all components u(k) are uncorrelated with G(y). The idea behind this decomposi-

tion is that, in case G(y) is finite dimensional, say generated by a q-dimensional random

vector x, one may naturally capture a unique decomposition of y of the type (3.7).

Unfortunately however, in general G(y) = {0} does not imply that y is idiosyncratic.

See the example below, inspired to a similar one in (Forni & Lippi, 2001).

Example 3.3.6. Consider a sequence y with y(j)⊥y(h) ∀ j 6= h (a possibly non-

stationary white noise), and let z be an aggregate random variable, so that there is

an AS {an} such that

z = lim
n→∞

a>ny = lim
n→∞

∞∑
j=1

an(j)yj . (3.12)
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Note that, being z ∈ H(y) and y an orthogonal basis of this space, we can uniquely

express z as

z =
∞∑
j=1

b(j)y(j) , (3.13)

and, by uniqueness of the representation, it follows that limn→∞ an(j) = b(j) ∀j. On the

other hand, being an an AS, the limits of an(j) must be zero, so that b(j) = 0. Hence

z = 0. Thus a white noise process has always G(y) = {0}.
However if {y(k)} has unbounded variance, the sequence is not idiosyncratic. For

example if ‖y(k)‖2 = k, given the AS

dn =
1√
n

[ 0 . . . 0 1︸ ︷︷ ︸
n

0 . . . ]> , (3.14)

we have ‖d>ny‖ = 1 ∀n. Hence in this case y is neither aggregate nor idiosyncratic. On

the other hand, when ‖y(k)‖ ≤M <∞ for all k, we have

‖a>ny‖2 =
∞∑
k=0

an(k)2‖y(k)‖2 ≤M2‖an‖22 → 0 (3.15)

for n→∞. Hence a white noise process with a uniformly bounded variance (has a trivial

aggregation subspace and) is idiosyncratic.

The nature of an idiosyncratic sequence is related to certain properties of its covariance

matrix. To explain this point, we need to introduce some notations and facts about the

eigenvalues of sequences of covariance matrices. Denote by λn,k(Σ) the k–th eigenvalue

of the n× n upper left submatrix Σn of Σ. The λn,k(Σ) are real nonnegative and can be

ordered by decreasing magnitude. By Weyl’s theorem (Stewart & Sun, 1990, p. 203), see

also (Forni & Lippi, 2001, Fact M), the k–th eigenvalue of Σn is a non decreasing function

of n and hence has a limit, λk(Σ), which may possibly be equal to +∞. Each such limit is

called an eigenvalue of Σ. These limits however are in general not true eigenvalues, as it is

well-known that Σ may not have eigenvalues. For example, a bounded symmetric Toeplitz

matrix has a purely continuous spectrum (Hartman & Wintner, 1954). Anyway since Σ is

symmetric and positive, its spectrum lies on the positive half line and its elements can

also be ordered. Henceforth we shall denote by λ1(Σ) the maximal eigenvalue of Σ, as

defined above, with the convention that λ1(Σ) = +∞ when there are infinite eigenvalues.

The following result will be instrumental in understanding the structure of idiosyncratic

processes.

Theorem 3.3.7. If λ1(Σ) is finite, then Σ is a bounded operator on `2.
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Proof. Let λ1(Σn) be the maximal eigenvalue of Σn. Denote the string of the first n

elements of an infinite sequence a by an. Since

Σn ≤ λ1(Σn)In ≤ λ1(Σ)In (3.16)

where In is the n× n identity matrix and λ1(Σ) <∞ by assumption, it follows that for

all sequences x, y ∈ `2

xnΣny
n ≤ λ1(Σ)‖xn‖2 ‖yn‖2 , n = 1, 2, . . . (3.17)

Then the result follows from Theorem 2.1.2.

A strong characterization of idiosyncratic sequences is stated in the following theorem,

inspired by (Forni & Lippi, 2001) after some obvious simplifications. For completeness

we shall provide a proof.

Theorem 3.3.8. The sequence y is idiosyncratic if and only if λ1(Σ) is finite; equivalently,
if and only if its covariance matrix defines a bounded operator on `2.

Proof. Assume first that limn→∞ λn,1(Σ) = +∞. Since Σn > 0 is symmetric it has a

spectral representation

U>n ΣnUn = Dn , (3.18)

where Un is orthonormal and Dn = diag {λn,1(Σ), . . . , λn,n(Σ) }. Consider the first

column of Un, say un1 , which is the eigenvector of λn,1(Σ) and define the sequence of

elements in `2 ∩ `2(Σ) constructed as

an :=
1√

λn,1(Σ)

[
(un1 )> 0 . . .

]>
, n = 1, 2, . . . . (3.19)

Since limn→∞ λn,1(Σ) = +∞, this is an AS, for which

‖a>ny‖2 =
1

λn,1(Σ)
(un1 )>Σnu

n
1 = 1 (3.20)

for every n and hence the sequence y cannot be idiosyncratic.

Conversely, suppose that λ1(Σ) < +∞ and again use the diagonalization (3.18).

Let an be an arbitrary AS and consider the random variable z = limn→∞ a
>
ny =

limn→∞ a
n>
n yn, which has variance

var [z] = lim
n→∞

(ann)>UnDnU
>
n a

n
n := (dnn )>Dn d

n
n , (3.21)
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where the vector dnn := U>n a
n
n is used to form the first n elements of an infinite string, say

dn, whose remaining entries are taken equal to those of an; i.e. dn(k) = an(k) for k > n.

Clearly dn is an AS.

Since (dnn )>Dn d
n
n =

∑n
k=1 λn,k(Σ)dn(k)2, one can write

var [z] = lim
n→∞

n∑
i=1

λn,k(Σ)dn(k)2 ≤ lim
n→∞

λ1(Σ)
n∑
k=1

dn(k)2 = lim
n→∞

λ1(Σ)‖dn‖22 = 0

which shows that y is idiosyncratic.

In particular, since the covariance of a white noise process is diagonal, the covariance

of a white noise can be bounded (and therefore y can be idiosyncratic) only if the

variances ‖y(k)‖2 are uniformly bounded. This completes the discussion in Example

3.3.6.

Aggregate sequences

Definition 3.3.9. Let q be a finite integer. A sequence y is purely deterministic of rank q
(in short q-PD) if H(y) has dimension q.

Clearly a q-PD sequence y can be seen as a (in general non-stationary) purely de-

terministic process in the classical sense of the term, see e.g. (Cramèr, 1961). Let

x =
[
x1 . . . xq

]>
be an orthonormal basis in H(y). Obviously y is a q-PD random

sequence if and only if there is∞× q matrix F =
[
f1 f2 . . . fq

]
, such that

y(k) =

q∑
i=1

fi(k)xi , k ∈ Z+ , (3.22)

where the columns f1, f2, . . . fq must be linearly independent, for otherwise the rank of

y would be smaller than q.

We want to relate this concept to the idea of aggregation subspace of y, as defined

earlier. In particular we would like to identify x as an orthonormal basis in G(y). Quite

unfortunately however, there are nontrivial sequences representable in the form (3.22)

which are idiosyncratic (or contain idiosyncratic sequences). See the Example below.

Example 3.3.10. Consider a sequence y whose k−th element is

y(k) = λkx , |λ| < 1, (3.23)
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where x is a zero–mean random variable of positive variance σ2. Clearly, y is 1-PD, its

spanned subspace H(y) being the one-dimensional space H(x). The covariance matrix of

the first n components of y is

Σn = E
[
yny

>
n

]
= σ2


λ2 λ3 . . . λn+1

λ3 λ4 . . . λn+2

...
...

. . .
...

λn+1 λn+2 . . . λ2n

 (3.24)

Since rank (Σn) = 1 for every n, we have

λ1(Σ) = lim
n→∞

tr (Σn) = lim
n→∞

σ2
n∑
k=1

λ2k =
σ2λ2

1− λ2
, (3.25)

thus, in force of Theorem 3.3.8, y is idiosyncratic. Hence there are (non-stationary)

q−PD sequences which are idiosyncratic.

This is a possibility which we clearly must exclude if the decomposition (3.7) has

to be unique. The question is which properties need to be satisfied by the functions

f1, f2, . . . fq in order to avoid situations like Example 3.3.10. One necessary condition is

easily found: the fi cannot be in `2 since otherwise any sequence of functionals {an} in `2

converging to zero would lead to

lim
n→∞

a>n fi = 0 (3.26)

so that limn→∞ a>ny = 0 as well. This is clearly the problem with Example 3.3.10.

We shall call a sequence y q-aggregate if its covariance matrix has q nonzero eigen-

values, i.e. rank Σn = q, ∀n, and limn→∞ λn,k(Σ) = +∞ for k = 1, . . . , q. In short, all

nonzero eigenvalues of Σ are infinite.

The following condition guarantees uniqueness of the decomposition (3.7) when ŷ is

q-aggregate and ỹ is idiosyncratic.

Proposition 3.3.11. A q-aggregate sequence ŷ can be idiosyncratic only if it is the zero
sequence.

Proof. This follows trivially from Theorem 3.3.8. If q > 0 the maximal eigenvalue of the

covariance matrix of ŷ is +∞ by definition.

Of course the question is under what conditions the q eigenvalues of Σ̂ may tend to

infinity. Theorem 3.3.13 below provides an answer.
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Definition 3.3.12. Let

f̃ni := fni −Π[ fni | Fni ] (3.27)

where Π is the orthogonal projection onto the Euclidean space Fni = span {fnj , j 6= i } of

dimension q − 1.

The vectors fi, i = 1, . . . , q in R∞ are strongly linearly independent if

lim
n→∞

‖f̃ni ‖2 = +∞ i = 1, . . . , q . (3.28)

In a sense, the tails of two strongly linearly independent vectors in R∞ cannot get

“too close” asymptotically.

Theorem 3.3.13. Let y be a q−PD sequence, i.e. let

y(k) =

q∑
i=1

fi(k)xi , k ∈ Z+ ; (3.29)

then y is q−aggregate if and only if, the vectors fi, i = 1, . . . , q are strongly linearly
independent.

Proof. First we prove the sufficiency of condition (3.28). Let k be a fixed positive constant

and let f1 be such that

lim
n→∞

‖fn1 −Π[fn1 | Fn1 ]‖2 = k
1
2 < +∞ . (3.30)

Let

f̃n1 = fn1 −Π[fn1 | Fn1 ] = fn1 − αn2fn2 − . . .− αnq fnq ; (3.31)

whence, defining F̃n :=
[
f̃n1 fn2 . . . fnq

]
, one can write F̃n = FnTn, with Tn is a full

rank matrix of the form

Tn =

[
1 0

−αn Iq−1

]
, (3.32)

where αn :=
[
αn2 . . . αnq

]>
. Since f̃n1 ⊥fni , i 6= 1, the Gramian matrix of F̃n is block

diagonal,

F̃n>F̃n =

[
‖f̃n1 ‖2 0

0 An

]
, (3.33)

where An is a positive definite matrix whose eigenvalues tend to infinity as n increases.

Note that the spectrum of F̃n>F̃n contains the eigenvalue ‖f̃n1 ‖2, which, for n → ∞,

converges to k < +∞.
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Now, let us compute the trace of both sides of the identity Tn(F̃n>F̃n)−1Tn> =

(Fn>Fn)−1 obtaining

tr
[
(Fn>Fn)−1

]
= tr

[
Tn(F̃n>F̃n)−1Tn>

]
= tr

[
Tn>Tn(F̃n>F̃n)−1

]
(3.34)

= tr

[
1 + ‖αn‖2 −α>n
−αn Iq−1

][
k−1 0

0 A−1
n

]

= tr

[
k−1(1 + ‖αn‖2) −α>nA−1

n

−αnk−1 A−1
n

]
= k−1(1 + ‖αn‖2) + tr

[
A−1
n

]
(3.35)

Since the eigenvalues of An tend to infinity, those of A−1
n tend to zero, while, for every n

we have k−1(1 + ‖αn‖2) > 0. Thus, one eigenvalue of (Fn>Fn)−1 is bounded below by a

fixed constant as n tends to infinity. Hence we conclude that one eigenvalue of Fn>Fn

remains bounded as n tends to infinity, which is a contradiction.

For the necessity, we define fn1,n2
i :=

[
fi(n1) . . . fi(n2)

]>
and observe that condi-

tion (3.28) implies that

lim
n→∞

‖fn1,n
i −Π[fn1,n

i | Fn1,n
i ]‖2 = +∞ , (3.36)

for every index i = 1, . . . , q and natural number n1. Moreover, by definition of limit, we

have that for every n1 ∈ N and K ∈ R+ there exists an integer n2 such that the inequality

(with an obvious meaning of the symbols)

‖fn1,n2
i −Π[fn1,n2

i | Fn1,n2
i ]‖22 ≥ K (3.37)

holds for every i = 1, . . . , q.

Now, consider the sequence generated by the q-th eigenvalue of the matrix Fn>Fn,

say {λnq ; n ∈ N}. Our goal is to show that for every natural n1 and arbitrary constant

c > 0 there exists a natural number n2 such that λn2
q ≥ λn1

q + c, so that limn→∞ λ
n
q = +∞.

To this end, fix c and, for a generic n1, consider the normalized eigenvector of the q-th

eigenvalue of the matrix Fn2>Fn2 , say vn2
q . Since for every n2 > n1 it holds that

Fn2>Fn2 = Fn1>Fn1 + Fn1,n2>Fn1,n2 , (3.38)

we can write

λn2
q = vn2>

q Fn1>Fn1vn2
q + vn2>

q Fn1,n2>Fn1,n2vn2
q . (3.39)

Consider the first term on the right side of this identity; expressing vn2
q as a linear combi-
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nation of the eigenvectors of Fn1>Fn1 , i.e. vn2
q = α1v

n1
1 + . . .+ αqv

n1
q , the orthogonality

of these eigenvectors implies that

vn2>
q Fn1>Fn1vn2

q = λn1
1 α2

1 + . . .+ λn1
q α

2
q ≥ λn1

q

q∑
i=1

α2
i = λn1

q , (3.40)

so that

λn2
q ≥ λn1

q + vn2>
q Fn1,n2>Fn1,n2vn2

q . (3.41)

Now we have to show that we can always find an integer n2 such that the quantity

vn2>
q Fn1,n2>Fn1,n2vn2

q

can be chosen arbitrarily large, i.e. greater or equal to the previously fixed constant c

. To this end, take n2 such that for every i = 1, . . . , q the inequality (3.37) holds, with

K = c
√
q. Then, there is an index i such that the i-th component of the norm one vector

vn2
q =

[
w1 . . . wq

]>
, satisfies the inequality wi ≥ 1√

q . Without loss of generality we

may and shall assume that i = 1. Let α2 . . . αq be defined as in (3.31) and set

f̃n1,n2
1 := fn1,n2

1 − α2f
n1,n2
2 − . . .− αqfn1,n2

q , (3.42)

so that we have

vn2>
q Fn1,n2>Fn1,n2vn2

q = vn2>
q Tn>

[
‖f̃n1,n2

1 ‖2 0

0 An

]
Tnvn2

q , (3.43)

where Tn has the same structure as in (3.32). Now, observe that

Tnvn2
q =

[
w1 −α2w1 + w2 . . . −αqw1 + wq

]>
, (3.44)

which implies that (3.43) is equal to w2
1‖f̃n1,n2

1 ‖2 + Q, where Q is a positive constant.

Hence, from (3.42) we have vn2>
q Fn1,n2>Fn1,n2vn2

q > c and hence, recalling (3.41),

λn2
q ≥ λn1

q + c . (3.45)

which proves the theorem.

Example 3.3.14. Consider the following 2−PD sequence y(k) :=
∑2

i=1 fi(k)xi
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with

f1(k) = 1 for all k , f2(k) = 1−
(

1

2

)k
It is not difficult to check that this sequence does not satisfy condition (3.28). We shall

show that this sequence is not 2-aggregate. The Gramian matrix of the functions f1, f2

restricted to [1, n] is

Fn>Fn =

[
‖fn1 ‖22 〈fn1 , fn2 〉2
〈fn1 , fn2 〉2 ‖fn2 ‖22

]
and it can be seen that as n → ∞, the second eigenvalue converges to 5

3 . Hence one

eigenvalue of the covariance matrix of y is finite and the sequence is not 2-aggregate.

3.4 Generalized factor analysis representations: existence

and uniqueness

We eventually come to a precise definition of the basic object of our study. The following

is the static version of a similar definition of (Forni & Lippi, 2001) for the dynamic setting.

Definition 3.4.1. A random sequence y is a q−factor sequence (q−FS) if it can be

written as an orthogonal sum

y(k) =

q∑
i=1

fi(k)xi + ỹ(k) , k = 0, 1, 2, . . . (3.46)

where ŷ :=
∑
fixi is a q-aggregate sequence and ỹ is idiosyncratic and orthogonal to x.

The representation (3.46) is called a generalized factor analysis (GFA) representation

of y with q factors.

The crucial question is now which random sequences are q−FS. A first step is to

discuss the problem for covariance matrices.

Definition 3.4.2. The covariance Σ has a GFA decomposition of rank q if it can be

decomposed as the sum of a matrix Σ̃ which is a bounded operator in `2 and a rank q

perturbation Σ̂ = FF> where F ∈ R∞×q has strongly linearly independent columns.

Chamberlain and Rothschild (Chamberlain & Rothschild, 1983, Theorem 4) provide a

criterion for a GFA decomposition based on separating the bounded from the unbounded

eigenvalues of Σ. The criterion has been extended by Forni and Lippi (Forni & Lippi,

2001) to the dynamic case.
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Theorem 3.4.3 (Chamberlain-Rothschild). If and only if for n→∞, Σn has q unbounded

eigenvalues and λq+1(Σn) stays bounded, then Σ has a GFA decomposition of rank q:

Σ = FF> + Σ̃ , with F =
[
f1 . . . fq

]
, fi ∈ R∞ (3.47)

The GFA decomposition of Σ is unique.

Note that there may well be sequences (of positive symmetric) Σn for which all
eigenvalues tend to infinity. In this case there is no GFA decomposition. When it applies,

the criterion can be seen as a limit of the well-known rule of separating “large” from

“small” eigenvalues in Principal Components Analysis (PCA). Let fni ∈ Rn ; i = 1, . . . , q

be the eigenvectors corresponding to the q (ordered) eigenvalues of Σn which increase

without bound when n → ∞. We normalize these eigenvectors in such a way that

Fn :=
[
fn1 . . . fnq

]
yields Σ̂n = FnF

>
n . Then

lim
n→∞

FnF
>
n = FF> . (3.48)

Although the usual orthogonality of the fni in PCA does not make sense in infinite

dimensions as the limit eigenvectors do not belong to `2, one may however interpret the

strong linear independence condition as a limit of the orthogonality holding for finite n.

Hence we can (asymptotically) get q and F by a limit PCA procedure on the sequence Σn.

Trivially, if a random sequence y admits a GFA representation then its covariance

matrix has a GFA decomposition. On the other hand, assume we are given a GFA

decomposition Σ̂ + Σ̃ of an infinite covariance Σ. The following Proposition provides a

criterion to retrieve the hidden variables in the representation y = Fx + ỹ.

Proposition 3.4.4. Assume that its covariance matrix Σ has a GFA decomposition of rank
q. Then y has a GFA representation with q factors where both x and ỹ have components in
H(y).

Proof. By a standard Q-R factorization we can orthogonalize the columns of Fn,

[
fn1 fn2 . . . fnq

]
=
[
gn1 gn2 . . . gnq

]


1 r1,2 r1,3 . . . r1,q

0 1 r2,3 . . . r2,q

0 0 1
. . . r3,q

...
...

...
. . .

...

0 0 0 . . . 1


(3.49)



34 Generalized factor analysis: modeling and applications

which we shall write compactly as

Fn = QnRn (3.50)

where Qn :=
[
gn1 gn2 . . . gnq

]
has orthogonal columns. It is well-known that each

gni can be obtained by a sequential Gram-Schmidt orthogonalization procedure as the

difference of fni with its projection onto the subspace span {fnj , j < i } ⊂ Fni . Hence

‖gni ‖ ≥ ‖f̃ni ‖ and hence, by assumption, tends to∞ when n→∞.

Next, define

a>i,n :=
1

‖gni ‖22

[
gni (1) gni (2) . . . gni (n) 0 . . .

]
(3.51)

where the gni ’s are as defined above. Since ‖gni ‖2 → ∞ with n, we have ‖ai,n‖2 =

1/‖gni ‖2 → 0 as n→∞. Hence ai,n is an AS.

Note that we can express each fni as

fni = gni +
i−1∑
j=1

rj,ig
n
j (3.52)

so that

a>i,nfi =
1

‖gni ‖22
‖gni ‖22 = 1 (3.53)

for all n large enough and by a similar calculation one can easily check that a>i,nfj = 0,

for all j < i. With these ai,n construct a sequence of q ×∞ matrices

An :=

a
>
1,n

. . .

a>q,n

 (3.54)

which provides an asymptotic left-inverse of F , in the sense that limn→∞ AnF = R,

where R is the limit of a sequence of q × q matrices all of which are upper triangular

with ones on the main diagonal. Next, define the random vector zn := Any which

converges as n→∞ to a q-dimensional z whose components must belong to G(y). These

q components form in fact a basis for G(y) as the covariance E [znz
>
n ] converges to RR>

which is non singular. From this, one can easily get an orthonormal basis x, in H(ŷ).

Hence, since F is known, we can form ŷ = Fx and letting ỹ := y − ŷ does yield a GFA

representation of y inducing the given GFA decomposition of Σ. Uniqueness is then

guaranteed in force of Proposition 3.3.11.

This proposition highlights the fact that GFA models are asymptotically internal models
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with respect to H(y), since the latent factors x can be obtained from a linear combination

of the observations. Recalling Theorem 3.2.2, this corresponds to having z = 0.

3.5 Stationary sequences and the Wold decomposition

As we have seen, non-stationarity may bring in some pathologies which seem to be

difficult to rule out. We consider now the special case in which the sequence y, defined

on N, is (weakly) stationary; i.e. E[y(k)y(j)] = σ(k − j) for k, j ≥ 0. Let Hk(y) be the

closed linear span of all random variables {y(s) ; s ≥ k}. Introducing the remote future
subspace of y:

H∞(y) =
⋂
k≥0

Hk(y) , (3.55)

the sequence of orthogonal wandering subspaces Ek := Hk(y) 	 Hk+1(y) and their

orthogonal direct sum

Ȟ(y) =
⊕
k≥0

Ek , (3.56)

it is well known, see e.g. (Doob, 1990; Rozanov, 1967; Halmos, 1961), that one has the

orthogonal decomposition

y = ŷ + y̌ , ŷ(k) ∈ H∞(y) y̌(k) ∈ Ȟ(y) (3.57)

for all k ∈ Z+, the component ŷ being the purely deterministic (PD), while y̌ the purely

non-deterministic (PND) components. The two sequences are orthogonal and uniquely

determined. Furthermore, it is well known that y̌ has an absolutely continuous spectrum

with a spectral density function, say Sy(ω) satisfying the log-integrability condition∫
logSy(ω) dω > −∞, while the spectral distribution of ŷ is singular with respect to

Lebesgue measure (for example consisting only of jumps) possibly together with a

spectral density such that
∫

logSy(ω) dω = −∞, compare e.g. (Rozanov, 1967).

In this section we want to give an interpretation of the decomposition (3.7) in the

light of the Wold decomposition. First we prove the following two lemmas.

Lemma 3.5.1. Let y be stationary and assume it has an absolutely continuous spectrum
with a bounded spectral density; i.e.

Sy(ω) ∈ L∞([−π, π]) . (3.58)

Then y is idiosyncratic. In particular, PND sequences with a bounded spectral density are
idiosyncratic sequences.
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Proof. By a well known theorem of Szegö (Grenander & Szegö, 1984, p.65) see also

(Hartman & Wintner, 1954), Σ is a bounded Toeplitz operator, thus for any AS an,

‖a>ny‖2 = ‖an‖2Σ = a>nΣan ≤ ‖Σ‖ ‖an‖22 . (3.59)

and since ‖an‖22 → 0, ‖a>ny‖2 → 0, and y is idiosyncratic.

Lemma 3.5.2. Let y be a stationary sequence with a bounded spectral density, then

G(y) ⊆ H∞(y) . (3.60)

Proof. Assume that z ∈ G(y). Then there exists an AS an such that z = limn a
>
ny.

Applying the Wold decomposition we obtain

z = lim
n→∞

a>ny = lim
n→∞

a>n ŷ + lim
n→∞

a>n y̌ . (3.61)

By Lemma 3.5.1, the PND part vanishes as n tends to infinity, thus z ∈ H∞(y).

Note that the statement holds in particular for PD processes with a singular spectrum,

as in this case Sy(ω) ≡ 0. The converse inclusion, i.e. H∞(y) ⊆ G(y), is in general not

true. However, for stationary sequences with a finite dimensional remote future, we can

state the following.

Theorem 3.5.3. Assume that y is a stationary sequence with a bounded spectral density
and that dimH∞(y) < ∞. Then H∞(y) ≡ G(y).

Proof. It is sufficient to show that H∞(y) ⊆ G(y).

Let dim H∞(y) = q. By assumptionHk(y) ⊇ H∞(y) has dimension greater than or equal

to q for all k ≥ 0. It follows that for any k, the random variables y(k + 1), . . . ,y(k + q)

must be linearly independent. For otherwise the q × q covariance matrix

Σq := E

y(k + 1)

. . .

y(k + q)


y(k + 1)

. . .

y(k + q)


>

(3.62)

would be singular of rank r < q and hence, because of the Toeplitz structure, one would

have rank Σn = r < q for all n ≥ q, which implies that one can extract only r linearly

independent random variables from an arbitrarily long string of random variables of

the process. This in turn would imply dimH∞(y) = r < q contrary to our assumption.

Therefore

span {y(k + 1), . . . ,y(k + q)} ⊇ H∞(y) , for all k
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and for any z ∈ H∞(y) there is a nonzero bk ∈ Rq such that

z = b>k

ŷ(k + 1)

. . .

ŷ(k + q)

 , (3.63)

where ŷ(k + 1), . . . , ŷ(k + q) are the projections of y(k + 1), . . . , y(k + q) onto H∞(y).

Furthermore, the Euclidean norm ‖bk‖ is the same for all k because of stationarity. Hence,

choosing k = 0, q, 2q, . . . , (n− 1)q, one also has

z =
1

n
[ b>0 b>1 . . . b>n−1︸ ︷︷ ︸

n

0 . . . 0 ] ŷ := a>n ŷ (3.64)

where the sequence {an, n ∈ N} is clearly an AS. It follows that

a>ny = lim
n→∞

a>ny = lim
n→∞

a>n ŷ + lim
n→∞

a>n y̌ = z , (3.65)

where the last identity is a consequence of Lemma 3.5.1. Therefore z ∈ G(y).

Hence,

Theorem 3.5.4. Every stationary sequence with a bounded spectral density and remote
future space of dimension q is a q−factor sequence. It admits a unique generalized factor
analysis representation (3.46) where ŷ is the purely deterministic and ỹ is the purely
non-deterministic component of y.

Note in particular that the spectral density of ỹ must necessarily satisfy the log-

integrability condition.

WhenH∞(y) is finite dimensional, the PD component of a stationary process has a special

structure, namely

ŷ(k) =

ν∑
i=1

vi cosωik + wi sinωik , (3.66)

where e±jωi , i = 1, 2, . . . , q are the q eigenvalues of the unitary shift operator of the

process (Rozanov, 1967). The ωi are distinct real frequencies in [0, π) and vi and wi are

mutually uncorrelated zero-mean random variables with var [vi] = var [wi] which span

the subspace H(ŷ) ≡ H∞(y).

In the following proposition, we show how to construct AS’s that generate a basis in

the finite-dimensional remote future space.

Proposition 3.5.5. The latent factors of a stationary q-factor sequence can be recovered
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using averaging sequences {ai,n}n∈N of the type

ai,n(k) =


1

n
sinωik k ≤ n

0 k > n
(3.67)

or

ai,n(k) =


1

n
cosωik k ≤ n

0 k > n
, (3.68)

by letting ωi vary on the set of proper frequencies of the signal (3.66).

Proof. Consider the AS {an}n∈N of (3.67), with a fixed frequency ωi = ωp, p ∈ {1, . . . , ν}
and apply it to the sequence y. While the idiosyncratic (PND) part vanishes asymptotically,

the q-aggregate (PD) component (3.66) yields the sequence of random variables

zn = a>n ŷ =

n∑
k=1

an(k)ŷ(k) =
1

n

n∑
k=1

[
sinωpk

ν∑
i=1

(vi cosωik + wi sinωik)
]

(3.69)

=
1

n

n∑
k=1

[ ν∑
i=1,i 6=p

(vi sinωpk cosωik + wi sinωpk sinωik)+vp sinωpk cosωpk +wp sin2 ωpk
]

It is well-known and not difficult to check directly, using elementary trigonometric

identities such as sinα cosβ = sin(α+ β) + sin(α− β) and the formula∣∣∣∣∣ 1n
n∑
k=1

ejωk

∣∣∣∣∣ =
1

n

∣∣∣∣ejω 1− ejωn
1− ejω

∣∣∣∣ ≤ 1

n

∣∣∣∣ 1

sinω/2

∣∣∣∣
that all time averages of products of sin and cos functions in this sum vanish asymptotically

except for the sin2 term, which has the limit

lim
n→∞

1

n

n∑
k=1

wp sin2 ωpk =
wp

2
, (3.70)

which is one of the latent factors. Similarly, the random variables vi, associated with

cosine-type oscillations, can be recovered using averaging sequences of the type (3.68).

Obviously one can obtain arbitrary linear combinations
∑ν

i=1 civi + diwi by properly

combining the AS’s (3.67) and (3.68).
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Discussion

We have shown that there is a natural interpretation of GFA models in terms of the Wold

decomposition of stationary sequences. A stationary sequence admits a GFA represen-

tation if and only if its spectral density is bounded and the remote future space is finite

dimensional. Both conditions are necessary since a PD stationary process has a finite

factor representation if and only if its remote future has finite dimension. On the other

hand there are stationary processes with a finite dimensional remote future space, whose

PND component has an unbounded spectral density. It follows from Szegö’s theorem that

Σ̃ is an unbounded operator and these processes are neither aggregate nor idiosyncratic.

In the classical papers (Chamberlain & Rothschild, 1983; Forni & Lippi, 2001), sta-

tionarity with respect to the cross-sectional (space) index is not assumed. However

without stationarity, there may be random sequences which fail to satisfy the eigenvalue

conditions of Theorem 3.4.3 and do not admit a generalized factor analysis representa-

tion. A precise characterization of which class of non-stationary sequences admits a GFA

representation seems still to be an open problem.

3.6 Flocking and generalized factor analysis

So far we have presented a rigorous formulation of the problem of modeling an infinite

collection of random variables using generalized factor analysis. In this section, we show

some possible situation in which GFA decomposition may help in understanding the

phenomenon. We shall see that in all these applications there are some global effects

which affect every observations, which we shall address as a flocking behavior, plus some

local interactions. In terms of GFA, the first correspond to the effect of the latent variables,

while the latter are modeled through idiosyncratic noise.

Detection of emitters

In this scenario we suppose there is an unknown number, say q, of emitters, each of

them broadcasting radio impulse trains at a fixed common frequency. Such impulses

are received by a large array of N antennas spread in space. The measurement of each

antenna is corrupted by noise, generated by measurement errors or local disturbances,

possibly correlated with that of neighboring antennas. The set up can be described

mathematically, by indexing each antenna by an integer i = 1, 2, . . . , N and denoting by

yi(t) the signal received at time t by antenna i. Then the following model can be used to
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describe the received signal

yi(t) = fi1x1(t) + . . .+ fiqxq(t) + ỹi(t) , (3.71)

where:

• xj(t) is the signal sent by the j-th emitter at time t;

• fij is a coefficient related to the distance between j-th emitter and antenna i;

• ỹi(t) is the disturbance affecting antenna i at time t.

The goal is to detect the number of emitters q and possibly estimate the signal components

xj(t) impinging on the antenna array.

x1x2

x3

yi

Figure 3.1: Detection of emitters. The signal observed by each antenna yi is a combination of
the signals sent by the emitters xj plus a local noise (dashed circles).

Let y(t), x(t), ỹ(t) denote vector valued quantities in the model (3.71) of respective

dimensions N, q and N . The model (3.71) can be compactly written as

y(t) = Fx(t) + ỹ(t) , (3.72)

where y is the N -dimensional random process of observables; x(t) = [x1(t) . . . xq(t) ]> is

the unobservable vector of random signals generated by the emitters; F = {fij} ∈ RN×q

is an unknown matrix of coefficients and ỹ is a N -dimensional random process of

disturbances, uncorrelated with x, describing the local disturbance on the i-th antenna.
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Note that in the model there are several hidden (non-measurable) variables, including

the dimension q. In our setting N is assumed to be very large; ideally we shall assume

N →∞.

We may identify Fx(t) as the flocking component of y(t). In a primitive statistical

formulation all signals in the model are i.i.d. process, and the sample values {y(t)} are

interpreted as random samples generated by a underlying static model of the form

y = Fx + ỹ . (3.73)

One should observe that estimation of this model from observations {y(t)} of y, consists

first of estimating the model parameters, say F and the covariance matrix of ỹ but also

in constructing the hidden random quantities x and ỹ. The covariance matrix of y, say

Σ ∈ RN×N may be obtained from the data by standard procedures.

A problem leading to models of similar structure is automated speaker detection. This

is the problem of detecting the speaking persons (emitters) in a noisy environment at any

particular time, from signals coming from a large array of N microphones distributed

in a room. Here the number of emitters is generally small but could be varying with

time. Robustly solving this problem is useful in areas such as surveillance systems, and

human-machine interaction.

In the model specification it is customary to assume that the noise vector ỹ has

uncorrelated components. In this case the model (3.73), is a (static) factor analysis

model. Statistical inference on these models leads in general to ill-posed problems and to

resolve the issue it is often imposed that the variances of the scalar components of ỹ should

all be equal. The problem can then be solved by computing the smallest eigenvalue of

the covariance matrix of y, following an old idea (Pisarenko, 1973) which has generated

an enormous literature. The assumption of uncorrelated noise and, especially, of equal

variances is however rather unrealistic in many instances.

Inference of gene regulatory networks

In systems biology, an important task is the inference of gene regulatory networks

in order to understand cell physiology and pathology. Genes are known to interact

among each other forming a network, and their expression is directly regulated by

few transcription factors (TFs). Typically, TFs and genes are modeled as two distinct

networks of interactions which are able also to interact with each other. While methods

for measuring the gene expressions using microarray data are extremely popular, there

are still problems in understanding the action of TFs and the scientific community is
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currently working on computational methods for extraction of the action of the TFs

from the available measurements of gene expression. To this end, a simplification of the

interaction between genes and TFs is commonly accepted and consists in projecting the

TFs network on the “gene space” (Brazhnik et al., 2002).

Denoting by a random variable yi the measured expression profile of the i-th gene of

the network, usually the model (3.73) is also proposed in this framework. In this case:

• The N dimensional vector y represents all the gene expressions. The experimenter

can usually observe a large amount of genes, and it is reasonable to assume that

N →∞.

• Each component of the random vector x is associated with a TF. The number q of

TF’s is a priori unknown; furthermore N � q.

• The N × q matrix F models the strength of the TFs effect on each gene.

• The vector ỹ describes the interaction of connected genes.

Factor analysis models (see Section 3.2) have been considered to deal with this problem,

see e.g. (see e.g. (Pournara & Wersnich, 2007), (Sanguinetti et al., 2006), (West, 2003),

(Sabatti & James, 2006) or (Lin & Husmeier, 2010) for a survey); in such a case, the

vector ỹ is assumed to have uncorrelated components. However, in the context of gene

regulatory networks the latter assumption may be relaxed, since it is well-known that

there are interactions among genes that are not determined by TFs. Then, a possible

assumption is that ỹ admits some “weak correlation” among its components.

x1

x2

x3

yi

Figure 3.2: Example of a gene network under the action of transcription factors.
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Modeling energy consumption

In this example, we may want to model the energy consumption (or production) of a

network of N users distributed geographically in a certain area, say a city or a region.

The energy consumption yi(t) of user i is a random variable which can be seen as the

sum of two contributions

yi(t) = f>i x(t) + ỹi(t) . (3.74)

where the term f>i x(t) represents a linear combination of q hidden variables xi(t) which

model different factors affecting the energy consumption (or production) of the whole

ensemble; say heating or air conditioning consumption related to seasonal climatic vari-

ations, energy production related to the current status of the economy etc. The factor

vector x(t) determines the average time pattern of energy consumption/production of

each unit, the importance of each scalar factor being determined by a q-ple of constant

weight coefficients fi(k). One may identify the component Fx(t) as the flocking compo-

nent of the model (3.74). The terms ỹi(t), represent local random fluctuations which

model the consumption due to devices that are usually activated randomly, for short

periods of time. They are assumed uncorrelated with the process x. The covariance

E [ỹi(t)ỹj(t)] could be non zero for neighboring users but is reasonable to expect that it

decays to zero when |i−j| → ∞. To identify such a model one should start from real data

of energy consumption collected from a large amount of units. A possible application

for such a model is the forecasting of the average requirement of energy in a certain

geographical area.

Dynamic modeling in computer vision

Large-dimensional time series occur often in signal processing applications, typically for

example, in computer vision and dynamic image processing. The role of identification

in image processing and computer vision has been addressed by several authors. We

may refer the reader to the recent survey (Chiuso & Picci, 2008) for more details and

references. One starts from a signal y(t) := vec(I(·, t)), obtained by vectorizing at each

time t, the intensities I(·, t) at each pixel of an image, into a vector, say y(t) ∈ RN , with

a “large” number (typically tens of thousands) of components. We may for instance

be interested in modeling (and in identification methodologies thereof) of “dynamic

textures” (see (Doretto et al., 2003)), by linear state space models or in extracting classes

of models describing rigid motions of objects of a scene. Most of these models involve

hidden variables, say the state of linear models of textures, or the displacement-velocity

coordinates of the rigid motions of objects in the scene. The purpose is of course to
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compress high dimensional data into simple mathematical structures. Note that the

number of samples that can be used for identification is very often of the same order

(and sometimes smaller) than the data dimensionality. For instance, in dynamic textures

modeling, the number of images in the sequences is of the order of a few hundreds while

N (which is equal to the number of pixels of the image) is certainly of the order of a few

hundreds or thousands (Doretto et al., 2003; Bissacco et al., 2007).

Mathematical formulation of flocking

Let y(k, t) be a second order finite variance random field depending on a space variable

k and on a time variable t. The variable k is indexing a large ensemble of space locations

where equal “agents” produce at each time t the measurement, y(k, t), of a scalar quantity,

say the received voltage signal of the k-th antenna or the expression level of the k-th cell

in a cell array. We shall assume that k varies on some ordered index set of N elements and

let t ∈ Z or Z+, depending on the context. Eventually we shall be interested in problems

where N =∞. We shall denote by y(t) the random (column) vector with components

{y(k, t) ; k = 1, 2, . . . , N}. Suitable mathematical assumptions on this process will be

specified in due time.

A (random) flock is a random field having the multiplicative structure ŷ(k, t) =∑q
i=1 fi(k)xi(t), or equivalently,

ŷ(t) =

q∑
i=1

fixi(t) (3.75)

where fi =
[
fi(1) fi(2) . . . fi(N)

]>
, i = 1, 2, . . . , q are nonrandom N -vectors and

x(t) :=
[
x1(t) . . . xq(t)

]>
is a random processes with orthonormal components de-

pending on the time variable only; i.e.

E [x(t)x(t)>] = Iq , t ∈ Z .

The idea is that a flock is essentially a deterministic geometric configuration of N points

in a q-dimensional space moving rigidly in a random fashion. We want to investigate

when a second order random field has a flocking component and study the problem

of extracting it from sample measurements of y(k, t). This means that one should be
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searching for decompositions of the type:

y(t) =

q∑
i=1

fixi(t) + ỹ(t) (3.76)

where q ≥ 1 and ỹ(t) is a “random noise” field which should not contain flocking

components. Naturally for the problem to be well-defined one has to specify conditions

making this decomposition unique.

A generalization of this setting where y may take vector values is possible, but for the

sake of clarity we shall here restrict to scalar-valued processes.

Short and long distance interactions

After having formulated our model of a flocking structure, we suggest an interpretation in

terms GFA models. We shall imagine a scenario of an ensemble of infinitely many agents

distributed in space generating the random variables {y(k) = ŷ(k) + ỹ(k) ; k = 1, 2, . . .}
and interacting in a random fashion.

The idiosyncratic covariances σ̃(k, j) = E [ỹ(k)ỹ(j)] measure the mutual influence of

neighboring units noises ỹ(k), ỹ(j). Since Σ̃ is a bounded operator in `2, it is a known

fact (Akhiezer & Glazman, 1961, Section 26) that σ̃(k, j) → 0 as |k − j| → ∞ so in a

sense the idiosyncratic component ỹ of a GFA representation models only short range
interaction among the agents, as σ̃(k, j) is decaying with distance. Agents which are far

away from each other essentially do not resent of mutual influence.

On the other hand, E [ŷ(k)ŷ(j)] =
∑

i fi(k)fi(j) and the elements of the column

vectors fi cannot be in `2. In particular, as stated in the proposition below, if the variances

of the random variables y(k) are uniformly bounded then fi ∈ `∞.

Proposition 3.6.1. If y is a q−FS and has uniformly bounded variance, then the fi’s are
uniformly bounded sequences (i.e. belong to the space `∞).

Proof. The statement follows since ‖ŷ(k)‖2 ≤M2, which is the same as

q∑
i=1

fi(k)2 ≤M2

and hence |fi(k)| ≤M for all k’s.

Hence since the components fi(k) do not decay with distance, the products fi(k)fi(j)

generically do not vanish when |k− j| → ∞. Therefore the factor loadings describe “long
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range” correlation between the factor components and the ŷ component of y can be

interpreted as variables modeling the long range interaction among agents. In this sense

ŷ models a collective behavior of the ensemble.

3.7 Generalized factor analysis models of random fields

In this section we deal with the question raised in Section 3.6, namely when does a

second order random field have a flocking component and how to extract it from sample

measurements of y(k, t). A simple class of random fields for which this question can be

answered positively is the class of separable space-time processes

y(k, t) = v(k)u(t) (3.77)

which are the product of a space, v(k), and time component, u(t), both zero mean and

with finite variance. This model can be generalized, for example making both v(k) and

u(t) vector-valued but this would require extending our static theory in the preceding

sections to vector-valued processes as well. Although this is quite straightforward involv-

ing no new concepts but just more notations, for the sake of clarity we shall restrain to

the scalar case.

The model (3.77) needs to be specified probabilistically, as the dynamics of the “time”

process {u(t)} may well be space dependent and dually, the distribution of v(k) may be

a priori time-dependent. The following assumption specifies in probabilistic terms the

multiplicative structure (3.77) of the random field y(k, t).

Assumption : The space and time evolutions of y(k, t) are multiplicatively uncorrelated
in the sense that

E [v(k1)v(k2) | u(t1)u(t2)] = E v[v(k1)v(k2)] (3.78)

where the first conditional expectation is made with respect to the conditional probability

distribution of v given the random variables u(t1), u(t2), while the second expectation is

with respect to the marginal distribution of v.

From the multiplicative uncorrelation (3.78) one gets

E [v(k1)v(k2)u(t1)u(t2)] = E [v(k1)v(k2)]E [u(t1)u(t2)] = σv(k1, k2)σu(t1, t2) (3.79)

where σv and σu are the covariance functions of the two processes. Hence the covariance

function of the random field inherits the separable structure of the process. If v and u are

jointly Gaussian, the multiplicative uncorrelation property follows if the two components
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are uncorrelated; namely their joint covariance is separable. This is a structure which is

often assumed in the literature, see (Li et al., 2008) and references therein. Assume now

that the space process has a nontrivial GFA representation with q factors

v(k) =

q∑
i=1

fi(k)zi + ṽ(k) (3.80)

where v̂(k) :=
∑

i fi(k)zi is the aggregate and ṽ(k) the idiosyncratic component of v(k).

Then setting xi(t) = ziu(t) and ỹ(k, t) := ṽ(k)u(t) one can represent the random field

(3.77) by a dynamic GFA model,

y(k, t) =

q∑
i=1

fi(k)xi(t) + ỹ(k, t) := ŷ(k, t) + ỹ(k, t) (3.81)

Proposition 3.7.1. If the processes v and u are multiplicatively uncorrelated then the two
terms ŷ(k, t) and ỹ(h, s) in the GFA model (3.81) are uncorrelated for all k, h and t, s.
Hence a separable random field satisfying the multiplicative uncorrelation property has a
flocking component if and only if its space process v has a nontrivial aggregate component.

Proof. We have

E [ŷ(k, t)ỹ(h, s)] =

q∑
i=1

fi(k)E [ziu(t)ṽ(h)u(s)] (3.82)

where the expectation in the last term can be written as

E [ziṽ(h)u(t)u(s)] = E [E v[ziṽ(h) | u(t)u(s)]u(t)u(s)] = E [E v[ziṽ(h) ]u(t)u(s)] = 0

(3.83)

since the zi’s are random variables in H(v̂) and ṽ(h) is orthogonal to this space. The last

statement then follows directly.

Let now v be second-order weakly stationary satisfying the conditions of Theorem

3.5.4. Here is probably the simplest nontrivial example of decomposition (3.81).

Example 3.7.2 (Exchangeable space processes). Consider the case of a (weakly) ex-
changeable space process v; i.e. a process whose second order statistics are invari-

ant with respect to all index permutations of locations (k, j). Clearly the covariances

σv(k, j) = E [v(k)v(j)] must be independent of k, j for k 6= j and σv(k, k) = σ2 > 0
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must be independent of k (Aldous, 1985). Letting ρ := σv(k, j), k 6= j, one has

Σv =


σ2 ρ ρ ρ . . .

ρ σ2 ρ ρ . . .

. . .
. . . . . .

 (3.84)

where σ2 > |ρ| for positive definiteness. Letting f denote an infinite column vector with

components all equal to ρ, one can decompose Σv as

Σv = ff> + (σ2 − ρ)I (3.85)

where here I denotes an infinite identity matrix. This is a factor analysis decomposition

of rank q = 1 of Σv with Σ̃v a diagonal matrix. Hence a weakly exchangeable space

process is a 1-factor process with an idiosyncratic component which is actually white. In

the GFA representation (3.80) there is just one factor z and the factor loading vector f

does not depend on the space coordinate.

Consider a random field with the multiplicative structure (3.77), then the flocking

component

ŷ(k, t) = fx(t) , x(t) = zu(t)

describes a constant, space independent, configuration moving randomly in time.

Statistical estimation

Assume that the space component of the random field is stationary and we have a

snapshot of the system at certain time t0; that is we have observations of a “very large”

portion of the process {y(k, t0), k = 1, 2, . . . , N} at some fixed time t0. With these sample

data we may form the sample covariance estimates

σ̂N (h, t0) :=
1

N

N∑
k=1

y(k + h, t0)y(k, t0) =
1

N

N∑
k=1

v(k + h)v(k)u(t0)2 , h = 0, 1, 2, . . .

(3.86)

which also have the multiplicative structure σ̂N (h, t0) = σ̂v, N (h)u(t0)2, where σ̂v, N (h)

is the sample covariance estimate of the v process based on N data. Now by the

assumptions made on the space-process v the limit limN→∞ σ̂N (h, t0) exists (although it

may be sample dependent for the PD part), so the sample matrix covariance estimate,
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which has the form

Σ̂N (t0) :=


σ̂N (0, t0) σ̂N (1, t0) . . . σ̂N (N − 1, t0)

σ̂N (1, t0) σ̂N (0, t0) σ̂N (1, t0) . . . σ̂N (N − 2, t0)

. . . . . . . . . . . .

σ̂N (N − 1, t0) . . . σ̂N (1, t0) σ̂N (0, t0)


= u(t0)2 Σ̂v,N (3.87)

will converge to a limit for N →∞.

Following (Chamberlain & Rothschild, 1983; Forni & Lippi, 2001) the idea is now to

do PCA on the covariance estimate for increasing N and isolate q eigenvalues which tend

to grow without bound as N →∞ while the others stay bounded. The q corresponding

eigenvectors will tend as N →∞ to the q factor loadings f1, . . . , fq and therefore provide

asymptotically the FA decomposition of the Σv matrix

Σv = FF> + Σ̃v .

After F and Σ̃v are estimated, the stochastic realization procedure of Sect. 3.4 permits to

construct the factor vector z and the idiosyncratic component ṽ of the GFA representation

of v as in (3.80). The reconstruction of the time varying factor variables xi(t) = ziu(t)

of y from the observations y(k, t) = v(k)u(t) can be done, in several equivalent ways, by

averaging on the space variable.
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4
Zeros of tall linear multirate systems

4.1 Introduction

In the previous chapter it was pointed out that the main feature of factor analysis, both

in static and dynamic settings, is the description of the (denoised) observable variables in

terms of few latent factors. From a “control systems” point of view, this corresponds to

modeling a stochastic system which has a large number of outputs driven by few inputs.

Identification of these systems, which are addressed as tall in the specific literature, may

present some practical issues, since the presence of a large number of outputs implies

the presence of a (much) larger number of parameters to be estimated, possibly more

than the available data samples. Moreover, having few inputs compared to the number of

outputs may compromise the performance of the identification procedure, i.e. increase

the variance of the estimates of the system parameters.

For these reasons, it has become necessary a study of the properties of tall systems;

in (Anderson & Deistler, 2007), it was proven that model tallness generically implies

that the corresponding linear time-invariant dynamic system is zero-free. Hence, in the

context of dynamic factor models one can exploit this result to model the dynamic relation

between the latent variables and the denoised observations as a singular autoregressive

process whose parameters can be easily identified from covariance data using Yule-Walker
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equations. Furthermore, from a classical control perspective, controller design is much

easier for zero-free systems. This suggests that when one is dealing with a generic system,

the controller design can be easier if one can add extra sensors to make the system have

more outputs than inputs. This important result regarding zero-freeness does not cover

all practical situations; if the outputs are measured at different rates, the system is not

time-invariant. For example, in a sensor network there may be devices operating at

a certain frequency and communicating with some other sensors working at a lower

sample rate. Also, in econometric modeling it is common to deal with variables collected

monthly while some other may be obtained quarterly or even annually (Forni et al.,

2000), (Schumacher & Breitung, 2006), (Raknerud et al., 2007). These type of systems

constitute a special class of the so called periodic systems and are known as multirate

systems.

In this chapter we want to extend the results of (Anderson & Deistler, 2007) to

multirate systems, addressing the problem of exploring their zero properties under the

tallness condition. We shall focus on generic properties, i.e. properties that hold almost

surely for the whole class of systems in analysis. Thus, our goal is to establish which

characteristics a tall multirate system must have in order to be zero-free.

Brief review of the literature

Discrete-time multirate linear systems have attracted attentions for some decades. The

properties of these systems have been studied in such subdisciplines as systems and

control (Chen & Francis, 1995), signal processing (Vaidyanathan, 1993), communications

(Wang et al., 2005) and econometric modeling (Clements & Galvao, 2008). A technique

termed blocking or lifting has been developed in systems and control to deal with periodic

linear systems (Chen & Francis, 1995). In systems and control literature, this method

was initially introduced to transform linear discrete-time periodic systems to linear time-

invariant systems, so that the well-developed tools in linear time-invariant systems can be

extended for design and analysis of linear discrete-time periodic systems (Bolzern et al.,

1986), (Grasselli & Longhi, 1988), (Bittanti, 1986) and (Bittanti & Colaneri, 2009).

To our best knowledge the pole properties of the blocked systems are well understood

(Bittanti & Colaneri, 2009), (Khargonekar et al., 1985); whereas, it is little known about

the zero properties of tall blocked systems. For instance, (Bolzern et al., 1986), (Grasselli

& Longhi, 1988) have explored the zero properties of blocked systems obtained from

blocking of linear periodic systems (a class of systems which includes multi-rate systems).

The results show that the blocked system has a finite zero if it is obtained from a time-

invariant unblocked system, and the latter has a finite zero, which is a form of sufficiency
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condition. However, this reference does not provide a necessary condition for a blocked

system obtained this way to have a finite zero. This gap has been covered in (Zamani

et al., 2011) and (Chen et al., 2012) where the authors have introduced some additional

information about the zero properties of blocked systems obtained from blocking of

time-invariant systems.

Contribution of this work

In contrast to the case where the unblocked system is time-invariant, very few results

indeed deal with zeros of blocked systems where these systems have been obtained by

blocking of a truly multirate system, i.e. one that is periodic in the parameters. Our

starting point is a review of the zero properties of blocked systems resulting from blocking

of linear time-invariant systems (Chen et al., 2012), (Zamani et al., 2011). The main

result of this preliminary study is that tall blocked systems are zero-free if and only if the

related (time-invariant) unblocked systems are zero-free. Then, in order to deal with

multirate systems, we assume that there exists an underlying system operating at the

highest sample rate, which is linear time-invariant. However, because not all the outputs

of this underlying system are actually measured at the same rate, we end up with a

multirate linear system linking the inputs of the original system to those of its outputs

which are measured. Then, the zero properties of such a system are explored. Quite

surprisingly, the results obtained from tall blocked time-invariant systems do not extend

straightforwardly to the multirate case. Indeed, the analysis of multirate zeros turns out

to be quite complicated. For this reason, we consider three cases separately, that is

1. finite nonzero system zeros;

2. system zeros at infinity;

3. system zeros at zero.

First, we focus on the zero properties of tall blocked systems associated with finite

nonzero zeros. It is explicitly established that tall blocked systems generically have no

finite nonzero zeros. Moreover, in the subsequent section the zero properties of tall

blocked systems are examined at zero and infinity. We precisely state the conditions

under which tall blocked systems can have a zero at the origin or infinity and when they

are zero-free at those aforementioned points. We show that these conditions depend only

on the dimensions of the state, the input and the output.
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4.2 Zeros theory of tall linear systems

In this section we review some recent results on the zero properties of tall linear time-

invariant systems.

We consider a linear time-invariant unblocked system
∑

:= {A, B, C, D} described

by the equations

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(4.1)

where t ∈ Z, x(t) ∈ Rn, y(t) ∈ Rp and u(t) ∈ Rm. Furthermore, we assume that the

system is tall, i.e. p ≥ m. One important assumption that we will consider throughout

the whole chapter is that the parameter matrices {A, B, C, D} assume generic values.

This assumption has some direct consequences which are listed below and which will be

exploited in order to obtain the main results of this chapter.

1. The matrices A, B, C, D are full rank.

2. The matrix A has distinct eigenvalues.

3. The system
∑

is reachable and observable.

It is easy to check that the subset of the systems which do not satisfy these properties has

null measure compared to the set of all the possible systems described by (4.1).

In order to study the zero properties of the system we need to introduce the system

matrix

M(z) :=

[
zI −A −B
C D

]
, (4.2)

which is a matrix pencil defined on the complex plane. We define the normal rank of

M(z) as follows

nrankM(z) := max
z∈C

rankM(z) (4.3)

or, equivalently, as the value of rankM(z) for almost every z ∈ C. Then, the following

definition of zeros of a linear systems is available (see e.g. (Kailath, 1980) and (Hespanha,

2009)).

Definition 4.2.1. The finite zeros of the system
∑

are defined to be the values of z ∈ C
for which the rank of the system matrix M(z) falls below its normal rank. Equivalently,

z ∈ C is a zero of
∑

if is a zero of all nonzero minors of order equal to nrankM(z).
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Further, M(z) is said to have an infinite zero when n+ rankD is less than the normal

rank of M(z).

The main result of this section is derived from a modification of the results of (An-

derson & Deistler, 2007) and is aimed to show that a tall system with generic parameter

matrices A, B, C, D is zero-free i.e. its associated system matrix has full-column rank for

all z ∈ C ∪ {∞}. First, we need to introduce the following lemma, inspired from results

in (Filler, 2010), which provides the zero properties of the system (4.1) when p = m and

the parameter matrices of
∑

accept generic values. It states that generically the rank

reduction of the system matrix at any zero is equal to 1.

Lemma 4.2.2. The set F = {{A, B, C, D} | p = m, rankD = m, rankM(z) ≥ n+m−
1, ∀z ∈ C} is open and dense in the set {{A, B, C, D} | p = m, rankD = m}.

Proof. Dense: Consider the system matrix M(z) and suppose that there exists a z0 such

that rankM(z0) = n + m − 2 (note that only the case where rank drops to n + m − 2

is discussed here and generalization to n+m− k, k ≥ 2 is straightforward). Therefore,

there exist two linearly independent vectors, say x1 and x2, which span the kernel of

M(z0). Let xi = [x>i1 x
>
i2]>, i = 1, 2 with xi1 ∈ Rn, then x11 and x21 must be linearly

independent otherwise there would exist nonzero scalars a1 and a2 such that

a1x1 + a2x2 = [0 a1x
>
12 + a2x

>
22]>

with D[a1x12 +a2x22] = 0, which implies a1x12 +a2x22 = 0. The latter means that x1 and

x2 are linearly dependent which violates the initial assumption. Now it is easy to verify

that [z0I − A + BD−1C][x11 x21] = 0, which implies that A − BD−1C has a repeated

eigenvalue. By manipulation of an entry of A by an arbitrarily small amount, one can

verify that, for any z, the kernel of the system matrix will have dimension at most 1, since

A−BD−1C will have nonrepeated eigenvalues.

Open: Set F being open is equivalent to its complement, call it FC , being closed.

To obtain a contradiction, suppose FC is not closed. Then there must exist a se-

quence {Am, Bm, Cm, Dm}m∈N → {A0, B0, C0, D0} where {A0, B0, C0, D0} ∈ F
and {Am, Bm, Cm, Dm} ∈ FC for all m. Moreover, there exists a zm ∈ C such

that rank (Mm(zm)) ≤ n + m − 2, where Mm(z) denotes the system matrix associ-

ated with {Am, Bm, Cm, Dm}. Consequently, σ1( Mm(zm)) = σ2(Mm(zm)) = 0 where

σi(F ) denotes the i-th smallest singular value of F . Now Mm(zm) → M0(z0) holds

as {Am, Bm, Cm, Dm} → {A0, B0, C0, D0} and zm → z0. Hence, σ2(Mm(zm)) →
σ2(M0(z0)); however, by assumption σ2(M0 (z0)) > 0 which contradicts the fact that

σ2(M0(z0))→ 0 and the result follows.
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Theorem 4.2.3. Consider the system
∑

= {A, B, C, D} with p > m. If the entries of
A, B, C, D assume generic values, then

∑
has no finite or infinite zeros.

Proof. We observe first that generically the normal rank of M(z) is equal to n+m. To

see this, take A = C = 0 and D as any full column rank matrix, to get a particular M(z)

which for any nonzero z has rank n+m. Since the normal rank cannot exceed n+m and

this rank is attained for a particular choice of {A, B, C, D}, so n+m must be the normal

rank for generic M(z). Observe also that generically D has rank m, and hence the normal

rank of M equals n+ rankD, which shows that generically
∑

has no infinite zero. For

the finite zeros, observe that any such zero must be a zero of every minor of dimension

(n+m)× (n+m). Since M(z) has normal rank n+m, there must be at least one minor

of dimension (n+m)× (n+m) which is nonzero for almost all values of z. Choose A,B

and the first m rows of C,D generically, and consider the associated minor. For each of

the finite set of values of z for which the minor is zero, determine the associated kernel

which has the dimension at most one based on the result of Lemma 4.2.2. Then a generic

(n+m)-dimensional vector will not be orthogonal to any single one of these kernels, and

since there are a finite number of such kernels, a generic (n + m)-dimensional vector

will not be orthogonal to any of the kernels considered simultaneously. If the next, i.e

(m+ 1)-th, row of [C D] is set equal to this vector, then any vector in any of the finite

set of kernels of the (n+m)-dimensional minors formed using the first m rows of [C D]

will not be orthogonal to the added row of [C D], which means that the (m+ n+ 1) row

matrix obtained by adjoining the new row of [C D] must have an empty kernel for any

value of z, i.e. there is no zero. Given that C, D are actually generic and may have more

rows again, the result is now evident.

Tall blocked linear systems

In the previous section we showed that tall time-invariant unblocked systems are generi-

cally zero-free. In this section we study the zero properties of their associated blocked

systems. The results of this section enable us to study the zero properties of blocked

systems resulted from blocking of linear systems with multirate output in the next section.

For some of the theorems proofs are omitted and can be found in (Zamani et al., 2011).

We first introduce an arbitrary integer N > 1, called blocking rate and define the

following multivariate signals
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U(t) =


u(t)

u(t+ 1)
...

u(t+N − 1)

 , Y (t) =


y(t)

y(t+ 1)
...

y(t+N − 1)

 ,
where t = 0, N, 2N, . . .. Then, the blocked system

∑
b is given by

x(t+N) = Abx(t) +BbU(t)

Y (t) = Cbx(t) +DbU(t) .
(4.4)

The blocked system, mapping the U(t) sequence to the Y (t) sequence, has a time-invariant

state-variable description given by

Ab = AN , Bb =
[
AN−1B AN−2B . . . B

]
,

Cb =
[
C> A>C> . . . A(N−1)>C>

]>
,

Db =


D 0 . . . 0

CB D . . . 0
...

...
. . .

...

CAN−2B CAN−3B . . . D

 . (4.5)

We define the operator Z such that Zx(t) = x(t + N), ZU(t) = U(t + N), ZY (t) =

Y (t + N), giving to the symbol Z also the meaning of complex value. We denote the

transfer function associated with (4.4) as V (Z) := Db + Cb(ZI − Ab)
−1Cb and it is

worthwhile remarking that minimality of
∑

is equivalent to minimality of
∑

b.

Similar to Definition 4.2.1 we have the following definition for the zeros of the system

(4.4).

Definition 4.2.4. The finite zeros of the system
∑

b are defined to be the values of z ∈ C
for which the rank of the following system matrix

Mb(Z) =

[
ZI −Ab −Bb
Cb Db

]
. (4.6)

falls below its normal rank. Equivalently, z ∈ C is a zero of
∑

b if is a zero of all nonzero

minors of order equal to nrankMb(z).

According to the above definition, the normal rank of the system matrix Mb(Z) plays

an important role in the zero properties of its associated blocked system.
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Lemma 4.2.5. Suppose that p ≥ m. Then the normal rank of M(z) is n+m if and only if
the normal rank Mb(Z) is n+Nm .

A consequence of this result is stated in the following lemma.

Lemma 4.2.6. For a generic choice of matrices {A, B, C, D} with p ≥ m, the system
matrix Mb(Z) has normal rank equal to n+Nm.

Proof. In the generic setting and p ≥ m, matrix D is of full column rank. So, due to the

structure of Db, see (4.5), one can easily conclude that Db is of full column rank as well.

Then the result easily follows.

The following theorem establishes the relation between the zeros of a unblocked

system and its blocked version.

Theorem 4.2.7. Suppose that the system matrix of the unblocked system
∑

has full-column
normal rank. Then the following facts hold

• if
∑

has a finite zero at z = z0 6= 0, then the system
∑

b has a finite zero at
Z = Z0 = zN0 6= 0. Conversely, if the system

∑
b has a finite zero at Z = Z0 = zN0 6= 0,

then the system
∑

has a finite zero at one or more of z = z0 6= 0 or z = ωz0 6= 0,. . .,

z = ωN−1z0 6= 0, where ω = exp(
2πj

N
);

• the system
∑

b has a zero at Z0 =∞ if and only if the system
∑

has a zero at z0 =∞;

• the system
∑

b has a zero at Z0 = 0 if and only if the system
∑

has a zero at z0 = 0.

We are now ready to state the main result of this section, regarding the zero-freeness

of the blocked system
∑

b

Theorem 4.2.8. Consider the system
∑

defined by the quadruple {A, B, C, D}, in which
the individual matrices are generic. Then

• If p > m, the system Mb(Z) has full column rank for all z.

• If p = m, then the system matrix Mb(Z) can only have finite zeros with one-
dimensional kernel.

Proof. Suppose first that p > m. Using the results of Lemma 4.2.6 and Lemma 4.2.5, it

can be readily seen that the system matrix of tall unblocked systems generically have

full-column normal rank. Furthermore, Theorem 4.2.3 shows that tall unblocked systems

are generically zero-free. If the blocked system had its system matrix with less than

full column rank for a finite Z0 6= 0, then according to Theorem 4.2.7, there would be
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necessarily a nonzero null vector of the system matrix of the unblocked system for z0 6= 0

equal to some N − th root of Z0, which would be a contradiction. If the blocked system

had a zero at Z0 = ∞, then based on Theorem 4.2.7 the D matrix of the unblocked

system would be less than full column rank which would be a contradiction. Analogously,

using the argument in Theorem 4.2.7, one can easily conclude that the blocked system

has full column rank system matrix at Z0 = 0.

Now we consider the case p = m; since D is generic, it has full column rank. Hence,

based on the conclusion of Theorem 4.2.7, both the unblocked system and the blocked

system do not have zeros at infinity. In the second part of this proof we use the conclusion

of Theorem 4.2.7. Furthermore, one should note that since matrices A, B, C and D

assume generic values it can be easily understood that the quadruple {Ab, Bb, Cb, Db} is a

minimal realization. Now, based on the fact that Db is nonsingular, one can conclude that

the zeros of the blocked system are the eigenvalues of Ab −BbD−1
b Cb. If the eigenvalues

of Ab −BbD−1
b Cb are distinct, then the associated eigenspace for each eigenvalue is one-

dimensional; it is equivalent to saying that the associated kernel of Mb(Z) evaluated at

the eigenvalue has dimension one. One should note that the unblocked system has distinct

zeros due to the genericity assumption. Furthermore, zeros of the unblocked system

generically have distinct magnitudes except for complex conjugate pairs. It is obvious that

those zeros of the unblocked system with distinct magnitudes produce distinct blocked

zeros. Now, we focus on zeros of the unblocked system with the same magnitudes, i.e.

complex conjugate pairs. The only case where the generic unblocked system has distinct

zeros but its corresponding blocked system has non-distinct zeros happens when the

N − th power of the complex conjugate zeros of the unblocked system coincide. We

now show by contradiction that this is generically impossible. In order to illustrate a

contradiction, suppose that the unblocked system has a complex conjugate pair, say z01

and z∗01. If they produce an identical zero for the blocked system, their N − th powers

must be the same. The latter condition implies that the angle between z01 and z∗01 has to

be exactly 2πh/N , where h is an integer, which contradicts the genericity assumption for

the unblocked system. Hence, the zeros of the blocked system generically have distinct

values and consequently the corresponding kernels of system matrix evaluated at the

zeros are one-dimensional.

4.3 Multirate linear systems: problem statement

In this section, we focus our attention on the analysis of the zeros of blocked multirate

systems. We shall see that such a study is non-trivial and needs a deep insight in the
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analysis of the normal rank of the system matrix associated with a given multirate system.

Quite surprisingly, we shall find that even if the parameter matrices are generic, such

systems may have zeros at the origin of the complex plane or at infinity.

After introducing multirate systems, we focus on their finite nonzero zeros, then the

possible presence of infinite zeros and zeros at the origin is explored.

We assume that the dynamics of an underlying system operating at the highest sample

rate are defined by a linear system of the type

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t), (4.7)

where x(t) ∈ Rn is the state, y(t) ∈ Rp the output, and u(t) ∈ Rm the input. For this

system, y(t) exists for all t, and, separately, can be measured at every time t. However,

we are also interested in the situation where y(t) exists for all t, but not every entry is

measured for all t. In particular, we consider the case where y(t) has components that

are observed at different rates. For simplicity, in this chapter we consider a case where

outputs are provided at two rates which we refer to as the fast rate and the slow rate.

Without loss of generality we decompose y(t) as

y(t) =

[
yf (t)

ys(t)

]

where yf (t) ∈ Rp1 is observed at all t, the fast part, and ys(t) ∈ Rp2 is observed at

k = 0, N, 2N, · · · , the slow part. Moreover, p1 > 0, p2 > 0 and p1 + p2 = p. Accordingly,

we decompose C and D as

C =

[
Cf

Cs

]
, D =

[
Df

Ds

]
.

Thus, the multirate linear system corresponding to what is measured has the following

dynamics:

x(t+ 1) = Ax(t) +Bu(t) t = 0, 1, 2, . . .

yf (t) = Cfx(t) +Dfu(t) t = 0, 1, 2, . . .

ys(t) = Csx(t) +Dsu(t) t = 0, N, 2N, . . . (4.8)

We have actually N distinct alternative ways to block the system, depending on how

fast signals are grouped with the slow signals. Even though these N different systems
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share some common zero properties, their zero properties are not identical in the whole

complex plane (see (Bittanti & Colaneri, 2009), pages 173-179). For τ ∈ {1, 2, . . . , N}
and k = 0, N, 2N, . . . define

Uτ (t) :=


u(t+ τ)

u(t+ τ + 1)
...

u(t+ τ +N − 1)

 , Yτ (t) :=



yf (t+ τ)

yf (t+ τ + 1)
...

yf (t+ τ +N − 1)

ys(t+N)


(4.9)

and xτ (t) := x(t+ τ). Then the blocked system
∑

τ is defined by

xτ (t+N) = Aτxτ (t) +BτUτ (t)

Yτ (t) = CτXτ (t) +DτUτ (t), (4.10)

where,

Aτ := AN ,

Bτ :=
[
AN−1B AN−2B . . . AB B

]
,

Cτ :=
[
Cf> A>Cf> . . . A(N−1)>Cf> A(N−τ)>Cs

>
]>
,

Dτ :=



Df 0 . . . 0

CfB Df . . . 0
...

...
. . .

...

CfAN−2B CfAN−3B . . . Df

CsAN−τ−1B . . . Ds 0p2×[m(τ−1)]


,

(4.11)

where 0i×j denotes a zero-entries matrix of size i× j and when N − τ − 1 < 0 , CsA−1B

is replaced by Ds and rest of the terms in the last row are replaced by zero matrices of

size p2 ×m.

Reference (Bittanti & Colaneri, 2009) defines a zero of (4.8) at time τ as a zero of its

corresponding blocked system
∑

τ
1. Hence, in the rest of this section we focus on the

zero properties of the blocked system
∑

τ , ∀τ ∈ {1, 2, . . . , N}.

Definition 4.3.1. The finite zeros of the system
∑

τ are defined to be the finite values of

1Zeros of the transfer function defined from (4.10) are identical with those defined here, provided the
quadruple {Aτ , Bτ , Cτ , Dτ}is minimal.
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Z for which the rank of the following system matrix falls below its normal rank

Mτ (Z) =

[
ZI −Aτ −Bτ
Cτ Dτ

]
. (4.12)

Further, Vτ (Z) = Cτ (ZI −Aτ )−1Bτ +Dτ , τ ∈ {1, 2, . . . , N}, is said to have an infinite

zero when n + rankDτ , τ ∈ {1, 2, . . . , N}, is less than the normal rank of Mτ (Z),

τ ∈ {1, 2, . . . , N}, or equivalently the rank of Dτ , τ ∈ {1, 2, . . . , N}, is less than the

normal rank of Vτ (Z), τ ∈ {1, 2, . . . , N}.

In addition to the above definition the following results from (Chen et al., 2012) and

(Colaneri & Longhi, 1995) are useful to the rest of this chapter.

Lemma 4.3.2. The pair (A,B) is reachable if and only if the pair (Aτ , Bτ ), ∀τ ∈ {1, 2, . . . , N}
is reachable.

The above lemma studies the reachability property of
∑

τ , ∀τ ∈ {1, 2, . . . , N} and the

lemma below explores its transfer function.

Lemma 4.3.3. The transfer function Vτ (Z) associated with the blocked system (4.10) has
the following property

Vτ+1(Z) =

 0 Ip1(N−1)
0

ZIp1 0 0

0 0 Ip2

Vτ (Z)

[
0 Z−1Im

Im(N−1) 0

]
, (4.13)

where τ ∈ {1, 2, . . . , N}.

The result of the above lemma is crucial for the study of the zero properties of
∑

τ ,

∀τ ∈ {1, 2, . . . , N}, for choice of finite nonzero zeros. The latter is the main focus for

the remainder of this section. We treat the zero properties of
∑

τ , ∀τ ∈ {1, 2, . . . , N},
under genericity and tallness assumptions. Given that p1, p2 > 0 and tallness is defined

by Np1 + p2 > Nm, it proves convenient to consider partition the set of p1, p2 defining

tallness into two subsets, as follows

1. p1 > m.

2. p1 ≤ m, Np1 + p2 > Nm.

Such a partitioning is depicted in Figure 4.1. The first case is common, perhaps even

overwhelmingly common in econometric modeling but the second case is important from

a theoretical point of view, and possibly in other applications. Moreover, our results are

able to cover both cases.
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p1

p2

m

Nm
1

Figure 4.1: Partitioning of the condition of tallness.

4.4 Multirate systems: finite nonzero zeros analysis

Case p1 > m

According to Definition 4.3.1, the normal rank for the system matrix of
∑

τ , ∀τ ∈
{1, 2, . . . , N}, plays an important role in the analysis of its zero properties; thus, we state

the following result for the normal rank of
∑

τ , ∀τ ∈ {1, 2, . . . , N}.

Lemma 4.4.1. For generic choice of the matrices {A, B, Cs, Cf , Df , Ds}, p1 ≥ m, the
system matrix of

∑
τ , ∀τ ∈ {1, 2, . . . , N}, has normal rank equal to n+Nm.

Proof. In a generic setting and with p1 ≥ m, the matrix Df has full column rank. So,

due to the structure of Dτ , ∀τ ∈ {1, 2, . . . , N}, one can easily conclude that Dτ has

full-column rank as well. Furthermore,

Mτ (Z) =

[
ZI −Aτ −Bτ
Cτ Dτ

]
=[

I 0

Cτ (ZI −Aτ )−1 I

][
ZI −Aτ −Bτ

0 Cτ (ZI −Aτ )−1Bτ +Dτ

]
.

(4.14)

Now observe that Mτ (Z) has n+Nm columns so, n+Nm ≥ nrankMτ (Z) = nrank (ZI−
Aτ ) + nrank (Cτ (ZI −Aτ )−1Bτ +Dτ ) ≥ n+ rank (limZ→∞[Cτ (ZI −Aτ )−1Bτ +Dτ ]) =

n + rank (Dτ ) = n + Nm. Hence, the normal rank of Mτ (Z) equals the number of its

columns.

In the situation where p1 > m, obtaining a result on the absence of finite nonzero

zeros is now rather trivial, since the blocked system contains a subsystem obtained by

deleting some outputs which is provably zero-free.

Theorem 4.4.2. For a generic choice of the matrices {A, B, Cs, Cf , Ds, Df}, p1 > m, the
system matrix of

∑
τ , ∀τ ∈ {1, 2, . . . , N}, has full column rank for all finite nonzero Z.
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Proof. Let us define a system matrixMf (Z) by deleting rows ofMτ (Z), τ ∈ {1, 2, . . . , N},
which contain any entries of Cs. With p1 > m, one can use the results of the previous

section and conclude that Mf (Z) is generically of full-column rank for all finite nonzero

Z. Then it is immediate that Mτ (Z), τ ∈ {1, 2, . . . , N}, will be of full-column rank for

all finite nonzero Z.

Case p1 ≤ m, Np1 + p2 > Nm

In the previous subsection the case p1 > m was treated where only considering the fast

outputs alone generically leads to a zero-free blocked system, and the zero-free property

is not disturbed by the presence of the further slow outputs. A different way in which the

blocked system will be tall arises when p1 ≤ m and Np1 + p2 > Nm. The main result of

this subsection is to show when
∑

τ , ∀τ ∈ {1, 2, . . . , N} with p1 ≤ m, Np1 + p2 > Nm is

again generically zero-free. In order to study the latter case we need to review properties

of the Kronecker canonical form of a matrix pencil. Since the system matrix of
∑

τ ,

∀τ ∈ {1, 2, . . . , N} is actually a matrix pencil, the Kronecker canonical form turns out to

be a very useful tool to obtain insight into the zeros of (4.10) and the structure of the

kernels associated with those zeros.

The main theorem on the Kronecker canonical form of the matrix pencil is obtained

from (Van Dooren, 1979).

Theorem 4.4.3. (Van Dooren, 1979) Consider a matrix pencil zR + S. Then under the
equivalence defined using pre- and postmultiplication by nonsingular constant matrices P̃
and Q̃, there is a canonical quasidiagonal form:

P̃ (zR+ S)Q̃ = diag [Lε1 , . . . , Lεr , L̃η1 , . . . , L̃ηs , zN − I, zI −K], (4.15)

where:

1. Lµ is the µ× (µ+ 1) bidiagonal pencil
z −1 0 . . . 0 0

0 z −1 . . . 0 0
...

...
...

0 0 0 . . . z −1

 . (4.16)
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2. L̃µ is the (µ+ 1)× µ transposed bidiagonal pencil

−1 0 . . . 0 0

z −1 . . . 0 0
...

...
0 0 . . . z −1

0 0 . . . 0 z


. (4.17)

3. N is a nilpotent Jordan matrix.

4. K is in Jordan canonical form.

Furthermore, the possibility that µ = 0 exists. The associated L0 is deemed to have a

column but not a row and L̃0 is deemed to have a row but not a column, see (Van Dooren,

1979). The following corollary can be directly derived easily from the above theorem

and provides detail about the vectors in the null space of the Kronecker canonical form.

Because the matrices P̃ and Q̃ are nonsingular, it is trivial to translate these properties

back to an arbitrary matrix pencil, including a system matrix.

Corollary 4.4.4. 1. For all z except for those which are eigenvalues of K, the kernel
of the Kronecker canonical form has dimension equal to the number of matrices Lµ
appearing in the form; likewise the co-kernel dimension is determined by the number
of matrices L̃µ.

2. The vector [1 z z2 . . . zµ]> is the generator of the kernel of Lµ, a set of vectors
[0 . . . 0 1 z z2 . . . zµ 0 . . . 0]> are generators for the kernel of the whole canonical form
which depend continuously on z, provided that z is not an eigenvalue of K; when z is
an eigenvalue of K, the vectors form a subset of a set of generators.

3. When z equals an eigenvalue of K, the dimension of the kernel jumps by the geometric
multiplicity of that eigenvalue, the rank of the pencil drops below the normal rank by
that geometric multiplicity, and there is an additional vector or vectors in the kernel
apart from those defined in point 2, which are of the form [0 0 . . . v>]>, where v is an
eigenvector of K. Such a vector is orthogonal to all vectors in the kernel which are a
linear combination of the generators listed in the previous point.

4. When z is an eigenvalue, say z0 of K, the associated kernel of the matrix pencil can be
generated by two types of vectors: those which are the limit of the generators defined
by adding extra zeros to vectors such as [1 z0 z

2
0 . . . , z

µ
0 ]> (these being the limits of

the generators when z 6= z0 but continuously approaches z0), and those obtained
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by adjoining zeros to the eigenvector(s) of K with eigenvalue z0, the latter set being
orthogonal to the former set.

According to Definition 4.3.1, the normal rank plays an important role in the zero

properties of the blocked system under study. Now a generic tall single-rate system has

full-column rank as do blocked versions thereof also, in the earlier work (Zamani et al.,

2011) it was made the explicit assumption that a blocked time-invariant version of a

multirate system, if tall, has full-column rank. However, it may be for such a system that

the normal rank is less than the number of columns when p1 < m. The situation is shown

in the example below.

Example 4.4.5. Consider a tall multirate system with n = 1, m = 3, N = 2, p1 = 1,

p2 = 5. Let the parameter matrices for the multi-rate system be A = a, B = [b1 b2 b3],

Cf = cf>, Cs = [cs1 c
s
2 c

s
3 c

s
4 c

s
5]>, Df = [df1 d

f
2 d

f
3 ] and

Ds =



ds11 ds12 ds13

...
...

...

ds51 ds52 ds53


.

We consider τ = 1 and write the associated system matrix as

M1(Z)=



Z−a2 −ab1 −ab2 −ab3 −b1 −b2 −b3
cf df1 df2 df3 0 0 0

cfa cfb1 cfb2 cfb3 df1 df2 df3
cs1a cs1b1 cs1b2 cs1b3 ds11 ds12 ds13

cs2a cs2b1 cs2b2 cs2b3 ds21 ds22 ds23

cs3a cs3b1 cs3b2 cs3b3 ds31 ds32 ds33

cs4a cs4b1 cs4b2 cs4b3 ds41 ds42 ds43

cs5a cs5b1 cs5b2 cs5b3 ds51 ds52 ds53


.

It is obvious that first two rows are linearly independent. Now consider the rows 3 to 8;
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they can be written as a product of matrices GΓ, with

G :=



cf cf cf cf df1 df2 df3
cs1 cs1 cs1 cs1 ds11 ds12 ds13

cs2 cs2 cs2 cs2 ds21 ds22 ds23

cs3 cs3 cs3 cs3 ds31 ds32 ds33

cs4 cs4 cs4 cs4 ds41 ds42 ds43

cs5 cs5 cs5 cs5 ds51 ds52 ds53


and Γ := diag (a, b1, b2, b3, I3). The matrix G has rank at most 4; hence, with generic

parameter matrices the normal rank of M(Z) equals 6 and thus M(Z) cannot attain

full-column normal rank.

The following proposition provides a nice connection between the normal ranks of

the matrices Mτ (Z), τ ∈ {1, 2, . . . , N}.

Proposition 4.4.6. If there exists τ , τ ∈ {1, 2, . . . , N}, such that the normal rank of
Mτ (Z) = ρ, then ρ is the normal rank of the system matrix Mτ (Z) ∀τ ∈ {1, 2, . . . , N}.

Proof. Note that there exists a finite value Z0 6= 0 such that rankVτ (Z) and rankVτ+1(Z)

are properly defined i.e. both Vτ (Z) and Vτ+1(Z) have no poles at Z0. Furthermore, we

assume that

max
Z∈C

rankVτ (Z) = rankVτ (Z0) . (4.18)

Then, by using the equation (4.13) we have rankVτ (Z0) = rankVτ+1(Z0) and

max
Z∈C

rankVτ+1(Z) = rankVτ+1(Z0) . (4.19)

Also, we know that

max
Z∈C

rankVτ (Z) = n+ max
Z∈C

rankMτ (Z) (4.20)

and the conclusion of the proposition becomes immediate.

In order to state the exact normal rank of the blocked system matrix, we need to

introduce the following proposition regarding the rank of the matrix D1.

Proposition 4.4.7. Consider the system
∑

1, with p1 < m, Np1 + p2 > Nm and generic
values of the defining matrices {A, B, Cf , Cs, Df , Ds}. Then

• if n < (N − 1)(m− p1) the matrix D1 has rank equal to (N − 1)p1 +m+ n;

• if n ≥ (N − 1)(m− p1) the matrix D1 has full column rank, namely Nm.
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Proof. Assume first n < (N − 1)(m− p1) and write the matrix D1 as

D1 =



Df 0 0 . . . 0

CfB Df 0 . . . 0
...

. . . . . .
...

CfAN−3B . . . CfB Df 0

CfAN−2B CfAN−3B . . . CfB Df

CsAN−2B CsAN−3B . . . CSB Ds


:=

[
∆

Π

]
. (4.21)

It is well-known (see e.g. (Zamani et al., 2011)) that, due to genericity of the matrix Df ,

∆ is full row rank, namely (N − 1)p1. The matrix Π admits the factorization[
Cf . . . Cf Df

Cs . . . Cs Ds

]
Γ , (4.22)

where Γ := diag {AN−2B, AN−3B, . . . , B, Im}. Now consider the following cases.

1) n ≤ m. Clearly, Γ is full row rank, hence the rank of Π is equal to the rank of the

matrix

Π̄ :=

[
Cf Df

Cs Ds

]
∈ R[p1+p2]×[n+m] . (4.23)

Under the assumption n < (N − 1)(m− p1) and recalling that the condition of tallness

implies that p2 > N(m− p1), it holds that n+m < p1 + p2 and hence rank (Π̄) = n+m.

2) n > m. In this case, Γ is not full row rank. However, one can select n−m rows from

each block AN−2B, AN−3B, . . . , B and discard them in order to obtain a matrix, say Γ̃,

which becomes full row rank, namely Nm. Similarly, one can construct the matrix Π̃,

which is defined by discarding the corresponding columns from the matrix[
Cf . . . Cf Df

Cs . . . Cs Ds

]
.

Clearly, if such an operation of discarding is made carefully, the matrix Π̃ still contains all

the columns of the matrix Π̄, thus the considerations made for the previous case still hold

and rank Π = n+m.

Finally, due to genericity of the parameter matrices, one can always find n+m rows of

Π which are linearly independent of the rows of ∆. Hence rankD1 = (N − 1)p1 +m+ n.

Assume now n = (N − 1)(m− p1); recalling the arguments used in the previous case

one can find again that rankD1 = (N − 1)p1 +m+ n. However, in this case (N − 1)p1 +

m + n = Nm, thus rankD1 = Nm. Finally, consider the case n > (N − 1)(m − p1);
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clearly, increasing the dimension of the state cannot make the rank of D1 decrease. Hence,

rankD1 = Nm.

The following Lemma precisely determines the normal rank of Mτ (Z); also it provides

a sufficient and necessary condition for system matrixMτ (Z) to have less than full-column

normal rank.

Lemma 4.4.8. Consider the system
∑

τ , τ ∈ {1, 2, . . . , N}, with p1 < m, Np1 + p2 > Nm

and generic values of the defining matrices {A, B, Cf , Cs, Df , Ds}. Then the normal rank
of the system matrix Mτ (Z) is equal to:

• (N − 1)p1 +m+ 2n if n < (N − 1)(m− p1);

• n+Nm if n ≥ (N − 1)(m− p1).

Proof. Without loss of generality, we focus on the matrix M1(Z); every result on its

normal rank can be easily extended to any value of τ = {2, . . . , N} using Proposition

4.4.6.

Consider the matrix D1 and define r := rankD1; note that the condition of tallness

of the system implies r ≤ Nm. Define the full row rank matrix D̄1 ∈ Rr×Nm, obtained

by discarding a proper number of linearly dependent rows of D1. Similarly, define

C̄1 discarding the corresponding rows from C1. Without loss of generality assume A

diagonal. This hypothesis is not limiting; in fact, under a generic setting, A has n distinct

eigenvalues and so it is diagonalizable. If one considers a change of basis T such that

T−1AT is diagonal, then the other parameter matrices T−1B, CT , D are still in a generic

setting. Define M̄1(Z) as follows

M̄1(Z) =



Z − aN1 0 . . . 0 −b>1
0 Z − aN2 0 . . . 0 −b>2
...

. . .
...

...
...

. . .
...

...

0 0 . . . 0 Z − aNn −b>n
c̄1,1 c̄1,2 . . . . . . c̄1,n D̄1


, (4.24)

where the ai’s represent the diagonal elements of A, b>i is the i-th row of B1 and c̄i,1 is

the i-th column of C̄1. Consider the submatrix
[
c̄1,n D̄1

]
. Since D̄1 is full row rank, also

this matrix is full row rank. Consider the equation

v>
[
c̄1,n D̄1

]
=
[
Z − aNn −b>n

]
, (4.25)
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in which v and Z are yet to be specified and which can be rewritten as{
v>c̄1,n = Z − aNn
v>D̄1 = −b>n

. (4.26)

Since D̄1 is full row rank there exists at most one vector v̄> satisfying the second relation.

Clearly, if one were to insert such a vector in the first relation, there could exist only

one value Zn ∈ C such that this equation is satisfied. Choose Z 6= Zn and consider the

submatrix [
0 Z − aNn −b>n

c̄1,n−1 c̄1,n D̄1

]
, (4.27)

which is clearly full row rank, namely r + 1. Write the equation

v>

[
0 Z − aNn −b>n

c̄1,n−1 c̄1,n D̄1

]
=
[
Z − aNn−1 0 −b>n−1

]
, (4.28)

which in turn can be rewritten as
v>

[
0

c̄1,n−1

]
= Z − aNn−1

v>

[
Z − aNn −b>n
c̄1,n D̄1

]
=

[
0 −b>n−1

] . (4.29)

Again, the second relation admits at most one solution, which is compatible with the first

equation for only one value Zn−1 ∈ C. Hence, choosing Z /∈ {Zn, Zn−1} one can build

the matrix  0 Z − aNn−1 0 −b>n−1

0 0 Z − aNn −b>n
c̄1,n−2 c̄1,n−1 c̄1,n D̄1

 , (4.30)

which is full row rank, namely r + 2, and repeat the previous steps until all the rows

containing the aNi ’s and the b>i ’s, i ∈ {1, . . . , n}, are considered. This procedure ends

after n iterations, when all the rows of the matrix M̄1(Z) are included; clearly the rank

turns out to be r+ n. Since M̄1(Z) is a submatrix of M1(Z), the normal rank of M1(Z) is

greater than or equal to r + n. Now consider the following cases.

1) n ≥ (N − 1)(m − p1). Recalling Proposition 4.4.7, r = Nm; hence nrank M̄1(Z) =

n+Nm and M1(Z) is full normal rank.

2) n < (N−1)(m−p1). In this case, from Proposition 4.4.7 we have r = (N−1)p1+m+n,
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hence nrankM1(Z) ≥ nrank M̄1(Z) = (N − 1)p1 +m+ 2n. Now, consider the submatrix

formed by the first n+ (N − 1)p1 rows of M1(Z). Such a submatrix is full normal rank,

since it can be seen also as a submatrix of the system matrix
ZIn −AN −AN−1B . . . −B

Cf Df 0
...

...
. . .

...

CfAN−1 CfAN−2B . . . Df

 , (4.31)

which is the system matrix of a blocked fat system with generic parameter matrices. From

(Zamani et al., 2011), it is well-known that (4.31) is full normal rank. Now consider the

remaining rows of M1(Z), i.e. the matrix

Π =

[
CfAN−1 CfAN−2B . . . CfB Df

CsAN−1 CsAN−2B . . . CsB Ds

]

which can be factorized as

Π =

[
Cf . . . Cf Df

Cs . . . Cs Ds

]
Γ̄ ,

where Γ̄ := diag (AN−1, AN−2B, . . . , B, Im). For generic choice of matricesCs, Ds, Cf , Df ,

the matrix Π has rank equal to α := min{p1 + p2,m + n}. Then nrankM(Z) ≤
n + (N − 1)p1 + α. However, since for the condition of tallness p2 > N(m − p1)

and by assumption n < (N − 1)(m − p1), we have α = n + m hence nrankM(Z) ≤
(N − 1)p1 + m + 2n. Combining this bound with the overbound found previously, we

conclude that nrankM(Z) = (N − 1)p1 +m+ 2n.

In the rest of this subsection, we explore the zero properties of Mτ (Z), ∀τ ∈
{1, 2, . . . , N}. To achieve this, we first focus on the particular case of M1(Z). Later,

we introduce the main result for the zero properties of Mτ (Z), ∀τ ∈ {1, 2, . . . , N}.
First we need to introduce some parameters. To this end, we argue first that the first

n+Np1 rows of M1(Z) are linearly independent. For the submatrix formed by these rows

is the system matrix of the blocked system obtained by blocking the fast system defined by

{A, B, Cf , Df}, and accordingly has full-row normal rank, since the unblocked system is

generic and square or fat under the condition p1 ≤ m. Now define the square submatrix

of M1(Z):
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N(Z) :=

[
ZI −A1 −B1

C1 D1

]
, (4.32)

such that nrankN(Z) = nrankM1(Z), by including the first n+Np1 rows of M1(Z) and

followed by appropriate other rows of M1(Z) to meet the normal rank and squareness

requirements. Hence there exists a permutation matrix P such that

PM1(Z) =

[
N(Z)

C2 D2

]
(4.33)

where C2 and D2 capture those rows of C1 and D1 that are not included in C1 and D1,

respectively.

The zero properties of N(Z) are studied in the following proposition.

Proposition 4.4.9. Let the matrix N(Z) be the submatrix of M1(Z) formed via the pro-
cedure described. Then for generic values of the matrices A,B, etc. with p1 ≤ m and
Np1 +p2 > Nm, for any finite Z0 for which the matrix N(Z0) has less rank than its normal
rank, its rank is one less than its normal rank.

Proof. We distinguish two cases, p1 = m, p1 < m. In case p1 = m, then N(Z) is

the system matrix for the system obtained by blocking the original system with slow

outputs discarded. As such, the blocked system zeros are precisely the N -th powers

of the unblocked system zeros (Zamani et al., 2011). For generic coefficient matrices,

the unblocked system will have n distinct zeros; then the blocked system will have the

same property. Further, the unblocked system will generically have a nonsingular direct

feedthrough matrix, as will then the blocked system, so that D1 can be assumed to be

nonsingular. It follows then that the zeros of the system with system matrix N(Z) are

identical with the eigenvalues of A − BD−1
1 C1, which are then distinct, and since this

matrix is n × n, the eigenvector associated with each zero will be uniquely defined to

within a scaling constant. It follows easily that there is a unique vector (to within scaling)

in the kernel of N(Z0) where Z0 is the zero of the blocked system.

We turn therefore to the case p1 < m. We study the co-kernel ofN(Z0). Let Z1, Z2, . . . ,

be a sequence of complex numbers such that (a) Zi → Z0 and (b) rankN(Zi) equals

the normal rank of N(Z). From what has been described earlier using the Kronecker

canonical form, we know that the sequence of co-kernels of N(Zi) converges, say to K,

with any vector in this limit also in the co-kernel of N(Z0). In addition, since N(Z0) has

lower rank than the normal rank of N(Z), the co-kernel, call it K̄, will be strictly greater

than K. Suppose its dimension is at least two more than that of K. We shall show this
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situation is nongeneric.

Select two vectors w1, w2 which are in K̄ and which are orthogonal to K. Then it is

evident that there are two vectors call them v1, v2, constructed from linear combinations

of w1, w2, which belong to K̄, which are still orthogonal to K, and which for some pair

r < s have 1 and 0 in the r-th entry and 0 and 1 in the s-th entry respectively. Choose

v1, v2 so that firstly, s is maximal, and secondly, for that s then r is maximal. It is not

difficult to see that this means that v1 has zero entries beyond the r-th and v2 has zero

entries beyond the s-th.

Now again we must consider two cases. Suppose firstly that s obeys n+Np1 + 1 ≤
s ≤ n +Nm; in forming the product v>2 N(Z0), the s-th entry of v2 will be multiplying

entries of N(Z0) defined using Cs, A,B,Ds. Consider an entry in the s-th row of N(Z0)

and in the last m columns. Such an entry is an entry of Ds, and is independent of all

other entries in N(Z0). Suppose this entry of Ds is continuously perturbed by a small

amount. Then clearly v1 remains in the co-kernel of N(Z0) but v2 cannot.

The particular values of Z for which N(Z) has rank less than its normal rank, i.e. the

zeros of N(Z), will depend continuously on the perturbation.

Accordingly, with a small enough perturbation, those not equal before perturbation

to Z0 will never change to Z0, and it is therefore guaranteed that with a small enough

nonzero perturbation, the co-kernel of N(Z0) is reduced by one in dimension, though

never to zero. If the original (before perturbation) co-kernel K̄ had dimension greater

than two in excess of the dimension of K , and the excess after perturbation is still greater

than one, the argument can be repeated. Eventually, the co-kernel of N(Z0) will have an

excess dimension over K of 1, i.e. N(Z0) will have rank one less than the normal rank of

N(Z).

Now suppose that s obeys s ≤ n+Np1. Then the last N(m− p1) entries of each of

v1, v2 are zero. Remove these entries to define two linearly independent vectors ṽ1, ṽ2 of

length n+Np1, which evidently satisfy

ṽ>i


ZIn −AN −AN−1B . . . −B

Cf Df 0
...

...
. . .

...

CfAN−1 CfAN−2B . . . Df

 = 0, i = 1, 2. (4.34)

The above equation contains a fat system matrix, corresponding to a blocked version

of a fat time-invariant unblocked system. It can be concluded easily form the results

provided in (Zamani et al., 2011) that for generic values of the underlying matrices, there

can be no Z0 for which an equation such as (4.34) can even hold for a single nonzero ṽi,
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let alone two linearly independent ones. This ends the proof.

The result of the previous proposition, although restricted to τ = 1, enables us to

establish the following main result applicable for any τ .

Theorem 4.4.10. Consider the system
∑

τ , ∀τ ∈ {1, 2, . . . , N}, with p1 ≤ m, and Np1 +

p2 > Nm. Then for generic values of the defining matrices {A, B, Cf , Df , Cs, Ds} the
system matrix Mτ (Z) , ∀τ ∈ {1, 2, . . . , N}, has rank equal to its normal rank for all finite
nonzero values of Z0, and accordingly

∑
τ has no finite nonzero zero.

Proof. We first focus on the case τ = 1. Now, apart from the p2 −N(m− p1) rows of the

Cs, Ds which do not enter the matrix N(Z) defined by (4.32), choose generic values for

the defining matrices, so that the conclusions of the preceding proposition are valid.

Let Za, Zb, . . . be the finite set of Z for which N(Z) has less rank than its normal

rank (the set may have less than n elements, but never has more), and let wa, wb, . . . be

vectors which are in the corresponding kernels (not co-kernels) and orthogonal to the

subspace in the kernel obtained from the limit of the kernel of N(Z) as Z → Za, Zb, . . .

etc. Now, due to the facts that M1(Z) and N(Z) have the same normal rank and any

existing vector in the kernel of M1(Z) is in the kernel of N(Z) one can conclude that the

subspace in the kernel obtained from the limit of the kernel of N(Z) as Z → Za, Zb, . . .

etc, coincides with the subspace in the kernel obtained from the limit of the kernel of

M1(Z) as Z → zeros of M1(Z).

Now, to obtain a contradiction, we suppose that the system matrix M1(Z) is such

that, for Z0 6= 0, M1(Z0) has rank less than its normal rank, i.e. the dimension of its

kernel increases. Since the kernel of M1(Z0) is a subspace of the kernel of N(Z0), Z0

must coincide to one of the values of Za, Zb, . . . and the rank of M1(Z0) must be only one

less than its normal rank; moreover, there must exist an associated nonzero w1 unique

up to a scaler multiplier, in the kernel of M1(Z0) which is orthogonal to the limit of the

kernel of M1(Z) as Z → Z0. Then w1 is necessarily in the kernel of N(Z0), orthogonal to

the limit of the kernel of N(Z) as Z → Z0 and thus w1 in fact must coincide to within a

nonzero multiplier with one of the vectors wa, wb, . . . .

Write this w1 as

w1 =



x1

u1

u2

...

uN


, (4.35)



4.4 Multirate systems: finite nonzero zeros analysis 75

and suppose the input sequence u(i) = ui is applied for i = 1, 2 . . . , N to the original

system, starting in initial state x1 at time 1. Let yf (1), yf (2), . . . denote the corresponding

fast outputs and ys(N) the slow output at time N . Break this up into two subvectors,

ys1(N), ys2(N), where ys1(N) is associated with those rows of Cs, Ds which are included

in C1, D1 and ys2(N) is related with the remaining rows of Cs and Ds . We have

N(Z0)w1 =



Z0In −AN −AN−1B −AN−2B . . . −B
Cf Df 0 . . . 0

CfA CfB Df . . . 0
...

...
...

...

CfAN−1 CfAN−2B CfAN−3B . . . Df

Cs1AN−1 Cs1AN−2B Cs1AN−3B . . . Ds1


w1

=



Z0x1 − x(N + 1)

yf (1)

yf (2)
...

yf (N)

ys1(N)


= 0.

(4.36)

Now it must be true that x1 6= 0. For otherwise, we would have N(Z)w1 = 0 for all

Z, which would violate assumptions. Since also Z0 6= 0, there must hold x(N + 1) 6= 0.

Hence there cannot hold both x(N) = 0 and u(N) = 0. Consequently, we can always

find Cs2, Ds2 such that ys2(N) = Cs2x(N) + Ds2u(N) 6= 0, i.e. the slow output value

is necessarily nonzero, no matter whether w1 = wa, wb, etc. Equivalently, the equation

[C2 D2]w1 = 0 cannot hold. Hence, if M1(Z) defines a system with a finite zero and it

is nonzero, this is a nongeneric situation. Hence, M1(Z) generically has rank equal to

its normal rank for all finite nonzero Z. Now, we show that the latter property holds

for all Mτ (Z), τ ∈ {1, 2, . . . , N}. First, note that the pair (A,B) is generically reachable

so, according to Lemma 4.3.2 the pair (Aτ , Bτ ), ∀τ ∈ {1, 2, . . . , N}, is also reachable.

Consider Zζ ∈ C− {0,∞}, if Zζ does not coincide with the eigenvalues of Aτ then

rankMτ (Zζ) = n+ rankVτ (Zζ). (4.37)

Hence, using the result of Lemma 4.3.3, it is immediate that

rankMτ (Zζ) = rankMτ+1(Zζ) . (4.38)
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If Zζ does coincide with an eigenvalue of Aτ then rankVτ (Zζ) is ill-defined. However,

since zeros of Mτ (Z), τ ∈ {1, 2, . . . , N}, are invariant under state feedback and pair

(Aτ , Bτ ) is reachable, one can easily find a state feedback to replace that eigenvalue

(Zhou et al., 1996) and then (4.37) is a well-defined equation and rankMτ (Zζ) =

rankMτ+1(Zζ). Thus, we can conclude that all Mτ (Z), τ ∈ {1, 2, . . . , N} generically

have no finite nonzero zeros. This ends the proof.

4.5 Multirate systems: zeros at the origin and infinity

So far we have explored the presence of zeros in tall blocked systems with generic

parameter matrices for finite nonzero values of the complex variable Z. We have shown

that these systems generically have no finite nonzero zeros. However, in order to complete

the analysis investigating the cases Z = 0 and Z = ∞, we need to tackle this problem

using a different approach. We shall see that the result of Theorem 4.4.10 does not hold

for this two particular points. As in the previous section, it is convenient to break up our

examination of tall systems into separate cases based on the relation between p1 and m.

We begin our analysis stating the following result, which relates the zeros of the

system
∑

τ (Z) at infinity to the zeros of the system
∑

N−τ+1 at the origin and conversely.

Lemma 4.5.1. Consider the family of systems
∑

τ , ∀τ ∈ {1, 2, . . . , N}, where the defining
matrices {A, B, Cf , Df , Cs, Ds} accept generic values. Then the following fact holds:

∑
τ

has ν zeros at Z = 0 and µ zeros at Z = ∞ if and only if
∑

N−τ+1 has µ zeros at Z = 0

and ν zeros at Z =∞.

Proof. Consider a reversed time description of the system (4.8), namely

x(t− 1) = A−1x(t)−A−1Bu(t− 1) t = 1, 2, . . .

yf (t− 1) = Cfx(t− 1) +Dfu(t− 1) t = 1, 2, . . .

= CfA−1x(t) + (Df − CfA−1B)u(t− 1)

ys(t− 1) = Csx(t− 1) +Dsu(t− 1) t = 1, N + 1, . . .

= CsA−1x(t) + (Ds − CsA−1B)u(t− 1) (4.39)

and define the following matrices

Ã := A−1 B̃ := −A−1B

C̃f := CfA−1 D̃f := Df − CfA−1B

C̃s := CsA−1 D̃s := Ds − CsA−1B

(4.40)
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which are still in a generic setting since the genericity of {A, B, Cf , Df , Cs, Ds} is

assumed. Note that the matrix A−1 is well-defined, since A is generically full rank. Recall

the blocking procedure introduced in (4.9) for a given value of τ ; we can obtain the

blocked time-invariant system associated with the system (4.39) as

xτ (t−N) = Ãτxτ (t) + B̃τUτ (t−N)

Yτ (t−N) = C̃τxτ (t) + D̃τUτ (t−N), (4.41)

where t = 0, N, 2N, . . ., and

Ãτ := ÃN ,

B̃τ :=
[
B̃ ÃB̃ . . . ÃN−2B̃ ÃN−1B̃

]
,

C̃τ :=
[
Ã(N−1)>C̃f> . . . C̃f> Ã(τ−1)>C̃s>

]>
,

D̃τ :=



D̃f . . . C̃f ÃN−3B̃ C̃f ÃN−2B̃
...

. . .
...

...

0 . . . D̃f C̃f B̃

0 . . . 0 D̃f

0ps×(N−τ−1) D̃s . . . C̃sÃτ−2B̃


.

(4.42)

Furthermore, when τ − 2 < 0 , C̃sÃ−1B̃ is replaced by D̃s. Now let us introduce

the N -step backward operator ζ, such that ζx(t) = x(t − N); the transfer function

Ṽτ (ζ) := C̃τ (ζI − Ãτ )−1B̃τ + D̃τ , associated with the blocked system (4.41) is readily

available. It can be easily checked through simple computations that this transfer function

is connected to the transfer function Vτ (Z) associated with the system
∑

τ through the

equalities below

Ṽτ (0) = lim
Z→∞

Vτ (Z) lim
ζ→∞

Ṽτ (ζ) = Vτ (0). (4.43)

Define the system matrix associated with the system (4.41) as

M̃τ (ζ) :=

[
ζI − Ãτ −B̃τ
C̃τ D̃τ

]
. (4.44)

For our purpose in this chapter, we define the following equalities

rankMτ (∞) := n+ rankDτ

rank M̃τ (∞) := n+ rank D̃τ , (4.45)
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thus using the equation (4.43) one can write

rankMτ (∞) = rank M̃τ (0)

rank M̃τ (∞) = rankMτ (0) . (4.46)

Note that the above equalities are well-defined, since the matrices Aτ and Ãτ generically

do not have eigenvalues at the origin. Now, observe that, after some row and column

reordering M̃τ (ζ) has the same structure as MN−τ+1(Z). Since the parameter matrices

{A, B, Cf , Df , Cs, Ds} assume generic values, we have the following equalities

rank M̃τ (∞) = rankMN−τ+1(∞)

rank M̃τ (0) = rankMN−τ+1(0) . (4.47)

Moreover, with the help of Proposition 4.4.6, we have

nrankMN−τ+1(Z) = nrankMτ (Z). (4.48)

Finally, by combining equations (4.46) and (4.47) we obtain

rankMτ (∞) = rankMN−τ+1(0) (4.49)

and

rankMτ (0) = rankMN−τ+1(∞) . (4.50)

Thus, by using the equations (4.48), (4.49), (4.50) the conclusion of lemma readily

follows.

Case p1 > m

As for the finite nonzero complex values, the case p1 > m is rather trivial.

Theorem 4.5.2. For a generic choice of the matrices {A, B, Cs, Cf , Ds, Df}, p1 > m, the
system matrix of

∑
τ , ∀τ ∈ {1, 2, . . . , N}, has full column rank at Z = 0.

Proof. It was shown in Section 4.2 that Mf (0), where the system matrix Mf (0) can

be formed by deleting rows of M(0) which are related to Cs, has full-column rank at

Z = 0 for generic parameter matrices A, B, etc. Then, it becomes immediate that Mτ (0),

∀τ ∈ {1, 2, . . . , N} has full-column rank.

An analogous result holds for the zeros at infinity.
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Theorem 4.5.3. For a generic choice of the matrices {A, B, Cs, Cf , Ds, Df}, p1 > m, the
system

∑
τ , τ ∈ {1, 2, . . . N}, has no zero at Z =∞.

Proof. Since Mτ (Z) , ∀τ ∈ {1, . . . , N} has no zeros at zero, then, using Lemma 4.5.1, it

follows that Mτ (Z) , ∀τ ∈ {1, . . . , N} has no zeros at infinity.

Case p1 ≤ m, Np1 + p2 > Nm

In this subsection, in order to explore zero properties of the blocked system
∑

τ at

Z = 0 and Z =∞, two cases are considered. We first focus on the case where p1 < m,

Np1 + p2 > Nm. The following theorem treats zeros at infinity.

Theorem 4.5.4. Consider the system
∑

τ , ∀τ ∈ {1, . . . , N}, with p1 < m and Np1 + p2 >

Nm. Assume that the defining matrices {A, B, Cf , Df , Cs, Ds} accept generic values and
the system matrix Mτ (Z), has full column normal rank. Then Mτ (Z) has zeros at Z =∞
with multiplicity equal to (τ − 1)(m− p1).

Proof. By using Definition 4.3.1 and assumptions provided in the theorem statement, one

can conclude that the system
∑

τ , {1, 2 . . . , N}, has a zero at infinity if and only if Dτ

has rank less than full column rank. Assume that 1 ≤ i ≤ N let τ = i. Now, since Df

matrix is fat, there exists a nonsingular matrix with the proper size

Jl =


Ξ

. . .

Ξ 0

0 0 0 Ip2

 (4.51)

where Ξ is a nonsingular constant matrix such that ΞDf =
[
Ip1×p1 X(p1)×(m−p1)

]
= Θ
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and X could be a nonzero matrix. Then one has

JlDi = Jl



Df

CfB Df

...
. . .

CfAN−3B

CfAN−2B CfAN−3B . . . Df

CsAi−2B CsAi−3B . . . Ds . . . 0p2×(i−1)m


(4.52)

=



Θ

ΞCfB Θ
...

. . .

ΞCfAN−3B

ΞCfAN−2B ΞCfAN−3B . . . Θ

CsAi−2B CsAi−3B . . . Ds . . . 0


(4.53)

Due to the genericity of matrices Cs, B, the equality rank (CsB) = min{rankCs, rankB}
holds. Furthermore, since matrix A assumes generic values, it is nonsingular and has

distinct eigenvalues. It is easy to see that in the above matrix those block columns which

contain Ip1×p1 are linearly independent from each other and also do not linearly depend

on those block columns which contain X and Ds. Now due to genericity of matrices

A, B, Cs, one can verify that other block columns which contain X have to be also

linearly independent from each other. Finally, it is obvious that the block column which

has Ds, is linearly independent from the block columns which contain X. Thus, the

number of dependent columns is precisely (i− 1)(m− p1).Thus, the multiplicity of zeros

of
∑

τ at infinity is (i− 1)(m− p1). This ends the proof.

The case of zeros at infinity is considered in the above theorem and the following

corollary studies the zeros at the origin.

Corollary 4.5.5. Consider the system
∑

τ , ∀τ ∈ {1, 2, . . . , N}, with p1 < m and Np1 +

p2 > Nm. Assume that the defining matrices {A, B, Cf , Df , Cs, Ds} accept generic values
and the system matrix Mτ (Z), has full column normal rank. Then Mτ (Z) has zeros at
Z = 0 with multiplicity equal to (N − τ)(m− p1).

Proof. Using the results of Theorem 4.5.4 and Lemma 4.4.8 the claimed statement readily

follows.

In the above results we treated the case where the normal rank of Mτ (Z) is equal to its

number of columns. Now, we study the scenario where Mτ (Z) has less than full-column
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rank.

Theorem 4.5.6. Consider the system
∑

τ , τ ∈ {1, 2, . . . , N}, with p1 < m, Np1 + p2 >

Nm and generic values of the defining matrices {A, B, Cf , Cs, Df , Ds}. Suppose that
Mτ (Z) has less than full-column normal rank. Then Mτ (Z) has zeros at Z = ∞ with
multiplicity equal to max{0, n− (N − τ)(m− p1)}.

Proof. Under the assumption made in the theorem statement the normal rank of Mτ (Z)

is precisely 2n+m+ (N − 1)p1 (See Lemma 4.4.8). Moreover, with help of Definition

4.3.1 the multiplicity of zeros at infinity for the system matrix Mτ (Z) is equal to

nrankMτ (Z)− n− rankDτ = n+m+ (N − 1)p1 − rankDτ .

Using the same argument provided in the previous proposition one can easily observe

that rankDτ = (N − τ + 1)m+ (τ − 1)p1. Hence, the multiplicity of zeros for the system

matrix Mτ (Z) at infinity is max{0, n− (N − τ)(m− p1)}.

Corollary 4.5.7. Consider the system
∑

τ , τ ∈ {1, 2, . . . , N}, with p1 < m, Np1+p2 > Nm

and generic values of the defining matrices {A, B, Cf , Cs, Df , Ds}. Suppose that Mτ (Z)

has less than full-column normal rank. Then Mτ (Z) has zeros at Z = 0 with multiplicity
equal to max{0, n− (τ − 1)(m− p1)}.

Proof. Using the results of Theorem 4.5.6 and Lemma 4.4.8 the claim of this corollary is

immediate.

Remark 4.5.8. The above results reveal that, if the matricesA, B, Cf , Df , Cs, Ds assume

generic values with p1 < m and Np1 + p2 > Nm, then when τ = 1 all zeros are at the

origin and no zero are at infinity; on the other hand, when τ = N all zeros are at infinity

and there are no zeros at the origin.

So far we have examined the zero properties of blocked systems for the choice p1 < m.

Now, we consider the case p1 = m. We first give attention to the zero properties of the

blocked system
∑

τ at Z = 0 and then at Z =∞. Let us consider a submatrix of Mτ (Z),

τ ∈ {1, 2, . . . , N}, that is

Mf (Z) :=

[
ZI −A −B
C D

]
. (4.54)

where C denotes the first Np1 rows of the matrix Cτ , τ ∈ {1, 2, . . . , N}, and D is the

Np1 × Nm square matrix defined using the top Np1 rows of Dτ , τ ∈ {1, 2, . . . , N}.
Finally, A = A1 and B = B1.
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Proposition 4.5.9. For a generic choice of the matrices {A, B, Cf , Df}, p1 = m, the
system matrix of Mf (0) has full rank.

Proof. We use a contradiction to prove the theorem statement. Assume that the system

matrix Mf (0) has rank less than full rank; then using the decomposition originally

provided in (Zamani et al., 2011), we can write

[
−A −B
C D

]
=



−A 0 . . . 0 −B
0 −Im 0 . . . 0
... 0

. . .

0 . . . 0 −Im 0

Cf 0 . . . 0 Df


. . .



−A 0 −B 0 . . . 0

0 −Im 0 0 . . . 0

Cf 0 Df

0 . . . 0 −Im
...

. . .

0 −Im




−A −B 0 . . . 0

Cf Df

0 −Im
...

. . .

0 −Im


.

(4.55)

With each matrix in the product being square, then the matrix[
−A −B
Cf Df

]

attains rank less than full rank for a set of generic matrices A, B, Cf and Df , which is a

contradiction.

Theorem 4.5.10. For a generic choice of the matrices {A, B, Cf , Cs, Df , Ds} with p1 =

m the system
∑

τ , τ ∈ {1, 2, . . . , N}, has no zero at Z = 0

Proof. With the help of the above proposition, the result is immediate.

To complete this part of the analysis we provide the following result for infinite zeros.
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Theorem 4.5.11. Consider the system
∑

τ , ∀τ ∈ {1, . . . , N}, with p1 = m. Then for
generic values of the defining matrices {A, B, Cf , Df , Cs, Ds} the system matrix Mτ (Z),
τ ∈ {1, 2 . . . , N} always has no zero at Z =∞.

Proof. The proof is immediate by recalling Lemma 4.5.1.

Several theorems and propositions have been introduced in this chapter about the zero

properties of the system
∑

τ given a generic underlying multirate system. Accordingly,

we summarize results from Theorem 4.4.2 to Theorem 4.5.11 in the table below.

PPPPPPPPPZero
Region

p1 ≥ m p1 < m,
Np1 + p2 > Nm

Finite nonzero zeros No No
Zeros at zero No Zeros can be at these

Zeros at infinity No points depending on τ and n.

Table 4.1: Summarizing Results from Theorem 4.4.2 to Theorem 4.5.11

4.6 Examples and simulations

In order to support the results obtained on the zeros of multirate systems, some examples

and simulations are reported below.

Example 4.6.1. Consider a tall multi-rate system with n = 1, m = 3, N = 2, p1 = 1,

p2 = 5. Let the parameter matrices for the multi-rate system be A = a, B = [b1 b2 b3],

C = [cf>Cs>]>, Cs = [cs1 c
s
2 c

s
3 c

s
4 c

s
5]>, Df = [df1 d

f
2 d

f
3 ] and

Ds =



ds11 ds12 ds13

...
...

...

ds51 ds52 ds53


.
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First, consider τ = 1 and write the associated system matrix as

M1(Z) =



Z − a2 −ab1 −ab2 −ab3 −b1 −b2 −b3
cf df1 df2 df3 0 0 0

cfa cfb1 cfb2 cfb3 df1 df2 df3
cs1a cs1b1 cs1b2 cs1b3 ds11 ds12 ds13

cs2a cs2b1 cs2b2 cs2b3 ds21 ds22 ds23

cs3a cs3b1 cs3b2 cs3b3 ds31 ds32 ds33

cs4a cs4b1 cs4b2 cs4b3 ds41 ds42 ds43

cs5a cs5b1 cs5b2 cs5b3 ds51 ds52 ds53


.

It is clear that the first two rows are linearly independent. Now, consider rows 3 to 8;

they can be written as

cf cf cf cf df1 df2 df3
cs1 cs1 cs1 cs1 ds11 ds12 ds13

cs2 cs2 cs2 cs2 ds21 ds22 ds23

cs3 cs3 cs3 cs3 ds31 ds32 ds33

cs4 cs4 cs4 cs4 ds41 ds42 ds43

cs5 cs5 cs5 cs5 ds51 ds52 ds53


diag (a, b1, b2, b3, I3) := Gdiag (a, b1, b2, b3, I3) .

The matrix G has rank at most 4; hence, with generic parameter matrices the normal

rank of M(Z) equals 6. Furthermore, it is easy to observe that the system matrix has a

zero at Z = 0. However, for τ = 2 we can write the system matrix M2(Z) as

M2(Z) =



Z − a2 −ab1 −ab2 −ab3 −b1 −b2 −b3
cf df1 df2 df3 0 0 0

cfa cfb1 cfb2 cfb3 df1 df2 df3
cs1 ds11 ds12 ds13 0 0 0

cs2 ds21 ds22 ds23 0 0 0

cs3 ds31 ds32 ds33 0 0 0

cs4 ds41 ds42 ds43 0 0 0

cs5 ds51 ds52 ds53 0 0 0


.

Observe that the normal rank of the system matrix is still 6 and the matrix D2 (with its

nonzero entries assuming generic values) has rank 4; hence, the only zero of the system

matrix is now at infinity.

In the following we present some numerical simulations. In each experiment, the
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parameter matrices were generated using random numbers. To keep numerical stability,

we generated diagonal matrices A, with random diagonal elements picked in the interval

[0.5, 1]. This choice is motivated by the fact that, if N is large, then the elements of

AN may diverge or converge to zero exponentially fast. The normal rank of M(Z) is

computed as rankM(Z0), Z0 6= 0.

Example 4.6.2. Consider the following system, with

n = 3 m = 3 p1 = 1 p2 = 10 N = 4

and τ = {1, . . . , 4}. The corresponding matrices, for τ = 4 are

A =

0.9865 0 0

0 0.8245 0

0 0 0.9002

 B =

0.4538 0.0835 0.3909

0.4324 0.1332 0.8314

0.8253 0.1734 0.8034



C =

[
Cf

Cs

]
=



0.1814 1.1978 1.5806

2.0840 0.9906 4.7137

3.2843 2.4484 2.0887

3.1399 1.6975 4.9153

1.4599 4.7582 1.5073

2.1583 4.6017 3.5055

0.0774 0.2634 3.3317

4.9203 3.6893 2.6956

0.8358 1.3456 3.4905

0.5311 2.1142 3.3326

1.8620 2.7394 0.8907



D =

[
Df

Ds

]
=



1.0241 7.9926 1.3690

0.1304 2.5791 1.0072

2.2448 1.5051 1.1618

3.5275 0.7637 2.4684

2.6767 1.7130 1.0611

0.7617 1.9281 3.2975

1.4757 0.4824 3.9307

1.8429 2.3580 2.9210

3.9266 0.9048 1.3755

0.6256 1.5385 2.3363

3.4221 2.3319 0.4311


The normal rank of M(Z) turns out to be 12, while the number of columns is 15. For

different values of τ we obtain the following zeros.
XXXXXXXXXXXXXXvalue of τ

# of zeros
0 ∞

1 3 0

2 1 0

3 0 1

4 0 3

In this example, n < (N − 1)(m − p1) = 6, hence the system matrix is not full normal

rank.
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Example 4.6.3. In this example, we consider several systems where we keep the same

dimensions considered in the previous example and increase n.

Case n = 4
XXXXXXXXXXXXXXvalue of τ

# of zeros
0 ∞

1 4 0

2 2 0

3 0 2

4 0 4

The normal rank of M(Z) turns out to be 14, while the number of columns is 16.

Case n = 5
XXXXXXXXXXXXXXvalue of τ

# of zeros
0 ∞

1 5 0

2 3 1

3 1 3

4 0 5

The normal rank of M(Z) turns out to be 16, while the number of columns is 17.

Case n = 6
XXXXXXXXXXXXXXvalue of τ

# of zeros
0 ∞

1 6 0

2 4 2

3 2 4

4 0 6

The normal rank of M(Z) turns out to be 18, while the number of columns is 18. The

matrix is full normal rank, as n = (N − 1)(m− p1).

Case n = 7.
XXXXXXXXXXXXXXvalue of τ

# of zeros
0 ∞

1 6 0

2 4 2

3 2 4

4 0 6
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Note that now n > (N−1)(m−p1), but the maximum number of zeros is (N−1)(m−p1) =

6. Moreover, the position of the zeros is the same of the case n = 6. For n > 7, the

position of the zeros remain the same.

Example 4.6.4. We report another set of systems, where m = 4, p1 = 2, p2 = 22, N = 6

and n increases from 8 to 12.

Case n = 8.
XXXXXXXXXXXXXXvalue of τ

# of zeros
0 ∞

1 8 0

2 6 0

3 4 2

4 2 4

5 0 6

6 0 8

The normal rank of M(Z) turns out to be 30, while the number of columns is 32.

Case n = 9.
XXXXXXXXXXXXXXvalue of τ

# of zeros
0 ∞

1 9 0

2 7 1

3 5 3

4 3 5

5 1 7

6 0 9

The normal rank of M(Z) turns out to be 32, while the number of columns is 33.

Case n = 10.
XXXXXXXXXXXXXXvalue of τ

# of zeros
0 ∞

1 10 0

2 8 2

3 6 4

4 4 6

5 2 8

6 0 10
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The normal rank of M(Z) turns out to be 34, as the number of columns, since n =

(N − 1)(m − p1). The cases n = 11 and n = 12 have the same properties of the case

n = 10.

Example 4.6.5. In this example we consider a system with parameters dimensions

n = 5 m = 5 p1 = 3 p2 = 24 N = 8 .

The resulting zeros at the origin and infinity are reported below
XXXXXXXXXXXXXXvalue of τ

# of zeros
0 ∞

1 5 0

2 3 0

3 1 0

4 0 0

5 0 0

6 0 1

7 0 3

8 0 5

This example suggests that, if n is suitably smaller than the threshold (N − 1)(m− p1),

then there may be some values of τ (always different from 1 and N) for which the system∑
τ is completely zero-free.



5
Identifiability of errors-in-variables models

5.1 Introduction

The identification of errors-in-variables (EIV) models is a “classical” subject which has

been studied in the statistical literature since the beginning of the last century and has

generated many papers, among which (Gini, 1921), (Frisch, 1934), (Madansky, 1959),

(Kalman, 1982), initially dealing with static EIV models only. In the following years

attention has been shifting more towards dynamic EIV models and their use in system

identification, (Söderström, 1981), (Anderson, 1985) since these models provide a more

realistic description of the situation encountered in many practical instances where the

input signal may also be affected by “noise” or by random errors of various kinds. This in

contrast to the use of standard ARMAX or Box-Jenkins models, where the input signal is

invariably supposed to be measured exactly by the data acquisition device.

Several techniques have been proposed for the analysis and the identification of

dynamic EIV models; see e.g. (Fernando & Nicholson, 1985), (Stoica et al., 1995),

(Beghelli et al., 1990), (Zheng & Feng, 1992), (Tugnait, 1992), (Zheng, 1999), (Song

& Chen, 2008). Yet, a main difficulty with EIV models is that they are generally non-

identifiable. This is by now well-known, in particular for dynamic EIV models, and many

papers have appeared dealing with identifiability of general dynamic EIV model structure
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such as (Anderson & Deistler, 1984), (Solo, 1986), (Picci & Pinzoni, 1986), (Deistler &

Anderson, 1989), (Schachermayer & Deistler, 1998), (Scherrer & Deistler, 1998) and

(Aguero & Goodwin, 2008). In order to overcome this structural difficulty, dynamic EIV

models with white measurement errors have recently been considered and identification

of these models is now a rather active research subject. Although the model class is

rather restricted because of the assumption of white measurement errors, it appear to be

a natural and tractable generalization of ARMAX or output-error (OE) models, where the

standard identification techniques may generalize naturally. Indeed this restricted model

class turns out to be “generically identifiable” (where the attribute “generic” can here be

given an intuitive meaning of “almost always”). Yet, it has been pointed out by (Stoica &

Nehorai, 1987) and (Picci et al., 1993) that in certain circumstances there may be two
EIV models which are indistinguishable from external input-output experiments. This

lack of (global) identifiability, although it should hopefully almost never be encountered

in practice, is a fact which needs better understanding. For several reasons, the first being

obviously the desire of guaranteeing the well-posedness of the parameter estimation

phase in all circumstances. The second is that in statistical estimation it is desirable to

know when the estimation problem is near to an ill-conditioning situation. For it is a

general fact in system identification that the variance of parameter estimates is related

to certain indices measuring the degree of identifiability (for example the condition

number of the Fisher matrix) and being “close” to non-identifiability may lead to poor or

unreliable estimates. Further, we note that a motivation for our work is also the fact that

the study of identification algorithms of dynamic EIV models with white measurement

errors has greatly advanced in recent years, and the proposed techniques seem to be

quite mature to become standard tools in applications, see e.g. (Söderström, 2007),

(Söderström et al., 2002), (Söderström et al., 2003), (Chen & Yang, 2005), (Guidorzi &

Diversi, 2009), (Diversi & Guidorzi, 2009) and (Söderström et al., 2009).

For these, besides other more “theoretical” reasons, we believe that a better under-

standing of identifiability of EIV models with white measurement errors is necessary. In

particular we need better understanding of when we may be close to a situation where

two different models may describe the data equally well.

Brief review of the literature

Several papers are concerned with the study of the identifiability of EIV models. Their

contributions to the literature can be divided in two categories. The first one addresses

the problem of EIV models with colored measurement errors and the main results are

focused on describing the classes of equivalent EIV models given a statistical input-output
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description (see (Schachermayer & Deistler, 1998), (Scherrer & Deistler, 1998) and

(Aguero & Goodwin, 2008)).

The second category includes EIV models with white measurement errors (also known

as Frisch scheme). Here, the identifiability conditions found in the literature, e.g. in

(Anderson & Deistler, 1984), (Stoica & Nehorai, 1987) (Castaldi & Soverini, 1996)

guarantee uniqueness of the EIV description under certain coprimality assumptions

on the (rational) transfer function of the “true” system and the spectral density of

the “true” input. Unfortunately these conditions are not testable since they concern

precisely the unknowns of the problem which are not available to the experimenter.

Ideally, identifiability conditions should instead be expressible in terms of the “external”

description of the observable signals; namely their joint power spectral densities.

Contribution of this work

In this chapter we take precisely the latter point of view. We shall provide conditions

on the spectral densities of the external (measurable) signals under which a SISO EIV

structure with white measurement noises is non-identifiable. Our conditions state that

a necessary and “almost” sufficient condition for non-identifiability is the existence of

a linear affine relation between the spectra of the two external signals. The “almost”

sufficiency of this condition has to do with the nonlinear constraint of positivity of the

variances of the additive noises. We provide conditions on the parameters of the affine

relation under which the condition is actually also sufficient. Furthermore, we provide

some numerical example which illustrate our conditions for non-identifiability and we

describe a possible application in a simulated real scenario.

It is worth remarking that, in contrast to the existing literature, the identifiability

conditions which will be described in this chapter do not require to assume any fixed

order polynomial structure for the input and output spectra.

5.2 Background on dynamic errors-in-variables models

Consider a pair of real scalar second-order stationary zero-mean discrete-time stochastic

processes (y, u), whose joint spectral density is a rational matrix function

S(z) =

[
Sy(z) Syu(z)

Suy(z) Su(z)

]
, z ∈ C , (5.1)
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which will be assumed positive definite almost everywhere on the unit circle {|z| = 1}.
Recall that by Hermitian symmetry of the spectrum we have Syu(z) = Suy(z−1).

The background motivation for EIV models is to describe the pair (y, u) as “measure-

ments corrupted by additive noise” of two “true” (unobservable) stochastic processes

denoted x and z, which are related by some time-invariant linear relation described by

a rational transfer function G(z), z ∈ C. For the moment we shall just require that G

should be such that the following stochastic integral is well defined:

z(t) =

∫ π

−π
ejθtG(ejθ) dx̂(ejθ) , (5.2)

where x̂(ejθ) is the spectral representative of x, (Rozanov, 1967, p. 34). This relation

is customarily written in symbolic form as z(t) = G(z)x(t). We shall therefore make no

assumptions on G(z) like causality, stability or other. The model can then be described by

the equations (see Figure 5.1):{
y(t) = G(z)x(t) + ey(t)

u(t) = x(t) + eu(t)
. (5.3)

where the processes eu(t) and ey(t) called “measurement noises” are mutually uncorre-

lated and uncorrelated also with the process x(t).

G(z)

eu

x

u

z

ey

y

+

+

Figure 5.1: Scheme of EIV model.

Note that even in the case when G(z) is assumed causal, the “causal” appearance

of (5.3) is actually misleading. According to the standard notions of causality in the

literature (Granger, 1963; Caines, 1988) it is in fact generally not true that y(t) is caused
by u(t), as it is easy to check that in general there is feedback from one variable to the

other. The pair of processes y(t) and u(t) is feedback-free if and only if the condition

E [y(s)|H(u)] = E [y(s)|H−t (u)] (5.4)

is satisfied (Gevers & Anderson, 1981). Clearly, in the EIV case, writing

y(t) = G(z)u(t)−G(z)eu(t) + ey(t) , (5.5)
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it is easy to check that condition (5.6) generically does not hold. Hence, from an external

point of view, the pair (y(t), u(t)), although generated by the model (5.3), could be

described equally well by the feedback model (Figure 5.2){
y(t) = F (z)u(t) + L(z)e1(t)

u(t) = H(z)y(t) +K(z)e2(t)
, (5.6)

where F (z) is strictly causal, H(z), L(z) and K(z) are causal and e1(t), e2(t) are white

noise such that E [e1(t)e2(s)] = 0, for all t, s ∈ Z. We shall nevertheless agree to call u

K(z)
e2

e1

u
+ F (z) +

H(z)

L(z)

y

Figure 5.2: Scheme of a feedback model.

the input and y the output processes.

As it is well-known (Anderson & Deistler, 1984), any joint spectral density matrix

S(z) admits decompositions of the form, S(z) = Ŝ(z) + S̃(z) where the “true” spectrum

Ŝ(z) has rank one almost everywhere on the unit circle, that is

Sz(z)Sx(z) = Syu(z)Suy(z) ∀z : |z| = 1 (5.7)

and S̃(z) is a diagonal spectral density. It is then easy to see that by defining new variables

x, z, eu, ey such that

Ŝ(z) =

[
Sz(z) Szx(z)

Sxz(z) Sx(z)

]
, S̃(z) =

[
Sey(z) 0

0 Seu(z)

]
, (5.8)

where Szx(z) := Syu(z), one has indeed a representation of the form (5.3) with G(z) :=

Szx(z)/Sx(z). Hence all joint spectra (5.1) admit EIV representations.

In this dissertation however we shall only consider EIV models with white measurement
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errors, where

Sey(z) = σ2
y , Seu(z) = σ2

u (5.9)

and refer to them simply as “EIV models” hereafter. Clearly not all joint spectra admit

EIV representations of this kind.

The family of EIV models with white measurement errors

For brevity, we shall say that an EIV model (5.3) is a realization of the joint spectrum

of the (y, u) processes it represents. This joint spectrum is in a sense an “external”

description of the (y, u) processes which is uniquely attached to them, while specifying

an EIV description requires the introduction of additional nonobservable variables - the

latent variables - so that there are in general many EIV realizations of the same spectrum.

A basic identifiability question of EIV models that has been studied in the literature and

we shall also address in this chapter is how many different EIV models can realize the

same rational joint spectrum (5.1).

A first observation to be made is that, given the joint spectrum, the family of EIV

models realizing it can be parametrized in terms of the two variances (σ2
y, σ

2
u), subjected

to a non-negativity plus a rank one condition which we illustrate below. Letting

Ry(z) := Sy(z)− Syu(z)Suy(z)

Su(z)

Ru(z) := Su(z)− Suy(z)Syu(z)

Sy(z)
,

(5.10)

the non-negativity constraint (see e.g. (Anderson, 1985)) is

0 ≤ σ2
y ≤ R̄y := min{Ry(z), z : |z| = 1}

0 ≤ σ2
u ≤ R̄u := min{Ru(z), z : |z| = 1} .

(5.11)

Given (σ2
y, σ

2
u), satisfying (5.11), let Sz(z) := Sy(z)− σ2

y and Sx(z) := Su(z)− σ2
u; then

Sz(z) and Sx(z) are bona-fide spectral densities since they certainly satisfy the non-

negativity constraints, Sy(z)−σ2
y ≥ 0 and Su(z)−σ2

u ≥ 0 on the unit circle { z : |z| = 1}.
The rank one constraint comes from rewriting (5.7) as

(Sy(z)− σ2
y)(Su(z)− σ2

u) = Syu(z)Suy(z) { z : |z| = 1} . (5.12)

It follows from a well-known result in the literature (see e.g. (Anderson, 1985) and (Picci

& Pinzoni, 1986)) that if the noise variances σ2
y, σ

2
u satisfy these two constraints then

they are valid noise variances of an EIV model realizing the given spectrum.
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Since the very definition of an EIV model entails that the cross spectral density of z

and x must coincide with that of y and u, we can obtain G(z) from

G(z) =
Szx(z)

Sx(z)
=

Syu(z)

Su(z)− σ2
u

,

the reciprocal formula providing the symmetric representation of x in terms of z. Our

problem then reduces to investigating how many pairs (σ2
y, σ

2
u) can lead to EIV realiza-

tions of a given joint spectral density. To avoid trivial pathological cases of non uniqueness,

from now on we shall assume that Syu(z)Suy(z) is not identically zero and that neither y

nor u are white noise processes.

The following result (Stoica & Nehorai, 1987; Picci et al., 1993) lies at the background of

our investigations.

Theorem 5.2.1. There are at most two pairs of noise variances (σ2
y , σ

2
u) which satisfy

condition (5.12). Equivalently, there are at most two EIV models (with white measurement
errors) which are compatible with the joint spectrum (5.1).

For ease of reference we also recall here the following obvious fact.

Lemma 5.2.2. For every variance pair (σ2
y , σ

2
u) satisfying the rank one condition (5.12),

one of the two variance values uniquely determines the value of the other.

5.3 Conditions for non-identifiability

Conditions under which two EIV models exist both describing the same joint spectrum

(non-identifiability), have been described in (Stoica & Nehorai, 1987). However these

conditions are given in terms of the unknown signal spectra and transfer function and

are not testable. It is therefore important to characterize this occurrence in terms of the

available “external” spectral data.

A preliminary condition is given in the following Lemma. An explicit necessary condition

will follow and be given in Theorem 5.3.2 below.

Lemma 5.3.1. If the “true” spectra Sz(z) and Sx(z) have common zeros then the model is
identifiable.

Proof. Assume that the “true” spectra Sz(z) and Sx(z) are parameterized by the noise

variance pair (σ′2y , σ
′2
u ). Suppose now that there exists another pair (σ′′2y , σ′′2u ) leading
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to a valid EIV model. We shall show that (σ′2y , σ
′2
u ) = (σ′′2y , σ′′2u ). Let, without loss of

generality, there be one common zero, z0. Then it must be

0 = (Sy(z0)− σ′2y )(Su(z0)− σ′2u ) =

= Syu(z0)Suy(z0) = (Sy(z0)− σ′′2y )(Su(z0)− σ′′2u ) ,

which implies that (Sy(z0) − σ′′2y ) = 0 or (Su(z0) − σ′′2u ) = 0. In the first case we must

have (Sy(z0)− σ′′2y ) = 0 = (Sy(z0)− σ′2y ), and so σ′y = σ′′y. Recalling Lemma 5.2.2 it also

follows that σ′u = σ′′u. Similarly (Su(z0)− σ′′2u ) = 0 implies the claim.

We can now state our characterization of non identifiability.

Theorem 5.3.2. If there are two EIV models realizing the same joint spectrum, then there
are constants L > 0 and K such that the following linear-affine relation holds

Sy(z) = LSu(z) +K . (5.13)

Assume the pair (σ′2y , σ
′2
u ) parametrizes an EIV realization with true signal spectra Sz(z), Sx(z).

Then if there is another model realizing the same joint spectrum, it must have the following
structure:

Sy(z) = LSx(z) + σ′′2y , Su(z) = L−1Sz(z) + σ′′2u , (5.14)

so that one model is obtained by switching and renormalizing the true spectra of the other.

Proof. Assume there are two distinct variance pairs (σ′2y , σ
′2
u ) and (σ′′2y , σ′′2u ) describing

two EIV realizations of the same joint spectrum. From equation (5.12) it must hold that

(Sy(z)− σ′2y )(Su(z)− σ′2u ) = Syu(z)Suy(z)

(Sy(z)− σ′′2y )(Su(z)− σ′′2u ) = Syu(z)Suy(z) .
(5.15)

are simultaneously true. Subtracting the second equation from the first we obtain

(σ′′2u − σ′2u )Sy(z) = (σ′2y − σ′′2y )Su(z) + (σ′′2y σ
′′2
u − σ′2y σ′2u ) . (5.16)

Being (σ′′2u − σ′2u ) 6= 0 we can rewrite (5.16) as

Sy(z) =
σ′2y − σ′′2y
σ′′2u − σ′2u

Su(z) +
σ′′2y σ

′′2
u − σ′2y σ′2u

σ′′2u − σ′2u
, (5.17)

which, denoting

L =
σ′2y − σ′′2y
σ′′2u − σ′2u

, K =
σ′′2y σ

′′2
u − σ′2y σ′2u

σ′′2u − σ′2u
, (5.18)
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leads to (5.13). From (5.16) we can also obtain

Sy(z) =
σ′2y − σ′′2y
σ′′2u − σ′2u

(Su(z)− σ′2u ) + σ′′2y = LSx(z) + σ′′2y

and Su(z) = L−1Sz(z) + σ′′2u . Finally, that L is always positive follows since, as pointed

out in (Anderson & Deistler, 1984), the admissible variance pairs lay on a hyperbola.

Hence whenever σ′′2y > σ′2y , necessarily σ′′2u < σ′2u , and conversely. One can then see that

for any variance pair determining two (non-identifiable) EIV models one has L > 0.

Sufficiency of the linear-affine relation

Theorem 5.3.2 provides a nice and clean necessary condition for non-identifiability of

EIV models. In this section we shall take up the question of assessing when the linear-

affine relation (5.13) is also sufficient for non-identifiability. Naturally, we shall have to

assume that the joint spectrum (5.1) admits EIV realizations. We shall look for conditions

depending on the parameters K and L alone and not on the model variances. We shall

first study a particular case.

EIV models with an All-Pass transfer function

Consider EIV models with an all-pass transfer function, namely

G(z) =
√
L

∏
i(z − zi)∏
i(z − z̄−1

i )
, L > 0 , (5.19)

where the zeros zi may be repeated. It is easy to check that in this case the linear affine

relation is satisfied. In fact, from G(z)G∗(z) = L, the true spectra must satisfy

Sz(z) = G(z)G∗(z)Sx(z) = LSx(z) (5.20)

and since Sy(z) = Sz(z)+σ2
y, summing σ2

y to both members one gets Sy(z) = LSx(z)+σ2
y.

Further recalling that Sx(z) = Su(z)− σ2
u, we arrive at

Sy(z) = LSu(z)− Lσ2
u + σ2

y = LSu(z) +K . (5.21)

Hence EIV models with an all-pass transfer function satisfy the linear-affine relation. How-

ever it is easy to check that they are identifiable. In fact, since Sz(z) = G(z)G∗(z)Sx(z) =

LSx(z), the “true” spectra have the same zeros. From Lemma 5.3.1, we have identifi-

ability. These models are however quite special; in a sense they correspond to a limit
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situation, as explained in the following remark.

Remark 5.3.3. As it follows from equation (5.14), Theorem 5.3.2, for non-identifiable

EIV models, the spectrum Sy(z) can be written Sy(z) = LSx(z) + σ′′2y , but for all-pass

transfer functions one also has Sz(z) = LSx(z) and therefore σ′′2y = σ′2y . For this reason

even if formally there are two EIV realizations with the same all-pass transfer function,

the two realizations actually coincide.

Checking non-identifiability

Let us consider a joint spectrum satisfying the linear-affine relation (5.13) admitting an

EIV realization corresponding to a variance pair (σ′2y , σ
′2
u ). By defining Vy := K + Lσ′2u

and substituting Su(z) = Sx(z) + σ′2u into (5.13), one gets a candidate alternative model

Sy(z) = LSx(z) + Vy , (5.22)

which would prove non-identifiability just in case Vy turns out to be a valid variance σ′′2y .

A similar argument leads to a candidate companion equation

Su(z) = L−1Sz(z) + Vu , Vu := L−1(σ′2y −K) . (5.23)

Hence the question of proving existence of a second valid EIV model reduces to discussing

what range of parameters L and K guarantee that Vy in (5.22) is a valid output noise

variance, that is, such that the corresponding variance parameters σ2
y and σ2

u satisfy the

positivity condition (5.11). It is actually easy to show that if one of the two variances,

say σ2
y, satisfies the inequality σ2

y ∈ [0 , R̄y], then the other inequality is automatically

satisfied. For this reason we shall henceforth concentrate on σ2
y. We may distinguish

three different situations:

• Either Vy < 0 or Vy > R̄y: in this case Vy cannot be interpreted as a noise variance

and (5.22) cannot give rise to a second EIV model. The given model is identifiable.

• Vy = σ′2y : by lemma 5.2.2 it must also hold that V 2
u = σ′2u . This is the case in which

the two EIV models coincide and in fact G(z) is all-pass with gain L. The model is

identifiable.

• 0 ≤ Vy ≤ R̄y , Vy 6= σ′2y : in this case Vy can be interpreted as output noise variance;

i.e. Vy = σ′′2y . The decomposition

Sy(z) = LSx(z) + σ′′2y , σ′′2y = K + Lσ′2u

Su(z) = L−1Sz(z) + σ′′2u , σ′′2u = L−1(σ′2y −K)
(5.24)
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is another valid EIV realization of the given joint spectrum. Therefore the model is

non-identifiable.

Figure 5.3 provides a graphical description of the three situations.

0

0

σ2
u

σ
2 y

Ry

non−identifiable: 
two compatible

decompositions  

identifiable:
only one 

compatible 
decomposition

Ru

all−pass: two
coincident

decompositions

Figure 5.3: Graphical interpretation of identifiability of EIV models.

Checking non-identifiability in case of an unknown true model

Obviously when one of the variance parameters σ2
y, σ

2
u of an EIV model is known, it is

trivial to check if K̃ lies in the feasible interval [0, R̄y]. There may be situations however

where it may be a priori known (perhaps from prior physical or engineering knowledge

about the system) that there is a true EIV model generating the data but its variance

parameters are unknown. In this case we may like to check a priori if Vy belongs to the

feasible interval just on the basis of the parameters L and K of the linear-affine relation

(which can be estimated from frequency domain data say by linear regression). Since Vy
is a function also of the unknown value σ′2u , we will in general be able to obtain conditions

providing only partial answers. Use of these conditions is illustrated in the examples of

Section 5.4.

Lemma 5.3.4. Assume the linear-affine relation (5.13) holds and let R̄y and R̄u be the
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upper limits for the noise variances as defined in (5.11). Then:

|K| ≥ |R̄y − LR̄u| and sgnK = sgn(R̄y − LR̄u) . (5.25)

Moreover, if K = R̄y − LR̄u, K 6= 0, then either σ′2y = R̄y, or σ′2u = R̄u .

Proof. Define the function α(z) by

α(z) =
Sx(z)Sz(z)

Su(z)Sy(z)
. (5.26)

Note that α(z) : [−π, π] → [0, 1[ being the ratio of two nonnegative functions (Sx(z)

and Sz(z)) and the product of two strictly positive functions (Sy(z) and Su(z)) which

is always greater than the numerator. Recalling (5.7) and (5.11), we can rewrite the

quantity R̄y − LR̄u as

min
z:|z|=1

{(1− α(z))Sy(z)} − L min
z:|z|=1

{(1− α(z))Su(z)} (5.27)

and, by substituting Sy(z) = LSu(z) +K

min
z:|z|=1

{(1− α(z))LSu(z) + (1− α(z))K} − min
z:|z|=1

{(1− α(z))LSu(z)} . (5.28)

Now let us consider the case K > 0; we shall show that the inequality R̄y − LR̄u > K

cannot be satisfied. Since min{f(x) + C} = min{f(x)}+ C, we can extract the constant

K from the first term of (5.28) and rewrite the inequality as

min
z:|z|=1

{(1− α(z))LSu(z)− α(z)K} − min
z:|z|=1

{(1− α(z))LSu(z)} > 0 ,

which cannot hold since the first term is always not greater than the second. Next, to

show that R̄y−LR̄u > 0, we shall use again (5.28), getting an inequality which is always

true given that K > 0. Analogous considerations can be done for K < 0. For the case

K = 0, recalling (5.28) it easily turns out that R̄y − LR̄u = 0.

Finally, let K 6= 0 and K = R̄y − LR̄u. This equality can be written

min
z:|z|=1

{(1− α(z))LSu(z)− α(z)K} − min
z:|z|=1

{(1− α(z))LSu(z)} = 0 .

Since K 6= 0 by assumption, this equality can only be satisfied if α(z) vanishes on the

unit circle, namely if there are z0, |z0| = 1, such that α(z0) = 0. Since α(z) can vanish on

the unit circle if and only if at least one of the two spectra in the numerator vanish, there
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must be a z0, |z0| = 1, such that either Sx(z0) = 0 or Sz(z0) = 0 , or both. This amounts

to saying that either σ′2u = R̄u or σ′2y = R̄y, or both equalities must be true.

Remark 5.3.5. In the proof we have excluded the presence of zeros on the unit circle of

either Sy(z) or Su(z). The presence of such zeros would in fact imply either that σ2
y = 0

(i.e. Sz(z) = Sy(z)) or σ2
u = 0 (and Sx(z) = Su(z)). In both cases identifiability analysis

would be superfluous.

Theorem 5.3.6. Assume the joint spectrum (5.1) admits EIV realizations and that the
linear-affine relation (5.13) is satisfied. Assume also that there is no all-pass relation
between the true processes. Then,

• if K > R̄y or K < −LR̄u we have identifiability;

• if K = R̄y − LR̄u we have non-identifiability.

The situation is described by the figure below.

0

0R̄y − LR̄u

R̄y − LR̄u R̄y

−LR̄u

K ≥ 0

K < 0

K

K

identifiable

identifiable

uncertain

uncertain non-id.

non-id.

Figure 5.4: Identifiability for various values of K.

Proof. As noted earlier, for identifiability Vy must be such that

K + Lσ′2u < 0 ∨ K + Lσ′2u > R̄y ∀σ′2u ∈ [0, R̄u] . (5.29)

As σ′2u ≤ R̄u, the first condition is certainly satisfied if K < −LR̄u, while the second,

since Lσ′2u ≥ 0, is surely true whenever K > R̄y.

When −LR̄u ≤ K ≤ R̄y we may discuss three possible subcases.

First case: K > 0. Because of Lemma 5.3.4, the only admissible values for K are

in the interval [R̄y − LR̄u, R̄y], with R̄y − LR̄u > 0. For K 6= R̄y − LR̄u we cannot

say anything about identifiability. If K = R̄y − LR̄u, by Lemma 5.3.4 we have either

σ′2y = R̄y or σ′2u = R̄u. If σ′2u = R̄u, being Vy = K +Lσ′2u , with K = R̄y−LR̄u, we obtain

Vy = R̄y, which is an admissible value for σ′′2y . Hence we have non-identifiability. A

similar argument can be used in case σ′2y = R̄y, in which case we obtain σ′′2u = R̄u.
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Second case: K < 0. Then according to Lemma 5.3.4, the admissible values for K

are in the interval [−LR̄u, R̄y − LR̄u]. By a similar analysis as in the previous case

(K > 0), when K 6= R̄y − LR̄u we cannot say anything about identifiability, while for

K = R̄y − LR̄u we have non identifiability, since either σ′′2y = R̄y or σ′′2u = R̄u.

Third case: K = 0. In this case by Lemma 5.3.4, one has R̄y = LR̄u. Since in this case

Vy = Lσ′2u , given that Lσ′2u ≤ LR̄u, we see that Vy ≤ R̄y and hence Vy can be interpreted

as the output error variance. Therefore in this case we have non identifiability.

5.4 Numerical Experiments

To illustrate the results of this chapter we shall discuss some examples.

Example 1: a non-identifiable model

Consider the following power spectra:

Sy(z) =
0.11z2 − 4.864z − 14.57− 4.864z−1 + 0.11z−2

z2 − 0.138z − 2.83− 0.138z−1 + z−2

Su(z) =
0.01z2 − 0.971z − 2.88− 0.971z−1 + 0.01z−2

z2 − 0.138z − 2.83− 0.138z−1 + z−2

Syu(z) =
0.033z4 + 0.026z3 + 0.005z2 − 0.0002z

z4 + 0.2z3 − 0.83z2 − 0.084z + 0.176

also represented in Figure 5.5 (solid line). In this case the input and output spectra satisfy

the linear-affine relation (5.13) with L = 5 e K = 0.06. In order to check identifiability

we use Theorem 5.3.6. This requires a preliminary computation of R̄y and R̄u. For

this example we find R̄y = 2.6521 , R̄u = 0.5184 and in this case we have exactly

K = R̄y −LR̄u. In force of Theorem 5.3.6, the model is non-identifiable. As a check we

may use the geometric method proposed in (Beghelli et al., 1997), interpreting (5.12) as

the intersection of an infinite family of hyperbolas in the plane {σ2
u, σ

2
y}. The intersection

of all these branches in the plane is a point in the plane {σ2
u, σ

2
y} corresponding to the

error variance pairs of candidate EIV models. Points of intersection, lying outside of the

positive orthant do not correspond to valid EIV models. As we can see from Figure 5.6

there are two nonnegative intersections (σ′2u , σ
′2
y ) = (0.3, 2.65) , (σ′′2u , σ

′′2
y ) = (0.52, 1.56)

and we may check that σ′2y = R̄y and σ′′2u = R̄u. According to the analysis made in this

chapter, when K = R̄y − LR̄u, at least one of the true spectra must have zeros on the

unit circle for both EIV models. This can be seen very clearly from Figure 5.5.
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Figure 5.5: Input-output and true spectra for model 1 (dashed line) and model 2 (dotted line),
Example 1.
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Figure 5.6: Intersections of hyperbolas for Example 1.

Example 2: an identifiable model satisfying the linear-affine relation

Assume the input, output and cross spectra are described by

Sy(z) =
−0.2z3 + 30.9z2 − 71.5z − 387.2− 71.3z−1 + 30.9z−2 − 0.2z−3

z3 − 6.35z2 + 14.13z − 34.014 + 14.13z−1 − 6.35z−2 + z−3

Su(z) =
z3 − 10.1z2 − 24.04z − 252.9− 24.04z−1 − 10.1z−2 + z−3

z3 − 6.35z2 + 14.13z − 34.014 + 14.13z−1 − 6.35z−2 + z−3

Syu(z) =
9.29z6 + 4.24z5 − 0.95z4 − 0.32z3 − 0.037z2 + 0.003z + 0.0001

z6 − 0.82z5 + 0.59z4 − 0.25z3 + 0.074z2 − 0.015z + 0.001

and shown in Figure 5.7. We see from the picture that there may be a linear affine

relation between the two spectra. By imposing a relation of the type (5.13), we find

L = 1.8, K = −2. In this case the necessary condition of Theorem 5.3.2 is satisfied.
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Figure 5.7: Input-output spectra and intersection of hyperbolas, Example 2.

However non-identifiability is not guaranteed. According to Theorem 5.3.6, since here

K < 0, we need to check if K < −LR̄u, in which case the model would be identifiable.

Computing R̄u one gets R̄u = 0.902, and so −LR̄u = −1.624. Hence we have K < −LR̄u,

and the model is identifiable. We may in fact check that we have two possible variance

pairs but only one of them, (σ′2u , σ
′2
y ) = (0.5, 0.7) is positive. The other, (σ′′2u , σ

′′2
y ) =

(1.5, −1.1), is not feasible having a negative component. Note that this happens because

σ′′2u > R̄u (the theoretical upper limit).

Example 3: an all-pass transfer function

Assume an all-pass transfer function

G(z) =
√

2
(z − 1.25)(z + 4)

(z − 0.8)(z + 0.25)
, (5.30)

with gain L = G(z)G∗(z) = 2 and noise variances (σ2
u , σ

2
y) = (0.2 , 0.6). Then we must

have Sz(z) = 2Sx(z). Summing to this equation the quantity σ′2y + Lσ′2u and letting

K = σ′2y − Lσ′2u = 0.2 the linear-affine relation between the observable input and output

spectra is obtained. We get the following spectra, whose profile is drawn in Figure 5.8

(left), in which the linear-affine relation is clearly visible.

Sy(z) =
0.4z2 − 2.895z + 8.376− 2.895z−1 + 0.4z−2

z2 − 0.74z + 3.18− 0.74z−1 + z−2

Su(z) =
0.1z2 − 1.373z + 3.87− 1.373z−1 + 0.1z−2

z2 − 0.74z + 3.18− 0.74z−1 + z−2

Syu(z) =
0.447z4 − 0.599z3 − 0.055z2 + 0.124z + 0.009

z4 + 1.5z3 − 1.97z2 − 1.03z − 0.74
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As explained in Sect. 5.3, all-pass models are always identifiable. They however
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Figure 5.8: Input-output spectra and hyperbolas intersection for Example 3.

constitute a limit case, in which there are two coincident EIV representations. Figure 5.8

(right) confirms this fact. We see that in this case all the hyperbolas are tangent in the

unique point corresponding to the (unique) EIV realization of the model. By elementary

geometry we know that a point of tangency among conics must always be a double contact
point.

A simulation experiment

This numerical example simulates an experimental setup. A vector time series realization

of the bivariate process [y(t) u(t) ]> is generated from an EIV model with correlated non-

white additive noise errors obtained as a filtered linear combinations of two uncorrelated

white noises w1 and w2 of unit variance, σ2
wi = 1, according to the scheme

ey(t) =
√
σ2
yF (z)(cy,1w1(t) + cy,2w2(t))

eu(t) =
√
σ2
uF (z)(cu,1w1(t) + cu,2w2(t)) ,

where c2
i,1 + c2

i,2 = 1 and F (z) is a linear FIR filter, whose spectral profile is plotted in

Figure 5.9. The filter introduces a sort of realistic attenuation of the noise spectra at high

frequencies.

From the sample time series of y(t), u(t) the power spectra of the simulated system are

estimated by a standard non parametric method (Welch). These spectra will be called

the “true” or “rough” spectra hereafter. The frequency plots of these spectra are the

solid lines drawn in Figures 5.10 and 5.11, below: Naturally these true spectra do

not comply with the Frisch scheme. One may produce a Frisch scheme approximation
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Figure 5.10: Input-output estimated spectra and their approximations.
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Figure 5.11: Estimated cross–spectrum and its approximation.

which is “best” according to some chosen identification/approximation procedure, see for

example (Söderström, 2007). We come up with an estimated joint spectrum of the Frisch
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type described by 1

Ŝy(z) =
−2.333z + 10.3− 2.333z−1

z + 3.633 + z−1

Ŝu(z) =
−0.25z + 1.705− 0.25z−1

0.3z + 1.09 + 0.3z−1

Ŝyu(z) =
−1.333z2 + 4.667z − 3.333

z2 + 3.633z + 1
(5.31)

The plots of the approximate spectra are the dashed lines in Figures 5.10 and 5.11.

At this point we may want to check for possible non-identifiability. The existence of

a linear-affine relation between the two approximate output spectra (Theorem 5.3.2 )

is tested by fitting a linear regression of Ŝy(ejθ) versus Ŝu(ejθ) for various frequencies.

The regression line is the dashed line shown in Figure 5.12 below. In this case we can
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Figure 5.12: Regression line on Frisch spectra vs rough spectra.

see that the linear regression is quite accurate. We find L = 2.1556 and K = −0.537.

Hence we conclude that there may be another Frisch scheme model compatible with the

joint spectra (5.31). One may argue that at this stage it may be simpler to use a specific

algorithm to get estimates of σ2
y, σ

2
u from the given spectra (5.31), and thereby check

directly for non-uniqueness. Alternatively one may check if the quantities Vy, Vu are

positive and are therefore interpretable as true noise variances. Experimental procedures

of this kind may however be very imprecise and turn out estimates of the model variances

which are affected by noise and ultimately provide wrong answers. For this reason we

shall instead attempt to use the a priori criteria of Theorem 5.3.6 of Section 5.3, which

1As we do not want to be tied up with any specific EIV identification procedure (each of which may give
different estimates) we won’t even mention which method was used in the experiment.
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only depends on the model spectra (5.31) and not on specific variance estimates. We find

R̄y ' 1 R̄u = 0.713 ; (5.32)

and we see that K = R̄y − LR̄u, with good approximation, whence we can conclude,

on the basis of Proposition 5.3.6, that the Frisch model describing the data (5.31) is

non-unique and we have non identifiability. This can also be checked graphically by

intersecting hyperbolas in the plane {σ2
y, σ

2
u} corresponding to different frequencies, see

Figure 5.13 below.
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Figure 5.13: Hyperbolas intersection for the spectra (5.31).

Discussion

Although testing for non-identifiability on the rough (true) spectra does not make sense

since these spectra are in general not realizable by EIV (Frisch) models, still one may

want to see how these tests perform on the rough data in order to get a feeling for the

sensitivity of the procedure.

Running a linear regression of the rough spectrum Sy(z) on Su(z), we obtain slightly

different values of L and K, namely L = 2.1572, K = −0.5706, and the straight line gives

an average error of fit of the linear approximation Y := LSu(z) +K versus the measured

output spectrum,

e =
1√
N
‖Y − Sy(z)‖2 = 0.0463 , (5.33)

(N = 4097 is the sample size) which indicates that a linear-affine relation is a good

approximation. Hence in this case we may conclude that there is a warning for possible

presence of two compatible models. Checking for actual non-identifiability cannot
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however be done on rough spectra and requires fitting a realizable spectrum to the data.

The hyperbola intersection test is inconclusive due to sharp differences between rough

and approximate spectra for certain frequencies, see Figure 5.10 and also the computation

of the bounds R̄y and R̄u on the rough spectra may easily become meaningless. This may

happen either because of approximation errors, or also because of noise correlation. In

our case we get the values R̄y = −0.1048 and R̄u = −0.0516, which are negative, and

therefore meaningless.
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6
Nonparametric kernel-based spectrum

estimation

6.1 Introduction

In the previous chapter we introduced new methods to verify the identifiability of errors-

in-variables models. Such methods require the knowledge of the power spectra of the

input-output joint process. Hence, a reliable tool for spectrum estimation becomes of

paramount importance. However, in many other practical problems of time series analysis,

the power spectrum is one of the most intuitive and effective statistical descriptions of the

data. It finds applications e.g. in signal processing, control systems design, econometrics

and mathematical finance (Jenkins & Watts, 1968). For this reason, methods for spectrum

estimation have been studied since the beginning of the last century (Schuster, 1898),

still representing a rather active research area (Byrnes et al., 2000; Ramponi et al., 2009;

Beran & Heiler, 2009; Rosen & Stoffer, 2007).

In this chapter we propose a new approach to spectrum estimation that exploits novel

nonparametric techniques. Our interest is focused on the estimation of regular spectra,

defined as square-summable spectral functions. The latter are suitable to represent the

second order statistical description of most of the processes that belong to the purely

nondeterministic (PND) class.
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Review of the literature

In the literature, two main types of approaches to the problem can be found. The first one

is concerned with parametric methods, where one adopts autoregressive models involving

a finite number of coefficients that need to be estimated from data. Classical examples

are the so-called covariance algorithm (Akaike, 1969) and the Burg spectrum estimation

technique (Stoica & Moses, 1997). Other methods are based on the solutions of the

so-called Yule-Walker equations (Friedlander & Porat, 1984) or on the prediction error

minimization (PEM) paradigm, modeling the time series as ARMA processes. Generally,

parametric techniques may yield satisfactory estimates, but in most of the cases the

estimation process requires the solution of a nonlinear optimization problem possibly

subject to local minima. Moreover, this approach requires model order selection and this

can be an issue. In fact, complexity criteria such as AIC and BIC (see (Akaike, 1974) and

(Schwarz, 1978) respectively) may return unsatisfactory results (Pillonetto & De Nicolao,

2010).

The second family of approaches to spectrum estimation relies upon nonparametric

paradigms. The basic scheme consists of refining a rough estimate of the spectrum

(usually the periodogram) through techniques based on windowed smoothing. Two

standard nonparametric estimators are the Empirical transfer function estimator (Etfe)

and the Spatial Spectrum Estimator (SPA), see e.g. (Ljung, 1999) for details. These

algorithms provide a spectrum estimate with few computational effort even if they require

the user to choose a smoothing parameter. This point is important since such parameter

has a major effect on the quality of the final estimate, having to establish the right

trade-off between adherence to experimental data and smoothness of the spectrum. Its

tuning can be considered as the counterpart of the model order selection step that is

encountered in the parametric context. Other spline-based nonparametric techniques

have been also developed in (Wahba & Wold, 1975; Wahba, 1980); in this case, the

optimal smoothing parameter of the periodogram can be estimated using approximations

of the integrated mean squared error or cross validation.

Contribution of this work

As mentioned above, in this chapter we propose a novel method for spectrum estimation

that falls inside the nonparametric family. Our method can be adopted to estimate the

power spectrum of both continuous and discrete time processes.

The proposed approach is distinct from Etfe and SPA since, instead of performing

smoothing in the frequency domain, it regularizes the empirical estimate of the correlation
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functions. In particular, the estimate is obtained as the solution of a Tikhonov-type

regularization problem, adopting as hypothesis space a reproducing kernel Hilbert space

(RKHS) induced by the so-called stable spline kernel. This particular kernel has been

recently proposed in (Pillonetto & De Nicolao, 2010) to identify impulse responses

of linear time-invariant systems and includes information regarding the exponential

stability of the function to reconstruct. The main contribution of this chapter is to

show that the stable spline kernel can be used to define an effective spectrum estimator

whose computational complexity scales linearly with the number of observed process

samples. As shown later on, this result can be obtained exploiting the connection between

regularization in RKHS and Bayes estimation of Gaussian processes, also making use

of Kalman smoothing concepts. Moreover, the resulting estimator will be specialized to

an application regarding the identification of time-invariant linear dynamical systems

fed with white noise as input. Numerical experiments show that our novel approach,

equipped with cross validation to estimate the kernel parameters from data, yields

results comparable to SPA, and often also better than Etfe, equipped with an oracle that

determines the optimal smoothing parameters by exploiting the knowledge of the true

covariance.

The chapter is organized as follows. After this introduction, Section 6.2 describes the

problem statement. In Section 6.3 some concepts of regularization in RKHS and nonpara-

metric estimation are introduced, while in Section 6.4 we introduce the new kernel-based

algorithm for spectrum estimation. Section 6.5 provides numerical experiments to test

the performance of our approach.

6.2 Framework and problem formulation

Let us introduce the problem of estimating the second order moments of multivariate

stochastic process, defined either on a continuous or discrete time domain. Without

loss of generality, we consider a bivariate, stationary, zero-mean, PND stochastic process

denoted by

v(t) =

[
y(t)

u(t)

]
, t ∈ I (6.1)

where y(t) and u(t) are scalar processes and I corresponds to R or Z, depending on

whether v(t) is continuous or discrete.

In view of the stationarity assumptions, the second order statistical description of the
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process v(t) is completely determined by the autocorrelation function, defined as

Σ(τ) := E
[
v(t)v>(t+ τ)

]
, τ ∈ I (6.2)

=

[
fy(τ) fyu(τ)

fuy(τ) fu(τ)

]
(6.3)

where fy(τ) := E [y(t)y(t+ τ)], fu(τ) := E [u(t)u(t+ τ)] denote the autocorrelation

functions of the processes y(t), u(t) respectively, while fyu(τ) := E [y(t)u(t+ τ)] is

the cross-correlation with fuy(τ) = fyu(−τ). Note that, since Σ(τ) = Σ>(−τ), the

autocorrelation function is completely described by its values taken in the domain τ ≥ 0.

An equivalent description is obtained by means of the spectral density function. In

the discrete time case, the latter is defined as

S(ω) :=
+∞∑

τ=−∞
Σ(τ) exp(−jωτ), −π ≤ ω ≤ π (6.4)

=

[
Sy(ω) Syu(ω)

Suy(ω) Su(ω)

]
, (6.5)

which, in order to be a well-defined spectral density function, needs to be Hermitian

positive semi-definite matrix for every z on the unit circle. Moreover, it is required

that all its entries are square summable, i.e. Sy, Su, Syu ∈ L2[−π, π]. Using Parseval’s

theorem, this is equivalent to say that fy, fu, fyu ∈ `2. In the continuous time case,

similar considerations yield the condition fy, fu, fyu ∈ L2. In this chapter we make

a slightly different assumption, i.e. the autocorrelation functions are bounded and

summable, exhibiting an exponential decay to zero. The first two hypotheses are not so

limitative, since non-bounded or non-summable autocorrelation functions correspond

to non-continuous spectral densities whose estimation with regularization techniques

is a rather difficult issue. As for the last point, most of practical applications involves

spectral densities modeled by rational processes, whose autocovariance functions have

exponential dynamics.

System identification as spectrum estimation

A particular and significant application of spectrum estimation is the frequency-based

identification of the transfer function of a linear time-invariant dynamic system. In fact,

assume that the components of v(t) admit a representation in terms of an output error
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model (Fig. 6.1), i.e.

y(t) = G(z)u(t) + e(t) , (6.6)

where G(z) is a stable causal transfer function and e(t) is white noise independent of

u(t). Then, one can recover G(z) using the relation

G(ω) =
Syu(ω)

Su(ω)
. (6.7)

In particular, assuming that u(t) is white noise of unit variance, the problem of identifying

G(z) is equivalent to the estimation of the cross-spectrum Syu(ω).

u(t)
G(z)

e(t)
y(t)

+

Figure 6.1: Block scheme of the linear dynamic system.

Problem statement

We assume to collectN equispaced observations of the process v(t), namely v(1), . . . , v(N),

from which some empirical statistics can be computed (for simplicity, we assume N even).

In particular, for i = 1, . . . , p, we define

Zi :=
1

N − τi

N−τi∑
j=1

v(j)vT (j + τi − 1) :=

[
Zy
i Zyu

i

Zuy
i Zu

i

]
, (6.8)

which, considering different values of τi > 0, is the causal part of the empirical autocorre-

lation function, for p time lags. The vector whose i-th entry is Zi is denoted by Z. For

our purposes it is convenient to define also the quantities

Ti :=
1

N/2− τi

N/2−τi∑
j=1

v(j)vT (j + τi − 1) (6.9)

Vi :=
1

N/2− τi

N−τi∑
j=N/2+1

v(j)vT (j + τi − 1) , (6.10)

which are still versions of the empirical autocorrelation function, obtained separately by

exploiting the first and second half of the data set (a notation similar to (6.8) will be used
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for these quantities). These two vectors will define, respectively, the training and the

validation sets, both having size equal to p. Then, we are interested in the development

of estimators that take Z, T and V as inputs and return an estimate

Σ̂(τ) =

[
f̂y(τ) f̂yu(τ)

f̂uy(τ) f̂u(τ)

]
, τ ≥ 0 (6.11)

of the autocorrelation function Σ(τ) (or, equivalently, the spectrum via Fourier transform).

6.3 Regularization in spaces induced by stable spline kernels

Regularization in RKHS

Let us consider the problem of reconstructing an unknown function f : X 7→ R from a

finite set of data zi, each given by noisy version of a linear functional Li[f ]. This ill-posed

problem has been widely investigated in the literature of inverse problems, opening the

way to regularization techniques (Tikhonov & Arsenin, 1977). Such approaches represent

an alternative paradigm to parametric estimation, where, in place of constraining the

unknown function to a specific parametric structure, f is searched over a possibly infinite-

dimensional functional space H. The key ingredient to avoid overfitting and ill-posedness

is the introduction of a regularizer Ω in the objective functional:

min
f∈H

(
l∑

i=1

(zi − Li[f ])2 + γΩ(f)

)
(6.12)

The positive parameter γ balances the error term (zi−Li[f ])2 and the regularizer Ω(f). A

meaningful analysis of this approach is possible when H is a Hilbert space subject to the

basic requirement that every function in the space be point-wise well defined everywhere

on its domain, such as a RKHS. When a RKHS is adopted as hypothesis space, a natural

regularizer is the squared norm, i.e. Ω(f) = ‖f‖2H. Under mild assumptions on Li, such a

choice makes problem (6.12) well-posed.

Before introducing stable splines kernels, we discuss how to obtain a closed form for

the solution to the problem (6.12) when a RKHS is adopted as hypothesis space, namely

solve

arg min
f∈H

(
l∑

i=1

(zi − Li[f ])2 + γ‖f‖2H

)
. (6.13)

For the moment, we assume that the hyperparameter γ is given; later, we discuss how to

estimate it. The second property of Theorem 2.1.5 is also known as reproducing property
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and it has some important consequences on the representation of linear functionals. Let

L : H → R be a bounded and linear functional. Then, in force Theorem 2.1.1 there

exists an element h ∈ H such that 〈h, f〉H = L[f ]. Applying the reproducing property

one has

h(s) = 〈h, Ks〉H = L[Ks] , (6.14)

where Ks := K(s, ·). Hence, from the reproducing kernel we can obtain any bounded

and linear functional representer by applying L to K. Moreover, given two bounded

linear functionals Li and Lj , the inner product of their representers satisfies

〈hi, hj〉H = Li[hj ] = Li [Lj [K(·, ·)]] = Lj [Li[K(·, ·)]] . (6.15)

Using this equality, the optimal solution to (6.13) can be written

f̂ =

l∑
i=1

ĉihi =

l∑
i=1

ĉiLi[K] , (6.16)

where hi is the representer of Li. The constant values ĉi are obtained by substituting the

expression of f̂ into (6.13), yielding a problem of optimization in Rl, namely

f̂ = arg min
ĉ∈Rl

 l∑
i=1

(
ziLi

[
l∑

i=1

ĉiLi[K]

])2

+ γ

∥∥∥∥∥
l∑

i=1

ĉiLi[K]

∥∥∥∥∥
2
 (6.17)

= arg min
ĉ∈Rl

(
‖z − Φĉ‖2 + γĉ>Φĉ

)
,

where z := [z1, . . . , zl]
T and Φ is a n× n matrix such that

Φ{i, j} = Li [Lj [K(·, ·)]] . (6.18)

It is well-known that the solution to this problem is

ĉ = (Φ− γI)−1z , (6.19)

hence the solution to (6.13) is

f̂ =

l∑
i=1

ĉiLi[K] , ĉ = (Σ− γI)−1z . (6.20)

This procedure is known in the literature as regularization network (Poggio & Girosi,

1990).
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In the next subsection, we review a class of kernels that incorporate information on

the exponential decay to zero of f .

Stable spline kernels

The class of the so called stable spline kernels introduced in (Pillonetto & De Nicolao, 2010;

Pillonetto et al., 2010) induces hypothesis spaces containing smooth and exponentially

stable functions. For (x1, x2) ∈ R+ × R+, it is defined by

K(x1, x2) :=

∫ +∞

0
Gm(e−βx1 , e−βu)Gm(e−βx2 , e−βu)βe−βudu , (6.21)

Gm(r, u) =
(r − u)m−1

+

(m− 1)!
, (u)+ :=

{
u if u ≥ 0

0 otherwise

In (6.21), the parameter β > 0 regulates how fast the functions in the associated RKHS

decay to zero while m is a positive integer that indicates the kernel order.

In order to derive the RKHS associated with the class of kernels (6.21), we introduce

a lemma, which will be also instrumental to the proof of the main result of this section.

First we need to set the following notation; given a function h, h(k) denotes its k-th

derivative. We also define the notation h(k)
β where h(0)

β (t) := h(t) while, for k ∈ N:

h
(1)
β (t) :=

eβth(1)(t)

β
, h

(k+1)
β :=

(
h

(k)
β

)(1)

β
. (6.22)

In addition, here we use the symbol L2 to indicate the classical Lebesgue space of squared

integrable functions on [0, 1] while, for β > 0, L2
β is the space of square integrable

functions on R+ with the norm ‖ · ‖β defined by

‖h‖2β =

∫ ∞
0

h2(t)βe−βtdt . (6.23)

The spline kernel of order m (Wahba, 1990) is

W (s, t) :=

∫ 1

0
Gm(s, u)Gm(t, u)du (6.24)
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where we still have

Gm(r, u) =
(r − u)m−1

+

(m− 1)!
, (u)+ :=

{
u if u ≥ 0

0 otherwise

Then, it is well known that the RKHS of functions on [0, 1] associated with W is (see e.g.

(Wahba, 1990))

HW = {h : h(0) = 0, . . . , h(m−1) = 0;h, . . . , h(m−1)abs. continuous;h(m) ∈ L2} (6.25)

with norm

‖h‖2HW =

∫ 1

0

(
h(m)(t)

)2
dt (6.26)

In the rest of the chapter, for ease of notation, H will denote the RKHS associated

with the stable spline kernel K. Having set the notation, the following lemma holds.

Lemma 6.3.1. Let H be the RKHS associated with the stable spline kernel K defined in
(6.21). Then, for any m ∈ N the transformation τ = e−βt establishes a Hilbert space
isomorphism between H on R+ and HW on [0, 1]. In particular if h ∈ H, g ∈ HW and
h(t) = g(e−βt), one has

‖g‖HW = ‖g(m)‖L2 = ‖h‖H = ‖h(m)
β ‖β (6.27)

Proof. From Mercer theorem and RKHS theory, see e.g. (Cucker & Smale, 2001), we

know that there exist functions ϕj and positive scalars υj such that

υjϕj(t) =

∫ 1

0
W (t, u)ϕj(u)du, j = 1, 2, . . .

It also comes that the RKHS associated with W admits the following representation

HW =

g ∈ L2 | g =
∞∑
j=1

ajϕj ,
∞∑
j=1

a2
j

υj
<∞

 (6.28)

where

‖g‖2HW = ‖g(m)‖2L2 =
∞∑
j=1

a2
j

υj
. (6.29)

Now, to gain insight about the structure of the RKHS associated with the stable spline
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kernel, from the definition of K and simple calculations one obtains∫ ∞
0

K(t, u)ϕj(e
−βu)βe−βudu =∫ ∞

0
W (e−βt, e−βu)ϕj(e

−βu)βe−βudu =∫ 1

0
W (e−βt, u)ϕj(u)du = υjϕj(e

−βt)

The above expression thus reveals that

• the eigenfunctions φj(t) of K (calculated using the measure on R+ induced by

the density βe−βu) are obtained from those of W (computed using the classical

Lebesgue measure on [0, 1]) after an exponential transformation, i.e. φj(t) =

ϕj(e
−βt);

• the eigenvalues of K (calculated using the density βe−βt on R+) coincide with

those of W (calculated using the Lebesgue measure on [0, 1]).

Since the representation of an RKHS is independent of any (non degenerate Borel)

measure adopted to calculate the eigenfunctions, we conclude that the RKHS induced by

the stable spline kernel K is

H =

h ∈ L2
β | h =

∞∑
j=1

ajφj ,
∞∑
j=1

a2
j

υj
<∞

 (6.30)

and that

‖h‖2H =
∞∑
j=1

a2
j

υj
(6.31)

The expressions (6.28, 6.29) and (6.30, 6.31), together with the definitions of φj
and ϕj , prove the isomorphism of HW and H as regulated by the axis transformation

τ = e−βt. This, combined with (6.26), the definition of h(m)
β in (6.22) and other simple

integral calculations, eventually proves (6.27).

Typically, the parameter m is chosen to be 1 or 2. When m = 1 one obtains the kernel

e−βmax(x1,x2) (6.32)

that, in force of Lemma 6.3.1, induces a RKHS with norm

‖f‖2H =

∫
R+

(
f (1)(x)

)2 eβx

β
dx (6.33)
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Notice that, beyond the energy of the first-order derivative of g, the norm includes also

a weight proportional to eβx that ensures exponential BIBO stability. A class of more

regular functions can be obtained using the stable spline kernel of order m = 2. Originally

introduced in (Pillonetto & De Nicolao, 2010), it is given by

e−β(x1+x2)e−βmax(x1,x2)

2
− e−3βmax(x1,x2)

6
(6.34)

Still using Lemma 6.3.1, one obtains that the corresponding norm is

‖f‖2H =

∫
R+

(
f (2)(x) + βf (1)(x)

)2 e3βx

β3
dx (6.35)

and again forces stability and smoothness, now introducing derivatives up to the second

order.

Computational complexity of the stable spline estimator

Now, we discuss the computational complexity of the estimator (6.12), when stable spline

kernels are adopted, considering two different situations connected to the nature of Li.

The first scenario is related to the identification of linear and time-invariant dynamic

systems and has been already discussed in (Pillonetto & De Nicolao, 2010). Here, f is

thought of as the unknown impulse response and the estimator (6.12) becomes

min
f∈H

(
l∑

i=1

(zi − Li[f ])2 + γ‖f‖2H

)
(6.36)

with ‖f‖2H typically given by (6.33) or (6.35), and

Li[f ] =

∫ +∞

0
u(ti − s)f(s)ds

where u is the known system input. In particular, the use of the stable spline estimator

(6.36) involves the following two computational steps, see (Pillonetto & De Nicolao,

2010) for details.

1. First, the unknown regularization parameter γ and the kernel parameter β are

estimated from data by optimizing a suitable cost function, i.e.

(γ̂, β̂) = arg min
γ,β≥0

J(γ, β) (6.37)
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The procedure suggested in (Pillonetto & De Nicolao, 2010) resorts to the Bayesian

interpretation of (6.36) and sets J to the minus log of a marginal likelihood.

Another possible choice of J may lead to cross validation. In any case, the pointwise

evaluation of the objective requires O(l3) operations.

2. The estimates γ̂ and β̂ are plugged into (6.36). A closed form solution for the

estimate of f becomes so available: it admits a structure by means of the previously

described regularization network, i.e. it is sum of l basis functions given by the

stable spline kernel filtered by u. The expansion coefficients are the solution of a

system of l linear equations, hence requiring O(l3) operations.

As also discussed in the next section, the second scenario we consider is intimately

related to the perspective for spectrum estimation taken in this chapter. It corresponds

to a particular instance of the first problem where each linear functional becomes a

pointwise evaluator1, i.e. Li[f ] = f(τi) with {τi} denoting the sampling locations. The

estimator (6.36) thus simplifies to

min
f∈H

(
l∑

i=1

(zi − f(τi))
2 + γ‖f‖2H

)
. (6.38)

The following proposition, which represents the main result of this section, then

holds.

Proposition 6.3.2. Let f̂ denote the solution of (6.38) when a stable spline kernel of order
m is adopted, e.g. (6.32) for m = 1 or (6.34) for m = 2. Then, for known γ and β,
the estimates {f̂(τi)}li=1 can be computed with O(lm3) operations. In addition, once the
estimates {f̂(τi)}li=1 become known, f̂(τ) can be computed with O(m3) operations for every
τ .

Proof. Let

f̂ = arg min
f∈H

(
l∑

i=1

(zi − f(τi))
2 + γ‖f‖2H

)
(6.39)

and

ĝ = arg min
g∈HW

(
l∑

i=1

(yi − g(ti))
2 + γ‖g‖2HW

)
(6.40)

where, for i = 1, . . . , l:

yl−i+1 = zi and ti = e−βτi .

1This is equivalent to consider the first scenario assuming that the system input is an impulse.
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Using Lemma 6.3.1, one obtains

f̂(τ) = ĝ(e−βτ ), τ ∈ R+ (6.41)

so that we can just focus on how to solve efficiently (6.40). For this purpose, we exploit

the isometry between RKHS and Gaussian processes, as e.g. described in (Wahba, 1990).

In particular, let ei be the m-dimensional row vector with i− th component equal to 1

and all the other ones equal to zero while, by definition, the components of e0 are all set

to zero. Define also the following correspondences

A =


e0

e1

...

em−1

 , B =
[
e>1

]
, C =

[
em

]
(6.42)

Then, define V(t, s) = E [x(t)x>(s)] where x(t) ∈ Rm is a continuous-time stochastic

process whose statistics are defined by the following state-space stochastic model:{
ẋ(t)dt = Ax(t)dt+ γ−1Bdζ(t), 0 ≤ t ≤ 1

x(0) = 0
(6.43)

where ζ is Brownian motion. Since the last component of x(t) i the m-fold integration

of white noise, it is straightforward to check that the covariance of Cx(t) coincides

with the kernel γ−1Wm. It comes that the optimizer of (6.40) is the Bayes estimate of

Cx(t) conditional on the measurements yi = Cxi + νi, where i = 1, . . . , l and the νi are

Gaussian random variables of unit variance, mutually independent and independent of ζ.

Now, we first consider the problem of obtaining the estimate of Cx(t) at the sampling

instants ti. For this purpose, after simple computations one obtains that the sampled

version of (6.43) at the sampling instants ti, complemented with the measurements

model, is 
x0 = 0

xi+1 = Fixi + γ−1ωi, i = 0, 1, . . . , l

yi = Cxi + νi, i = 1, . . . , l

(6.44)

where, letting ∆i = ti+1 − ti,

• {ωi} are independent zero-mean Gaussian noises, with m×m covariance matrix
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Qi whose (k, j)-entry is

Qi(k, j) =
∆k+j−1
k

(k − 1)!(j − 1)!(k + j − 1)
(6.45)

• Fi is an m×m lower-triangular Toeplitz matrix whose (k, 1) entry is

Fi(k, 1) =
∆k−1
i

(k − 1)!
(6.46)

• {νi} are mutually independent zero-mean Gaussian noises of unit variance.

• C is defined as in (6.42).

Now, starting from (6.44), the classical Kalman smoothing filter can be used to obtain

the minimum variance estimates of the states {xi}li=1, denoted by {x̂i}li=1, with a number

of operations linear in l (Anderson & Moore, 1979). The first part of Proposition 6.3.2

is then proved just recalling that x̂i = ĝ(ti) = f̂(τi), where τi = e−βti . For what regards

the second part of Proposition 6.3.2, we need to compute the state estimates outside the

sampling instants ti. One has

x̂(t) := E
[
x(t) | {yi}li=1

]
= E

[
E[x(t) | {yi}li=1, {xi}li=1] | {yi}li=1

]
= E

[
E[x(t) | {xi}li=1] | {yi}li=1

]
Then, using the above result and recalling again that Cx̂(e−βτ ) = ĝ(e−βτ ) = f̂(τ), one

obtains that for every τ ≥ 0:

f̂(τ) =



CV(x(e−βτ ),xi+1
i )V

(
xi+1
i

)−1

[
x̂i

x̂i+1

]
t1 ≤ e−βτ ≤ tl i s.t. ti ≤ e−βτ ≤ ti+1

CV(x(e−βτ ),x1)V (x1)−1 x̂1 e−βτ ≤ t1
CV(x(e−βτ ),xn)V (xn)−1 x̂n e−βτ ≥ tl

where xi+1
i := [x>i x>i+1]> and V(a) := E [aa>] for every random column vector a.

This concludes the proof.
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6.4 Description of the algorithms

Spectrum estimation

In this section, we describe the proposed algorithm for spectrum estimation. The starting

point is to consider each component of Σ(τ) separately, so that our original problem is

reformulated as the estimation of four scalar functions. Furthermore, we consider the

empirical correlations (6.8), namely Zi, as sampled noisy versions of the correlation

function Σ(τ). In this way, the functions fy, fu, fyu, fuy can be estimated independently

by solving problems of the type (6.38), with l = p, while the noisy measurements zi are

the corresponding entries of Zi.

Estimation of the parameters γ and β

In this work, a cross validation strategy for the estimation of the hyperparameters

is adopted. This choice appears reasonable and convenient, since we can set up an

estimation scheme that still utilizes the empirical moments and relies on the solution

of problems of the type (6.38). Hence, recalling the result of Proposition 6.3.2, such a

cross validation scheme has a computational complexity that scales linearly with p. In

the following, we report the cross validation procedure for the estimation of fy.

1. Define suitable grids of candidate values γ and β. Since both γ and β are positive

real numbers, a logarithmic scale for the grids can be adopted.

2. For each point of the grids (γi, βj), solve the problem (6.38) using the training set

as available measurements, i.e. setting zi = T y
i (training step).

3. For every solution f̂y(γi, βj) to the problem (6.38) obtained at the previous step,

evaluate the cost function

Jy(γi, βj) := ‖Vy − f̂y(γi, βj)‖2 , (6.47)

which indicates the predictive capability of the estimated covariance functions to

the validation data set, and choose the minimizer (validation step).

The same scheme can be applied to the estimation of fu, fyu, fuy, with the proper

measurements (i.e. zi = T u
i , T yu

i , T uy
i respectively) and cost functions.

The correlation function estimation algorithm can be summarized by the following

steps.
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Algorithm 1 Correlation function estimation
Input: {v(t)}Nt=1

Output Σ̂(τ)

1. Fix p

2. Compute the data sets T , V, Z

3. For each function fy, fu, fyu, fuy

(a) Define the log-spaced grids of the parameters γ and β

(b) Solve the minimization problem (6.38) for each value in the grids (training
step)

(c) Choose the values of γ and β that minimize (6.47) (validation step)

(d) Solve the minimization problem (6.38) with the selected values of γ and β
using the measurements Z

As can be seen, Algorithm 1 relies on the solution of several problems of the type

(6.38), all requiring a computational complexity that scales linearly with the parameter

p. The input of the algorithm are the empirical moments T , V, Z, which need to be

computed only once.

Figure 6.2 shows a block scheme version of Algorithm 1.

{v(t)}Nt=1 Empirical
Correlation Z

T , V

Cross
Validation

Covariance

Estim. (6.38)

Σ̂

γ̂, β̂

Figure 6.2: Block scheme of Algorithm 1.

Remark 6.4.1. Actually, optimization in (6.38) should be constrained to the functions in

the space H that define covariance matrices. This constraint should be added also when

using other approaches. One simple approach to deal with this problem is to project

the estimate onto a subset of functions that define true covariances. However, in the

experiments shown later on it has never been necessary to perform this further step, i.e.

all the estimates define true spectra.
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System identification with white noise as input

As already discussed in Section 6.2, an interesting problem is the identification of a

transfer function when the input is a white noise. It is strictly related to the estimation of

the cross-correlation function of the processes y(t) and u(t) (interpreted as output and

input respectively).

A successful nonparametric approach for the identification of linear time-invariant

dynamic systems relies on the solution of the problem (6.36), which first requires the

estimation of parameters γ and β, then the solution of a linear system. Both these steps

take O(l3) operations, where in this case l is the number of collected observations, i.e. N .

However, approaching this problem from a spectrum estimation perspective, also in this

case we can exploit the cross validation scheme described in Section 6.4. Thus, compared

to (Pillonetto & De Nicolao, 2010), where the minimization problem (6.37) is defined by

a marginal likelihood strategy that takes O(N3) operations, here we use a procedure that

estimates the hyperparameters with computational complexity O(p).

In the following, we report the proposed algorithm for the identification of systems

with white noise as input.

Algorithm 2 System identification
Input: {v(t)}Nt=1

Output f̂yu(τ)

1. Fix p

2. Compute T yu, Vyu and Zyu

3. Define the log-spaced grids of the parameters γ and β

4. Solve the minimization problem (6.38) for each value in the grids (training step)

5. Choose the values of γ and β that minimize (6.47) (validation step)

6. Solve the minimization problem (6.36) with the selected values of γ and β using
the measurements {v(t)}Nt=1

Notice that Algorithm 2 differs from Algorithm 1 only in the last step, where the

estimator (6.36) is used. This takes a number of operations that scales with O(N3).

However, this problem has to be solved only one time as final step, involving the inversion

of one matrix only (see (Pillonetto & De Nicolao, 2010), Sec. 3.9, eq. (9)).

Figure 6.3 shows a block scheme interpretation of Algorithm 2.
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{v(t)}Nt=1

Empirical
Correlation

T , V Cross
Validation

Trans. Func.
Estim. (6.36)

Ĝ

γ̂, β̂

Figure 6.3: Block scheme of Algorithm 2.

6.5 Numerical Experiments

In this section, we report some results regarding the performance of the algorithms

proposed in this chapter.

Estimation of autocovariance functions

First, we tested our algorithm for the estimation of autocovariance functions, which was

tested by means of 6 Monte Carlo experiments of 100 runs. For the sake of simplicity,

a scalar and rational process v(t) was considered; at every run, N samples of such a

process were generated filtering a white noise with a stable minimum phase filter Wi(z),

i.e. v(t) = Wi(z)e(t), so that the spectrum turns out to be S(ω) = Wi(e
jω)Wi(e

−jω).

Three different scenarios were considered:

1. W1(z) =
z−1

1− 0.3z−1
;

2. W2(z) =
2z−5

1− 1.9z−1 + 2.5z−2 − 2.25z−3 + 1.49z−4 − 0.41z−5
;

3. At any Monte Carlo run, Wrand(z) has 10 zeros randomly picked in the circle

|z| ≤ 0.98 and 10 poles randomly picked in the circle |z| ≤ 0.95.

The spectrum profiles of the first two scenarios are shown in Figure 6.4. For each of the 3

scenarios, we considered two different situations where the number of available samples

is either N = 500 or N = 2000. In all the experiments, the parameter p was set to 500.

The latter choice follows the empirical rule p = N/4, which appeared to be appropriate

after several simulations. Hence, there is a total of 6 different Monte Carlo experiments

whose features are summarized in Table 6.1.
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Exp.# Data set size (N) Spectrum
1 500 W1(z)

2 2000 W1(z)

3 500 W2(z)

4 2000 W2(z)

5 500 Wrand(z)

6 2000 Wrand(z)

Table 6.1: Features of the 6 Monte Carlo experiments.

Three different spectrum estimators are used whose performance is evaluated at any

run computing the relative mean squared error, i.e.

Ei(%) = 100
‖S − Ŝi‖2
‖S‖2

, (6.48)

where Ŝi represents the spectrum estimate obtained in the i-th run. The three adopted

estimators are listed below.

• Stable Spline estimator: this is the nonparametric approach proposed in this chapter

with parameters γ and β determined by cross validation according to Algorithm 1.

In particular, the choice of the parameter γ has been made on the logarithmic grid

Γ = {γ : γ = 10νγ} , (6.49)

where νγ is an array of 20 equispaced real numbers in the interval [−3, 1]. Similarly,

the following set has been defined for the parameter β:

∆ = {β : β = − log(νβ)} , (6.50)

where again νβ is an array of equispaced numbers from 0.04 to 0.99 with a sampling

of 0.05.

• ETFE+Oracle: this is the classical method Etfe available in Matlab (Ljung, 1999).

This estimator needs the user to choose a smoothing parameter that greatly influ-

ences its performance. Since there is no standard method to automatically select

this parameter, at each run it has been selected by an oracle that knows the true

spectrum and chooses the value minimizing the relative mean squared error Ei.

This represents an ideal tuning not obtainable in real applications.
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• SPA+Oracle: the same as above except that the SPA method available in Matlab is

now used.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5
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ω
0 0.5 1 1.5 2 2.5 3

0

400

800

1200

ω 

Figure 6.4: Spectra profiles generated by W1 and W2.

Figures 6.5-6.7 show the box plots of the 100 reconstruction errors obtained by each

estimator after the 6 Monte Carlo experiments. Remarkably, in most of the experiments

the performance of the proposed Stable Spline based algorithm with cross validation is

comparable or also better than SPA and Etfe with oracle.

Estimation of transfer functions

A second set of experiments was performed to test the algorithm for identification of

transfer functions with white noise as input. For such purpose, 4 Monte Carlo experiments

of 100 runs each were performed. We considered a scenario in which at any Monte Carlo

run, Grand(z) has 10 zeros randomly picked in the circle |z| ≤ 0.95 and 10 poles randomly

picked in the circle |z| ≤ 0.95, with a random gain in the interval [5, 10]. The variance of

the measurement noise was chosen such that the SNR, defined as ‖G(z)u(t)/e(t)‖2, took

value in the set {1, 5, 10, 100}. We assumed N = 2000, while the parameter p was set

to be equal to 500. Again, the grids on which γ and β are evaluated were defined as in

(6.49) and (6.50) respectively.

We compared the two stable spline algorithms with the Oracle-SPA estimator described

in the previous section, and with the empirical estimator that returns as estimates just

(6.8). The performance is evaluated computing at every Monte Carlo run the relative

mean squared error

Ei(%) = 100
‖G− Ĝi‖2
‖G‖2

, (6.51)
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where Ĝi represents the transfer function estimate obtained in the i-th run.

Figures 6.8-6.9 show the box plots of the 100 reconstruction errors obtained by each

estimator after the 4 Monte Carlo experiments. One can see that the performance of

Algorithm 2 is comparable to the SPA algorithm tuned by an oracle. Moreover, when the

noise variance increases, the estimation given by the proposed approach is often better

than any possible estimate obtainable with the classic non parametric approaches.
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Figure 6.5: Results of simulations for the estimation of autocovariance functions.
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(a) Experiment 3
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Figure 6.6: Results of simulations for the estimation of autocovariance functions.
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Figure 6.7: Results of simulations for the estimation of autocovariance functions.
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(b) SNR = 5

Figure 6.8: Results of the simulations for the identification of transfer functions.



136 Nonparametric kernel-based spectrum estimation

Oracle SPA Algorithm 2 Algorithm 1 Empirical Est.
0

10

20

30

40

50

E
i

SNR = 10
 6 outliers 

(a) SNR = 10

Oracle SPA Algorithm 2 Algorithm 1 Empirical Est.
0

10

20

30

40

50

E
i

SNR = 100

 6 outliers 

(b) SNR = 100

Figure 6.9: Results of the simulations for the identification of transfer functions.



7
Possible extensions and future works

In this dissertation we have discussed some aspects of the analysis of stochastic systems

with latent variables. In particular, we have focused on generalized factor analysis, both

in static and dynamic settings, and errors-in-variables models. Furthermore, we have

proposed a new nonparametric kernel-based spectrum estimation algorithm. In the

following, we provide some indications of possible extensions and generalizations of the

results presented in this thesis.

In Chapter 3 we have introduced and analyzed generalized factor analysis. There are

several open problems regarding flocking and generalized factor analysis; for example,

it could be interesting to understand what conditions make this modeling paradigm

applicable to time-varying systems, e.g. flocks in which the agents gradually separate

from the group. From a theoretical point of view, some of the results of Section 3.3

do not have a counterpart for the dynamic version of GFA; we believe that this can

be done quite straightforwardly. Moreover, we argue that, introducing some further

assumptions, the connection between GFA and the Wold decomposition of Section 3.5

holds also for nonstationary sequences. Other extensions could regard the application of

convex semidefinite programming to the decomposition of the covariance matrix of the

observations, instead of using PCA method.

In Chapter 4 we have addressed the problem of studying the generic properties of

the zeros of tall blocked multirate systems. As part of future work, we intend to extend
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the results obtained for multirate linear systems to a general case in which the output

streams are available at coprime rates.

A natural future extension of the work on errors-in-variables models, described in

Chapter 5, would be to discuss EIV identifiability in the multivariable case, in order to

derive testable conditions also for this case. One should expect that identifiability is

no longer generically guaranteed. We argue that the set of models compatible with a

given input-output joint spectrum is dense, i.e. there are infinitely many models that can

describe those data equally well.

Future developments regarding nonparametric spectrum estimation, introduced in

Chapter 6, could concern the refinement of the estimates, e.g. when the process is

known to be Gaussian, exploiting more accurate statistical models for the empirical

autocovariance samples. If some more information on the process is available, it is possible

to derive some results on the convergence rate of the estimates of the autocorrelation

function. An interesting application of nonparametric kernel-based techniques could

regard the development of a new algorithm for the identification of errors-in-variables

models.
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Söderström, T. (2007). Errors-in-variables methods in system identification. Automatica,

43, 939–958.
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