
Ph.D. Defense

Giulio Bottegal
Advisor: Prof. Giorgio Picci

Department of Information Engineering - University of Padova

February 28th, 2013

Giulio Bottegal (DEI - UniPd) Ph.D. Defense February 28th, 2013 1 / 31



Summary of the thesis

Modeling, estimation and identification of stochastic
systems with latent variables

Contents
1 Generalized factor analysis models

2 Zero properties of tall multirate linear systems

3 Identifiability of errors-in-variables models

4 Nonparametric kernel-based spectrum estimation

Giulio Bottegal (DEI - UniPd) Ph.D. Defense February 28th, 2013 2 / 31



Summary of the thesis

Modeling, estimation and identification of stochastic
systems with latent variables

Contents
1 Generalized factor analysis models

2 Zero properties of tall multirate linear systems

3 Identifiability of errors-in-variables models

4 Nonparametric kernel-based spectrum estimation

Giulio Bottegal (DEI - UniPd) Ph.D. Defense February 28th, 2013 2 / 31



Generalized factor analysis models
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Introduction and motivations

Factor analysis models

History
Introduced by psychologists (Spearman, 1904)
Successively applied in econometrics (Ledermann, 1937)
Extended to a dynamic context (Geweke 1977)
Generalized to infinite cross-sectional dimension (Chamberlain and
Rotschild 1982, Forni and Lippi 2001)

Aim in econometry
Describe the common core of a set of observations

Could these models be used also for other purposes?
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Introduction and motivations

Modeling of flocks

Global perspective
We observe a group of agents with similar behaviors

Observations = Common behavior + Local interactions

Examples (from nature)
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Introduction and motivations

Detection of emitters

Scenario
q impulse emitters xi
large (N ↑) amount of receveirs yi
local sources of noise ỹ

x1x2

x3

yi

Goal: detect q and estimate x

Receiver equation
yi(t) = fi1x1(t) + . . .+ fiqxq(t) + ỹi(t) (fij ∼ distance from emitter j)

⇓

y = Fx + ỹ
= Common behavior + Local interactions
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Introduction and motivations

Gene regulatory network

Scenario
network of N genes: yi expression level of i−th gene
q transcription factors regulate the activity of the genes (q << N)
Genes mutually influence the activity of their neighbors

Model for the network
yi = fi1x1 + . . .+ fiqxq + ỹi
xi trans. factor, fij strenght of influence

⇓

y = Fx + ỹ
= Common behavior + Local interactions
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Introduction and motivations

Characterization

Our scope
Formalize the concept

Observations = Common (and simple) behavior + Local interactions

Stochastic framework of generalized factor analysis
y := {yk , k ∈ N} infinite collection of observed zero-mean r.v.’s

Goal: find a unique decomposition

yk = ŷk + ỹk k = 1, 2, . . .

Question
Which features shall ŷk and ỹk have?
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Giulio Bottegal (DEI - UniPd) Ph.D. Defense February 28th, 2013 8 / 31



Generalized factor analysis

Generalized Factor model

Vector notation: y = ŷ + ỹ

Definitions
ŷ := Fx form a q-aggregate sequence (F ∈ R∞×q)
ỹ form idiosyncratic noise

Features
x := q-dimensional orthonormal random vector (latent factors)

1 q fixed −→ “simple” behavior
sequence ỹ:

1 orthogonal to ŷ;
2 has “weak” cross–correlation −→ E[ỹi ỹj ]→ 0 when |i − j | ↑.
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Generalized factor analysis

Covariance matrices decription

Notation
Σ := infinite covariance matrix of y
Σn := covariance matrix of first n components

From previous assumptions

Σ := Σ̂ + Σ̃

Features
Σ̂ := covariance matrix of ŷ −→ rankΣ̂ = q
Σ̃ := covariance matrix of ỹ −→ “weak” cross-correlations
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Generalized factor analysis

Identifiability

y = ŷ + ỹ
= q-aggregate + idiosyncratic

How to guarantee uniqueness of the decomposition?

Goal
We need to characterize:

1 Idiosyncratic sequences
2 q-aggregate sequences
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Generalized factor analysis

Idiosyncratic sequences

Preliminar concept - Averaging sequences
{an}n∈N := sequence of elements of `2.
{an}n∈N is an averaging sequence (AS) if limn→∞ ‖an‖2 = 0.

Example
an := 1

n [ 1 . . . 1︸ ︷︷ ︸
n

0 . . . ]> is an averaging sequence (‖an‖2 = 1
n ).

Definition
ỹ is an idiosyncratic sequence if limn→∞ ‖a>n ỹ‖ = 0 for any AS an.
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Generalized factor analysis

Meaning of idiosyncratic

Example 1
ỹ = white noise (with uniformly bounded variance) ⇒ ỹ idiosyncratic

lim
n→∞

a>n diag{σ21, σ22, . . . , }an = 0 ∀ an AS

Example 2
y = sequence with a single latent factor

y = 1x + ỹ, ỹ white noise

z := limN
1
N
∑N

k=1 yk =⇒ z = x
1 We have recovered the latent factor
2 Idiosyncratic noise vanishes by averaging the observations
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Generalized factor analysis

A Strong characterization

Eigenvalues of the sequence
λ̃n := largest (in magnitude) eigenvalue of Σ̃n

λ̃ := limn→∞ λ̃n (well-defined)

Theorem (Chamberlain, Rotschild, Forni, Lippi)
The following conditions are equivalent:

1 ỹ is idiosyncratic
2 λ <∞
3 Σ̃ is a bounded linear operator in `2 [B.P.]
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Generalized factor analysis

Interpretation

Corollary
ỹ is idiosyncratic =⇒ The rows (columns) of Σ̃ are square integrable.

Consequence
If ỹ is idiosyncratic, then E[ỹi ỹj ]→ 0 as |i − j | → ∞.

Idiosyncratic ⇐⇒ Local interactions
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Generalized factor analysis

Aggregate sequences

Previuos concept
ŷ is aggregate =⇒ Σ̂ has “low” rank

Question
Does the “low” rank concept guarantee uniqueness of the decomposition
q-aggregate + idiosyncratic ?

Example

ŷk := αkx, |α| < 1

rankΣ̂ = 1 =⇒ ŷ 1-aggregate?
λ̂ = α2

1−α2 =⇒ ŷ idiosyncratic!

Characterization of q-aggregate sequences is needed
Giulio Bottegal (DEI - UniPd) Ph.D. Defense February 28th, 2013 16 / 31
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rankΣ̂ = 1 =⇒ ŷ 1-aggregate?
λ̂ = α2
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Generalized factor analysis

q-PD sequences

Definition
Hilbert space H := span {yk , k ∈ N}

Definition [B.P.]
y := purely deterministic of rank q (q-PD) if dimH = q.
y = (q-PD) =⇒ there exists F = [ f1(·), f2(·), . . . fq(·) ] s.t.

yk = f >(k)x =
q∑

i=1
fi(k) xi , k ∈ N

A (q-PD) sequence can be idiosyncratic (yk := αkx)
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Generalized factor analysis

Aggregate sequences

How to guarantee uniqueness of decomposition?

Definition [B.P.]
q−PD sequence := q-aggregate =⇒ all q nonzero eigenvalues infinite.

Theorem [B.P.]
q−PD sequence (yk =

∑q
i=1 fi(k)xi) = q-aggregate iff

lim
n→∞

‖f ni (·)− Π[f ni (·) | Fn
i ]‖2 = +∞ , (1)

where
Fn
i = span {f nj (·), j = 1, . . . , q, j 6= i} (2)
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Generalized factor analysis

Meaning of the theorem

Example
y = 2−PD sequence

yk := x1 +
(
1− (0.5)k

)
x2

f1(k) = 1 ∀k , f2(k) = 1− (0.5)k

non zero eigenvalues of Σn = eigenvalues of Gramian matrix of f ni ’s

F n>F n =

[
‖f n1 ‖22 〈f n1 , f n2 〉2
〈f n1 , f n2 〉2 ‖f n2 ‖22

]

n→∞ =⇒ second eigenvalue = 5
3 .
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Generalized factor analysis

q-factor sequences

Definition - Generalized factor model
y := q−factor sequence (q−FS) if it admits a representation

y = Fx + ỹ , F ∈ R∞×q

1 ŷ := Fx = q-aggregate sequence
2 ỹ = idiosyncratic sequence (orth. to x)

Theorem (Forni, Lippi)
y = q−FS iff λyq =∞ but λyq+1 is bounded (λi = i−th eigenvalue)

Identification: PCA on the q unbounded eigenvalues of Σ
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1 ŷ := Fx = q-aggregate sequence
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Stationary sequences

Stationary factor sequences

Sequences with unbounded variance are ill-posed

Assumption
y is stationary =⇒ E[ytys ] = r(t − s) (⇒ variance uniformely bounded)

Our purpose
Compare the q-FS decomposition with the Wold decomposition of
stationary processes
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Stationary sequences

The Wold decomposition

Definitions
y stationary sequence

remote future: H∞ =
⋂
t≥0Ht Ht := span {yk , k ≥ t}

space of innovations: H̃ =
⊕

t≥0 Et Et := Ht 	 Ht+1

Wold decomposition
Unique decomposition

y = ŷ + ỹ , ŷk ∈ H∞ ỹk ∈ H̃
= PD component + PND component
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Stationary sequences

Seeking a correspondence

Question

y = PD component + PND component
m m

= q-aggregate + idiosyncratic

When does this hold?

Lemma [B.P.]
y stationary + Sy (ω) ∈ L∞([−π, π]) =⇒ y idiosyncratic.

PND processes with bounded spectrum are idiosyncratic

What about PD processes?
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Stationary sequences

Aggregation subspace and remote future

Definition - Aggregation subspace G
z ∈ G ⇒ z = limn→∞ a>n y for a certain AS.
Consequences: y idiosyncratic ⇒ G = 0, y := q-FS ⇒ dimG = q

Lemma [B.P.]
y stationary + Sy (ω) ∈ L∞([−π, π]) =⇒ G ⊆ H∞ (xi ∈ H∞).

H∞ ⊆ G generally not true

Lemma [B.P.]
y stationary + Sy (ω) ∈ L∞([−π, π]) + dimH∞ <∞ ⇒ H∞ ≡ G.
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Stationary sequences

q-FS and Wold decomposition

Using the previous conditions

Theorem [B.P.]
y stationary + Sy (ω) ∈ L∞([−π, π]) + dimH∞ <∞

⇓

y q−factor sequence with

y = PD component + PND component
m m

= q-aggregate + idiosyncratic
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Modeling a flock

Flocking interpretion

y = common behavior + local interactions
m m

= q-aggregate + idiosyncratic

How can we model dynamic flocks?
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Modeling a flock

Modeling a flock

Framework
y(k, t) := evolution in time of k−th element of a flock
multiplicative structure assumption: y(k, t) = v(k)u(t)

v(k) spatial behavior
u(t) evolution in time

Assumptions
v(k) =

∑q
i=1 fi(k)zi + ṽ(k) stationary (v q−factor sequence)

E v{v(k1)v(k2) | u(t1)u(t2)} = E v{v(k1)v(k2)}
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Modeling a flock

Estimation of the flocking behavior

Procedure
1 Take a snapshot of the flock y(k, t0)

2 Compute the sample covariance

σ̂N(h, t0) :=
1
N

N∑
k=1

y(k+h, t0)y(k, t0) =
1
N

N∑
k=1

v(k+h)v(k) u(t0)2 , h = 0, 1, 2, . . .

3 Compute the sample Toeplitz matrix from sample covariance
4 Do PCA on the infinite eigenvalue → recover the factor model for v
5 Use the interpretation common behavior + local interactions
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Conclusions

Conclusions and future works

Conclusions
Rigorous formulation of Generalized factor analysis models
Connection with stationary sequences and Wold decomposition
Interpretation in terms of flocking modeling

Future works
Connection with nonstationary Wold decomposition
Modeling of nonstationary flocks
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