Ph.D. Defense

Giulio Bottegal Advisor: Prof. Giorgio Picci

Department of Information Engineering - University of Padova

February 28th, 2013

Summary of the thesis

Modeling, estimation and identification of stochastic systems with latent variables

Contents

- Generalized factor analysis models
- Zero properties of tall multirate linear systems
- Identifiability of errors-in-variables models
- Nonparametric kernel-based spectrum estimation

Summary of the thesis

Modeling, estimation and identification of stochastic systems with latent variables

Contents

- Generalized factor analysis models
- 2 Zero properties of tall multirate linear systems
- 3 Identifiability of errors-in-variables models
- Nonparametric kernel-based spectrum estimation

Generalized factor analysis models

Factor analysis models

History

- Introduced by psychologists (Spearman, 1904)
- Successively applied in econometrics (Ledermann, 1937)
- Extended to a dynamic context (Geweke 1977)
- Generalized to infinite cross-sectional dimension (Chamberlain and Rotschild 1982, Forni and Lippi 2001)

Factor analysis models

History

- Introduced by psychologists (Spearman, 1904)
- Successively applied in econometrics (Ledermann, 1937)
- Extended to a dynamic context (Geweke 1977)
- Generalized to infinite cross-sectional dimension (Chamberlain and Rotschild 1982, Forni and Lippi 2001)

Aim in econometry

Describe the common core of a set of observations

Factor analysis models

History

- Introduced by psychologists (Spearman, 1904)
- Successively applied in econometrics (Ledermann, 1937)
- Extended to a dynamic context (Geweke 1977)
- Generalized to infinite cross-sectional dimension (Chamberlain and Rotschild 1982, Forni and Lippi 2001)

Aim in econometry

Describe the common core of a set of observations

Could these models be used also for other purposes?

Modeling of flocks

Global perspective

We observe a group of agents with similar behaviors

Observations = Common behavior + Local interactions

Modeling of flocks

Global perspective

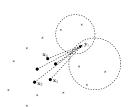
We observe a group of agents with similar behaviors

Observations = Common behavior + Local interactions

Examples (from nature)

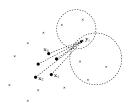
Scenario

- q impulse emitters \mathbf{x}_i
- large $(N \uparrow)$ amount of receveirs \mathbf{y}_i
- ullet local sources of noise $\tilde{\mathbf{y}}$



Scenario

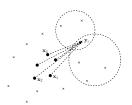
- q impulse emitters \mathbf{x}_i
- large $(N \uparrow)$ amount of receveirs \mathbf{y}_i
- ullet local sources of noise $\tilde{\mathbf{y}}$



Goal: detect q and estimate x

Scenario

- q impulse emitters x_i
- large $(N \uparrow)$ amount of receveirs \mathbf{y}_i
- ullet local sources of noise $ilde{\mathbf{y}}$



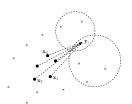
Goal: detect q and estimate x

Receiver equation

$$y_i(t) = f_{i1}x_1(t) + \ldots + f_{iq}x_q(t) + ilde{y}_i(t) ~~ (f_{ij} \sim ext{distance from emitter } j)$$

Scenario

- q impulse emitters x_i
- large $(N \uparrow)$ amount of receveirs \mathbf{y}_i
- ullet local sources of noise $ilde{\mathbf{y}}$



Goal: detect q and estimate x

Receiver equation

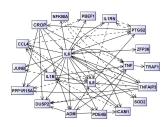
$$y_i(t) = f_{i1}x_1(t) + \ldots + f_{iq}x_q(t) + \tilde{y}_i(t)$$
 ($f_{ij} \sim distance from emitter j$) ψ

$$\mathbf{y} = F\mathbf{x} + \tilde{\mathbf{y}}$$
= Common behavior + Local interactions

Gene regulatory network

Scenario

- network of N genes: \mathbf{y}_i expression level of i—th gene
- ullet q transcription factors regulate the activity of the genes (q << N)
- Genes mutually influence the activity of their neighbors



Gene regulatory network

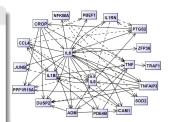
Scenario

- network of N genes: \mathbf{y}_i expression level of i—th gene
- ullet q transcription factors regulate the activity of the genes (q << N)
- Genes mutually influence the activity of their neighbors

Model for the network

$$\mathbf{y}_i = f_{i1}\mathbf{x}_1 + \ldots + f_{iq}\mathbf{x}_q + \tilde{\mathbf{y}}_i$$

 \mathbf{x}_i trans. factor, f_{ij} strenght of influence



Gene regulatory network

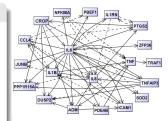
Scenario

- network of N genes: y_i expression level of i—th gene
- ullet q transcription factors regulate the activity of the genes (q << N)
- Genes mutually influence the activity of their neighbors

Model for the network

$$\mathbf{y}_i = f_{i1}\mathbf{x}_1 + \ldots + f_{iq}\mathbf{x}_q + \tilde{\mathbf{y}}_i$$

 \mathbf{x}_i trans. factor, f_{ij} strenght of influence



Our scope

Formalize the concept

Observations = Common (and simple) behavior + Local interactions

Our scope

Formalize the concept

Observations = Common (and simple) behavior + Local interactions

Stochastic framework of generalized factor analysis

 $\mathbf{y} := \{\mathbf{y}_k, k \in \mathbb{N}\}$ infinite collection of observed zero-mean r.v.'s

Our scope

Formalize the concept

Observations = Common (and simple) behavior + Local interactions

Stochastic framework of generalized factor analysis

 $\mathbf{y} := \{\mathbf{y}_k, \ k \in \mathbb{N}\}$ infinite collection of observed zero-mean r.v.'s

Goal: find a unique decomposition

$$\mathbf{y}_k = \hat{\mathbf{y}}_k + \tilde{\mathbf{y}}_k \qquad k = 1, 2, \dots$$

Our scope

Formalize the concept

Observations = Common (and simple) behavior + Local interactions

Stochastic framework of generalized factor analysis

 $\mathbf{y} := \{\mathbf{y}_k, \ k \in \mathbb{N}\}$ infinite collection of observed zero-mean r.v.'s

Goal: find a unique decomposition

$$\mathbf{y}_k = \hat{\mathbf{y}}_k + \tilde{\mathbf{y}}_k \qquad k = 1, 2, \dots$$

Question

Which features shall $\hat{\mathbf{y}}_k$ and $\tilde{\mathbf{y}}_k$ have?

Generalized Factor model

Vector notation:
$$\mathbf{y} = \hat{\mathbf{y}} + \tilde{\mathbf{y}}$$

Definitions

- $\hat{\mathbf{y}} := F\mathbf{x}$ form a q-aggregate sequence $(F \in \mathbb{R}^{\infty \times q})$
- \bullet $\tilde{\mathbf{y}}$ form idiosyncratic noise

Generalized Factor model

 $\mbox{ Vector notation: } \quad \mbox{ } \mbox{ }$

Definitions

- $\hat{\mathbf{y}} := F\mathbf{x}$ form a q-aggregate sequence $(F \in \mathbb{R}^{\infty \times q})$
- \bullet $\tilde{\mathbf{y}}$ form idiosyncratic noise

Features

- x := q-dimensional orthonormal random vector (latent factors)
 - $\mathbf{0}$ q fixed \longrightarrow "simple" behavior

Generalized Factor model

$$\mbox{ Vector notation: } \quad \mbox{ } \mathbf{y} = \hat{\mathbf{y}} + \tilde{\mathbf{y}}$$

Definitions

- $\hat{\mathbf{y}} := F\mathbf{x}$ form a q-aggregate sequence $(F \in \mathbb{R}^{\infty \times q})$
- \bullet $\tilde{\mathbf{y}}$ form idiosyncratic noise

Features

- **x** := q-dimensional orthonormal random vector (latent factors)
 - \bigcirc *q* fixed \longrightarrow "simple" behavior
- sequence ỹ:
 - orthogonal to ŷ;
 - ullet has "weak" cross-correlation $\longrightarrow \mathbb{E}[\tilde{\mathbf{y}}_i \tilde{\mathbf{y}}_j] \to 0$ when $|i-j| \uparrow$.

Covariance matrices decription

Notation

- Σ := infinite covariance matrix of \mathbf{v}
- $\Sigma_n :=$ covariance matrix of first *n* components

Covariance matrices decription

Notation

- $\Sigma :=$ infinite covariance matrix of **y**
- $\Sigma_n :=$ covariance matrix of first *n* components

From previous assumptions

$$\Sigma := \hat{\Sigma} + \tilde{\Sigma}$$

Features

- $\hat{\Sigma} := \text{covariance matrix of } \hat{\mathbf{y}} \longrightarrow \text{rank} \hat{\Sigma} = q$
- $\tilde{\Sigma} := \text{covariance matrix of } \tilde{\mathbf{v}} \longrightarrow \text{"weak" cross-correlations}$

Identifiability

$$\mathbf{y} = \hat{\mathbf{y}} + \tilde{\mathbf{y}}$$

= q-aggregate + idiosyncratic

How to guarantee uniqueness of the decomposition?

Identifiability

$$\mathbf{y} = \hat{\mathbf{y}} + \tilde{\mathbf{y}}$$

= q-aggregate + idiosyncratic

How to guarantee uniqueness of the decomposition?

Goal

We need to characterize:

- Idiosyncratic sequences
- Q q-aggregate sequences

Idiosyncratic sequences

Preliminar concept - Averaging sequences

```
\{\mathfrak{a}_n\}_{n\in\mathbb{N}}:= sequence of elements of \ell^2. \{\mathfrak{a}_n\}_{n\in\mathbb{N}} is an averaging sequence (AS) if \lim_{n\to\infty}\|\mathfrak{a}_n\|_2=0.
```

Idiosyncratic sequences

Preliminar concept - Averaging sequences

```
\{\mathfrak{a}_n\}_{n\in\mathbb{N}}:= sequence of elements of \ell^2. \{\mathfrak{a}_n\}_{n\in\mathbb{N}} is an averaging sequence (AS) if \lim_{n\to\infty}\|\mathfrak{a}_n\|_2=0.
```

Example

$$\mathfrak{a}_n := \frac{1}{n} [\underbrace{1 \dots 1}_{n} \ 0 \dots]^{\top}$$
 is an averaging sequence $(\|\mathfrak{a}_n\|^2 = \frac{1}{n})$.

Idiosyncratic sequences

Preliminar concept - Averaging sequences

$$\{\mathfrak{a}_n\}_{n\in\mathbb{N}}:=$$
 sequence of elements of ℓ^2 . $\{\mathfrak{a}_n\}_{n\in\mathbb{N}}$ is an averaging sequence (AS) if $\lim_{n\to\infty}\|\mathfrak{a}_n\|_2=0$.

Example

$$\mathfrak{a}_n := \frac{1}{n} [\underbrace{1 \dots 1}_n \ 0 \dots]^{\top}$$
 is an averaging sequence $(\|\mathfrak{a}_n\|^2 = \frac{1}{n})$.

Definition

 $\tilde{\mathbf{y}}$ is an idiosyncratic sequence if $\lim_{n\to\infty} \|\mathfrak{a}_n^{\mathsf{T}} \tilde{\mathbf{y}}\| = 0$ for any AS \mathfrak{a}_n .

Meaning of idiosyncratic

Example 1

 $\tilde{\mathbf{y}} = \text{white noise (with uniformly bounded variance)} \Rightarrow \tilde{\mathbf{y}} \text{ idiosyncratic}$

$$\lim_{n\to\infty}\mathfrak{a}_n^\top \mathrm{diag}\{\,\sigma_1^2,\,\sigma_2^2,\,\ldots,\}\mathfrak{a}_n=0\quad\forall\,\mathfrak{a}_n\;\mathsf{AS}$$

Meaning of idiosyncratic

Example 1

 $ilde{\mathbf{y}} = ext{white noise (with uniformly bounded variance)} \Rightarrow ilde{\mathbf{y}}$ idiosyncratic

$$\lim_{n\to\infty}\mathfrak{a}_n^\top\mathrm{diag}\{\,\sigma_1^2,\,\sigma_2^2,\,\ldots,\}\mathfrak{a}_n=0\quad\forall\,\mathfrak{a}_n\;\mathsf{AS}$$

Example 2

 $\mathbf{y} = \text{sequence with a single latent factor}$

$$\mathbf{y} = \mathbf{1}\mathbf{x} + \tilde{\mathbf{y}}, \qquad \tilde{\mathbf{y}} \text{ white noise}$$

$$\mathbf{z} := \lim_{N} \frac{1}{N} \sum_{k=1}^{N} \mathbf{y}_{k} \implies \mathbf{z} = \mathbf{x}$$

- We have recovered the latent factor
- 2 Idiosyncratic noise vanishes by averaging the observations

A Strong characterization

Eigenvalues of the sequence

- $\tilde{\lambda}_n := \text{largest (in magnitude) eigenvalue of } \tilde{\Sigma}_n$
- $\tilde{\lambda} := \lim_{n \to \infty} \tilde{\lambda}_n$ (well-defined)

A Strong characterization

Eigenvalues of the sequence

- $oldsymbol{ ilde{\lambda}}_n := \mathsf{largest}$ (in magnitude) eigenvalue of $ilde{\Sigma}_n$
- $\tilde{\lambda} := \lim_{n \to \infty} \tilde{\lambda}_n$ (well-defined)

Theorem (Chamberlain, Rotschild, Forni, Lippi)

The following conditions are equivalent:

- $\mathbf{0}$ $\tilde{\mathbf{y}}$ is idiosyncratic
- $\lambda < \infty$
- **3** $\tilde{\Sigma}$ is a bounded linear operator in ℓ^2 [B.P.]

Interpretation

Corollary

 $\tilde{\boldsymbol{y}}$ is idiosyncratic \Longrightarrow The rows (columns) of $\tilde{\Sigma}$ are square integrable.

Consequence

If $\tilde{\mathbf{y}}$ is idiosyncratic, then $\mathbb{E}[\tilde{\mathbf{y}}_i \tilde{\mathbf{y}}_i] \to 0$ as $|i - j| \to \infty$.

Interpretation

Corollary

 $\tilde{\mathbf{y}}$ is idiosyncratic \Longrightarrow The rows (columns) of $\tilde{\Sigma}$ are square integrable.

Consequence

If $\tilde{\mathbf{y}}$ is idiosyncratic, then $\mathbb{E}[\tilde{\mathbf{y}}_i \tilde{\mathbf{y}}_i] \to 0$ as $|i - j| \to \infty$.

Idiosyncratic

Local interactions

Previuos concept

 $\hat{\mathbf{y}}$ is aggregate

 \Rightarrow $\hat{\Sigma}$ has "low" rank

Previuos concept

 $\hat{\mathbf{y}}$ is aggregate

 \Longrightarrow

 $\hat{\Sigma}$ has "low" rank

Question

Does the "low" rank concept guarantee uniqueness of the decomposition q-aggregate + idiosyncratic ?

Previuos concept

$$\hat{\boldsymbol{y}}$$
 is aggregate

$$\Longrightarrow$$

$$\hat{\Sigma}$$
 has "low" rank

Question

Does the "low" rank concept guarantee uniqueness of the decomposition q-aggregate + idiosyncratic ?

Example

$$\hat{\mathbf{y}}_k := \alpha^k \mathbf{x}, |\alpha| < 1$$

Previuos concept

$$\hat{\boldsymbol{y}}$$
 is aggregate

$$\Longrightarrow$$

$$\hat{\Sigma}$$
 has "low" rank

Question

Does the "low" rank concept guarantee uniqueness of the decomposition q-aggregate + idiosyncratic ?

Example

$$\hat{\mathbf{y}}_k := \alpha^k \mathbf{x}, \, |\alpha| < 1$$

•
$$\operatorname{rank} \hat{\Sigma} = 1 \implies \hat{y}$$
 1-aggregate?

$$\hat{\mathbf{v}}$$
 1-aggregate

Previuos concept

$$\hat{\mathbf{y}}$$
 is aggregate \implies $\hat{\Sigma}$ has "low" rank

Question

Does the "low" rank concept guarantee uniqueness of the decomposition q-aggregate + idiosyncratic ?

Example

$$\hat{\mathbf{y}}_k := \alpha^k \mathbf{x}, \, |\alpha| < 1$$

- $\operatorname{rank} \hat{\Sigma} = 1 \implies \hat{y}$ 1-aggregate?
- $\hat{\lambda} = \frac{\alpha^2}{1-\alpha^2}$ \Longrightarrow $\hat{\mathbf{y}}$ idiosyncratic!

Previuos concept

$$\hat{\boldsymbol{y}}$$
 is aggregate \implies $\hat{\Sigma}$ has "low" rank

Question

Does the "low" rank concept guarantee uniqueness of the decomposition q-aggregate + idiosyncratic ?

Example

$$\hat{\mathbf{y}}_k := \alpha^k \mathbf{x}, \, |\alpha| < 1$$

- $\operatorname{rank} \hat{\Sigma} = 1 \implies \hat{y}$ 1-aggregate?
- $\hat{\lambda} = \frac{\alpha^2}{1-\alpha^2} \implies \hat{\mathbf{y}}$ idiosyncratic!

Characterization of q-aggregate sequences is needed

Definition

Hilbert space $H := \operatorname{span} \{ \mathbf{y}_k, \ k \in \mathbb{N} \}$

Definition

Hilbert space $H := \operatorname{span} \{ \mathbf{y}_k, k \in \mathbb{N} \}$

Definition [B.P.]

 $\mathbf{y} := \text{purely deterministic of rank } q \ (q\text{-PD}) \text{ if } \dim H = q.$

Definition

Hilbert space $H := \operatorname{span} \{ \mathbf{y}_k, \ k \in \mathbb{N} \}$

Definition [B.P.]

y := purely deterministic of rank q (q-PD) if dim <math>H = q.

$$\mathbf{y} = (q ext{-PD}) \implies ext{there exists } F = [f_1(\cdot), f_2(\cdot), \dots f_q(\cdot)] ext{ s.t.}$$

$$\mathbf{y}_k = f^{\top}(k)\mathbf{x} = \sum_{i=1}^q f_i(k)\mathbf{x}_i, \qquad k \in \mathbb{N}$$

Definition

Hilbert space $H := \operatorname{span} \{ \mathbf{y}_k, \ k \in \mathbb{N} \}$

Definition [B.P.]

y := purely deterministic of rank q (q-PD) if dim <math>H = q.

$$\mathbf{y} = (q ext{-PD}) \implies ext{there exists } F = [f_1(\cdot), f_2(\cdot), \dots f_q(\cdot)] ext{ s.t.}$$

$$\mathbf{y}_k = f^{\top}(k)\mathbf{x} = \sum_{i=1}^q f_i(k)\mathbf{x}_i, \qquad k \in \mathbb{N}$$

A (q-PD) sequence can be idiosyncratic $(y_k := \alpha^k x)$

How to guarantee uniqueness of decomposition?

How to guarantee uniqueness of decomposition?

Definition [B.P.]

 $q-\mathsf{PD}$ sequence := q-aggregate \implies all q nonzero eigenvalues infinite.

How to guarantee uniqueness of decomposition?

Definition [B.P.]

 $q-\mathsf{PD}$ sequence := q-aggregate \implies all q nonzero eigenvalues infinite.

Theorem [B.P.]

q-PD sequence $(\mathbf{y}_k = \sum_{i=1}^q f_i(k)\mathbf{x}_i) = q$ -aggregate iff

$$\lim_{n \to \infty} \|f_i^n(\cdot) - \Pi[f_i^n(\cdot) | \mathcal{F}_i^n]\|_2 = +\infty, \tag{1}$$

where

$$\mathcal{F}_i^n = \operatorname{span}\left\{f_i^n(\cdot), j = 1, \dots, q, j \neq i\right\} \tag{2}$$

Example

• y = 2-PD sequence

$$\mathbf{y}_k := \mathbf{x}_1 + \left(1 - \left(0.5\right)^k\right) \mathbf{x}_2$$

Example

• y = 2-PD sequence

$$\mathbf{y}_k := \mathbf{x}_1 + \left(1 - \left(0.5\right)^k\right) \mathbf{x}_2$$

• $f_1(k) = 1 \quad \forall k$, $f_2(k) = 1 - (0.5)^k$

Example

• y = 2-PD sequence

$$\mathbf{y}_k := \mathbf{x}_1 + \left(1 - \left(0.5\right)^k\right) \mathbf{x}_2$$

- $f_1(k) = 1 \quad \forall k$, $f_2(k) = 1 (0.5)^k$
- non zero eigenvalues of Σ_n = eigenvalues of Gramian matrix of f_i^n 's

$$F^{n\top}F^{n} = \begin{bmatrix} \|f_{1}^{n}\|_{2}^{2} & \langle f_{1}^{n}, f_{2}^{n} \rangle_{2} \\ \langle f_{1}^{n}, f_{2}^{n} \rangle_{2} & \|f_{2}^{n}\|_{2}^{2} \end{bmatrix}$$

Example

• y = 2-PD sequence

$$\mathbf{y}_k := \mathbf{x}_1 + \left(1 - \left(0.5\right)^k\right) \mathbf{x}_2$$

- $f_1(k) = 1 \quad \forall k$, $f_2(k) = 1 (0.5)^k$
- non zero eigenvalues of Σ_n = eigenvalues of Gramian matrix of f_i^n 's

$$F^{n\top}F^{n} = \begin{bmatrix} \|f_{1}^{n}\|_{2}^{2} & \langle f_{1}^{n}, f_{2}^{n} \rangle_{2} \\ \langle f_{1}^{n}, f_{2}^{n} \rangle_{2} & \|f_{2}^{n}\|_{2}^{2} \end{bmatrix}$$

• $n \to \infty$ \Longrightarrow second eigenvalue $= \frac{5}{3}$.

Definition - Generalized factor model

 $\mathbf{y} := q$ -factor sequence (q-FS) if it admits a representation

$$\mathbf{y} = F\mathbf{x} + \tilde{\mathbf{y}}$$
, $F \in \mathbb{R}^{\infty \times q}$

Definition - Generalized factor model

 $\mathbf{y} := q$ -factor sequence (q-FS) if it admits a representation

$$\mathbf{y} = F\mathbf{x} + \tilde{\mathbf{y}}$$
 , $F \in \mathbb{R}^{\infty \times q}$

0 $<math>\hat{\mathbf{y}} := F\mathbf{x} = q$ -aggregate sequence

Definition - Generalized factor model

 $\mathbf{y} := q$ -factor sequence (q-FS) if it admits a representation

$$\mathbf{y} = F\mathbf{x} + \tilde{\mathbf{y}}$$
, $F \in \mathbb{R}^{\infty \times q}$

- **1** $\hat{\mathbf{y}} := F\mathbf{x} = q$ -aggregate sequence
- $\mathbf{\tilde{y}} = \text{idiosyncratic sequence (orth. to } \mathbf{x})$

Definition - Generalized factor model

 $\mathbf{y} := \mathbf{q}$ -factor sequence $(\mathbf{q}$ -FS) if it admits a representation

$$\mathbf{y} = F\mathbf{x} + \tilde{\mathbf{y}}$$
, $F \in \mathbb{R}^{\infty \times q}$

- **1** $\hat{\mathbf{y}} := F\mathbf{x} = q$ -aggregate sequence
- $\mathbf{\tilde{y}} = \text{idiosyncratic sequence (orth. to } \mathbf{x})$

Theorem (Forni, Lippi)

$$\mathbf{y} = \mathbf{q} - \mathsf{FS}$$
 iff $\lambda_q^y = \infty$ but λ_{q+1}^y is bounded $(\lambda_i = i - th \ eigenvalue)$

Definition - Generalized factor model

 $\mathbf{y} := \mathbf{q}$ -factor sequence $(\mathbf{q}$ -FS) if it admits a representation

$$\mathbf{y} = F\mathbf{x} + \tilde{\mathbf{y}}$$
, $F \in \mathbb{R}^{\infty \times q}$

- $\mathbf{0} \ \hat{\mathbf{y}} := F\mathbf{x} = q\text{-aggregate sequence}$
- $\mathbf{\tilde{y}} = \text{idiosyncratic sequence (orth. to } \mathbf{x})$

Theorem (Forni, Lippi)

$$\mathbf{y} = \mathbf{q} - \mathsf{FS}$$
 iff $\lambda_q^y = \infty$ but λ_{q+1}^y is bounded $(\lambda_i = i - th \ eigenvalue)$

Identification: PCA on the q unbounded eigenvalues of Σ

Stationary factor sequences

Sequences with unbounded variance are ill-posed

Stationary factor sequences

Sequences with unbounded variance are ill-posed

Assumption

$${f y}$$
 is stationary \Longrightarrow ${\Bbb E}[{f y}_t{f y}_s]=r(t-s)\ (\Rightarrow$ variance uniformely bounded)

Stationary factor sequences

Sequences with unbounded variance are ill-posed

Assumption

 ${f y}$ is stationary \implies ${\Bbb E}[{f y}_t{f y}_s]=r(t-s)$ (\Rightarrow variance uniformely bounded)

Our purpose

Compare the q-FS decomposition with the Wold decomposition of stationary processes

Definitions

 ${\bf y}$ stationary sequence

Definitions

y stationary sequence

• remote future: $H_{\infty} = \bigcap_{t>0} H_t$

 $H_t := \operatorname{span} \{ \mathbf{y}_k, \ k \ge t \}$

Definitions

y stationary sequence

- remote future: $H_{\infty} = \bigcap_{t>0} H_t$ $H_t := \operatorname{span} \{ \mathbf{y}_k, \ k \ge t \}$
- space of innovations: $\tilde{H} = \bigoplus_{t > 0} E_t$ $E_t := H_t \ominus H_{t+1}$

Definitions

y stationary sequence

- remote future: $H_{\infty} = \bigcap_{t > 0} H_t$ $H_t := \operatorname{span} \{ \mathbf{y}_k, \ k \ge t \}$
- space of innovations: $\tilde{H} = \bigoplus_{t \geq 0} E_t$ $E_t := H_t \ominus H_{t+1}$

Wold decomposition

Unique decomposition

$$\mathbf{y} = \hat{\mathbf{y}} + \tilde{\mathbf{y}},$$
 $\hat{\mathbf{y}}_k \in H_{\infty}$ $\tilde{\mathbf{y}}_k \in \tilde{H}$
= PD component + PND component

Question

$$\mathbf{y} = \mathsf{PD} \ \mathsf{component} \ + \ \mathsf{PND} \ \mathsf{component}$$
 \updownarrow \updownarrow $+$

Question

$$y = PD$$
 component $+ PND$ component \updownarrow \updownarrow $= q$ -aggregate $+$ idiosyncratic

When does this hold?

Question

$$\mathbf{y} = \mathsf{PD} \; \mathsf{component} \; + \; \mathsf{PND} \; \mathsf{component}$$

$$\updownarrow \qquad \qquad \qquad \updownarrow$$

$$= \; q\mathsf{-aggregate} \; + \; \mathsf{idiosyncratic}$$

When does this hold?

Lemma [B.P.]

$$\mathbf{y}$$
 stationary $+ S_{\mathbf{y}}(\omega) \in L^{\infty}([-\pi, \pi]) \implies \mathbf{y}$ idiosyncratic.

Question

$$\mathbf{y} = \mathsf{PD} \; \mathsf{component} \; + \; \mathsf{PND} \; \mathsf{component}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow$$

When does this hold?

Lemma [B.P.]

$$\mathbf{y}$$
 stationary $+ S_{\mathbf{y}}(\omega) \in L^{\infty}([-\pi, \pi]) \implies \mathbf{y}$ idiosyncratic.

PND processes with bounded spectrum are idiosyncratic

Question

$$y = PD$$
 component $+ PND$ component \updownarrow \updownarrow $= q$ -aggregate $+$ idiosyncratic

When does this hold?

Lemma [B.P.]

$$\mathbf{y}$$
 stationary $+ S_{\mathbf{y}}(\omega) \in L^{\infty}([-\pi, \pi]) \implies \mathbf{y}$ idiosyncratic.

PND processes with bounded spectrum are idiosyncratic

What about PD processes?

Aggregation subspace and remote future

Definition - Aggregation subspace ${\cal G}$

$$z \in \mathcal{G} \quad \Rightarrow \quad z = \lim_{n \to \infty} \mathfrak{a}_n^\top \mathbf{y}$$
 for a certain AS.

Consequences: **y** idiosyncratic $\Rightarrow \mathcal{G} = 0$, $\mathbf{y} := q\text{-FS} \Rightarrow \dim \mathcal{G} = q$

Aggregation subspace and remote future

Definition - Aggregation subspace ${\cal G}$

$$z \in \mathcal{G} \quad \Rightarrow \quad z = \lim_{n \to \infty} \mathfrak{a}_n^{\top} \mathbf{y} \text{ for a certain AS.}$$

Consequences:
$$\mathbf{y}$$
 idiosyncratic $\Rightarrow \mathcal{G} = 0$, $\mathbf{y} := q\text{-FS} \Rightarrow \dim \mathcal{G} = q$

Lemma [B.P.]

y stationary
$$+ S_y(\omega) \in L^{\infty}([-\pi, \pi]) \Longrightarrow \mathcal{G} \subseteq H_{\infty} \ (\mathbf{x}_i \in H_{\infty}).$$

Aggregation subspace and remote future

Definition - Aggregation subspace ${\mathcal G}$

$$z \in \mathcal{G} \quad \Rightarrow \quad z = \lim_{n \to \infty} \mathfrak{a}_n^\top \mathbf{y} \text{ for a certain AS.}$$

Consequences: \mathbf{y} idiosyncratic $\Rightarrow \mathcal{G} = 0$, $\mathbf{y} := q\text{-FS} \Rightarrow \dim \mathcal{G} = q$

Lemma [B.P.]

y stationary
$$+ S_y(\omega) \in L^{\infty}([-\pi, \pi]) \Longrightarrow \mathcal{G} \subseteq H_{\infty} \ (\mathbf{x}_i \in H_{\infty}).$$

$$H_{\infty} \subseteq \mathcal{G}$$
 generally not true

Aggregation subspace and remote future

Definition - Aggregation subspace ${\cal G}$

$$z \in \mathcal{G} \quad \Rightarrow \quad z = \lim_{n \to \infty} \mathfrak{a}_n^\top \mathbf{y}$$
 for a certain AS.

Consequences: \mathbf{y} idiosyncratic $\Rightarrow \mathcal{G} = 0$, $\mathbf{y} := q\text{-FS} \Rightarrow \dim \mathcal{G} = q$

Lemma [B.P.]

y stationary
$$+ S_y(\omega) \in L^{\infty}([-\pi, \pi]) \Longrightarrow \mathcal{G} \subseteq \mathcal{H}_{\infty} \ (\mathbf{x}_i \in \mathcal{H}_{\infty}).$$

$$H_{\infty} \subseteq \mathcal{G}$$
 generally not true

Lemma [B.P.]

y stationary
$$+ S_{\nu}(\omega) \in L^{\infty}([-\pi, \pi]) + \dim H_{\infty} < \infty \Rightarrow H_{\infty} \equiv \mathcal{G}.$$

q-FS and Wold decomposition

Using the previous conditions

Theorem [B.P.]

y stationary
$$+ S_y(\omega) \in L^{\infty}([-\pi, \pi]) + \dim H_{\infty} < \infty$$

q-FS and Wold decomposition

Using the previous conditions

Theorem [B.P.]

y stationary
$$+$$
 $S_y(\omega) \in L^\infty([-\pi,\,\pi]) + \dim H_\infty < \infty$ \Downarrow

y q-factor sequence with

Flocking interpretion

$$y = common behavior + local interactions$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$= q-aggregate + idiosyncratic$$

Flocking interpretion

$$y = common behavior + local interactions$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad$$

How can we model dynamic flocks?

Framework

• y(k, t) := evolution in time of k-th element of a flock

Framework

- y(k, t) := evolution in time of k-th element of a flock
- multiplicative structure assumption: $\mathbf{y}(k,t) = \mathbf{v}(k)\mathbf{u}(t)$

Framework

- y(k, t) := evolution in time of k-th element of a flock
- multiplicative structure assumption: $\mathbf{y}(k,t) = \mathbf{v}(k)\mathbf{u}(t)$
- \bullet $\mathbf{v}(k)$ spatial behavior
- $\mathbf{u}(t)$ evolution in time

Framework

- y(k, t) := evolution in time of k-th element of a flock
- multiplicative structure assumption: $\mathbf{y}(k,t) = \mathbf{v}(k)\mathbf{u}(t)$
- $\mathbf{v}(k)$ spatial behavior
- $\mathbf{u}(t)$ evolution in time

Assumptions

- $\mathbf{v}(k) = \sum_{i=1}^{q} f_i(k)\mathbf{z}_i + \tilde{\mathbf{v}}(k)$ stationary (\mathbf{v} q-factor sequence)
- $\bullet \mathbb{E}_{\mathbf{v}}\{\mathbf{v}(k_1)\mathbf{v}(k_2) \mid \mathbf{u}(t_1)\mathbf{u}(t_2)\} = \mathbb{E}_{\mathbf{v}}\{\mathbf{v}(k_1)\mathbf{v}(k_2)\}$

Procedure

1 Take a snapshot of the flock $\mathbf{y}(k, t_0)$

Procedure

- 1 Take a snapshot of the flock $\mathbf{y}(k, t_0)$
- 2 Compute the sample covariance

$$\hat{\sigma}_N(h,t_0) := \frac{1}{N} \sum_{k=1}^N y(k+h,t_0) y(k,t_0) = \frac{1}{N} \sum_{k=1}^N v(k+h) v(k) u(t_0)^2,$$

Procedure

- Take a snapshot of the flock $y(k, t_0)$
- 2 Compute the sample covariance

$$\hat{\sigma}_N(h,t_0) := \frac{1}{N} \sum_{k=1}^N y(k+h,t_0) y(k,t_0) = \frac{1}{N} \sum_{k=1}^N v(k+h) v(k) u(t_0)^2,$$

Ompute the sample Toeplitz matrix from sample covariance

Procedure

- Take a snapshot of the flock $y(k, t_0)$
- 2 Compute the sample covariance

$$\hat{\sigma}_N(h,t_0) := \frac{1}{N} \sum_{k=1}^N y(k+h,t_0) y(k,t_0) = \frac{1}{N} \sum_{k=1}^N v(k+h) v(k) u(t_0)^2,$$

- Ompute the sample Toeplitz matrix from sample covariance
- **4** Do PCA on the infinite eigenvalue \rightarrow recover the factor model for **v**

Procedure

- Take a snapshot of the flock $y(k, t_0)$
- 2 Compute the sample covariance

$$\hat{\sigma}_N(h,t_0) := \frac{1}{N} \sum_{k=1}^N y(k+h,t_0) y(k,t_0) = \frac{1}{N} \sum_{k=1}^N v(k+h) v(k) u(t_0)^2,$$

- Ompute the sample Toeplitz matrix from sample covariance
- **4** Do PCA on the infinite eigenvalue \rightarrow recover the factor model for **v**
- **5** Use the interpretation common behavior + local interactions

Conclusions and future works

Conclusions

- Rigorous formulation of Generalized factor analysis models
- Connection with stationary sequences and Wold decomposition
- Interpretation in terms of flocking modeling

Conclusions and future works

Conclusions

- Rigorous formulation of Generalized factor analysis models
- Connection with stationary sequences and Wold decomposition
- Interpretation in terms of flocking modeling

Future works

- Connection with nonstationary Wold decomposition
- Modeling of nonstationary flocks

Publications

- G. Bottegal, G. Picci and S. Pinzoni. On the identifiability of errors-in-variables models with white measurement errors. Automatica, 47(3):545-551, Mar. 2011.
- Q G. Bottegal and G. Picci. A note on generalized factor analysis models. IEEE CDC-ECC, 2011.
- G. Bottegal and G. Pillonetto. Regularized spectrum estimation in spaces induced by stable spline kernels. IEEE ACC, 2012.
- B.D.O. Anderson, M. Zamani and G. Bottegal. On the zero properties of tall linear systems with single-rate and multirate outputs. IFAC MTNS, 2012.
- G. Picci, G. Bottegal. Generalized Factor Analysis Models. Control Theory: Mathematical Perspectives on Complex Networked Systems, 2012.
- G. Bottegal and G. Pillonetto. Regularized spectrum estimation using stable spline kernels. Automatica (submitted).
- G. Bottegal and G. Picci. Flocking and generalized factor analysis. IEEE ECC, 2013.
- M. Zamani, G. Bottegal and B.D.O. Anderson. On the zero freeness of tall multirate linear systems. Automatica (submitted).
- G. Bottegal and G. Picci. Flocking and generalized factor analysis. IEEE Transactions on Automatic Control (submitted).

Ph.D. Defense

Giulio Bottegal Advisor: Prof. Giorgio Picci

Department of Information Engineering - University of Padova

February 28th, 2013

bottegal@dei.unipd.it automatica.dei.unipd.it/people/bottegal.html