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Summary

Two quite different topics are covered in the thesis.

Methods and Applications in Networked Control

The first topic is networked control, identification, and optimization, with particular interest

in the design of individual control laws for multi-agent networked systems. These systems

consist in a large, sometimes unknown and time-varying, number of agents. These agents

can communicate, they interact with an underlying physical system by sensing and actuating

it, and none of them has a complete knowledge of the system state and parameters. The

main challenges in designing control, identification, and optimization algorithms for these

systems are the need for scalability, the constraints in the communication capabilities of the

agents, the need for robustness in case of agent failure, and the adaptivity to changes in the

system (node appearance and disappearance, communication failures, change in the agents’

placement, etc.).

Some mathematical tools and methods from the literature are reviewed, and their appli-

cation to the problem of networked control are explored. A series of original mathematical

methods and algorithms have then be derived:

• analysis results on the stability and scalability of consensus algorithms for unstable

dynamics;

• distributed parametric identification via least-square estimation;

• distributed quasi-Newton methods for convex optimization;

• randomized iterative methods for quadratic, linearly constrained optimization.

These methods are presented via their application to some motivating example of net-

worked control systems. All of them are also of great interest per se, and can be considered

challenging open problems in the field of networked control. They are the following:
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• leaderless, distributed, clock synchronization in networks of agents with extremely

limited computational, communication, and energy resources;

• distributed, online estimation of the wireless channel parameters for localization of

mobile nodes via triangulation;

• management architectures and distributed networked control laws for reactive power

compensation (and other ancillary services) in the so called smart grids, with a particu-

lar focus on microgrids at the power distribution level.

These open problems will be explored both as a motivating testbed for the proposed

methods and as an outlook for future directions of investigation.

Feedback Control Design for Quantum Systems

The second topic is the problem of control of quantum dynamical systems, via the design of

stabilizing feedback control law when quantum measurements are available.

Discrete time models for quantum dynamics are reviewed, with a particular attention to

those control problems that are typical key tasks in quantum information processing:

• preparation of states of maximal information;

• engineering of protected realization of quantum information, i.e. the realization of

information encodings that preserve the fragile quantum states from the action of

noise.

These tasks can be casted into the more general problem of engineering stable quantum

dynamical subspaces.

In this part of the thesis the asymptotic behavior of discrete-time, Markovian quantum

systems with respect to a subspace of interest, is analyzed. The results of this analysis, based

on a Ljapunov approach, provide necessary and sufficient conditions on the dynamical model

that ensure global asymptotic stability of a certain quantum subspace.

It is then introduced a control scheme that allows modifying the underlying dynamics by

indirectly measuring it and by applying unitary control actions conditioned on the outcome

of the measurement. For this discrete-time feedback control scheme, an original design

algorithm capable of stabilizing a target subspace is introduced. It is guaranteed that if

the control problem is feasible, then the algorithm returns an effective control choice. In

order to prove this result, a new technical tool is derived, namely a canonical QR matrix

decomposition, which is also used to establish the control scheme potential for the simulation

of open-system dynamics.



Sommario

Nella tesi vengono trattati due argomenti distinti.

Metodi e applicazioni nel controllo distribuito

Il primo argomento trattato riguarda il controllo, l’identificazione e l’ottimizzazione distribuiti

(networked), con particolare interesse per la progettazione di leggi di controllo per sistemi

multiagenti distribuiti. Questi sistemi consistono di un numero di agenti elevato, talvolta

sconosciuto e variabile nel tempo. Questi agenti sono in grado di comunicare, di interagire

con il sistema fisico nel quale si trovano tramite operazioni di misura e attuazione, e nessuno

di essi ha una conoscenza completa dello stato e dei parametri del sistema. Le sfide maggiori

per la progettazione di algoritmi di controllo, identificazione e ottimizzazione per questi

sistemi sono i requisiti di scalabilità, i vincoli nelle comunicazioni tra gli agenti, i requisiti

di robustezza nei confronti di guasti degli agenti, e la capacità di adattarsi a modifiche

del sistema (apparizione e scomparsa di nodi, errori di comunicazione, spostamento e

riconfigurazione degli agenti, ecc.).

Sono stati riportati alcuni strumenti e metodi matematici disponibili in letteratura,

illustrando la loro applicazione al problema del controllo distribuito. È stata poi ricavata un

serie di metodi e algoritmi originali:

• risultati sull’analisi di stabilità e di scalabilità degli algoritmi di consenso per sistemi

dinamici instabili;

• identificazione parametrica distribuita tramite stima ai minimi quadrati;

• metodi quasi-Newton distribuiti per problemi di ottimizzazione convessa;

• metodi iterativi randomizzati per l’ottimizzazione quadratica con vincoli lineari.

Questi metodi vengono presentati illustrandone l’applicazione ad alcuni esempi di sistemi

di controllo distribuiti. Questi esempi di applicazione sono interessanti di per sé, in quando

possono essere considerati problemi tuttora aperti nel campo del controllo distribuito. Essi

sono:
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• sincronizzazione temporale completamente decentralizzata in reti di agenti dotati di

limitate capacità di calcolo, comunicazione e autonomia;

• stima online distribuita dei parametri del canale di comunicazione wireless per la

localizzazione di nodi mobili tramite triangolazione;

• architetture e leggi di controllo distribuite per la compensazione della potenza reattiva

nelle smart grids, ed in particolare nelle micro-reti di distribuzione.

Queste applicazioni vengono illustrati sia come banchi di prova per i metodi proposti, sia

come possibili futuri sviluppi della ricerca in questo campo.

Controllo a retroazione per sistemi quantistici

Il secondo argomento riguarda il problema del controllo di sistemi dinamici quantistici tramite

la progettazione di leggi di retroazione stabilizzanti, in presenza di misure quantistiche.

Innanzitutto vengono richiamati modelli a tempo discreto per sistemi quantistici, con

particolare interesse per i problemi del controllo quantistico che sono di maggiore rilevanza

per la teoria dell’informazione quantistica:

• preparazione di stati di massima informazione;

• protezione dell’informazione quantistica, ovvero realizzazione di codifiche dell’infor-

mazione che preservino gli stati quantistici dall’azione del rumore.

Questi compiti possono essere interpretati all’interno del problema più ampio di stabilizzazio-

ne di sottospazi nei sistemi quantistici.

In questa parte della tesi viene analizzato il comportamento asintotico di sistemi quanti-

stici Markoviani a tempo discreto rispetto ad un sottospazio di interesse. Il risultato di questa

analisi, basato su un approccio alla Ljapunov, fornisce condizioni necessarie e sufficienti sul

modello dinamico per garantire la stabilità asintotica di un certo sottospazio.

Viene poi introdotto uno schema di controllo che permette di modificare la dinamica

del sistema tramite misure indirette e tramite l’applicazione di azioni di controllo coerenti,

condizionate dal risultato della misura. Viene proposto un algoritmo originale per la proget-

tazione della legge di controllo capace di stabilizzare un dato sottospazio. È garantito che,

se il problema di controllo ha soluzione, allora l’algoritmo fornisce una legge di controllo

stabilizzante.

Per dimostrare questi risultati è stato necessario definire un nuovo strumento: una

decomposizione QR canonica, che viene anche utilizzata per studiare le potenzialità dello

schema di controllo per la simulazione di dinamiche diverse da quelle del sistema.
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Part I

Methods and application in

networked control





1
Introduction

An extremely synthetic definition of networked control systems (NCS) is provided in Special

issue on technology of networked control systems (2007):

“Networked control systems are control systems comprised of the system to be

controlled and of actuators, sensors, and controllers, the operation of which is

coordinated via a communication network. These systems are typically spatially

distributed, may operate in an asynchronous manner, but have their operation

coordinated to achieve desired overall objectives.”

It is clear from this definition that the class of control problems that can be casted into this

framework is extremely large.

An overview on the historical background of this field, on the available methodologies,

and on the many applications of NCS, can be found in Special issue on sensor networks

and applications (2003) and in Special issue on technology of networked control systems

(2007). The very seminal works on these topics have been inspired by some examples of
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multi-agent cooperation observed in nature, ranging from coordinated school of fish to the

synchronized behavior of fireflies (see Strogatz 2004 for an inspiring lecture). The analysis of

such behaviors in nature has soon motivated the design of similar algorithms for the control

of large numbers of autonomous vehicles, robots, unmanned aircrafts, and underwater

devices. The widespread and cheap availability of wireless communication and the falling

cost of extremely small computing and communicating units has also driven the research

towards networks made of a huge numbers of sensors for environmental monitoring, process

control, and dispersed automation. Lately, extremely diverse examples of NCS have entered

into the picture: social networks, financial and market economy, biotechnology devices.

It should be clear from this (non exhaustive) list of applications that NCS are better

characterized by the issues and the challenges that they present, rather than by the specific

scenario that they represent.

A list of these issues is reported hereafter, and will be referenced later in the thesis,

when these issues are addressed. Then, in Chapter 2, a series of methodological tools that

find frequent application in NCS is reviewed. These tools are presented with a consistent

approach, notation and terminology, which will be adopted also in the rest of the thesis.

Proper references to the existing literature are also provided in the same chapter. Chapter 3

contains the original contributions of this work. The proposed methods and solutions are

presented via their application to specific scenarios.

The reason of this choice is twofold.

While these methods are quite general and they are not strictly application-specific, they

are however motivated by some specific case studies, and they exploit some of their features.

The opportunity of adapting the same methods to different applications will become evident

in their presentation.

At the same time, the modeling of the specific applications is interesting per se, as

the chosen applications are some of the most motivating and promising examples of NCS.

Wireless sensor networks have already proved their effectiveness in many situations, their

implementation has been translated into technological and engineering problems, and

experimental testbed are widely available. On the other hand, the application of NCS

methodologies to the power distribution networks is still novel and unexplored, but extremely

promising; smart grids are likely to become a valuable testbed and a field of application for

many of these methods, because of the extremely diverse issues that they present, because

of their novelty, and because they require a holistic approach that embraces all field of ICT:

communications, control, computer science, information theory, together of course with

power electronics and electrical engineering.
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1.1 Issues and challenges in NCS

Multi agent architectures

According to the definition given before, NCS are control systems in which the controller

elements are not centralized but distributed over the entire system via parallel and distributed

processing.

NCS are therefore agent-based system. Multi-agent systems comprise multiple intelli-

gent entities (agents) working together to solve the complex problem, which is difficult or

impossible to an individual agent.

The decomposition of the whole system into agents is generally inherent in the system

itself, and it is not part of the design. The abstract concept of agent can correspond to

extremely different entities: parts of a software, pieces of hardware, sensors and actuators,

computers in a data network, customers, companies, people with their opinion, moving

robots, vehicles, and so on. In all these scenarios the multi-agent aspect of the problem is

critical.

Scalability

The rationale behind the design of most of NCS is that a large number of agents with basic

computational, sensing, and actuating capabilities, if properly commanded, can achieve some

complex global behavior. In this sense, the fact of having an arbitrary large number of agents

is a feature that has to be necessarily exploited to achieved the desired result.

At the same time, this requires that scalability of the control laws and of the distributed

algorithms is taken into consideration at the design stage: the computational effort (in terms

of both memory space and computing time) must remain constant or almost constant for an

arbitrary number of replicas of the same agent (i.e. for an arbitrary size of the system).

Distributed information

In the analysis and in the design of a NCS, one of the critical aspects of its multi-agent

structure is understanding and deciding what information is available to each agent.

Indeed, both the systems structure (the number of agents, their configuration, the

communication graph, the underlying physical system) and the system state are unknown in

their full extent to any agent. Every agent has only a partial knowledge of this information,

and there is no central unit that has the global view of the system. Moreover, the structure of

the systems may change in time, due to external events, reconfiguration, node appearance

and disappearance.
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Communication constraints

Communication between agents in a NCS is constrained in many ways. Almost always, agents

willing to coordinate their behavior and exchange data are forced to interact with a smaller

subset of neighbors. In many cases, they also experience transmission noise, quantization,

data rate constraints, delay and unreliable communication.

Interaction with an underlying physical system

The agents of a NCS are generally deployed in an environment, and interact with it by sensing

or actuating. This interaction poses some challenges, in particular when the underlying

environment is partially unknown and exhibits its own dynamics.

In some cases the presence of an underlying physical system governed by its own laws

poses some extra challenges. Consider for example the problem of robot coordination

when, because of the physics of the wireless transmission channel, the communication graph

depends on the state of the system (the nodes’ distances). In this case, like in many others,

the underlying physical system couples different aspects (communication constraints and

system state in this example) and makes the analysis and the design of a distributed control

law much more complex.

In some other cases the underlying physical system can be exploited by the agents for

signaling. The idea that controllers actuating and sensing the same system can use it to

implement some exchange of information dates back to the Witsenhausen counterexample

(see Mitter and Sahai 1999 for an interpretation in this sense). This possibility is still an

open problem, especially in the case in which a large number of networked controllers are

involved. In some cases, however, something similar has been achieved: by sensing locally

some outputs of the underlying system, the agents of a NCS may be able to infer some

functions of the whole system state. This is of course very application specific, but can be

recognized in a remarkable number of examples.

Robustness to systems changes

When a system is constituted by a large number of agents, the design of a distributed

algorithm or control law must take into account the possibility that some agents enter into

the system, some disconnect, some are reconfigured. This is especially true when these

agents are inexpensive and therefore unreliable.

Distributed algorithms designed for a NCS must guarantee that their performance de-

grades in a reasonable way when some agents misbehave. The global behavior of the system
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has to be quite insensitive with respect to heterogeneity of its parts, faulty behaviors and also

malicious attacks.

Sometimes guaranteeing this feature in a multi-agent system is easier than in a centralized

setup. It is indeed one of the motivations for the transition towards NCS in some applications,

for example in critical infrastructures where the reliability of the whole system cannot depend

on few central devices, although very reliable.

Performances

The issue of performances of the algorithms implemented in NCS is quite different from

the analysis of the performances in parallel computing (which has been object of wide

research and share some similarities). While in parallel computing, the algorithms are

decomposed into sub-algorithms for the different processing units to obtain improvements in

the performances (speed and/or memory requirements), in NCS the multi-agent structure of

the algorithms is given by the architecture of the system and cannot, in general, be avoided

(it may also be part of the designer choice to accept a slight degradation of the performances

when this guarantees extra robustness of the system).

Moreover, many algorithms in NCS are asynchronous and randomized. In these cases

analyzing their worst case behavior is almost always too conservative and it underestimates

the algorithm potentials. Probabilistic methods are then needed, together with proper models

for the strategies of execution of the individual nodes’ sub-algorithms.
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2
Methods and mathematical tools

2.1 Multiagent architectures and communication models

Graphs

Let V be a set of nodes corresponding to the agents of a networked control system:

V= {v1, v2, . . . , vN}, |V|= N .

A graph G= (V,E, s(·), t(·)) can be defined on the set of nodes V, where

• E is the set of edges

• s(·) : E→ V is a function that maps every edge into its source

• t(·) : E→ V is a function that maps every edge into its sink.
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In the case in which multiple edges (edges with the same source and the same sink) are

not allowed, it is possible to replace the set of nodes with the set of node indices, obtaining

V= {1, . . . , N}, and the set of edges with a set of ordered pairs of nodes: E⊆ V×V. As the

source and the sink of an edge (i, j) are implicitely defined as s
�

(i, j)
�

= i and t
�

(i, j)
�

= j,

a graph is completely determined by G= (V,E).

A graph G= (V,E) is called undirected when

(i, j) ∈ E =⇒ ( j, i) ∈ E.

In some application it is however useful to consider a more general definition of an undirected

graph, in which hyperedges e ∈ E are defined as subsets of the set of nodes V. The set of

nodes V and the set of hyperedges E constitute an hypergraph. Regular undirected graphs

are hypergraphs with |e| ≤ 2 for all e ∈ E. To avoid extra notational burden, hypergraphs

will not be considered in the rest of this section.

The following definitions will be adopted for the rest of the thesis.

Let the set of out-neighbors of the node v ∈ V be defined as

N(v) = {u ∈ V | ∃e ∈ E, s(e) = v, t(e) = u} ⊆ V

or equivalently, when nodes are identified by their indices,

N(i) =
�

j ∈ V | (i, j) ∈ E
	

⊆ V.

Let instead N(i) be the set of in-neighbors, defined as

N(i) =
�

j ∈ V | ( j, i) ∈ E
	

⊆ V.

Let the out-degree of a node v be defined as d(v) = |N(v)|, and its in-degree as d̄(v) =

|N(v)|. In the sequel the out-neighbors will be just called neighbors and the out-degree will

be called degree.

Let the adjacency matrix A∈ {0,1}N×N of a graph be defined by its elements:

[A]i j =







1 if ( j, i) ∈ E

0 otherwise
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Let the Laplacian matrix L ∈ RN×N of a graph be defined by its elements:

[L]i j =











−1, if i ∈N( j)

d(i) if i = j

0 otherwise.

It is straightforward to show that L = D− A, where D = diag(d(1), . . . , d(N)).

According to the definition, all row-sums of L are zero, and therefore L always has a

zero eigenvalue λ1 = 0. The corresponding eigenvector is 1 = [1 . . . 1]T . Moreover, if L is

symmetric (undirected graph), its eigenvalues satisfy

0= λ1 ≤ λ1 ≤ · · · ≤ λN ≤ 2 max
i∈V

d(i),

while if L is not symmetric, the real part of its eigenvalues satisfy the same condition.

In a directed graph, a path of length ` from nodes u to v is a sequence of edges {e1, . . . , e`}
such that t(ei) = s(ei+1) for i = 1, . . . ,`− 1, s(e1) = u, t(e`) = v. The graph G is connected

if every pair of nodes u, v is connected by a path. A directed graph is weakly connected if

the undirected graph obtained by adding the inverse edge ( j, i) every time that (i, j) exists,

is connected. For an undirected, connected graph G, the second smallest eigenvalue of the

Laplacian is strictly positive (λ2 > 0). For this reason λ2 is called algebraic connectivity.

Unless stated differently, it is assumed in the following that any graph G includes all

self-arcs, i.e. (i, i) ∈ E,∀i ∈N.

A graph is rooted in k if there exists a path in the graph from node k ∈ V to any other

node in V, and strongly rooted in k if node k is directly connected to all other nodes, i.e.

(k, j) ∈ E,∀ j ∈ V. Clearly a strongly connected graph implies that it is also a rooted graph

for any node. A graph which has at least one root is called rooted; finally, a strongly rooted

graph is a graph which has at least one vertex at which it is strongly rooted.

The concatenation of two graphs G1 = (V,E1) and G2 = (V,E2) is a graph G = (V,E) =

G2 ◦G1 such that (i, j) ∈ E if there exists k ∈ V such that (k, j) ∈ E1, (i, k) ∈ E2. Similarly, the

union of two graphs is a graph G= G1 ∪G2 for which E= E1 ∪E1. Clearly G1 ∪G2 = G2 ∪G1

and G2 ◦G1 6= G1 ◦G2.

In many cases it is convenient to introduce weights on the edges, defined as a scalar

real-valued function w : E → R. From this definition, the concepts of weighted adjacency
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matrix Aw , and weighted Laplacian Lw are derived, where

[Aw]i j =







w
�

( j, i)
�

if ( j, i) ∈ E

0 otherwise

and

[Lw]i j =











−w
�

( j, i)
�

, if i ∈N( j)
∑

k∈N(i)w
�

(i, k)
�

if i = j

0 otherwise.

Communication models

In many NCS applications, graphs are defined on the set of agents to model the communi-

cation constraints in the systems. In these cases, an edge e belongs to E if the agent s(e) is

allowed to send some information to the node t(e) via the given communication channel.

Different communication technologies correspond to very different graphs. Just to men-

tion some examples, they include complete graphs when every node can communicate with

any other node (for example in multihop data networks), regular graphs when agents are

devices arranged in some predefined structure (for example multiprocessor machines), ran-

dom geometric graphs in wireless sensor networks (see Figure 2.1 for a brief definition), trees

when communication happens on the electrical power grid via power-line communication.

A communication graph can also be constructed from experimental data, as shown in

Section 3.2, where edges between wireless sensors represent wireless links that exhibited

a sufficiently high probability of success in a series of transmission tests (or, conversely, a

packet drop probability lower than a given threshold).

This simple model for agent-to-agent communication does not take into account many of

the phenomena that characterize the communication channels that are available in real-life

NCS: communication noise, packet losses and data errors, quantization, just to mention few.

In some specific cases (for example when agents move in the space and communication

is limited to a given maximum range) the communication graph can also depend on the

nodes’ state. The analysis of these phenomena has been done in the literature for some

specific algorithms and applications (see Section 2.2 for the relative discussion in the case of

consensus algorithms).
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R

Figure 2.1: Example of a random geometric graph. Nodes are deployed in the space (in this case in
R2) according to a given probability distribution. Pair of nodes whose distance is less than a given

radius R are connected by an edge.

Communication and algorithm execution strategies

The access of the agents to the communication media can be regulated according to different

strategies. Generally there is a correspondence between the action of communicating and

the action of processing the acquired data, and therefore the following communication

strategies also induce different iterative forms of the algorithms. In many cases, the agents

involved in the communication are also required to take action, perform some sensing,

actuate themselves or the system; just to mention some examples, in Bullo, Cortés, and

Martínez (2009); Frasca, Carli, and Bullo (2009a) the agents (moving robots) that perform a

communication are typically required to move in a new computed position, and in Bolognani

and Zampieri (2011) the agents (power inverters) are also required to modify the amount of

power injected in the power grid.

The following strategies have then to be intended as strategies for the activation of the

agents, and not only for the communication:

• in gossip communication one agent receives the information from another agent, while

the rest of the system in unaware of the exchange of data; if the graph is undirected,

it is also possible to enforce that the exchange of information is always bidirectional

(symmetric gossip); symmetry in the data transmission can be required by some

algorithms to guarantee some particular features (see for example average consensus

in Section 2.2); note however that ensuring symmetry of operation when the channel

suffers from non zero packet drop rate or error probability is a challenging – if not

impossible – goal to achieve (see the Two Generals’ Problem);
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• in broadcast communication, agent v sends the same information to all its neighbors

N(v), receiving nothing in response; according to the communication technology, this

strategy can require more resources (energy, bandwidth, time) than the gossip strategy,

because a larger number of agents is involved; however this is not always true: one

notable example is wireless communication, which is inherently a broadcast commu-

nication as the same information in received by all the nodes in the communication

range of the transmitting node.

Agents can be triggered to communicate according to different modalities.

In synchronous algorithms, all agents communicate at the same time. This approach

usually returns global behaviors that are easier to analyze, but can be unpractical to achieve,

as it requires a great level of coordination among the agents and may not be acceptable if

the communication channel has to be shared among agents.

In asynchronous algorithms, on the other hand, agents are triggered one at a time. The

resulting sequence of nodes can be deterministic or randomized. Building a deterministic

sequence on the set of agents can require some supervision in the system, but it can simplify

the algorithm analysis. The study of synchronous algorithms and asynchronous deterministic

algorithms inherits many methodologies from the literature on parallel computation, as in

Bertsekas and Tsitsiklis (1997). In randomized algorithms, instead, the sequence of activation

of the nodes is the realization of a random process. While many stochastic processes can be

adopted, it is interesting to consider the case in which the sequence is obtained as the result

of individual random processes on each agent.

As an example, consider the remarkable cases of a Poisson process in continuous time and

of a Bernoulli process in discrete time.

In continuous time, suppose that each agent, independently from the others, waits for

an exponentially distributed amount of time between consecutive communications, with

average waiting time of 1/λ. The number of times that a single agent has executed its local

algorithm up to a given time is described by a Poisson distribution of intensity λ; therefore

in the entire system nodes are triggered according to a Poisson distribution of intensity Nλ,

exhibiting also the property that the event of simultaneous communication of two different

nodes has zero probability (which is highly desirable in the case in which nodes have to share

a communication channel).

The analogous strategy in discrete time consists in having all the agents “flipping a

coin” at each time instant, therefore deciding whether to communicate or not with a fixed

probability p. At a system level, pN agents will be transmitting, in average, at every time

instant.

Note that these two randomized strategy have the remarkable feature that they need no
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coordination to be implemented. The design and analysis of algorithms based on randomized

asynchronous operation is generally more challenging. Their study is sometimes simplified

by assuming that a T ∈ R exists such that every agent is triggered at least once in a fixed

with time window [t, t + T], for all t ∈ R. These algorithms are called pseudo-synchronous in

Bertsekas and Tsitsiklis (1997).
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2.2 Distributed information and consensus

System state

Let the state of each agent v in a NCS be defined by xv ∈ Rp. xv can also be intended as the

value of a function x : V→ Rp evaluated at node v of the graph.

By indexing nodes as {1, . . . , N}, a scalar function (p = 1) defined on the graph nodes

becomes a function defined on the first N natural numbers, and can therefore be interpreted

as a vector x ∈ RN . In the more general case of a multidimensional state (p 6= 1), the system

state x ∈ RpN is obtained by stacking all the individual agents’ states.

In this notation for the system state, the correspondance between nodes and their state is

lost: when designing any control law for the individual agent i, one must consider the fact

that only a subset of the system state components can be accessed by the node, namely the

states of its in-neighbors N(i).

Consider for example the following linear update equation for the system state:

x(t + 1) =Q(t)x(t) (2.1)

where x ∈ RN and Q ∈ RN×N . Let GQ = (V,EQ) be the graph associated with Q, where

EQ = {( j, i) | [Q]i j > 0}. A matrix Q is compatible with the graph G = (V,E), denoted with

Q ∼ G, if its associated graph GQ = (V,EQ) is such that EQ ⊆ E.

Consensus algorithms

The consensus problem can be briefly defined as the problem of reaching an agreement among

nodes in a multiagent system regarding a certain quantity of interest that depends on the

state of all agents.

A consensus algorithm is an interaction rule that specifies the information exchange

between an agent v ∈ V and its neighbors N(v) in the communication graph.

The theoretical framework for posing and solving consensus problems for networked

dynamic systems was introduced in Fax and Murray (2004) and Olfati-Saber and Murray

(2004).

Consensus algorithms have been successfully applied to NCS (Olfati-Saber, Fax, and

Murray, 2007), coordinated robotics (Jadbabaie, Lin, and Morse, 2003), time synchro-

nization (Solis, Borkar, and Kumar, 2006; Schenato and Gamba, 2007), and distributed

estimation (Spanos, Olfati-Saber, and Murray, 2005; Speranzon, Fischione, Johansson, and

Sangiovanni-Vincentelli, 2008). While most of the consensus algorithms assume Euclidean

spaces, they have also been defined on manifolds, as in Sarlette and Sepulchre (2009), al-
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lowing their application to specific fields that cannot be modeled otherwise (e.g. orientation

control as in Sarlette, Sepulchre, and Leonard 2009).

Consensus has also been studied in the case in which communication between agents is

subject to some non-idealities, like quantization and time delays (Olfati-Saber and Murray,

2004; Moreau, 2005; Carli, Fagnani, Speranzon, and Zampieri, 2008a; Frasca, Carli, Fagnani,

and Zampieri, 2009b).

These algorithms share some similarities with the asynchronous asymptotic agreement

problem for distributed decision making systems and parallel computing as defined in

Bertsekas and Tsitsiklis (1997). They also resemble some of the distributed asynchronous

iterative algorithms for solving, or at least approximately solving in least-square sense, linear

equations Az = b, where z ∈ Rr is the vector of unknown parameters, and the matrix

A∈ Rs×r and the vector b ∈ Rs are known (Bertsekas and Tsitsiklis, 1997; Strikwerda, 2002;

Frommer and Szyld, 2000). These latter algorithms are particularly suitable for solving sparse

equations where the number of equations is equal to the number of unknowns parameters, i.e.

when A is square and has many zero-entries. Although, in principle these algorithms can be

applied also to a non-square matrix A, since the least square solution of Az = b is equivalent

to AT Az = AT b, it might happen that AT A∈ Rr×r , which is now square, is dense even if A is

sparse, thus loosing many of their advantages. Moreover, these algorithms naturally lead

to parallel implementation since each element of vector z can be computed by a distinct

agent. However, in many applications, such as in sensor networks, the number of physical

agents, i.e. the sensor nodes, coincides with the size s of the vector b rather than the size r

of the vector z on which they have to agree, thus making the distributed implementation not

feasible. Differently, consensus algorithms can be effective also in these contexts.

Some consensus algorithms are recalled hereafter, together with some definitions.

Definition 2.2.1 (Stochastic and doubly stochastic matrices). Q ∈ RN×N is a stochastic matrix

if [Q]i j ≥ 0 and
∑N

j=1[Q]i j = 1, ∀ j, i.e. each row sums to unity. A stochastic matrix Q is said

doubly stochastic if also
∑N

i=1[Q]i j = 1, i.e. each column sums to unity. Clearly if a stochastic

matrix is symmetric then it is also doubly stochastic.

Definition 2.2.2 (Consensus problem). Consider the algorithm (2.1). Q(t) solves the con-

sensus problem if limt→∞ x i(t) = α, ∀i = 1, . . . , N , where x i(t) is the i-th component of the

vector x(t), and where α is a function of the system initial state x(0). Q(t) solves the average

consensus problem if α = 1
N

∑N
i=1 x i(0). If Q(t) is a random variable, (2.1) is said to solve the

probabilistic (average) consensus problem if the limit above exists almost surely.

This definitions includes a wide class of consensus strategies: strategies with a time–

invariant matrix Q(t) = Q, deterministic time-varying strategies Q(t), and randomized

strategies where Q(t) is drawn from some distributions on a set of stochastic matrices.
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The next theorems describe some sufficient conditions which guarantee deterministic

and probabilistic (average) consensus.

Theorem 2.2.3. Consider a sequence of constant matrices Q(t) =Q. If the graph GQ is rooted,

then Q solves the consensus problem. If in addition Q is doubly stochastic, then GQ is strongly

connected and Q solves the average consensus problem. Moreover, the convergence rate in both

cases is exponential and it is given by second largest eigenvalue in absolute value of the matrix Q.

Theorem 2.2.4. Consider a deterministic sequence of stochastic matrices {Q(t)}t≥0 and the

corresponding associated graphs G(t) = GQ(t). Suppose there exists a finite positive integer

number T such that the graphs G
′
(·) obtained from the composition of the graphs G(·) in the

following way: G
′
(τ) = G (τ · T ) ◦ G (τ · T + 1) ◦ . . . ◦ G (τ · T + T − 1) with τ = 0,1, . . . are

all rooted. Then the sequence Q(t) solves the consensus problem. If the matrices Q(t) are all

doubly stochastic, then they solve the average consensus problem.

Theorem 2.2.5. Consider a random i.i.d. sequence of stochastic matrices {Q(t)}t≥0 drawn

according to some distribution from the set of all stochastic matrices, and the stochastic matrix

Q = E[Q(t)]. If GQ is rooted, and the probability P
�

[Q]i i > 0
�

is greater than zero for any i,

then the sequence Q(t) solves the probabilistic consensus problem. If in addition Q(t) are all

doubly stochastic, then they solve the probabilistic average consensus problem.

The first theorem is concerned with constant consensus matrix and shows how con-

vergence conditions can be reframed as a graph problem which is easy to verify (Costa,

Fragoso, and Marques, 2004). Xiao and Boyd (2004) proposed an algorithm based on

convex optimizations that, given a symmetric graph, finds a symmetric doubly stochastic

matrix Q compatible with the graph which maximize the rate of convergence. The second

theorem focuses on deterministic time-varying consensus algorithms and shows that it is not

necessary for the communication graph to be connected at any iteration but over a fixed time

window (Cao, Morse, and Anderson, 2008; Moreau, 2005). The last theorem addresses the

consensus problem in a probabilistic context that arises from randomized communication

strategies, as in Boyd, Ghosh, Prabhakar, and Shah (2006); Fagnani and Zampieri (2008), or

networks subject to random external disturbances, such as link or node failure, as in Fagnani

and Zampieri (2009).

According to the communication strategies presented in the previous section, different

consensus algorithms can be implemented, resulting in different sequences {Q(t)}t≥0.

In the broadcast strategy the consensus matrix QB
i (the superscript “B ” stands for broad-
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cast), when a node i transmits, is given by:

�

QB
i

�

mn
=























1 if m= n /∈N(i)\{i}

1−w if m= n ∈N(i)\{i}

w if m ∈N(i)\{i}, n= i

0 otherwise

where w ∈ (0,1) is a tuning parameter and often w = 1
2
. In the symmetric gossip, when the

edge (i, j) is selected, the consensus matrix QG
i j (the superscript “G ” stands for gossip) is

given by:

h

QG
i j

i

mn
=























1 if m= n 6= j and m= n 6= i

1−w if m= n= j or m= n= i

w if (m, n) = (i, j) or (m, n) = ( j, i)

0 otherwise

The consensus matrices defined above are based on the assumption that there is no link

failure during the communication. In many cases, however, this is not true. When a link

(i, j) fails in broadcast communication, the matrix QB
i needs to be modified with [QB

i ] j j =

1, [QB
i ] ji = 0. Instead, when it happens in symmetric gossip, there is no communication at all

and then no update is performed, i.e. QG
i j = I is the identity matrix. Note that in broadcast

QB
i j = I if all links fail. If the reliability of the communication is modeled via an independent,

identically distributed, transmission success probability c,then it is possible to show that the

expected consensus matrix QB = E
�

QB(t)
�

generated for the broadcast strategy is given by:

h

Q
B
i

mn
=











1− c·w·d(n)
N

if m= n
c·w
N

if m ∈N(n)

0 otherwise

Note that if the graph is undirected, Q
B
= (Q

B
)T is symmetric and hence doubly stochastic,

although the matrices QB
i are never symmetric. Moreover G

Q
B = G, i.e. the graph associated

with the expected consensus matrix Q
B

coincides with the underlying communication graph

G. Therefore, if G is strongly connected, then this implies that the randomized broadcast

guarantees probabilistic consensus although it does not guarantee average consensus for

all possible realizations of QB(t). Even if the gossip matrices are not doubly stochastic, the

expected consensus matrix Q
B

is doubly stochastic, therefore the elements converge to the
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average of the initial conditions in mean sense.

One might also wonder if Q
B

provides some information about convergence rate for the

randomized strategy. In Fagnani and Zampieri (2008) there is an extensive analysis of rates

of convergence of the mean square dispersion of final consensus value w.r.t. the average of

initial conditions. The main message being that the second largest eigenvalue of Q
B

provides

only an optimistic rate of convergence, and that the dispersion of the final consensus value

from the average of the initial conditions decreases as the number of nodes increases.

Similarly, the expected consensus matrix Q
G

for the symmetric gossip is given by:

h

Q
G
i

mn
=















1−
∑

i∈N(n)
2c·w

N(d̄(n)+d̄(i)) if m= n

2c·w
N(d̄(m)+d̄(n)) if (m, n) ∈ E, m 6= n

0 otherwise.

Obviously Q
G
=
�

Q
G
�T

since all the gossip matrices QG
i j from which the distribution is

drawn are symmetric by construction. Similarly to the broadcast, G
Q

G = G. Therefore, if G is

strongly connected, then the randomized symmetric gossip guarantees probabilistic average

consensus. Compared to the randomized broadcast, the randomized symmetric gossip

guarantees average consensus for all realizations. The rate of converge is however much

slower, as can be guessed by the observation that the off-diagonal elements of the matrix Q
G

are smaller than their counterparts in Q
B
, i.e. there is slower information propagation.

These results on the convergence, the properties, and the performances of consensus

algorithms will be used many times in Chapter 3, when some specific applications and

methods will be discussed.
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2.3 Algorithm distribution via optimization decomposition

Distributed decision making

Optimization algorithms are among the first algorithms that have been object of research

for a distributed implementation, because of the need of solving large-scale problems via

multiple parallel processors. In other words, distributed optimization has historically been

intended as the problem of dispatching part of a large scale optimization algorithm to

different computational units (see the seminal work Tsitsiklis, Bertsekas, and Athans 1986,

and Bertsekas and Tsitsiklis 1997).

The methods that have been developed in this sense can be considered as a foundation

for the problems of distribution decision making.

While the two problems (distributed optimization and distributed decision making) share

many common aspects, they have different rationales. In distributed decision making, the

way in which decision variables are assigned to different agents is not part of the designer

degrees of freedom, nor is the communication graph. Agents have to decide on their local

variables in order to maximize some system-wide value function (which may or may not be

the sum of individual utilities functions) while satisfying some constraints that couple their

choices.

More recently, distributed optimization (or, better, distributed decision making) has been

applied to complex, large-scale systems and networked control systems, introducing some

other issues in the picture. In this scenario, which is the object of this thesis, the agents

are allowed to communicate via a given communication channel, but also to interact with

an underlying physical system by sensing and actuating it. The behavior of each agent,

and therefore the optimization algorithm that they implement, must necessarily depend on

local data and on the information that each node can gather from the nodes that are in its

communication neighborhood, but also on the local measurements that they can perform.

After a mathematical description of the optimization problems that networked control

systems are required to solve, some decomposition methods will be presented, showing how

these tools can help in the design of the individual optimization laws.

Let x i ∈ Rp be the state of agent i, and x ∈ RpN be the state of the entire system, as

defined in the previous section.

Let f0(x1, . . . , xN ) (or equivalently, with a minor abuse of notation, f0(x)) be a scalar
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convex function of the nodes’ states, and consider the convex optimization problem

min
x

f0(x)

subject to hi(x)≤ 0, i = 1, . . . , r

aT
i x = bi , i = 1, . . . , s

(2.2)

where hi , i = 1, . . . , r are convex scalar functions, aT
i are the rows of a matrix A∈ Rs×pN , and

bi are the elements of a vector b ∈ Rs. It is easy to show that the r inequality constraints and

the s equality constraints define a convex feasible set X for x .

Plenty of algorithms have been designed for convex optimization problems, and a strong

and useful theory has been derived (see Boyd and Vandenberghe 2008 and the many

references therein). Many different problems can be casted into this framework, as the

following examples shows.

Example 2.3.1 (Average consensus / distributed least squares). The problem of average

consensus introduced in Section 2.2 can be expressed as the problem of computing (and

making all nodes agree on) x∗ that solves

min
x

∑

i∈V
(x − yi)

2,

where yi is the measurement available to node i. This is not, however, expressed as a

distributed optimization problem, as x is a system-wide scalar quantity. The same problem in

the framework of distributed decision making takes the form

min
x i ,i∈V

∑

i∈V
(x i − yi)

2

subject to x i = x j ∀(i, j) ∈ E

G= (V,E) connected.

The following result characterize optimality for convex optimization problems.

Lemma 2.3.2. Consider the convex optimization problem (2.2). Assume f0 is differentiable;

then x∗ is optimal if and only if

• x∗ ∈ X (i.e. hi(x∗)≤ 0 for i = 1, . . . , r, and Ax∗ = b;

• the gradient ∇ f0 satisfies ∇ f0(x∗)T (y − x)≥ 0 for all y ∈ X .

Note that, if r = 0 (no inequality constraint are defined), then the optimality condition
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stated in Lemma 2.3.2 correspond to the condition

∇ f0(x
∗) ∈ Im AT .

Many algorithms exist for the centralized solution of convex optimization problems:

gradient descent, Newton, interior-point methods, among others. Decentralized algorithms

are generally based on gradient-descent methods, in the form

x(t + 1) = PX
�

x(t)−α∇ f0(x(t))
�

, (2.3)

where PX is the projection operator on the feasible set X , and α is a suitable step length.

To implement (2.3), nodes have to know the gradient of f0 in the current system state

x(t), and to be able to implement the projection PX .

If both the cost function f0 and the feasible set X are separable, i.e.

f0(x) =
∑

i∈V
fi(x i) and X = {x |x i ∈ X i ∀i ∈ V},

then (2.3) can be implemented independently by the nodes, in the form

x i(t + 1) = PX i

�

x i(t)−α∇ fi(x i(t))
�

,

provided that they can compute ∇ fi(x i(t)). However, this corresponds to the trivial case in

which the individual decision of the agents are decoupled.

In Nedic and Ozdaglar (2009) the authors considered the more interesting case in which

nodes can compute their individual gradient ∇ fi(x), and they have to agree on the same

minimizer x∗:

min
x i , i∈V

∑

i∈V
fi(x i)

subject to x i = x j ∀(i, j) ∈ E

G= (V,E) connected.

In their distributed subgradient method, agents agree on the optimal value (and therefore

satisfy the constraints of the optimization problem) only asymptotically. This is often accepted

in distributed optimization, but may not be acceptable when applied to NCS.

If feasibility has to be enforced at any time, then each iterative step must be followed

by the projection of the state on the feasible set X , as in (2.3). This is typically difficult

to achieve in a distributed manner, and requires coordination and information exchange
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between nodes.

The choice of the step length α is another critical issue in the implementation of (2.3).

Indeed, it can be shown that convergence of gradient driven algorithms generally require

that α is smaller than some threshold, which depends on global quantities, typically some

bounds on the Hessian of f0. It is quite common in NCS that none of the nodes have a

global knowledge of the system (which can also be subject to changes in time). Also, line

search methods, which are quite common in convex optimization and prescribe that the

cost function is evaluated for different α’s before deciding for the optimal step length, are

in general impractical in NCS, because in many cases driving the system into a new state

corresponds to actuating a physical underlying system, and because it is possible that none

of the nodes is able to compute the value of f0, which depends on the whole system state x .

It should be clear that solving optimization problems defined on large scale NCS poses

some challenges, whose solution strongly depends on the specific application (as shown

in the Chapter 3). Some methodologies however come into help quite frequently, namely

decomposition methods. They will be presented hereafter, showing how they can help in

distributing decision problems among nodes.

Decomposition methods

In distributed optimization, the basic idea of decomposition is to divide the original large

optimization problem into smaller subproblems, which are then coordinated by a master

problem by means of signalling. When applied to NCS, not every decomposition is possible,

because the division into subproblems is usually inherited from the multiagent architecture of

the system; however, these methodologies are useful in understanding which are the signals

that agents should exchange.

Most of the existing decomposition techniques can be classified into primal decomposition

and dual decomposition methods.



2.3 Algorithm distribution via optimization decomposition 25

Primal decomposition

Consider the following optimization problem:

min
x ′i ,x

′′
i , i∈V

∑

i∈V
fi(x

′
i , x ′′i )

subject to x ′′i = x ′′j ∀(i, j) ∈ E

x ′i ∈ X ′i ∀i ∈ V

x ′′i ∈ X ′′ ∀i ∈ V

G= (V,E) connected.

(2.4)

The decision variables of the individual agent i have been divided into two different sets:

some private variables x ′i , and some public variables x ′′i . Public variables are coupled by one

or more constraint (which may be more general than a simple equality constraint). Private

variables, instead, can be manipulated independently by the nodes they belong to.

Suppose that each agent can solve the subproblem

φi( x̄
′′) =min

x ′i
fi(x

′
i , x̄ ′′)

subject to x ′i ∈ X ′i

for a given, fixed, x̄ ′′. A master problem can then be defined as

min
x ′′

∑

i∈V
φi(x

′′)

subject to x ′′ ∈ X ′′.

A supervisioning node (or one of the agents, elected for this role) can then solve the master

problem, if the agents provide their gradient

∇φi(x
′′) =

∂ φi(x ′′)
∂ x ′′

.

Iteratively, the master node decides on the public variable x ′′ and communicates its choice to

the agents. The agents solve the individual subproblems and return the gradient ∇φi (which

is often available as a side-product of the optimization). The master node then updates x ′′

according to the global gradient
∑

i∈V∇φi(x ′′).

This approach becomes interesting when the private variables have high dimension

while the public variables have low dimension. In this case, communication is reduced to a

minimum, as only public variables (and the gradients ∇φi , which have low dimension too)
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have to be transmitted. Moreover, the master node do not have to know the private variables,

nor the details of the optimization subproblems. Agents could be heterogeneous units with

different sets of private variables, or they could have some privacy and security concerns

about sharing their operating strategies.

One possible interpretation of this decomposition technique is that the master problem

directly gives each subproblem an amount of resources that it can use; the individual agents

operate in the best possible way, given those resources; the role of the master problem is

then to properly allocate the existing resources, receiving from the agents only a quantitative

information about “how better” they could do, if provided with extra resources. Note that

the constraints are always satisfied, while optimality of the allocation is achieved only

asymptotically.

Dual decomposition

To introduce the tool of dual decomposition, consider the same problem defined in (2.4), but

in the simpler case of two agents.

min
x ′i ,x

′′
i , i=1,2

f1(x
′
1, x ′′1 ) + f2(x

′
2, x ′′2 )

subject to x ′′1 = x ′′2
x ′i ∈ X ′i for i = 1, 2

x ′′i ∈ X ′′ for i = 1,2.

(2.5)

The extension to an arbitrary number of agents do not pose any additional difficulties but

requires a more involved notation. A multi-agent application of dual decomposition will be

presented later in this section.

To form the dual problem of (2.5), consider the Lagrangian

L(x ′1, x ′′1 , x ′2, x ′′2 ,η) = f1(x
′
1, x ′′1 ) + f2(x

′
2, x ′′2 ) +η(x

′′
1 − x ′′2 ).

The dual function g(η) is defined as

g(η) = inf
x ′i∈X ′i ,x

′′
i ∈X ′′

L.

Note that L is separable into individual terms for the agents:

L1(x
′
1, x ′′1 ,η) = f1(x

′
1, x ′′1 ) +ηx ′′1

L2(x
′
2, x ′′2 ,η) = f2(x

′
2, x ′′2 )−ηx ′′2 ,



2.3 Algorithm distribution via optimization decomposition 27

and therefore g(η) can be decomposed into g1(η) + g2(η), where

g1(η) = inf
x ′1∈X ′1,x ′′1∈X ′′

L1, g2(η) = inf
x ′2∈X ′2,x ′′2∈X ′′

L2.

Agents can compute g1(η) and g2(η) independently, when they are provided with η. The

dual problem is defined as

max
η

g(η) = g1(η) + g2(η),

and it can be solved via any gradient driven algorithm. Evaluating the gradient of g1 (or g2)

for a given value η̄ of the dual variable is indeed easy. Consider first g1(η). Let x̄ ′1 and x̄ ′′1 be

the arguments that solve

inf
x ′1,x ′′1

L1(x
′
1, x ′′1 , η̄).

The following holds:

g1(η) = inf
x ′1∈X ′1,x ′′1∈X ′′

L1(x
′
1, x ′′1 ,η)

= inf
x ′1∈X ′1,x ′′1∈X ′′

f1(x
′
1, x ′′1 ) +ηx ′′1

≤ f1( x̄
′
1, x̄ ′′1 ) +η x̄ ′′1

= f1( x̄
′
1, x̄ ′′1 ) + η̄ x̄ ′′1 − (η− η̄) x̄

′′
1

= g1(η̄)− (η− η̄) x̄ ′′1 .

As this holds for any η and g1(η) is concave, − x̄ ′′1 must be the gradient (or, better, a

subgradient in the case of non-smooth functions) of g in η̄.

Similarly, a subgradient of g2(η) is given by x̄ ′′2 . Therefore a subgradient of the dual

function g(η) is given by x̄ ′′2 − x̄ ′′1 , which is nothing more than the consistency constraint

residual.

The resulting maximization method for g(η) will then consist in the alternate execution

of an algorithm for the update of η according to the gradient x̄ ′′2 − x̄ ′′1 , and two individual

algorithms at the agents that compute x̄ ′i and x̄ ′′i by minimizing the Lagrangian Li for the

given dual variable η.

Duality theory guarantees that the solution of the dual problem is a lower bound for the

original optimization problem. That is

max
η

g(η)≤ min
x ′i ,x

′′
i , i=1,2

f1(x
′
1, x ′′1 ) + f2(x

′
2, x ′′2 ).

For some classes of problems, however, the duality gap (the difference between the solution
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of the primal and the dual problem) is zero, and therefore solving the maximization of g(η)

returns the solution of the original problem (strong duality is said to hold). This is the case,

for example, of convex problems where dual decomposition is applied to equality constraints.

For other characterizations of strong duality, see Boyd and Vandenberghe (2008).

In the case of two agents, the dual problem is a scalar problem. In the more general case

of many agents, the size of the dual problem corresponds to the number of constraints that

have to be satisfied. In particular, if agents correspond to nodes of a graph, and consistency

constraints correspond to the edges of the graph, the dual problem will have the form

g(ηe, e ∈ E) = inf
x ′i ,x

′′
i ,i∈V

 

∑

i∈V
fi(x

′
i , x ′′i ) +

∑

e∈E
ηe

�

x ′′s(e)− x ′′t(e)
�

!

.

The decision variables of the dual problem can therefore be assigned to the edges of the

graph, and can be updated according to the subgradients

∂ g(ηe, e ∈ E)
∂ ηe

= x̄ ′′s(e)− x̄ ′′t(e).

In some applications there is some intelligence associated with the edges, and it can take

care of solving the dual problems; in other cases, one of the two nodes connected by the

edge can be assigned to the dual problem.

One possible interpretation for the dual decomposition is that the dual algorithm sets

the price for the resources to each subproblem, which has to decide the amount of resources

to be used depending on the price; the role of the dual problem is then to obtain the best

pricing strategy, on the basis of the difference between demand and offer.

Note that, differently for the primal decomposition algorithm, feasibility of the solution is

not guaranteed at every iteration.

An example: traffic congestion control in data networks

A notable “success story” for the application of distributed optimization methods to NCS

is the traffic congestion control in data networks: since the work of Kelly, Maulloo, and

Tan (1998), large-scale data networks have been probably the preferred testbed for these

algorithms. The problem will now be presented briefly, following Chiang, Low, Calderbank,

and Doyle (2007).

Consider a data network described by a graph G = (V,E). Let each edge e ∈ E have a

data transfer capacity ce > 0. Suppose that every node is interested in transmitting some data

to another point in the newtork. This can be modeled by associating to each node v a subset

Ev of the edges, corresponding to the path from v to the destination of the transmission.
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Conversely, let Ve be the set of nodes that use the edge e for their transmission. The interest

of v in transmitting the data is described by a strictly concave utility function Uv(xv) of the

rate of transmission xv .

The following utility maximization problem is then well defined:

max
xv , v∈V

∑

v∈V
Uv(xv)

subject to
∑

v∈Ve

xv ≤ ce, ∀ e ∈ E.

The associated Lagrangian is

L(xv , v ∈ V,ηe, e ∈ E) =
∑

v∈V
Uv(xv) +

∑

e∈E
ηe






ce −

∑

v∈Ve

xv






.

This yields the following dual function (where η is the vector of all ηe ’s)

g(η) = max
xv , v∈V







∑

v∈V
Uv(xv) +

∑

e∈E
ηe






ce −

∑

v∈Ve

xv













=
∑

v∈V
max

xv






Uv(xv)− xv

∑

e∈Ev

ηe






+
∑

e∈E
ηece.

The subproblem associated to each node is then

max
xv






Uv(xv)− xv

∑

e∈Ev

ηe






, (2.6)

which requires that node v knows the sum of the dual variables ηe associated to all the

edges that it is using. Before discussing how this can be achieved, consider the dual problem

that edges have to solve to update the dual variable η. As shown before, a subgradient for

the problem of minimizing g(η) is returned by the solution of the nodes’ subproblem. The

component of ∇g(η) corresponding to edge e is given by:

∂ g(η)
∂ ηe

= ce −
∑

v∈Ve

x̄v , (2.7)

where x̄v is the solution of the Lagrangian maximization (2.6). It therefore depends on the

cumulative data transmission rate of all the nodes that are using that edge.
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It is then needed that every edge implement (2.7) and that every node v compute
∑

e∈Ev
ηe, which seems to be unpractical, as nodes are not aware of which edges belong to

Ev (i. e. which edges they are using). Moreover, collecting the data ηe from all the edges

in the path via the same communication network that is being controlled would hardly be

acceptable, because of the resulting communication overhead.

What happens in real data network (under a very rough approximation that is commented

and motivated in far more details in Chiang et al. 2007) is that the packets that travel

through a congestioned link experience time delays and non-zero packet loss probability. This

phenomena can be caused by intentional strategies of the routers (the devices that manage

the traffic on the links), but can also be inherent in the communication channel and in the

packet queueing mechanisms.

Consider for simplicity the case in which packets travelling through link e are delayed by

a time τe, where τe changes in time according to

τe(t + 1) = τe(t)−ατ






ce −

∑

v∈Ve

x̄v






, (2.8)

where ατ is a positive design parameter, and where ce−
∑

v∈Ve
x̄v is the residual transmission

capacity of the link e. The update (2.8), executed by all the edges, is then implementing a

gradient descent algorithm for the minimization of g(τ), there τ is the vector of the time

delays of all edges, which plays exactly the role of the dual variable η.

The generic node v that has to solve the maximization of the Lagrangian (2.6), can

therefore implement a gradient ascent algorithm in the form

xv(t + 1) = xv(t) +αx
∂

∂ xv






Uv(xv)− xv

∑

e∈Ev

τe







= xv(t) +αx






U ′v(xv)−

∑

e∈Ev

τe







= xv(t) +αx

�

U ′v(xv)− Tv

�

,

where αx is a positive design parameter, and Tv is the total, point to point, delay in the

packet transmission that node v is experiencing.

In real data network the agents indeed control their transmission rate according to some

protocols (TCP) that resemble this behavior.

This example is extremely interesting because via dual decomposition techniques, a
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complex global optimization problem has been divided into smaller and tractable problems;

however, what is really worth noticing is that part of the decomposition, namely the dual

problem and the communication of the dual variables, is not solved by any controller, but is

inherently solved by the underlying system. At a first analysis the nodes are not using the

communication channels to exchange any dual variable for the solution of this optimization

problem; however, the specific behavior of the system is exploited as a signaling mechanism

for the satisfaction of the given capacity constraints. Notice that this approach requires that

the system is actuated at any iteration, because edges obtain the primal variables xv by

measuring the congestion of the link (and therefore the transmission rate must have been

updated) and the nodes obtaine the dual variables ηe by measuring the time delay of the sent

packets (and therefore the edges must indeed delay the packets travelling through them).

This kind of approach is the ultimate goal of the application of distributed optimization

methods to NCS. It is worth noticing that traffic congestion control algorithms have been

designed without this approach in mind, but on an empirical basis. A similar approach can be

recognized in the algorithms proposed in Section 3.3 for a completely different application.
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3
Algorithms and applications

3.1 Clock synchronization in sensor networks

The field of sensor networks has been witnessing a large attention in the scientific community

during the last decade. This is due in no small part to the remarkable advances which have

been made in recent years in the development of small, relatively inexpensive sensor nodes

with networking capabilities, ultimately intended for a wide variety of purposes such as

search and rescue, environmental monitoring and surveillance just to mention few. Wireless

sensor networks (WSNs) have the potential to truly revolutionize the way we monitor and

control our environment. Several WSN applications either benefit from, or require, time

synchronization (see Sundararaman, Buy, and Kshemkalyani, 2005, and references therein).

These applications include, for example, mobile target tracking using a large number of

motion detection devices as in Oh, Schenato, and Sastry (2005), habitat monitoring as in

Szewczyk, Osterweil, Polastre, Hamilton, Mainwaring, and Estrin (2004), power scheduling
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and TDMA communication schemes as in Hohlt, Doherty, and Brewer (2004), and rapid

synchronized coordination of powerlines nodes in electric power distribution networks for

catastrophic power-outage prevention as in Massoud Amin and Schewe (2007).

Also energy management and power control for battery powered sensors can greatly

benefit from precise time synchronization. Indeed, to extend their battery life, sensors may

decide to turn their communication circuitries off for most of the time, and turn them on

only when communication is needed (see Pantazis and Vergados, 2007, for a survey on

these methods). Because of the multihop nature of WSN communications, it is required that

nodes belonging to the same routing path coordinate their duty cycles precisely. This specific

application will be adopted as a testbed for the proposed algorithm later in this section.

One possible approach to the synchronization problem is electing a reference node and

allowing every node to communicate with it. To deal with the problem that communication

in a sensor network usually happens through multi-hop paths, these algorithms, for example

the Time-synchronization Protocol for Sensor Networks (TPSN) by Ganeriwal, Kumar, and

Srivastava (2003) and the Flooding Time Synchronization Protocol (FTSP) by Maròti, Kusy,

Simon, and Àkos Lédeczi (2004), require that first a spanning tree rooted in the clock

reference is built, and then the offset of any node with the respect to the root is obtained

simply by adding the offset of the edges in the unique path from each node to the root.

Although these strategies can be easily implemented and Maròti et al. (2004) showed

that they exhibit remarkable performances, it suffers from two main problems. The first

problem is robustness. In fact, if a node dies or a new node is added to the network, then

it is necessary to rebuild the tree, at the price of additional implementation overhead and

possibly long periods in which the network or part of it is poorly synchronized. The second

problem is that, depending on how the tree is built, it might happen that two clocks, which

are physically close and can communicate with each other, belong to two different branches

of the tree or two different clusters, thus possibly having large clock differences.

Fully distributed algorithms for clocks synchronization have recently appeared. For

example in Werner-Allen, Tewari, Patel, Welsh, and Nagpal (2005) the Reachback Firefly

Algorithm (RFA) is proposed, a protocol inspired by the fireflies integrate-and-fire synchro-

nization mechanism, capable of compensating for different clock offsets but not for different

clock skews. On the opposite, the algorithm proposed by Simeone and Spagnolini (2007),

adopting a P-controller, is able to compensate for the clock skews but not for the offsets,

obtaining constant time differences between the clocks.

Distributed protocols that can compensate for both clock skews and offsets are the

Tiny-Sync Protocol by Yoon, Veerarittiphan, and Sichitiu (2007), the Distributed Time-Sync

Protocol by Solis et al. (2006) and the Average Time-Sync Protocols by Schenato and Gamba
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(2007). The first one is based on a type of robust linear regression, the second on distributed

least-square estimator, and the last on a cascade of two consensus algorithms. They are all

proved to synchronize a network of clocks in the absence of noise and delivery time-delay

and they also show good performance in experimental testbeds. However, in these protocols

it is difficult to predict the effect of noise on the steady-state performance.

Differently, Carli, Chiuso, Schenato, and Zampieri (2008b) proposed a synchronization

algorithm that can be formally analyzed not only in the noiseless scenario in terms of rate

of convergence but also in a noisy setting in terms of the steady-state synchronization error.

This algorithm compensates for both initial offsets and differences in internal clock speeds

and is based on a Proportional-Integral (PI) controller. Both convergence guarantees as well

optimal design using standard optimization tools when the underlying communication graph

is known are provided. It is important to remark that the time-synchronization algorithm

proposed in Carli et al. (2008b) require each node to perform all the operations related to

the k-th iteration of the algorithm, including transmitting messages, receiving messages and

updating estimates, within a short time window. This quasi-synchronous implementation

might be very sensitive to packet losses, node and link failure.

A far more practical version of the PI synchronization algorithm, based on an asyn-

chronous gossip protocol for communication, has been developed and analyzed in Bolognani,

Carli, and Zampieri (2009) and will be described hereafter. In this algorithm, at each iteration

one node can estabilish a bi-directional communication with only one of its neighbors. This

applies very well to real sensor networks, and drastically reduces the network requirements

in terms of reliability, bandwidth, and synchronization. When the underlying communication

topology is given by the complete graph, it is possible to derive some analytical convergence

results, while more general families of graphs can be considered by means of simulations.

Problem formulation

Consider N clocks. Each clock has its own speed, denoted by di and its own initial offset,

denoted by oi. Let us denote with x i the local time estimate of node i, i ∈ {1, . . . , N}. The

objective is to make all x i(t) as close as possible to each other for all times t. This can be

mathematically formulated by requiring that

x̄ i(t) := x i(t)−
1

N

N
∑

j=1

x j(t)

goes to zero as t goes to infinity. The variable x̄ i(t) is called the synchronization error of the

i-th node. Note that it is not needed that all clocks follow an absolute time but rather that
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they all agree on their estimate of time. If the nodes cannot communicate, then the local

time x i(t) can be modeled as a discrete time integrator

x i(t + 1) = x i(t) + di .

Clearly, different initial offset, x i(0), and different speeds di cause synchronization errors.

In Carli et al. (2008b) the authors propose a distributed clock synchronization strategy

based on a Proportional-Integral (PI) controller that treats the different clock speeds as

unknown constant disturbances and the different clock offsets as different initial conditions

for the system dynamics. They assume that it is possible to control each clock by a local input

ui(t) as follows

x i(t + 1) = x i(t) + di + ui(t).

To make the algorithm distributed, the control action ui(t) is only allowed to use local

information. Precisely, at time instants t ∈ N nodes can exchange their local time according

to a communication graph G having V= {1, . . . , N} as the set of vertices and in which there

is an edge from i to j whenever the node i can send x i(t) to the node j. Moreover each

node has in memory, besides the estimate x i(t), another variable denoted by wi(t); this

variable plays an important role in compensating the different speeds di. By defining the

N -dimensional vectors x(t), u(t) and d as the vectors with components x i(t), ui(t) and di

respectively, the PI consensus controller proposed in Carli et al. (2008b) can be expressed as

w(t + 1) = w(t)−αK x(t), w(0) = 0

u(t) = w(t)− K x(t)

where α is a suitable positive real number in [0, 1] and where K ∈ RN×N is such that

i) I − K is an aperiodic and irreducible stochastic matrix (consensus matrix),

ii) Ki j 6= 0 only if ( j, i) is an edge of the graph G.

The overall system then becomes





x(t + 1)

w(t + 1)



=





I − K I

−αK I









x(t)

w(t)



+





d

0



 . (3.1)

The analysis in Carli et al. (2008b) is restricted to symmetric matrices K and shows that,

under certain conditions on the parameter α and on the eigenvalues of K, asymptotic

synchronization is achieved.

Note that this algorithm requires reliable and synchronized communication along all the
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edges of a given graph G. Clearly this is an impracticable condition, as nodes do not have

access to the absolute time t. To overcome these limitations the authors in Carli and Zampieri

(2010) provide a realistic quasi-synchronous implementation of the previous algorithm where

each clock carries out all its operations related to the k-th iteration, including transmitting

messages, receiving messages and updating its estimate, within a short time window. The

effectiveness of this realistic implementation has been confirmed by simulations. However,

certain conditions on the size of the time window and on the maximum distance between any

pair x i(t), x j(t) for any instant t are required. These conditions might be seriously affected

by packet losses, node and link failures.

A PI consensus controller with gossip communication

The communication requirements of (3.1) can be reduced by considering a different and

more realistic, communication protocol between the clocks. Precisely, assume that the

communication model is that of gossiping clocks, i.e. a model in which only a pair of clocks

can communicate at any time, as stated in the following assumption.

Assumption 3.1.1. The communication graph G= (V,E) is an undirected connected graph

without any self-loop and, at every time instant t, each edge (i, j) ∈ E can be selected with a

strictly positive probability W(i, j).

It is then possible to define the matrix W ∈ RN×N as the matrix having Wi j as element in

the i-th row and j-th column and in the j-th row and i-th column, namely

[W]i j = [W] ji :=W(i, j). (3.2)

Similarly to (3.1), each node has in memory the two variables x i and wi . Assume that, at

time t the edge (i, j) is selected, and that x and w are updated according to

x i(t + 1) =
1

2

�

x i(t) + x j(t)
�

+wi(t) + di(t)

x j(t + 1) =
1

2

�

x i(t) + x j(t)
�

+w j(t) + d j(t)

xh(t + 1) = xh(t) +wh(t) + dh(t) for all h 6= i, j
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and

wi(t + 1) =
α

2

�

− x i(t) + x j(t)
�

+wi(t)

w j(t + 1) =
α

2

�

− x j(t) + x i(t)
�

+w j(t)

wh(t + 1) = wh(t) for all h 6= i, j

These equations can be rewritten as





x(t + 1)

w(t + 1)



=







I − eie
T
i − e je

T
j +
�

ei + e j

��

ei + e j

�T
I

−α
2
(ei + e j)(ei + e j)T −α

�

eie
T
i + e je

T
j

�

I











x(t)

w(t)



+





d(t)

0





=





I − 1
2

E(i, j) I

−α
2

E(i, j) I









x(t)

w(t)



+





d(t)

0





where E(i, j) =
�

ei − e j

��

ei − e j

�T
. Note that I − E(i, j) is a doubly stochastic matrix. Consid-

ering the variable v(t) = w(t) + d(t), the above system can be rewritten as





x(t + 1)

v(t + 1)



=





I − 1
2

E(i, j) I

−α
2

E(i, j) I









x(t)

v(t)



 := F (i, j)




x(t)

v(t)



 .

It is convenient to consider the variables

x̄(t) = Ωx(t) and v̄(t) = Ωv(t)

where

Ω = I −
1

N
11T .

Clearly the synchronization is asymptotically reached if and only if x̄(t)→ 0. Straightforward

calculations show that




x̄(t + 1)

v̄(t + 1)



= F (i, j)




x̄(t)

v̄(t)



 , (3.3)

i.e. [ x̄ w̄]T satisfies the same recursive equation of [x w]T .
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Mean-square analysis of the algorithm

To provide a mean-square analysis of (3.3), it is convenient to introduce the matrix

P(t) = E









x̄(t)

v̄(t)





h

x̄(t)T v̄(t)T
i



=





P11 P12

PT
12 P22





where

P11(t) = E
�

x̄(t) x̄ T (t)
�

P12(t) = E
�

x̄(t)v̄T (t)
�

P22(t) = E
�

v̄(t)v̄T (t)
�

.

The covariance matrix P(t) evolves according to1





P11 P12

PT
12 P22





+

= E



F (i, j)




P11 P12

PT
12 P22



 F (i, j)
T



 ,

which yields the following recursive equations

P+11 = P11−
1

2
E
�

E(i, j)P11

�

+
1

4
E
�

E(i, j)P11E(i, j)
�

−
1

2
E
�

P11E(i, j)
�

+ PT
12−

1

2
E
�

PT
12E(i, j)

�

+ P12−
1

2
E
�

E(i, j)P12

�

+ P22

P+12 =
α

2
E
�

P11E(i, j)
�

−
α

4
E
�

E(i, j)P11E(i, j)
�

+
α

2
E
�

PT
12E(i, j)

�

+ P12−
1

2
E
�

E(i, j)P12

�

+ P22

P+22 =
α2

4
E
�

E(i, j)P11E(i, j)
�

+
α

2
E
�

PT
12E(i, j)

�

+
α

2
E
�

E(i, j)P12

�

+ P22

The covariance matrix P then updates according to a linear transformation

P(t + 1) = L
�

P(t)
�

defined by the recursive equations that have just been computed, and whose initial conditions

can be obtained once the following assumption on x(0) and d(0) has been stated.

Assumption 3.1.2. The initial conditions x(0) and d(0) are random vectors such that

E [x(0)] = 0, E
�

x(0)x T (0)
�

= σ2
x I and E [d(0)] = 1, E

�

d(0)dT (0)
�

= (σ2
d +1)I for some

σ2
x > 0 and σ2

d > 0. Moreover w(0) = 0.

1Time dependance has been omitted in these recursive equations. The superscript plus sign indicates the
value of the variables at time t + 1.
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It then follows that

P =





P11(0) P12(0)

PT
12(0) P22(0)



=





σ2
xΩ 0

0 (σ2
d + 1)Ω.



 (3.4)

The analysis of the convergence properties of L is a challenging problem when G is an

arbitrary graph. In the next section, a theoretical analysis for the complete graph is provided.

Later a more realistic family of graphs will be considered via numerical simulations.

Complete communication graph

Assume that the graph G describing the feasible communications between nodes is the

complete graph. Moreover, assume that each edge has the same probability 2
N(N−1) of being

selected. Hence

W =
2

N(N − 1)
(11T − I). (3.5)

The following technical lemma holds.

Lemma 3.1.3. Let W be defined as in (3.5). Then

E
�

E(i, j)Ω
�

= E
�

ΩE(i, j)
�

=
2

N − 1
Ω

E
�

E(i, j)ΩE(i, j)
�

=
4

N − 1
Ω

Proof. The given expressions follow just by direct computation.

The two following results characterize the evolution of the matrices P11, P12 and P22

when G is the complete graph and the matrix W has the expression given in (3.5).

Proposition 3.1.4. In the case of a complete graph and of equiprobability of edge selection, the

set

J=

(

P|P =





a b

b c



⊗Ω

)

is invariant under the transformation (3.1).
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Proof. Let P(t) = P, with P ∈ J. Then

P11(t + 1) =
N − 2

N − 1
aΩ+ 2

N − 2

N − 1
bΩ+ cΩ

P12(t + 1) =
�

1−
α+ 1

N − 1

�

bΩ+ cΩ

P22(t + 1) =
α2

N − 1
aΩ−

2α

N − 1
bΩ+ cΩ

and therefore P(t + 1) ∈ J.

Proposition 3.1.5. In the case of a complete graph and equiprobability of edge selection, with

Assumption 3.1.2 holding, P(t) can be expressed as

P11(t) = p11(t)Ω, P12(t) = p12(t)Ω, P22(t) = p22(t)Ω,

where








p11(t + 1)

p12(t + 1)

p22(t + 1)









=









N−2
N−1

2 N−2
N−1

1

0 1− α+1
N−1

1
α2

N−1
− 2α

N−1
1

















p11(t)

p12(t)

p22(t)









with initial conditions








p11(0)

p12(0)

p22(0)









=









σ2
x

0

1+σ2
d









.

Proof. The result just follows from the fact that the initial condition (3.4) is in J, and

therefore the trajectories of the system can be parametrized in the form

P(t) =





p11(t) p12(t)

p12(t) p22(t)



⊗Ω

because of the invariance stated in Proposition 3.1.4. The same proposition gives also the

update equations for the three parameters of the covariance matrix.

Algorithm convergence

Theorem 3.1.6. Consider the described network of clocks, with a gossip communication protocol

over a complete graph and a edge selection probability matrix W as in (3.5). Let the system be

initialized according to Assumption 3.1.2. Then the variance P of the synchronization error
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converges exponentially to zero if and only if

α < ᾱ=
3

2
− N +

1

2

p

4N2− 12N + 17. (3.6)

Proof. The covariance matrix of the synchronization error evolves according to the linear

update law and the initial conditions stated in Proposition 3.1.5.

The stability of the update equation can then be studied by eigenvalue analysis. The

characteristic polynomial of the update matrix in Proposition 3.1.5 is

Ψ(z) =−
−N2+ 2 N − 1

(N − 1)2
z3−

−8 N +α−αN + 3 N2+ 5

(N − 1)2
z2

−
−8−α+ 10 N − 3 N2−α2+α2N

(N − 1)2
z−

4− 2α− 4 N + N2+αN − 2α2+α3+α2N

(N − 1)2

An efficient way to study the stability of Ψ(z) is by applying Routh criterion to the

continuous time version of Ψ′(z), where the discrete time to continuous time conversion is

performed by Tustin transformation, which preserves stability and maps the unit circle into

the left hand semiplane.

Substituting z = (1+ s)/(1− s) into Ψ(z), one gets

Ψc(s) =
1

(N − 1)2 (1− s)3

�

�

18+α3−α2− 24 N + 8 N2
�

s3

+
�

− 3α3+ (5− 2 N)α2+ (6− 4 N)α− 12+ 8 N
�

s2

+
�

2+ 3α3+ (4 N − 7)α2+ (4 N − 8)α
�

s−α3+ (3− 2 N)α2+ 2α

�

According to Routh criterion, the stability of the numerator of Ψc(s), and therefore of the

original matrix A (a part from the three poles in 1), can be studied by looking at the sign of
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four terms, namely

r3 = 18+α3−α2− 24 N + 8 N2

r2 =−3α3+ (5− 2 N)α2+ (6− 4 N)α− 12+ 8 N

r1 =
h

α6+ (2 N − 4)α5+
�

N2− N − 1
�

α4+
�

2 N2+ 13− 11 N
�

α3

+
�

1− 7 N − 2 N3+ 7 N2
�

α2+
�

−9− 2 N2+ 9 N
�

α+ 3− 2 N
i

·
8

3α3+ (2 N − 5)α2+ (4 N − 6)α+ 12− 8 N

r0 =−α3+ (3− 2 N)α2+ 2α

Routh’s criterion states that to have stability of the polynomial, all the four terms ri must

have the same sign. Under the technical assumption N > 2 (which is a necessary condition

to have a properly randomized algorithm) the terms r3, r2, and r1 are always positive (as

shown hereafter), so stability only depends on the sign of r0.

Sign of the term r3

Suppose that α= 0. In this case term r3 reduces to the second-order polynomial in N

r3

�

�

α=0 = 18− 24 N + 8 N2

which can easily proved to be greater than zero for all N ∈ N, as it describes a convex

parabola with its vertex in N = 3/2, where its value is zero. When α > 0 is considered, it is

still easy to see that, even if the parabola now crosses the N -axis, r3 is still greater than zero

for any N > 2 (more precisely, for N > 3/2+α/4 ·
p

2− 2α, which is less than 2. Therefore

r3 > 0 for all N ’s greater than 2.

Sign of the term r2

All the positive powers of α in r2 have negative coefficient, if N > 2. Therefore, it results

r2 =−3α3+ (5− 2 N)α2+ (6− 4 N)α− 12+ 8 N

≥ (8− 6N)α− 12+ 8 N .

Therefore r2 > 0 if

α <
12− 8N

8− 6N
.

This is always true for α ∈ [0,1] and N > 2. Indeed

12− 8N

8− 6N

�

�

�

�

N=3
=

6

5
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and it is increasing in N , as

12− 8N

8− 6N

�

�

�

�

N+1
−

12− 8N

8− 6N

�

�

�

�

N
=

2

(3N − 1)(3N − 4)
> 0 .

Therefore r2 > 0 for all the considered α’s and N ’s.

Sign of the term r1

As α≤ 1, the denominator of r1 satisfies

DENr1 ≤−2N + 4< 0

once N > 2. As the denominator is then negative, negativity of the numerator implies r1 > 0.

The coefficients of the four higher powers of α in the numerator are all positive, so, as

α < 1, α6, α5 and α4 can be bound by α2, and α3 by α, so that

NUMr1
< (−2N3+ 8N2− 6N − 3)α2+ (4− 2N)α+ 3− 2N .

This expression is negative, as all the coefficients of the polynomial are negative. This is

trivially true for the coefficients of α and for the costant term. The coefficient of α2 requires

a little more analysis. It is easy to check its negativity for the smallest N , N = 3. Its discrete

increment is

�

−2n3+ 8n2− 6n− 3
�

n=N+1
−
�

−2n3+ 8n2− 6n− 3
�

n=N
=−6N2+ 10N

therefore it is decreasing for N ≥ 2. As both the numerator and the denominator of r1 are

negative, r1 is positive.

Sign of the term r0

Term r0 is a third order polynomial but its sign can be easily studied as α = 0 is one of its

roots. As α > 0, it must be

−α2+ (3− 2N)α+ 2> 0 . (3.7)

The roots of (3.7) are

α1,2 =
3

2
− N ±

1

2

p

4N2− 12N + 17

and therefore the stability condition results to be

0< α <
3

2
− N +

1

2

p

4N2− 12N + 17. (3.8)
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Figure 3.1: Comparison of the conservative bound (3.9) on α (dashed) and the exact bound (3.6)
(continuous).

Corollary 3.1.7. Under the same hypoteses of Theorem 3.1.6, a sufficient condition on α for

the variance P of the synchronization error to go to zero is that

0< α≤
1

N − 1
(3.9)

Proof. The proof follows exactly what has been done for Theorem 3.1.6. When studying the

positivity of the term r0, though, one can use the fact that α2 < α, obtaining

−α2+ (3− 2N)α+ 2> 2(1− N)α+ 2

which is greater than zero for

α≤
1

N − 1
.

It is easy to see that condition on α expressed in Theorem 3.1.6 and in Corollary 3.1.7

are very close (still being the bound in the corollary far more readable and meaningful).

Figure 3.1 put the two conditions in comparison.

The convergence result derived by analyzing the covariance matrix of the synchronization

error is even more meaningful once it allows to prove the convergence of the system with

probability 1, as the following corollary states.

Corollary 3.1.8. Under the same hypoteses of Theorem 3.1.6, if α < ᾱ, then there exist with

probability 1 a positive real number η such that, eventually,
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Figure 3.2: The testbed that inspires the choice of the numerical parameters for the presented simula-
tions. Agents wake up daily for a small time window to perform their tasks (sensing, computing,...). In
this window they are also allowed to perform few communications to keep their clocks synchronized.

Proof. From Theorem 3.1.6, any norm of P(t) converges exponentially to zero if α < ᾱ.

Therefore, for the trace norm,
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for some positive C and η. Moreover,
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where dµ is the probability measure and ε(t) is a positive function of t (dependance on t

has been omitted in the vector norms). By taking ε(t) = e−ηt , one obtains

P






















x̄(t)

v̄(t)
















2

2

≥ e−ηt






≤ Ce−ηt .

Therefore, by Borell-Cantelli’s lemma, w. p. 1 it will eventually hold
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Simulation results

As a testbed for the proposed algorithm, the following scenario has been considered, inspired

by the wireless sensors power control that has been presented earlier in this section.

In a network of N agents, any agent can communicate with any other agent in a bi-

directional fashion. Suppose that at regular time intervals the agents wake up and the

communication between a randomly choosen node and one of its neighbors takes place.

Based on the received data, the two nodes run the proposed algorithm (see Figure 3.2).

This way, for example, a network of battery-powered sensors can keep their clocks

synchronized and reduce significantly the fraction of the time they have to be active for

communication. The more precise the synchronization is, the thinner the active time window

can be and the longer their batteries will last. Moreover, it is critical that the communication

is kept to a minimum, to reduce energy consumption and to save communication resouces.

The numerical values for the parameters of the model come from a hypotetical case study

of commercially available wireless sensors waking up once a day, initialized at deployment

time with a synchronization error in the order of 1 second, and with relative clock speed

drifts in the order of few seconds a month (characteristic of quartz oscillators).

Table 3.1: Simulation clock parameters

time interval between updates T 1 day = 86400 s
clock offset standard deviation σx 10−5T
clock skew standard deviation σv 10−6

Figure 3.3 shows how the algorithm works for a small network of N = 10 clocks of this

type.

The following numerical simulation confirms that the bound on α is meaningful. In

Figure 3.4a the mean square error of the clocks has been plotted for different values of α.

One can see as the αmax obtained in Theorem 3.1.6 is indeed critical in determining the

convergence of the error. Just by choosing a value of α smaller or larger than αmax by 10%,

the behavior of the system is qualitatively different and corresponds to what the analysis

says.

In this plot and in all the other plots of the mean square error, the curve represents an

average curve over 100 realizations of the algorithm.

In Figure 3.4b the mean square error is plotted for different values of α, in a network

of size N = 50. Note that there is a first transient in which the drift errors make the

synchronization error to increase. After this transient the error start decreasing at a rate that

depends on α (and an optimal α could then be searched). Due to the absence of quantization,
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Figure 3.3: Single run of the algorithm with N = 10 and α = 0.01. The clock offset and the skew
error of one specific node have been highlighted.

noise, and time-variance of the drifts, the error then decreases to zero.

In Figure 3.5 the behavior of networks of different sizes is illustrated. α= 0.5αmax has

been choosen for all the cases. It’s easy to see that the bound on α that guarantees stability,

makes the algorithm not scalable. That is, as the number of agents increases, the rate of

convergence becomes slower (more than linearly in the network size). Moreover, the transient

becomes unacceptable if the algorithm relies on synchronization to be implementable. Indeed,

if the clock error becomes larger than the wake-up time window, communication becomes

impossible for that node. This scalability issue is addressed later in this section.

Random geometric communication graphs

In many real networks the communication graph cannot be considered complete. For

example when agents are spatially deployed and signal strength decreases with distance,

it is reasonable to assume that the communication graph is a geometric graph, that is a
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Figure 3.4: Average of the squared clock errors for different values of α (N = 50).
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Figure 3.5: Average of the squared clock errors for networks of size N = 10 (dotted), N = 50
(dashed), and N = 250 (continuous). In all cases α= 0.5αmax.
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(a) Random geometric graph (N = 50).
The nodes’ average degree is 5.7.
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(b) Average of the squared clock errors for the graph in (a)
(continuous) and for the complete graph (dashed).
α= 0.01.

Figure 3.6: Simulation of the algorithm behavior for a random geometric graph.

bidirectional edge exists between two nodes when their distance is smaller than a certain

threshold. One example of a geometric graph is represented in Figure 3.6a, while in

Figure 3.6b it is plotted the mean square error obtained by running the synchronization

algorithm on that graph.

Scalability issues

The result stated in Theorem 3.1.6 seems to say that, to preserve stability of the whole

systems, the parameter α has to decrease as the inverse of the number of nodes. Simulations

show that the rate of convergence of the clocks to a consensus value depends also on the

value of the parameter α, and therefore having smaller α’s correspond to slower convergence

of the system and unacceptable transients that can make the algorithm unimplementable. In
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Figure 3.7: Average of the squared clock errors for networks of size N = 50 (continuous), N = 500
(dashed), and N = 5000 (dotted). α = 0.01 and 2% of the total edges are activated at the same time.

this sense the system is therefore not scalable.

Multiple symmetric gossip

This scalability problem can be tackled by implementing multiple gossip communications, i.e.

allowing for more than one edges to be activated at each time step. Indeed, the fact that

the clock synchronization algorithm is not scalable mainly depends on the fact that at each

iteration only two nodes update their state, while the others keep integrating their local

skew error. There is no way to overcome this problem by choosing an appropriate α, on the

contrary Theorem 3.1.6 states that α has to go to zero when N grows, to preserve stability.

Consider then the following modification of the algorithm. Suppose that at every iteration

each node decides whether to communicate or not with probability p. If it opts for communi-

cation, then one of its neighbors is randomly choosen and a symmetric gossip communication

takes place. This way, at every iteration, the expected number of communications that take

place is pN . Note moreover that this solution is easier to implement on a large network than

the original solution of activating one only edge in the whole system. The resulting process

is a Bernoulli process, and the time between successive communication of a certain node is

now described by a geometric random variable independent from N .

Figure 3.7 shows the behavior of the synchronization error for networks of different sizes,

with p = 0.02 (that is, having in expectation 2% of the nodes starting a communication at

each iteration). α= 0.5ᾱmax has been choosen, where ᾱmax is the bound for a stabilizing α

for a network of size 1/p, that is a network that would have one only edge communicating (in

expectation) with the given p. The plot clearly shows how the behavior of the synchronization

error becomes independent from the number of agents.
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Comments

The gossip-like PI synchronization algorithm presented in this section proves to be effective

in achieving time synchronization and clock skew correction in a network of communicating

agents. At the same time, the algorithm is leaderless, extremely lightweight in communication

requirements, randomized, and because of its semplicity (and linearity) it could also be

studied in terms of robustness and noise rejection. The issue of scalability has been rigorously

analyzed, showing how convergence and performances are affected. This issue is tackled

by allowing for more than one node to estabilish a connection with a neighbor at the same

time, making the algorithm performance independent from the size of the network, and also

allowing an easier implementation in a completely distributed scenario.

Among the issues that characterize NCS, the following have been addressed for this

specific application:

• Multi agent architecture – the problem of clock synchronization can be casted into

the problem of controlling a large number of unstable systems, with unknown initial

condition, and with partial observations of their state (as clock offsets can be estimated

via a simple exchange of timestamps, while skew differences cannot);

• Scalability – for the proposed algorithm, an analytical study of the scalability properties

has been carried out, showing that the performances scale badly with the number of

nodes, and suggesting one possible solution to this problem;

• Communication constraints – the proposed algorithm requires gossip communication

among nodes, which can be implemented quite easily in WSN and requires little

coordination; however, the analytic study of the algorithm stability required the

relaxation of the communication constrained induced by a given communication

graph (assuming instead that every pair of node is allowed to communicate), while a

simulative approach is needed to include these constraints;

• Robustness to systems changes – while the possibility of system changes has not

been explicitely considered in this application, it is worth noticing that the algorithm

allows the insertion (or removal) of agents without any modification.
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3.2 Wireless channel parameter estimation

Wireless sensor networks (WSNs), i.e. networks of smart devices that can sense, compute and

exchange information wirelessly with their neighbors, are becoming very popular because

of their promise to revolutionize many engineering areas involving monitoring and control.

These sensor networks have been object of extensive technological and scientifc research in

the last ten years (see for example the Special issue on sensor networks and applications

2003). The strength of WSNs resides in their flexibility and scalability, since the same

hardware and software can be rapidly reconfigured and adapted to manage rather different

applications, from ambient monitoring to people tracking, from industrial control to energy

management in buildings. However, many challenges ranging from hardware design, to real-

time middleware prototyping, from data routing protocols to distributed signal processing

still remain to be solved before WSNs can become really ubiquitous and successful.

Among the most promising applications for WSNs is localization and target tracking (Hu

and Evans, 2004; Lorincz and Welsh, 2005). In fact, the wireless radio in each node of the

WSN can be used not only to communicate but also to measure the radio signal strength

associated with the received packet. Since the signal strength is a function of the locations

of the transmitter and the receiver, this information can be used to estimate their relative

position. There are two main approaches to target tracking: map-based and range-based.

In the map-based approach the position of the moving target is obtained by finding the

most likely location which matches the recorded signal strength based on previously learned

maps, as in Lorincz and Welsh (2005); Spagnolini and Bosisio (2005). This strategy can be a

good solution but it requires extensive work to learn the maps. Differently, the range-based

algorithms first try to estimate relative distances based on simple models of the wireless

channel and then they estimate the position by triangulation, similarly to the GPS system

where the static nodes of the WSN play the role of the satellites in the GPS. This approach,

presented in Hu and Evans (2004), requires a higher node density than the map-based one,

but it does not require an extensive learning phase.

Most of the existing literature on range-based tracking focuses on triangulation algorithms

where the wireless channel model parameters are assumed to be known or are identified

off-line by collecting all data in some centralized location, as in Patwari, Hero, Perkins,

Correal, and O’Dea (2003). Unfortunately, these parameters are strongly dependent on the

environment (Goldsmith, 2005), in particular indoor, therefore it is desirable to identify them

in-situ, possibly using distributed algorithms suitable for the limited computational resources

of the WSN nodes. Moreover, the radio signal strength measure provided by the radio chips

of the sensor nodes are not very precise, mainly due to uncalibrated offsets in the receiving

nodes. As a consequence, the estimated distance can be constantly biased in some nodes,
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thus degrading tracking performance. Therefore, it is necessary to devise some strategies to

compensate these offsets (see for example Whitehouse and Culler 2002).

In Bolognani, Del Favero, Schenato, and Varagnolo (2008, 2010) the use of consensus

algorithms has been proposed for automatically calibrating the sensors without the use of a

reference node, and for least–square–estimating the wireless channel parameters without

collecting data at any central location. The two proposed algorithms are however very general.

In fact, any problem concerned with the compensation of measurement offsets affecting

a network of sensors, where the offsets cannot be directly measured but only pairwise

differences of offsets are available, can be solved with the proposed approach. Moreover,

any least-square parameter identification problem based on distributed measurements can

be solved in a distributed fashion via the proposed algorithm, without collecting all data in

single location to compute the optimal (centralized) solution.

WSN model

Connectivity and communication

Let a WSN be modeled as a set of N nodes V= {1, . . . , N}. Since nodes communicate using

a wireless channel, the transmission is not reliable, i.e. there is a non–zero packet loss

probability. This communication unreliability can be modeled by the connectivity matrix

C ∈ RN×N , where Ci j ∈ [0,1] is the probability that node j can successfully transmit a

message to node i. Since the wireless channel is approximately symmetric, it is reasonable

to assume that C = C T and Cii = 1,∀i. The connectivity matrix induces the c-connectivity

graph Gc = (V,Ec), defined as the graph s.t. (i, j) belongs to the set of the edges Ec if and

only if ci j ≥ c. This graph is undirected since the matrix C is symmetric.

The matrix C can be experimentally estimated by letting each node broadcast M packets at

random instants (with retransmission intervals sufficiently large in order to avoid collisions),

making each node i record the number mi j of messages received by each node j and setting

ĉi j =
mi j

M
. Subsequently, each node communicates its ĉi j to its neighbors and sets ci j =

ĉi j+ĉ ji

2

since ĉi j and ĉ ji are different being empirical means.

The formulation presented in Section 2.1 can then be adopted to describe the possible

communication strategies that can be implemented in a WSN. In particular, because of the

specific character of wireless communication, broadcast communication can be implemented

with no extra effort with respect to asymmetric gossip, while exchanging information in a

symmetric gossip manner requires some extra coordination to deal with the possibility of

packet collision (and consequent drop).
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Wireless Channel Model

For the implementation of range-based localization algorithms, a model for the behavior of

the wireless channel between two nodes in terms of received power Prx (in dBm) is needed.

The Radio Signal Strength Indicator (RSSI) measured by a generic node i after having

successfully received a packet sent by the generic node j can be modeled in the most general

form as:

P i j
rx = f

�

P j
tx, x i , x j , i, j, t

�

(3.10)

where P j
tx (in dBm) is the nominal transmitted power, i and j are the indices of the receiver

and the transmitter nodes respectively, x i , x j ∈ R3 are their spatial positions and t is the time

when the communication occurs. Equation (3.10) can be decomposed into simpler elements

which takes into account different effects. Combining the models of each element, described

in Gudmundson (1991) and Goldsmith (2005), and adding parts due to offsets in the RSSI

measurements and in the power transmission, yields the following model:

P i j
rx = P j

tx+ r j + fpl(‖x i − x j‖) + fsf(x i , x j) + fa(x i , x j) + vff(t) + oi (3.11)

where:

• P j
tx is the nominal transmitted power and r j is the transmission offset between the nom-

inal and the effectively transmitted power; this factor is due to fabrication mismatches

and it is assumed to be constant in time;

• fpl(·) represents the path loss effect, modeled as in Goldsmith (2005):

fpl(di j) = β − 10γ log10

�

di j

�

(3.12)

where di j = ‖x i− x j‖ is the euclidean distance between the nodes i and j, β represents

the radio receiver gain at a nominal distance of d = 1m, and γ is the loss factor (in an

ideal outdoor setting γ ≈ 2); the parameters β and γ are in general unknown since

they depend on the specific environment where the WSN is placed;

• fsf(·) takes into account the shadow fading and other slow fading components; it is

assumed (see Gudmundson 1991) to be symmetric – i.e. fsf(x i , x j) = fsf(x j , x i) – and

Gaussian with a spatial correlation dependent on the difference between the distances

of the various points; more precisely, Ex

�

fsf(x i , x j)
�

= 0 and Ex

�

( fsf(x i , x j))2
�

= σ2
sf

are the spatial mean and variance where the expectation is performed w.r.t. to the

random node positions; moreover, let x i , xa
j and x i , x b

j two different configurations s.t.
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δ = ‖xa
j − x b

j ‖, then the spatial correlation is:

Ex

h

fs f

�

x i , xa
j

�

fs f

�

x i , x b
j

�i

= σ2
sfρ

δ/D
D

where ρD is a parameter and D is the typical correlation distance; note that the

expected value of fsf is assumed to be zero;

• fa(·) represents the channel asymmetry factor; it is due to non symmetric reflections, and

can be modeled as a Gaussian r.v. with zero-mean and covariance Ex

�

f 2
a (x i , x j)

�

= σ2
a ;

• vff(·) represents the fast fading component that can be modeled (see Goldsmith 2005)

as a white temporal noise with zero-mean and covariance Et

�

v2
ff(t)

�

= σ2
ff;

• oi(·) represents the receiver offset that affects the measured received strength due to

fabrication mismatches in the radio chip.

Equation (3.11) is a general model for the wireless channel, in which parameters depend

on the physical environment where the WSN is placed and on the sensors under consideration.

It is important to remark that these parameters are not known in advance but they need to

be estimated on-site.

Experimental testbed and model validation

In Bolognani et al. (2010) an experimental testbed has been set up to validate the model.

Numerical values for some of the parameters have been obtained, showing that some of the

terms in (3.11) are negligible, and pointing out which other parameters have instead to be

compensated or estimated.

The experimental data used in Bolognani et al. (2010) consist in a series of measurements

relative to packet transmissions and receptions performed by a net of 25 Tmote-Sky nodes

equipped with the Chipcon CC2420 RF Transceiver (CC2420 Datasheet) and powered by

alkaline batteries. These nodes were randomly placed inside a single conference room of

15m× 10m at about 50cm from the ground (Figure 3.8a). The relative position of the nodes

is shown in Figure 3.8b.

Each node implemented the randomized broadcast communication using the same

transmission power Ptx and intercommunication interval τ = 15s so that the event of a packet

collision is negligible. Each node sent a fixed number of packets M = 500, each one including

the sender node ID, and also stored a table with the total number of messages received from

their neighbors and the corresponding RSSI measures P i j
rx .
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(a) Picture of the testbed room: Aula Magna “A. Lepschy”, Department of
Information Engineering, University of Padova, Italy.
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(b) Network topology and node displacement. Only edges with
empirical packet loss smaller than 25% are displayed.

Figure 3.8: The experimental testbed used in Bolognani et al. (2010) for collecting the data used in
model validation and in the testing of the proposed algorithms.

These tables have been then collected for off-line data processing. In particular, from

these data the connectivity matrix C has been constructed. Given the short distance among

nodes, each node received at least one packet from any other node, however the empirical

packet reception probability was different. In fact, the c-connectivity graph Gc obtained for

c = 0.75 (i.e. removing poor links with showed an empirical packet loss probability greater

than 25%) is not the complete graph, even if it is still connected, as shown in Figure 3.8b.

The different parameters of the wireless channel model (3.11) have been estimated using

the various P i j
rx(t) collected from the nodes.

The transmission power offsets r j can be directly measured substituting the antenna of

the nodes with a probe connected to a power meter. Measurements made by Zanca and Zorzi

(2008) on the set of the nodes used for the experimental data showed that these offsets are
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negligible, i.e. ri ≈ 0, ∀i.

Then for every link (i, j) ∈ E in the connectivity graph, the empirical mean of the received

power P̄ i j
rx =

1
Mi j

∑

t P i j
rx(t), and the empirical variance (σ̂i j

f f )
2 = 1

Mi j

∑

t(P
i j
r x(t)− P̄ i j

r x)2 have

been computed, where Mi j is the total number of messages received. The empirical variance

of the measurement associated to each link is due to fast fading, and therefore

σ2
ff =

1

|E|

∑

(i, j)∈E

�

σ
i j
ff

�2
.

The measurements P̄ i j
rx include the effects of path loss, shadow-fading, channel asymmetry

and reception offsets. The contribution of the channel asymmetry and reception offset

together can be estimated by noting that the path loss and the shadow fading are symmetric,

i.e.∆P̄ i j
rx = P̄ i j

rx− P̄ ji
rx = f i j

a − f ji
a +oi−o j , where for ease of notation f i j

a = fa(x i , x j). Moreover,

it is possible to remove the effects of the offsets by noting that∆P̄ i jk
rx =∆P̄ i j

rx+∆P̄ jk
rx +∆P̄ki

rx =

f i j
a − f ji

a + f jk
a − f k j

a + f ki
a − f ik

a . Experiments showed that∆P̄ i jk
rx has approximately zero-mean

over the set C of all the independent feasible cycles (i, j, k). Since the nodes are sufficiently

far from each other and the shadow fading correlation distance D ≈ 10cm, all f i j
a can be

considered uncorrelated, and therefore the covariance of the channel asymmetry results to

be:

σ2
a =

1

6 |C|

∑

(i, j,k)∈C

�

∆P̄ i jk
rx

�2
.

By assuming independence between channel asymmetry components f i j
a and offsets oi , the

offset variance σ2
o can be estimated from the following formula:

2σ2
o + 2σ2

a =
1

|E|

∑

(i, j)∈E

�

∆P̄ i j
rx

�2
.

Finally, the parameters θ = [β γ]T of the path loss model remain to be estimated. Suppose

that sensors have been calibrated by adding a compensating offset ôi such that oi + ôi = α

for all nodes. Averaging all sensor readings received from the same node removes the effect

of fast-fading, therefore the calibrated average received power P̂ i j
rx = P̄ i j

rx + ôi is given by:

P̂ i j
rx = Ptx+ β − 10γ log

�

di j

�

+ f i j
sf + f i j

a +α

where f i j
sf = fsf(x i , x j). Since α is constant, its contribution can be included in the estimated

β , therefore assuming α= 0. Shadow fading f i j
sf and channel asymmetry f i j

a are unknown

but they can be assumed to be independent zero-mean disturbances, therefore it is possible to

find the best mean square estimate of the unknown parameter as θ̂LS = (AT A)−1AT b, where
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β [dBm] γ [dBm] σsf [dBm] σa [dBm] σff [dBm] σo [dBm] ri [dBm]

-45.7 1.76 3.78 0.16 1.31 1.01 ≈0

Table 3.2: Estimated parameters of the channel model (3.11) via centralized processing of the
experimental data collected in the testbed.

A= [a1 . . . aM]T , b = [b1 . . . bM], and M = |E|. The generic elements of matrix A and vector

b are am = [1 −10log(di j)]T and bm = (P̂
i j
rx − Ptx), where di j = ‖x i− x j‖ and P̂ i j

rx are known.

Figure 3.9 shows the identified path-loss model and all collected pairs (P̂ i j
rx , di j). The residues

obtained from the path-loss model correspond to the variance due to the shadow fading and

channel asymmetry, i.e.:

σ2
a +σ

2
sf =

1

|E|




Aθ̂LS − b






2
.

Table 3.2 summarizes the estimated parameters of the model (3.11) based on the experi-

mental data collected. Note that the terms due to the asymmetry in the channel, f i j
a , can be

safely neglected when compared to the slow fading terms, f i j
sf , i.e. the wireless channel is

indeed symmetric.
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Figure 3.9: Estimated path-loss model for the wireless channel of the testbed using standard least
square estimation. The continuous line represents the path-loss function, while the dots are the

collected data.

Consensus-based sensor calibration

Experimental evidence indicates that sensor offsets oi in the nodes are not negligible and

can be substantially large for some node (up to 6 dBm according to CC2420 Datasheet).
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Figure 3.10: Experiment inside a basketball court showing the effects of reception offsets in WSN
tracking when nodes are swapped. True trajectory in both panels is the court cenerline.

The effect of this offset is to bias the estimate of the distance between two nodes, which is

particularly harmful in tracking application. In fact, if one node has a high offset oi , then its

estimated distance from a moving node is smaller than the true distance. Since the unknown

location of a moving target is obtained, similarly to the GPS, by triangulating its position from

three or more static nodes whose position is known, the estimated position will be closer to

the node with high offset oi than it should be. This is particularly clear in Figure 3.10, which

reports a tracking experiment where the moving node to be tracked is following a straight

line (the basketball court centerline) between two rows of nodes of a WSN. However, its

estimated trajectory is not straight but it is bent to the left (left panel). When the two central

nodes on one side are swapped with the other side, the estimated trajectory is now bent to

the right, thus clearly showing a problem due to uncalibrated offsets.

An offset calibration algorithm would ideally add a compensation offset ôi to the reading

of the received power such that oi + ôi = 0, and then use the compensated received power
bP i j

rx = P i j
rx + ôi to estimate the relative distances.

In Bolognani et al. (2010) a fully distributed and simple strategy has been presented,

showing how it is possible to estimate the offsets oi of every node up to a constant. Indeed, as

it is not possible to directly measure oi of each node, the proposed algorithm is only capable

to find offset estimates such that

oi + ôi = α, α≈ 0

for all nodes. If α 6= 0 such strategy does not compensate the offset, but at least all nodes

either underestimate or overestimate the relative distance similarly, therefore after a GPS-

like triangulation stage these errors should partially cancel out. Moreover, if a channel

identification procedure follows, then the common offset α is going to be absorbed in the

identified parameters, becoming ininfluent.

The proposed algorithm, which is now going to be illustrated, is based of the crucial step
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of casting the offset calibration problem into a consensus problem. Consider a static WSN

where the nodes are at fixed positions and transmit at the same power Ptx. The average

received power P̄ i j
rx satisfies the following:

P̄ i j
rx =

1

T

T
∑

t=1

P i j
rx

�

Ptx,xi ,x j , i, j, t
�

= fi j + oi + f a
i j + r j +

1

T

T
∑

t=1

vff(t)≈ fi j + oi (3.13)

where P i j
rx is modeled as in (3.11), fi j = Ptx+ fpl(‖x j − xi‖) + fsf(x j ,xi), and f a

i j = fa(xi ,x j).

The approximation is based on parameters in Table 3.2 which imply that

�

�

�

�

�

f a
i j + r j +

1

T

T
∑

t=1

vff(t)

�

�

�

�

�

� |oi|

for T sufficiently large, vff(t) being white noise. Note that fi j is symmetric, i.e. fi j = f ji .

The next theorem shows how the problem of compensating the offset oi can be casted as

a consensus problem.

Theorem 3.2.1. Consider the c-connectivity graph Gc = (V,Ec) of a WSN, and let Q(t) ∼ Gc

be a sequence of stochastic matrices that solves the (probabilistic) consensus problem. Assume

that yi j = fi j + oi is the average received signal strength by node i from node j, and consider

the following algorithm:

ôi(0) = 0, i ∈ V= {1, . . . , N} (3.14)

ôi(t + 1) = ôi(t) +
∑

j∈N(i)

qi j(t)
�

y ji − yi j + ô j(t)− ôi(t)
�

(3.15)

where qi j(t) = [Q]i j(t). Then limt→∞ oi + ôi(t) = α where α ∈ [mini(oi),maxi(oi)]. If in

addition Q(t) is doubly stochastic ∀t, then α= 1
N

∑

i∈V oi .

Proof. Define the new variables x i(t) = oi + ôi(t). From this definition it follows that

x i(0) = oi + ôi(0) = oi . Moreover, as Q(t) are stochastic matrices, (3.15) can be rewritten as
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follows:

ôi(t + 1) + oi = ôi(t) + oi +
∑

j∈N(i)

qi j(t)
�

f ji + o j − fi j − oi + ô j(t)− ôi(t)
�

x i(t + 1) = x i(t) +
∑

j∈N(i)

qi j(t)
�

x j(t)− x i(t)
�

=
�

1−
∑

j∈N(i)

qi j(t)
�

x i(t) +
∑

j∈N(i)

qi j(t)x j(t)

= qii(t)x i(t) +
∑

j∈N(i)

qi j(t)x j(t)

The last equation can be written in compact form as x(t + 1) = Q(t)x(t). Since Q(t)

solves the (probabilistic) consensus problem, then limt→∞ x i(t) = α. The claim that α ∈
[mini(oi),maxi(oi)] follows from the property that if Q is a stochastic matrix, and therefore

maxi[Qx]i ≤maxi x i and mini[Qx]i ≥mini x i (Doob, 1953).

The previous theorem indicates how the offsets oi can be compensated without knowing

their values. Also, it is not necessary to know the exact value of fi j since it is symmetric. In

practice the assumption P̄ i j
rx = yi j = fi j + oi is not exact, leading to an oscillating steady state

behavior in the consensus algorithm that is evident in the numerical simulations.

It is interesting to consider the problem of choosing appropriate Q(t) to have α ≈ 0,

which is the ideal solution. This may be desiderable, for example, when the offset calibration

algorithm is not followed by any identification stage and is therefore required to achieve

precise offset removal. It is reasonable to assume that the offsets oi of the radio chips are on

average null, have some dispersion due to imperfect fabrication and are independent, i.e.

E
�

oi
�

= µo = 0, E
�

o2
i

�

= σ2
o , and E

�

oio j

�

= E
�

oi
�

E
�

o j

�

= 0. It is well known that the

best estimate of the mean µo given a set of offsets is E
�

µo | o1, . . . , oN
�

= 1
N

∑

i∈V oi = α∗

which has the property that E [α∗] = µo = 0 and E
�

(α∗)2
�

=
σ2

o

N
, i.e. the average consensus

is the strategy for which α is closer to zero in mean square sense and its error becomes

smaller and smaller as the number of nodes N increases. Note however that, although the

best choice for the compensation of offsets oi is to choose doubly stochastic Q(t)’s, this can

be difficult to be enforced in a WSN, since it requires synchronization among the nodes and

compensation for packet loss.

Simulations based on experimental data

The proposed algorithm for distributed offset calibration has been tested off–line on the

same set of data collected during the experimental setup described before. A c-connectivity
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Figure 3.11: Network topology and node displacement for c-connectivity graph with c = 0.1. Nodes’
grey intensity represents the estimated offset ôi after calibration. Black and grey edges represent the

edges used for training and validation data sets, respectively.

graph Gc with c = 0.1, i.e. all links which received at least 10% of the packets, have been

considered. Differently from the graph with c = 0.75 shown in Figure 3.8b, the resulting

graph with c = 0.1 reported in Figure 3.11 is complete, i.e. all edges exist. The set of all the

edges has been divided into two subsets: the first subset of edges (60% of the total edges,

in black in Figure 3.11) has been used for the estimation of the node offsets. Therefore the

proposed distributed sensor calibration algorithm has been executed on the data collected on

these edges. In particular, the calibration algorithm was set with yi j = P̄ i j
rx corresponding to

these edges. The second subset (40% of the total edges, in grey in Figure 3.11) has been used

in a second stage for validation purposes: the asymmetric difference (P̄ i j+ ôi)−(P̄ ji+ ô j) has

been evaluated on the data collected on this subset. This approach allows to both evaluate

the effect of the offset removal in a rigorous way, and to validate at the same time the

proposed model.

Randomized broadcast consensus has been simulated on the graph Gc using the ex-

perimental data and including i.i.d. packet loss failure set by the connectivity matrix C .

Figure 3.12 shows the behavior of the consensus algorithm for a specific realization with

two different values of the weight parameter w in matrices Q(t) as defined in Section 2.2.

The steady state compensation offsets ôi(∞) are displayed in Figure 3.11 where the gray

intensity of the nodes is proportional to ôi(∞). Since the true node offsets oi are unknown

it is not possible to plot the behavior of x i(t) = oi + ôi(t), which are the variables that

should converge to a common value, however the fact that all ôi converge to a steady state is

an indication of correct functioning. It is also interesting to note the effect of unmodeled
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Figure 3.12: Offset estimation ôi for each node of the considered WSN using randomized broadcast
consensus for different values of the consensus weight w.

measurement noise arising from having neglected channel asymmetry and fast fading. In

fact for larger w, i.e. for larger weight on the off-diagonal terms in the consensus matrix,

the oscillation at steady state is not negligible, i.e. a large w tends to amplify noise. On the

other hand, a small w leads to slower rate of convergence, thus indicating a tradeoff between

convergence rate and noise sensitivity. Note also that the magnitude of steady state values of

ôi is consistent with the a-priori dispersion indicated by the standard deviation σo reported

in Table 3.2.

In order to evaluate the effectiveness of the offset calibration, the channel asymmetry

after calibration has been tested on a validation set different from the set used for computing

the offsets ôi. The results of this second stage has been plotted in Figure 3.13. The white

bars represent the distribution of |P̄ i j − P̄ ji| on the validation edges, before the distributed

sensor calibration algorithm is executed. The black bars, instead, show the distribution of

|(P̄ i j + ôi)− (P̄ ji + ô j)| after the algorithm has run. The offset reduction clearly appears.

After the calibration, 56% of the validation edges have an asymmetric difference smaller than

0.5dBm (it was 24% before calibration), while 88% of them have an absolute error smaller

than 1dBm (it was 50% before calibration). After the offset removal algorithm, almost all

the measurements (99.4% of them) are affected by an asymmetric error smaller than 2dBm.

The importance of offset removal in the received power measurements is evident when

these measurements are used for wireless–based localization. In fact, relative distance is

estimated by inverting the path-loss function based on the calibrated measured power P̂ i j
rx :

d̂i j = 10
P j
tx−P̂ i j

rx+β
10γ = 10

P j
tx−Pi j

rx+ôi+β
10γ .
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If the calibration offset ôi is not included in the previous formula, there can be measurements

errors up to 6 dBm due to uncalibrated offsets, as Figure 3.13 suggests. In fact, a systematic

calibration error of 6 dBm corresponds to an uncertainty range from 0.9 m to 4.4 m when

estimating the relative position of a node at 2 m, and to a practically useless estimation when

the node is farther. An error of 1 dBm, on the other hand, corresponds to a error in the

distance of only 28 cm for a 2 m long link, and to a 1.4 m error when the node is at 10 m

distance.

Consensus-based least square parameteric identification

A least square parameter identification (LSPI) problem arises when a set of data D =

{(am, bm), m= 1, . . . , M} is available, where am ∈ R` and bm ∈ R. The data set is generated

according to the model aT
mθ = bm+ vm, where θ ∈ R` is a parameter vector to be estimated

and vm ∈ R is an unknown error. Define the matrix A ∈ RM×`, A = [a1 . . . aM]T and the

vectors b, v ∈ RM , b = [b1 . . . bM]T , v = [v1 . . . vM]T . The least square identification of the

parameter θ is defined as follows:

θ̂LS = argmin
θ
‖v‖= argmin

θ
‖Aθ − b‖=

�

AT A
�−1

AT b (3.16)
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where non-singularity of the matrix AT A has been assumed.

The problem that arises when implementing LSPI in wireless sensor networks, for example

to identify the channel parameters, is that the data D is dispersed among agents of the

network, and a straightforward implementation of (3.16) would require that a central node

collects all the data, build the arrays A and b, compute the matrix multiplications and the

matrix inversion, and then share the resulting estimate in the network.

This approach scales badly with the number of nodes, requires a leader node that takes

care of the data processing, and is not robust against changes in the number of nodes

and appearance of new data. Distributing the LSPI algorithm among the agents would be

beneficial in this sense, and preferrable.

The next theorem shows how the least square parameter estimate (3.16) can be computed

distributively over a network of agents via a consensus based strategy.

Theorem 3.2.2. Let Gc = (V,Ec) be the c-connectivity graph associated to a communication

network with N nodes, i.e. N = |V|, and let D(i) = {(am, bm)} the partition of the whole data

set D available to i-th node, satisfying D(i)∩D( j) = ;, i 6= j, ∪i∈VD(i) =D, |D(i)|= Mi and

|D|= M =
∑

i∈V Mi. Suppose that Q(t) are stochastic matrices consistent with the graph, i.e.

Q(t) ∼ Gc ,∀t, which solve the (probabilistic) average consensus problem. Let xA
i ∈ R

`×` and

x b
i ∈ R

` for i = 1, . . . , N be auxiliary variables individually stored in the nodes, and consider

the following algorithm:

xA
i (0) =

∑

m∈D(i)

amaT
m, ∀i ∈ V (3.17)

x b
i (0) =

∑

m∈D(i)

am bm, ∀i ∈ V (3.18)

xk
i (t + 1) = qii(t)x

k
i (t) +

∑

j∈N(i)

qi j(t)x
k
j (t), k = A, b (3.19)

ηi(t) =
�

xA
i (t)

�−1
x b

i (t) (3.20)

where qi j(t) = [Q]i j(t). Then

lim
t→∞

ηi(t) = θ̂LS , ∀i ∈ V.

Proof. Consider the matrix S = AT A =
∑M

i=1 aia
T
i and the vector d = AT b =

∑M
i=1 ai bi;

therefore θ̂LS = S−1d. As the matrices Q(t) solve the (probabilistic) average consen-

sus problem, it holds limt→∞ xA
i (t) =

1
N

∑N
i=1 xA

i (0) =
1
N

∑M
i=1 aia

T
i =

1
N

S and similarly
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limt→∞ x b
i (t) =

1
N

∑N
i=1 x b

i (0) =
1
N

∑M
i=1 ai bi =

1
N

c. By continuity

lim
t→∞

ηi(t) =
�

1

N
S
�−1 1

N
d = S−1d = θ̂LS .

Note that the sums are defined from 1 to M due to the structure of (3.17) and (3.18).

This theorem shows that LSPI can be computed as the solution of a distributed algorithm

which does not require the knowledge of the total number of nodes N or the total number

of data M available. Moreover, the data can be arbitrarily partitioned among nodes. Since

the matrix S = AT A is symmetric it is not necessary to compute all its `2 entries, therefore

the xA
i can be reduced to a vector of size (`2+ `)/2. Nonetheless the complexity in terms of

communication, i.e. the dimension of the vector of parameters to be averaged, is O(`2) which

can be impractical if the dimension ` of the unknown parameter θ is large. Strategies that

trade-off accuracy in the identification of θ̂LS for a decrease in communication complexity to

O(`) will be presented in the next paragraph.

The problem addressed in the previous theorem belong to a more general class of

problems that can be solved with consensus algorithms. In fact any optimization problem

can be written as:

ξ= f

 

1

N

∑

i∈V
gi
�

zi
�

!

for some appropriate choice of functions f and gi, where zi represents the data available

to node i. Some examples of the previous class of problem includes generalized means

(Bauso, Giarré, and Pesenti, 2006), χ–consensus (Cortés, 2008) and distributed Kalman filter

(Spanos et al., 2005).

Simulations based on experimental data

The algorithm proposed in Theorem 3.2.2 for the distributed computation of least square

parameter estimates will now be applied to the problem of identifying the path-loss wireless

channel parameters (β ,γ) given in (3.12). As mentioned above, these two parameters are

used in localization and target tracking algorithms in order to estimate relative distances

between the moving node and the nodes of the static WSN. Therefore, it is critical to be

able to identify the path-loss parameters in a distributed way, in a manner that is robust to

node failure, with minimal exchange of data and low computational power, and without a

central unit. It has to be noted that an accurate a-priori model for power loss in different

indoor environments is almost unavailable (for example γ can vary from 1 to 6 according to

the room sizes, the amount of furniture and people and the number of walls that the signal
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has to cross in average). Furthermore, the same environment can present a hourly or daily

variation of these parameters due to the periodic presence of people populating the indoor

spaces (Dominguez-Duran, Claros, Urdiales, and Coslado, 2008). Distributed algorithms

with these features can be used to periodically or adaptively identify the channel parameters

in a changing environment.

Based on these considerations, the focus of this set of simulations is to compare the

performances of three different communication strategies which have different characteristics

in terms of rate of convergence, communication complexity and parameter identification ac-

curacy. The first and the second strategies are based on the implementation of the distributed

least square identification described in Theorem 3.2.2 using the randomized broadcast and

the randomized symmetric gossip, respectively. The third strategy performs the randomized

symmetric gossip consensus on local estimates θ̂i of the channel parameters vector θ , rather

than on the local least-square sufficient statistics
�

xA, x b
�

relative to
�

AT A, AT b
�

of Theo-

rem 3.2.2. Each strategy has its own advantages. In fact, the randomized symmetric gossip

guarantees average consensus, therefore it is guaranteed to provide the best identification

accuracy since it satisfies the hypotheses of Theorem 3.2.2. Randomized broadcast does not

guarantee average consensus, and consequently the best performance, however it is very

easy to implement since it needs no coordination between nodes. Moreover it is faster than

the symmetric gossip since, on average, there are d(i) updates per iteration compared with

only 2 updates for the symmetric gossip. Finally, the strategy based on the average consensus

of the local least-square estimates does not guarantee optimal performance nor best speed of

convergence, however the number of parameters to be exchanged among nodes is equal to

the size ` of the parameter vector θ , while for the first two strategies it is proportional to `2.

For the simulations presented hereafter, the c-connectivity graph Gc = (V,Ec) for c = 0.75

has been considered (see Figure 3.8b). The data set D(i) available to each node i is given

by D(i) = {(P̄ i j
rx , di j) | j ∈ V(i)}, i.e. all the averaged received power measurements from

each neighbor coupled with the corresponding relative distance (note that the distances

are assumed to be known by the nodes). The data set of all measurements is indicated

with D = ∪i∈VD(i). It has been assumed that an offset calibration procedure has been

performed, in order to obtain the compensating offsets ôi , and that the effect of fast-fading

can be neglected since the measurements have been averaged over a large number of

packets. Therefore the channel parameters θ = [β γ]T can be identified using a least square

minimization by setting am = [1 − 10 log(di j)], bm = P̄ i j
rx − Ptx + ôi, where m = 1, . . . , M

indicates a generic data element, and M = |D| = |Ec|. Using the same terminology of

Theorem 3.2.2, θ̂LS denotes the centralized least-square estimate using the complete data set

D. On the other hand, θ̂ i
LS denotes the least-square estimate performed by the i-th node using
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only its data set D(i), which is the best estimate a node can have without communicating

with the others. The performance (in terms of identification accuracy) is based on the

residues of the estimate θ̂ given by

J(θ̂) =




Aθ̂ − b




 .

Note that A and b are constructed using the whole data set, and therefore J(θ̂) repre-

sents the global residual. Since θ̂LS = argminθ J(θ̂), it is obvious that J(θ̂LS) ≤ J(θ̂ i
LS),∀i

from which it follows J(θ̂LS) ≤
1
N

∑

i∈V J(θ̂ i
LS). Being ηi(0) = θ̂ i

LS, if all Q(t)’s are doubly

stochastic then from Theorem 3.2.2 it follows that limt→∞ J(ηi(t)) = J(θ̂LS),∀i, and so

limt→∞
1
N

∑

i∈V J(ηi(t)) = J(θ̂LS).

In the first simulation, the randomized broadcast least-square strategy has been imple-

mented, also including the link failure probabilities of each edge. Figure 3.14 shows the

identified channel parameters of all nodes ηi(t) = [β̂i(t) γ̂i(t)]T as a function of the number

of iterations for a typical realization of the system (thought as the stochastic process of

information exchange). It can be seen that the identified parameters of all nodes converge to

a common value, however, since broadcast does not guarantee average consensus, identified

parameters do not necessarily coincide with the optimal estimate θ̂LS. It is also interesting

to note that most of the nodes have already good estimates of the parameters without

communicating with the others, since most of them have lots of links and there are only two

parameters to estimate. However, there are some nodes which have poor initial estimates,

especially the ones on the perimeter of the graph which have few links. Nonetheless, thanks

to the consensus algorithm, they rapidly converge to a good value.

0 50 100 150
−50

−45

−40

−35

−30

Consensus iteration

β i  [
dB

m
] 

0 50 100 150

1

2

3

4

5

Consensus iteration

γ i  [
dB

m
] 

Figure 3.14: Convergence of parameter estimates βi ,γi using randomized broadcast least-square
consensus and consensus weight w = 0.5. The dashed lines are the centralized least squares estimates

β̂LS , γ̂LS .
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Consensus algorithm E[J̄(∞)] max J̄(∞) min J̄(∞)

Broadcast w = 0.5 3.9816 4.1477 3.9320

Broadcast w = 0.25 3.9615 4.0919 3.9318

Symmetric Gossip 3.9307 3.9307 3.9307

Average of local estimates 3.9635 3.9635 3.9635

JCent.L.S.

Centralized LS 3.9307

Table 3.3: Comparison of the mean estimation residual.

In the second set of simulations, shown in Figure 3.15, the rate of convergence and

the steady state identification error for the three different strategies described above have

been compared. More precisely, the average estimation residual J̄(k) = 1
N

∑

i∈V J(θ̂i(k))

of all nodes has been plotted as a function of iteration error. To reduce the randomness

due to the choice of a particular realization of {P(t)}t∈N, the expectation E
�

J̄(k)
�

has

been approximately computed as the average of 50 independent extractions of the sequence

{P(t)}t∈N and depicted.

In Table 3.3 it is reported also the steady state dispersion of J̄(k) around its mean value,

obtained by recording the maximum and the minimum value of J̄(k) over the 50 extractions.

In the bottom line the residual of the centralized optimal estimate is also reported for

comparison.

Initially, the randomized broadcast least square algorithm has been tested for two different

weights w. As already mentioned, larger w leads to faster convergence rates, however it also

leads, in mean, to a larger steady state identification error (see Fagnani and Zampieri 2008).

The steady state value results also to be strongly realization-dependent, as it can be noticed

from to the large dispersion interval. This is due to the fact the first communications tend

to bias the final value toward the initial condition of that node. Differently, if w is reduced,

then this bias is smoothed out and E
�

J̄(k)
�

ends up closer to exact average consensus. Also

the dispersion of the single realizations with respect to E
�

J̄(k)
�

reduces. Moreover it has

been proved in Fagnani and Zampieri (2008) that the distance of E
�

J̄(k)
�

form the average

consensus decreases by increasing the number of nodes in the network, thus suggesting fast

convergence rate with negligible performance degradation as compared, for example, to

random symmetric gossip.

The same Figure 3.15 also shows the performance of the randomized symmetric gossip
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Figure 3.15: Comparison of the mean estimation residual E
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sus algorithms. E

�
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the sequence {P(t)}t∈N.

least square algorithm. As expected, the rate of convergence is slower, but the final value

converges to the minimum identification error given by the centralized least-square estimate

J(θ̂LS). It is important to notice that all the single realizations converge to the exact optimal

value, as shown by the fact that there is no dispersion around the mean value (Table 3.3),

not only that E
�

J̄(k)
�

tends to optimal value.

Finally, a randomized gossip algorithm that directly averages the local least-square

estimates has been tested. As shown in Figure 3.15, this strategy has the same rate of

convergence of the randomized symmetric gossip (which computes the exact centralized

least-square solution), but a slightly worse performance. However, in terms of communication

complexity this algorithm only requires the exchange of 2 parameters while the exact

distributed least square one requires in this example the exchange of 4 parameters. It has to

be noticed, though, that if the initial estimates were less reliable (for instance because the

graph topology were much less connected) then the distributed least square would behave

far better that the simple solution of an average of the local least squares estimations.
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Comments

Consensus based algorithms have proven to be effective to remove unknown offsets from the

sensor measurements and to identify the parameters of the wireless channel for localization

and tracking purposes. However, the derived algorithms are rather general and can be

applied in other fields and research areas. Indeed, a wide class of problems can be tackled in

very similar ways, such as problems in which the agents have to actually agree on a common

estimate of few parameters (like in the least-square fitting), and problems in which every

agent has to estimate its own parameter (like in the offset-removal algorithm).

Among the issues that characterize NCS, the following have been addressed for this

specific application:

• Multi agent architecture – the fact of having a leader-less architecture is the moti-

vating fact for the development of fully distributed algorithms for this application,

avoiding collecting all the measured data in any central location with particular data

processing capabilities;

• Distributed information – making the nodes share (but not collect) the measures that

they have collected proves to be beneficial in the distributed least square estimation

problem, and indeed the proposed algorithm can guarantee that the node agree

eventually on the optimal estimate; in the offset removal algorithm the issue of having

dispersed information in the network is even more critical, as the individual nodes

cannot estimate their offsets without communicating with their neighbors;

• Interaction with an underlying physical system – not only a model of the underlying

physical system is needed to define the parameters that are going to be identified by the

proposed methods; there is also a strong coupling between the data that are collected

for the estimation and the communication and information sharing constraints that

have to be satisfied, as both depend on the network topology and on the nodes’ position

in space;

• Performances – the numerical simulation confirm known results on the performances

of different consensus algorithms and show that, also in identification problems, a

tradeoff often exists between speed of convergence and variance of steady state error.
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3.3 Reactive power compensation in smart grids

The electric power system is undergoing a deep change driven by a number of needs, as

depicted in Santacana, Rackliffe, Tang, and Feng (2010) and Ipakchi and Albuyeh (2009).

Among them is the concern for global environmental issues, which have been also translated

into economical incentives and operational constraints. This yielded the introduction of new

renewable (but unreliable and intermittent) energy sources into the picture, both in large

installations (farms) and in dispersed micro-generators. At the same time the power demand

has increased both in its amount and in the quality of the required service, challenging an

aging infrastructure that is working close to its full utilization limits. Last, but not least,

new technologies like plug-in electric vehicles are likely to become reality in the next future,

requiring deep changes in the operational strategies of the grid. All these phenomena are

happening extremely fast, compared to the past development of the power grid. Because of

the extremely high costs and long times for upgrades to the physical infrastructure (which

sometimes are impossible), there is a strong agreement on the fact that the next generation

grid will host a large amount of information and communication technologies (ICT) instead

of being subject to structural changes. The power grid is by many figures the biggest machine

ever built by man, and therefore it should not be surprising that this transition to a smart grid

is attracting an enormous amount of effort and investments, providing motivating applications

for almost all the fields of ICT, including control theory and automation. Hereafter it will be

shown how the methodologies of NCS can fit in this scenario, before focusing on a specific

application.

Networked control systems in smart power distribution grids

Among the different parts of today’s power network (see Figure 3.16), the distribution grid has

probably the largest room for improvement through automation, information management,

and state monitoring.

The following features are desired in a smart power distribution grid, are currently largely

missing, and can be efficiently tackled with the approach of networked control systems.

Architecture and microgrids

Today’s power distribution grid could well be described as an infrastructure with the only

duty of delivering electric power from the transmission grid to the loads, at an appropriate

voltage level and with basic quality standards. In a smart grid, a series of new “actors”

connects to it: micro-generators that inject power instead of being supplied with, electronic

loads with their specific dynamic behavior, “smart” customers that can postpone or shape



74 Algorithms and applications

~600 MW

Coal Plant

~200 MW

Hydro-electric Plant

600-1700 MW

Nuclear Plant

~150 MW

Medium sized
Power Plants

up to
~150 MW

City
Power Plant

~2 MW

Industrial
Customers

Solar Farm

Wind Farm

~400 kW

Farm

Rural Network

Industrial Power Plant

Factory
~5 MW

substations City Network

Low Voltage

Distribution Grid

Transmission Grid

Extra High Voltage
275 kV to 765 kV

(mostly AC, some HVDC)

High Voltage 110 kV and higher

Extra High
High

Medium
Low Voltage

Figure 3.16: Schematic representation of the electrical power grid.

their demand if financially rewarded, plug-in electric vehicles that can act as a moving

storage device, and many others. The concept of multiagent architecture is likely to be a

necessary approach to this scenario (Massoud Amin and Wollenberg, 2005), while it is still

an open question if the management of this architecture should be centralized, hierarchical,

or fully distributed. Because these agents are in large number, they are likely to connect and

disconnect according to their needs, they are not fully reliable, and they have (at the moment)

quite basic communication capabilities, a fully centralized architecture is unpractical. Smart

microgrids are an interesting approach. Let them be defined as portions of the electrical power

distribution network that connect to the transmission grid in one point and that are managed

autonomously from the rest of the network. A smart microgrid is generally equipped by

some central controllers, but distributed algorithms are also likely to be implemented by
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its agents. Cooperation among microgrids and between microgrids and the transmission

network operator may also be required. The resemblance of the resulting architecture to

the Internet suggests that a layered structure should be employed: when many different

algorithms are to be executed by the same agents for solving different problems (from electric

stability to optimal operation of the electronics, from supply/demand matching to load

scheduling), it is important that detrimental interaction is avoided, by making the operation

of these algorithms transparent one to the other. The similarity of this approach to data

networks (see Chiang et al. 2007 and consider, for example, how error correction, traffic

congestion and optimal routing algorithms coexist in the OSI layered model) is therefore

extremely motivating and still almost unexplored.

Real time energy pricing

The appearance of new intermittent and unreliable energy sources (wind, solar, combined

heat and power generation) requires the design of new mechanisms for supply/demand

matching. Real time pricing seems to be the main available tool to shape the consumers’

demand for electrical energy, and it is currently used in the wholesale energy market (where

however fluctuation in demand and supply are very limited nowadays, and only utilities

participate).

It has been shown in Roozbehani, Dahleh, and Mitter (2010a,b) that relaying the whole-

sale market prices to the customers can easily cause instability in the prices and in the

demands. Customers are also likely to exhibit very complex dynamics due to load-shifting

and scheduling behavior. Therefore the use of the price signal to shape demand requires the

design of proper pricing mechanisms via the tools of control theory (see for example Wang,

Kowli, Negrete-Pincetic, Shafieepoorfard, and Meyn 2011) and should take into account the

multiagent, heterogeneous, character of the customers.

Distributed generation and storage

Distribution networks are going to host an important number of micro-generators even at a

residential level, ranging from solar panels to micro wind turbines, from urban or rural plants

powered by waste to combined heat and power generation in big buildings and facilities.

Major upgrades to the distribution system control and monitoring protocols may be required

to address bidirectional flow patterns and increased loading.

All these small-size generators are connected to the grid via electronic inverters (while

larger plants are connected via electro-mechanical generators). This is a great opportunity

because the current injected by converters can be precisely controlled with very fast response.

At the same time, it can lead to major stability issues, detrimental interaction, and suboptimal
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operation of the grid, if they are not properly controlled. Electromechanical converters

exhibit a inherent stabilizing behavior due to their mechanical inertia and to the reactance of

the network (see Dorfler and Bullo 2010 for a description of the phenomenon via the tools of

large scale dynamical systems); inverters, on the other hand, do not exhibit this behavior,

and must be properly controlled to achieve frequency stability and correct operation.

This issue is marginal when few micro-generators connect to the grid, but becomes severe

when their number and their size are larger. In some cases a microgrid (or in general, a

portion of the power distribution network) may also want to disconnect from the transmission

grid: because of economical interests, or because the main utility is experiencing a shortage

in power generation and asks for load shedding, or because of a blackout on the transmission

network. In this cases the aforementioned issues become critical and the microgrid controllers

have to face the challenging (and still unresolved) issue of coordinating all the electronic

interfaces and stabilizing their dynamic behavior (Lopes, Moreira, and Madureira, 2006).

Network monitoring and state estimation

To approach any of the problems that are being presented so far, it is necessary to obtain

an estimate of the current working point and state of the network. This problem is almost

nonexistent when power flows only from the point of connection to the transmission grid to

the loads, and can be solved via simple monitoring solutions based on few measurements col-

lected on site. If instead bidirectional flow patterns occur (because of distributed generation

and storage), and if fault detection and self-healing capabilities are required, then a more

informative knowledge of the network state is required.

To achieve so, agents can be instructed to sense the network at their point of connection

(voltages and currents) and to build an estimate of the network topology in their neighbor-

hood, for example via time-of-arrival measurements on power line communications. However,

the great amount of data available from the agents cannot be collected centrally for different

reasons: scalability issue, communication constraint, but also privacy of data and protection

about cyber attacks. Distributed estimation and identification algorithms have to be designed

and implemented, as this kind of methodologies is currently unavailable in the literature of

state estimation in power distribution networks.

Ancillary services

Quality of service in power distribution networks can be considered among the most critical

issues that have to be kept in mind in the management of these systems. Different aspect

concur to the concept of quality of service in power distribution networks:
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• minimization of power distribution losses

• voltage support and regulation

• harmonic suppression and phase balancing

• reliability and robustness to faults

• frequency stability and continuity of the service (blackout avoidance).

All these issues traditionally affected power distribution networks, and network operators

have always been requested to provide extremely high reliability (compared, for example, to

data networks), as they can be considered without doubts critical infrastructures. Distributed

micro-generation, unreliability of renewable power supplies, and increased usage of the

infrastructures, are worsening this scenario.

At the same time, the increased number of electronic interfaces, sensors, and processing

units that are being deployed in the grid, offers a challenging opportunity to deal with these

aspects. Indeed, these devices, if properly commanded and coordinated, can provide some

on the ancillary services that are needed to guarantee a desired quality of the distribution.

Because they are dispersed into the distribution network, they are much more effective

in providing these services, compared to the traditional scenario in which the distribution

network is largely unmonitored and is actuated almost only at its point of connection to the

transmission grid.

In the microgrid scenario, this opportunity is even more intriguing, as there are specific

operational and economical interests in relaying the burden of these ancillary services to

microgrids:

• loads can benefit from a remarkably greater quality of the service if the devices

connected to the same microgrid are properly commanded;

• microgrids’ users could decide about the quality of the local energy distribution,

tailoring it around their needs;

• the microgrid can be managed so that it appears as a very “well-behaved” aggregate

user for the rest of the grid, satisfying given specifications, and it can therefore ask for

more favorable contracts with the transmission network operator;

• the next generation energy market is likely to include economical compensation for

those agents that participate to the provision of ancillary services (see Rodrigues Gomes

and Saraiva 2008; Rabiee, Shayanfar, and Amjady 2009).
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In the following, the problem of optimal reactive power compensation (one of the most

important ancillary services) is described in detail.

Both residential and industrial users belonging to the microgrid may require a sinusoidal

current which is not in phase with voltage. A convenient description for that consists in saying

that they demand reactive power together with active power, associated with out-of-phase

and in-phase components of the current, respectively.

Reactive power is not a “real” physical power, meaning that to produce it there is no

energy conversion involved nor fuel costs. Like active power flows, reactive power flows

contribute to power losses on the transmission and distribution lines, cause voltage drop, and

may lead to grid instability (see Kundur 1994; Dobson, Glavitsch, Liu, Tamura, and Vu 1992).

It is therefore preferable to minimize reactive power flows by producing reactive power as

close as possible to the users that need it.

The number of compensators in a microgrid can be very large, as the electronic interface

of any distributed generator (wind turbines, combined heat and power generators, micro

hydroelectric, solar panels) can also produce reactive power at no additional cost. They

have however a limit in the maximum amount of reactive power that every compensator

can produce, which depends on the thermal limits of the interface (its rated power) and on

the amount of active power that the micro-generator is producing at a given time (a larger

amount of active power supplied by the micro-generator implies a lower limit of reactive

power that can be injected into the network). These compensators are generally unaware

of the topology of the whole distribution network, can sense the grid only in their closest

neighborhoods, and may be subject to unannounced appearance and disappearance.

For these reasons, the problem of reactive power compensation in a smart microgrid, is

quite different and new compared to the classical problems of optimal reactive power flow

(OPRF) as depicted for example in Mamandur and Chenoweth (1981), and it requires the

methodologies and tools of networked control systems.

Reactive power compensation in smart microgrids

Definition of reactive power

Let identify with a node i any device (inverter) connected to the power distribution network.

Let ui(t) be the voltage at its point of connection, and ii(t) the injected current. If the

network is operating in steady state, voltages and currents are sinusoidal signals at frequency

ω0/2π:

ui(t) = Ui sin(ω0 t + θu
i ), ii(t) = Ii sin(ω0 t + θ i

i ). (3.21)
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The active power P and reactive power Q injected (or delivered, if negative) at node i are

Pi = Ui Ii cosφ, Q i = Ui Ii sinφ,

where φ is the phase difference θu
i − θ

i
i .

These power terms can be defined also in the case in which signals are not sinusoidal

and in which they can be considered perturbed versions of periodic signals with period

T0 = 2π/ω0. Following Tenti and Mattavelli (2003), let us define the homo-integral of a

generic function x(t) as

x̂(t) =ω0
�

X (t)− X̄ (t)
�

where X (t) =
∫ t

0
x(τ)dτ and X̄ (t) = 1

T0

∫ t+T0

t
X (t)dt.

By introducing the scalar product (function of time)

〈x , y〉t =
1

T0

∫ t+T0

t

x(τ)y(τ)dτ (3.22)

active and reactive powers can be defined in this more general framework as the instanta-

neous quantities

pi(t) = 〈ui , ii〉t , qi(t) = 〈ûi , ii〉t .

If ui(t) and ii(t) are sinusoidal signals as in (3.21), then pi(t) = Pi and qi(t) =Q i .

In the following, the phasorial notation will be adopted: the two signals ui(t) and ii(t)

are then identified by the complex numbers

ui = Uie
jθu

i , ii = Iie
jθ i

i ,

while active and reactive power can be expressed as

pi = Re(ui i
†
i ), qi = Im(ui i

†
i ),

where † means complex conjugation. Let pi + jqi be defined as the complex power injected at

the node i.

The optimal reactive power flow problem in a microgrid

Consider a portion of the power distribution network that is managed as a microgrid. Let

its devices be described by N nodes, and let the electrical connections in the microgrid be

described by a tree T connecting them. Each node corresponds therefore to an agent injecting
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a quantity pi of active power and a quantity qi of reactive power into the network. N of them

(the compensators, whose indices belong to C) can be commanded to inject a given amount

of reactive power, while they inject a fixed amount of active power (the amount generated

by the corresponding micro-generator). The other nodes (users, whose indices belong to U)

inject (or are supplied with, if negative) a fixed and unknown amount of both active and

reactive power. Let V = C ∪U be the set of all the nodes of T, and E be the set of edges,

describing the electrical lines that connect these agents. Edges are oriented outbound from

the tree root and indexed as the child node they point tool (see Figure 3.17). Let ζi be the

current flowing on edge i, and let define by

hi + j fi = uiζ
†
i

the (complex) power flowing on the same edge (which, for quasi-periodic signal, would have

been expressed as 〈ui(t),ζi(t)〉t + j〈ûi(t),ζi(t)〉t).

One possible approach to the problem of distributed reactive power compensation in a

smart microgrid has been proposed in Tedeschi, Tenti, and Mattavelli (2008), and is sketched

in Figure 3.18.

It consists of a centralized controller that measures the reactive power flow at the input

port of the microgrid, i.e. where the microgrid connects with the main grid. According to

this measurement, the controller produces a reference for the amount of reactive power that

has to be produced inside the microgrid. This reference has to be split by a power sharing

unit (PSU) among compensators, in a way that minimizes reactive power flows inside the

microgrid.

Power distribution losses are a quadratic function of the currents flowing on the lines:

L =
∑

e∈E
Re(Ze)|ζe|2 =

∑

e∈E
Re(Ze)

g2
e + f 2

e

|ut(e)|2
,
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where Ze is the impedance of the edge e (which goes linearly with the length of the line).

To construct an optimization problem corresponding to the task of power losses mini-

mization, L must be expressed as a function of the decision variables qi , i ∈ C. To do so, the

following assumption is needed.

Assumption 3.3.1. The complex power losses L′ =
�

us(e)− ut(e)

�

ζ†
e on any edge e ∈ E, are

much smaller than the delivered complex power he + j fe.

Assumption 3.3.1 can be translated into two conditions. First,

�

�

�

�

us(e)− ut(e)

�

ζ†
e

�

�

�= |Ze||ζe|2 =
|Ze||he + j fe|2

|ut(e)|2
� |he + j fe|

implies
|Ze||he + j fe|
|ut(e)|2

� 1. (3.23)

Second,
�

�us(e)− ut(e)

�

�= |Zeζe|=

�

�

�

�

�

Ze

�

he + j fe

ut(e)

�†
�

�

�

�

�

�
�

�ut(e)

�

� , (3.24)

that is, the voltage difference among nodes are small compared to the nominal voltage

U0 ∈ R.

Power losses can then be rewritten by substituting |ue| with U0, obtaining:

L ≈
∑

e∈E

Re(Ze)

U2
0

�

h2
e + f 2

e

�

.
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Figure 3.19: The subset Fi , defined as the set of nodes containing the root for which the edge i is the
only bridge.

Moreover, if Assumption 3.3.1 holds, then flow conservation law holds separately for

active and reactive power. Indeed, Kirchoff current law guarantees that

ii + ζi =
∑

e | s(e)=i

ζe

for all i ∈ V. This implies

pi + jqi + hi + j fi =
∑

e | s(e)=i

us(e)ζ
†
e ≈

∑

e | s(e)=i

ut(e)ζ
†
e =

∑

e | s(e)=i

he + j fe.

Any reactive power flow fi can then be expressed as the sum of the reactive power

injected into the network by a subset Fi of the agents, as illustrated in Figure 3.19:

fi = fi(q) =
∑

j∈Fi

q j , for i = 2, . . . , N , (3.25)

while active power flows gi depend only on the injected active power terms pi (in a completely

similar way). Moreover
∑

i∈V
qi = 0. (3.26)

Let q be the vector of all the amounts of reactive power injected by the compensators,

and q′ those injected by the users that cannot be commanded. Then (3.25) can be expressed

via two matrices K ∈ {0, 1}N−1×N and K ′ ∈ {0, 1}N−1×N−N such that

f = Kq+ K ′q′, (3.27)

where f ∈ RN−1 is the vector of all the flows fi .

The optimization problem of having minimal power losses faced by the PSU corresponds
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therefore to the cost function

F( f2, . . . , fN ) =
N
∑

i=2

Re(Zi)

U2
0

f 2
i . (3.28)

subject to the constraints (3.27) and (3.26). By eliminating the first constraint, (3.28) can

be rewritten as the following optimization problem:

min
q

F(q) = qT M

2
q+mT q

subject to 1T q = c,
(3.29)

where

M = 2K T DK ,

mT = 2q′T K ′T DK ,

D = diag

�

Re(Z2)

U2
0

, . . . ,
Re(ZN )

U2
0

�

c =−1T q′.

(3.30)

The problem of minimizing reactive power flows inside a microgrid has therefore been

expressed as a single-commodity network flow problem, and then casted into the class of

quadratic, linearly constrained, optimization problems. Its analytic solution is:

q∗ =−M−1m+
1T M−1m+ c

1T M−11
M−11. (3.31)

As said before, the size of this problem (i.e. the number of compensators) can be very

large, as the electronic interface of any distributed generator can also produce reactive power

at no additional cost. Each of these units is capable of:

• sensing the electric network at its point of connection to the grid;

• performing some amount of computation and data processing;

• communicating with other agents, according to some communication graph GC =

(C,EC) that may or may not coincide with the electric network;

• actuating the system, by injecting a certain amount of reactive power.

The agents may have a partial knowledge of the problem parameters M and m (which

depend on the electrical network topology and on the reactive power demand), while no

agent knows them entirely.
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For these reasons, the implementation of (3.31) is impractical, and iterative distributed

algorithms should be considered. In the design of these algorithms coordination among

agents must necessarily be achieved, because of the coupling constraint and because the cost

function is not separable.

Gradient-driven algorithm are of particular interest because of their effectiveness and

robustness in solving this class of problems (see Section 2.3). They however require that

an estimate of the gradient is available to the agents. This is actually true for this specific

problem, as shown in the following.

Estimation of the gradient of the cost function

The gradient of F(q) can be expressed as

g(q) = Mq+m

= 2
�

K T DKq+ KDK ′q′
�

= 2K T D f (q),

where

K T D f (q) =













...
∑

e∈E−Pi

Re(Ze)
U2

0
fe

...













(3.32)

and Pi ⊆ E is the path from the root to node i. It is easy to see that the difference gi(q)−g j(q),

where gi(q) and g j(q) are the elements of g(q) corresponding to compensators i and j, can

be expressed as

gi(q)− g j(q) = 2
∑

e∈Pi j

δe(i, j)
Re(Ze)

U2
0

fe(q) (3.33)

where Pi j ⊆ E is the path from node i to node j, and δ`(i, j) ∈ {+1,−1} depends on whether

the edge i appears in forward or backward direction in the path from i to j (see Figure 3.20).

Therefore if agents are capable of estimating the flows of reactive power on the electrical

paths connecting them, they can compute the gradient of the cost function for the optimiza-

tion problem (3.29), and use it to drive properly designed iterative algorithms. The way in

which nodes compute this estimate is part of the wide research topic of state estimation in

power distribution networks, and strongly depends on the sensing capabilities that have been

implemented in the microgrid.

It is however worth reporting a simple example of how this can be done under specific

assumptions on the line impedances.
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Figure 3.20: Dependence of the gradient g on the flows in the tree; e.g. gi − g j equals to the flow on
the path from i to j. According to the given convention, flows have to be counted with negative sign

when going upwards in the tree, as shown.

Assume that the line inductance is small, compared to its resistance (which is true in

power distribution networks, where cables are employed instead of aerial lines). Let therefore

re = Re(Ze)≈ Ze.

Then the voltage drop on an edge e ∈ E satisfies

us(e)− ut(e) ≈
re

u†
t(e)

�

he + j fe
�† . (3.34)

Suppose that pair of adjacent nodes can measure the angle between their voltages

∆θu
e = θ

u
s(e)− θ

u
t(e) ≈ ∠

�

us(e)

ut(e)

�

,

where the approximation follows from the fact that, by Assumption 3.3.1, |us(e)| ≈ |ut(e)|.

By plugging in (3.34), one gets

∠
�

us(e)

ut(e)

�

= ∠







ut(e)−
re

u†
t(e)
(he − j fe)

ut(e)






= ∠

�

1−
re

|ut(e)|2
(he − j fe)

�

.

Then, by using (3.23),

∠
�

us(e)

ut(e)

�

≈ Im

�

1−
re

|ut(e)|2
(he − j fe)

�

=
re

|ut(e)|2
fe. (3.35)

By approximating |ut(e)| with its nominal value U0, one then obtains

∆θu
e ≈

re

U2
0

fe. (3.36)
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Therefore, by (3.33) and (3.36), the difference gi − g j can be approximated as

gi − g j ≈ 2(θu
i − θ

u
j )

and therefore

g(q) = 2θu− ξ1

where θu is the vector of all voltage angles (with respect to an arbitrary time reference) and

ξ is an unknown scalar. It will be clear later that this uncertainty in the gradient estimate is

not harmful, as the term ξ1 is orthogonal to the constraint 1T q = c.

A quasi-Newton method for optimal reactive power compensation

One possible way to tackle this optimization problem has been proposed in Bolognani and

Zampieri (2010) and consists in specializing some quite classical tools in convex optimization,

quasi-Newton methods, to the case of a linearly constrained problem. The tool of average

consensus is then exploited to apply these methods to a large scale complex system.

A general formulation for a gradient-driven optimization algorithm is the following:

q+ = q−Γg(q)

Γ+ = Φ(q,Γ, g(q)).
(3.37)

where Γ is an N × N gain matrix2.

In the specific problem (3.29), if feasibility of the decision variable is required at any

iteration, the gain matrix Γ must satisfy

1TΓu= 0 for all u ∈ RN .

The next lemma show what it the best choice for Γ, if the Hessian M is fully known.

Lemma 3.3.2 (Constrained Newton algorithm). Let q be a feasible point for the optimization

problem (3.29). Assume

Γ = M−1−
M−111T M−1

1T M−11
. (3.38)

Then q+ defined by (3.37) is the solution of the constrained optimization problem (1-step

convergence).

2In this and in the following sections, the shorter notation q+ = q(tk+1) and q = q(tk) (and similarly for other
quantities) is introduced, when this does not lead to confusion.
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Proof. To prove that q+ is the solution of the constrained optimization problem, it has to be

shown that

• q+ is feasible

• the gradient g(q+) is orthogonal to the constraint.

The first claim is true for any Γ in the form H − H11T H
1T H1

, for any H, as

1T q+ = 1T q− 1T H g(q) +
1T H1

1T H1
1T H g(q) = c.

Moreover

g(q+) = m+Mq+

= m+Mq−M M−1 g(q) +
M M−11

1T M−11
1T M−1 g(q)

= 1
1T M−1 g(q)

1T M−11
∈ Im(1),

and therefore the second condition is also satisfied.

If an approximation H of the inverse of the Hessian M is available, it can be plugged into

(3.38), obtaining the approximate Newton update step

q+ = q−
�

H −
H11T H

1T H1

�

g(q) = q−H g(q) +
1T H g(q)

1T H1
H1. (3.39)

In the update step (3.39) two parts can be recognized:

∆q = q+− q =∆qdesc+∆qproj

where

• ∆qdesc =−H g(q) is a descent step toward the optimum of the unconstrained quadratic

problem

• ∆qproj =
1T H g(q)

1T H1
H1 projects q − H g(q) on the constraint (as proof of Lemma 3.3.2

shows, feasibility of q+ is guaranteed regardless of the choice of H).

According to the available level of knowledge of the system, different approximations of

the inverse of M can be used, resulting in different algorithms.

On one hand, Lemma 3.3.2 showed that if M−1 is completely known, it can be exploited

to obtain the fastest (one-step) convergence. However, this choice requires that node i knows
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the whole i-th row of M−1. This may not be possible in large-scale systems, and jeopardizes

the possibility of node insertion and removal.

On the other hand, when minimal knowledge is available, a diagonal H = αI can be

used, obtaining the specialization of steepest descent method to the linearly constrained case.

Unfortunately, the steepest descent method may require a large number of iterations to

converge, depending on the condition number of the Hessian M (Boyd and Vandenberghe,

2008). This results to be a major problem in this specific application, where estimating the

gradient g(q) for a given q consists in driving the systems into the state q and measuring its

steady state response (therefore introducing an implicit trade-off between accuracy and time

delay in the measurement).

Quasi-Newton methods (see for example Dennis and Schnabel 1983 and Nocedal and

Wright 2006) have instead the useful feature of building an estimate of the inverse of the

Hessian from the previous steps of the algorithm. In the framework of complex systems,

these methods deserve special attention, as they require minimal knowledge of the problem,

they can deal with time-varying structures via their adaptive behavior, and they exhibit faster

convergence compared to steepest descent methods.

Consider the following specialization of Broyden’s algorithm (belonging to the class of

quasi-Newton methods) for the constrained optimization problem (3.29):

q+ = q− Gd

G+ = G+

�

∆q− G∆d
�

∆dT

∆dT∆d

(3.40)

where d = Ωg, Ω = I − 11T/N , is the projection of the gradient on the constraint, and

∆d = d+− d, ∆q = q+− q.

Suppose that G is initialized as αI , for some α > 0, and that it is not updated if ‖∆d‖ = 0

(it will be clear in the proof of Theorem 3.3.6 that if ‖∆d‖ = 0, then the algorithm has

converged.)

It is easy to see that (3.40) is a special case of (3.37), in which Γ = GΩ and in which the

rank-1 update for G satisfies the secant condition G+∆d =∆q.

The following lemmas will be helpful in proving the global convergence of this algorithm3.

Lemma 3.3.3. For any G(tk) returned by the algorithm (3.40), and for all u ∈ RN ,

1T u= 0 ⇒ 1T G(tk)u= 0.

3For these lemmas and for Theorem 3.3.6 it is convenient to express time dependence explicitly.
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Proof. Consider the base case G(0) = αI . Then

1T G(0)u= α1T u= 0.

Suppose now that the condition is verified for G(tk), and consider G(tk+1). Using the fact

that ∆q(tk) = G(tk)d(tk), and the fact that 1T∆d(tk) = 0 and 1T d(tk) = 0, one gets

1T G(tk+1)u= 1T G(tk)u+
1T∆q(tk)∆d(tk)u
∆dT (tk)∆d(tk)

−
1T G(tk)∆d(tk)∆dT (tk)u

∆dT (tk)∆d(tk)
= 0.

Therefore by induction the thesis is verified.

Lemma 3.3.3 guarantees that 1T∆q = 0, or in other words it guarantees that the update

step for q always returns a feasible point for the constrained optimization problem, if q(0) is

feasible.

Lemma 3.3.4. The estimate G(tk+1) has full rank as long as G(0) is full rank and d(t j) 6= 0

for 0≤ t j ≤ tk.

Proof. By Sherman-Morrison formula, G(tk+1) has full rank whenever G(tk) is full rank and

∆dT (tk)G(tk)
−1∆q(tk) 6= 0.

But

∆dT (tk)G(tk)
−1∆q(tk) =−∆dT (tk)d(tk) = dT (tk)G(tk)Md(tk)

which is zero if and only if d(tk) = 0. Therefore by induction G(tk+1) has full rank.

Lemma 3.3.5 (Lemma 2.1 in Gay 1979). Consider the k-th iteration of algorithm (3.40). If

d(tk) and ∆d(tk−1) are linearly independent,

then for 1≤ j ≤ b(k+ 1)/2c, the j+ 1 vectors

�

ΩMG(tk−2 j+1)
�i

d(tk−2 j+1), 0≤ i ≤ j,

are linearly independent.

Proof. The proof is given in Gay (1979).

Via these lemmas, the following result on the global, finite-time convergence of (3.40)

can be stated.
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Theorem 3.3.6. Consider the algorithm (3.40) initialized with G(0) = αI , α > 0, and any

feasible state q(0). The algorithm converges in at most 2N steps to the solution of (3.29).

Proof. By Lemma 3.3.5, there exists k with 1 ≤ k ≤ 2N such that d(tk) and ∆d(tk−1) are

linearly dependent. Trivially, if d(tk) = 0, this solves the optimization problem (3.29), as

the gradient is orthogonal to the constraint and Lemma 3.3.3 ensures that q(tk) is a feasible

point. If instead ∆d(tk−1) = 0, then from the definition of d it follows ΩM∆q(tk−1) = 0,

and therefore

Mq(tk) = Mq(tk−1) + β1 for some β ∈ R.

Being M invertible, this means that ∆q(tk−1) = βM−11. By left multiplying both terms by

1T and using Lemma 3.3.3, one gets

β1T M−11= 1T∆q(tk−1) = 0.

Therefore β = 0 and∆q(tk−1) = 0. By Lemma 3.3.4 and by (3.40), this implies that d(t j) = 0

for some j ≤ k− 1, and therefore the solution has been reached in at most k ≤ 2N steps.

As a last case, suppose that d(tk) and ∆d(tk−1) are both non zero, but they are linearly

dependent. Therefore there exists λ 6= 0 such that d(tk) = λ∆d(tk−1). From the algorithm

equations and from the secant condition, it results

∆d(tk−1) = ΩM∆q(tk−1) = ΩMH(tk)∆d(tk−1).

The same is then true for d(tk), yielding d(tk) = ΩMG(tk)d(tk). By rearranging the

algorithm equations it is easy to see that d(tk+1) = d(tk) +ΩM∆q(tk) and therefore

d(tk+1) = d(tk)−ΩMG(tk)d(tk) = 0.

Even in this case, d(tk+1) = 0 together with Lemma 3.3.3 guarantee that q(tk+1) is the

solution of (3.29).

The proposed algorithm (3.40) does not take into account any constraint in the communi-

cation among agents. Indeed, consider the following decomposition of the generic algorithm

(3.37), of which (3.40) is a specific case, into update laws for the generic agent i:

q+i = qi −ΓT
i g(q)

Γ+i = Φi(q,Γ, g(q)),
(3.41)

where ΓT
i is the i-th row of Γ. It is not possible, in general, to implement (3.41) in a

distributed manner, as both the update for qi and for the vector Γi require quantities that are
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not available at node i: q, g(q), and Γ.

It is therefore necessary to distribute the algorithm, i.e. to design an implementation of it

which is consistent with the given communication graph GC = (C,EC), which specifies from

which agents node can gather information for the algorithm execution.

In the special case in which at every iteration

Γi j 6= 0 ⇒ ( j, i) ∈ EC , (3.42)

then the update law for qi only requires information that can be gathered from the set of

neighbors N(i)C . The issue of distributing the algorithm among the agents reduces then to a

sparsity condition on Γ (and a similar condition can be stated for the update law for Γi).

However, note that the decision variables in the optimization problem in (3.29) are

coupled in two ways: by a possibly non diagonal Hessian M , and by the complicating

constraint in which all the variables appear. For this reason, it is convenient and effective

to introduce some shared piece of information among all agents: let x ∈ Rp be an auxiliary

fusion vector and suppose all the nodes agree on its value.

The local update laws (3.41) can then be replaced by

q+i = qi − γi(q j , g j(q), j ∈NC
i ;ηi , x)

η+i = φi(q j , g j(q), j ∈NC
i ;ηi , x).

(3.43)

where ηi is a local parameter vector. The fusion vector x is a function of all the data available

in the system:

x = f (q, g(q),ηi , i ∈ C).

Algorithm (3.43) is now consistent with the communication graph, because the update

laws for both qi and ηi are function of local data (qi , gi(q), ηi), of data that can be gathered

from neighbors j ∈NC
i , and of the fusion vector x .

Of course, the way in which x is computed and how agents agree on its value is a key

point in the design of the algorithm. For example a finer time scale might exist: the fusion

vector x can be obtained as the result of another distributed algorithm, which exploits the

same communication graph. This faster algorithm is initialized locally on the basis of the

data stored in the nodes and on the basis of measured steady state of the underlying system.

As it runs at a much faster pace, by the end of the period of time T it is able to implement

the function f of the data and to guarantee that all nodes agree on a common x .

Among the main algorithms that can be exploited to obtain the fusion vector x , the tool

of average consensus (as described in Section 2.2) results to be quite useful when dealing

with optimization problems with linear equality constraints. Consider indeed the expression
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(3.39) for the update step in an approximate Newton method:

q+ = q−H g(q) +
1T H g(q)

1T H1
H1.

Let x = 1T H g(q)
1T H1

be the scalar quantity on which all nodes have to agree. It can be obtained

via average consensus, once the communication graph GC is strongly connected. Indeed, if

every node is capable of initializing a vector

z(i)(0) =
h

Hi g(q) Hi1
iT

, (3.44)

where Hi is the i-th row of H, then by running an average consensus algorithm they eventually

agree on

z̄ =
h

1
N

1T H g(q) 1
N

1T H1
iT

from which every node can obtain x .

Therefore if the estimate H of M−1 satisfies the sparsity constraint

Hi j 6= 0 ⇒ (i, j) ∈ EC ,

then the computation of the update step will require only communication between neighbors

in GC .

This approach can be applied to the Broyden quasi-Newton method (3.40).

Define g(i) the part of the gradient corresponding to the set of the neighbors NC
i =

{ j1, . . . jni
} of i:

g(i) ∈ Rni , g(i)
`
= g j` for `= 1, . . . , ni . (3.45)

Following the sparse secant method proposed in (Dennis and Schnabel, 1983, Theorem

11.2.1) and including a projection step as proposed in (3.39), consider the algorithm:

q+ = q−H g(q) +
1T H g(q)

1T H1
H1

H+ = H +PEC

�

D+
�

∆q−H∆g(q)
�

∆gT (q)
�

(3.46)

where PEC
is the projection operator on the sparsity constrain induced by EC :

�

PEC
(A)
�

i j
=







Ai j , if (i, j) ∈ EC

0, if (i, j) /∈ EC ,
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and where D+ is the diagonal matrix defined as

�

D+
�

ii
=







1/g(i)
T
(q(tk))g(i)(q(tk)) if g(i)(q(tk)) 6= 0

0, if g(i)(q(tk)) = 0.

It is easy to see that (3.46) corresponds to (3.40) when the graph is complete, with the

only difference that in the complete-graph case, thanks to Lemma 3.3.3, the projection on

the constrain is performed on the measured gradient and not on the descent step.

Algorithm (3.46) can be distributed among the agents obtaining the following updates

for qi and Hi ∈ Rni .

q+i = qi −HT
i g(i)(q) + xHT

i 1ni

H+i = Hi +
�

∆qi −HT
i ∆g(i)(q)

� ∆g(i)(q)

∆g(i)T (q)∆g(i)(q)

where 1ni
∈ Rni is the vector of all ones, and x = z̄1/z̄2, where z̄1,2 are the elements of the

2-dimensional vector resulting from the average consensus algorithm initialized as

z(i)(0) =
h

HT
i g(i)(q) HT

i 1ni

iT
.

Both the measure of the voltages v for the estimation of g(q), and the initialization of z, take

place as soon as the steady state response of the underlying system is available. Note that

the update laws for qi ’s and Hi ’s are consistent with the communication graph, and memory

requirements for every node scale with the number of neighbors. The effectiveness of the

quasi-Newton algorithm subject to sparsity constraints (including convergence properties)

depends of course on the structure of the inverse of the Hessian, and therefore on the

particular optimization problem that the algorithm has to solve. Simulations show that the

problem of optimal reactive power compensation is a notable example in this sense.

Simulations

Consider a testbed of 33 nodes, 10 of which are compensators. Reactive power demands

have been chosen according to a unitary variance normal distribution with negative mean

−σ (standard deviation). The initial injected reactive power of the compensators have been

normally distributed too. The electrical connection tree has height 6, and every node that is

not a leaf has an average of 2.4 children.

Assume that communications take place through the electrical lines, and that nodes that
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Figure 3.21: Comparison of different methods: Newton (solid), quasi-Newton with complete com-
munication graph (dashed), quasi-Newton subject to the non-complete communication graph GC

(dash-dotted), fixed step steepest descent (dotted).

are connected by a path of length not greater than 4 are able to communicate. This is the

simplest model for Power Line Communication, a promising communication solution for

smart grids. The induced communication graph results to be connected, but not complete.

In Figure 3.21 the behavior of the different proposed algorithms has been plotted. For

the sake of fairness in the comparison, the step length for the fixed-step-length, steepest

descent algorithm, has been optimized for fastest convergence, and the same initial condition

has been set for quasi-Newton methods. Note however that this optimal choice for the step

length requires some global knowledge of the problem: if this knowledge is not available

or if it is approximate, more conservative choices would be preferred (corresponding to a

smaller step length) and therefore the advantage of quasi-Newton methods would be even

larger.

In the top left quadrant of Figure 3.22, the inverse of the Hessian has been plotted. One

can see how the sparsity constraint induced by the communication graph GC (and plotted

in the lower right quadrant) is meaningful in describing the largest elements (in absolute

value) of the inverse of Hessian. The other two quadrant of Figure 3.22 show the estimates

of the Hessian returned by the quasi-Newton methods when the algorithm has converged.
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Figure 3.22: Estimates of the inverse of the Hessian returned by the proposed algorithms, together
with the sparsity constraint induced by the communication graph.

A gossip-like algorithm for optimal reactive power compensation

Another way to tackle the optimal reactive power flow problem has been proposed in

Bolognani and Zampieri (2011), inspired somehow by the randomized gossip algorithms

widely applied in the consensus problems.

Let the set of compensators C = {1, . . . , N} be divided into ` possibly overlapping subsets

C1, . . . ,C`, with
⋃`

i=1 Ci = C. This family of subsets can be interpreted as a hyper-graph

defined over the node set C.

Nodes belonging to the same set are able to communicate each other (they form a clique

in the communication graph GC), and they are therefore capable of coordinating and sharing

measurements and local knowledge of the problem parameters M and m. Assume that, by

using this information, nodes belonging to the same set are capable of driving their state

in a new feasible state that minimizes F(q) as defined in (3.29), solving the optimization

subproblem in which all nodes that are not in Ci keep their state constant:

arg min
∆q

F(q+∆q)

subject to ∆q ∈ Si ,
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where

Si :=







q ∈ RN :
∑

j∈Ci

q j = 0 , q j = 0 ∀ j 6∈ Ci







.

One possible way in which nodes in Ci can solve this optimization subproblem is the

following.

Let A,B ⊆ {1, . . . , N} be two nonempty set of indices. Define MAB as the submatrix of

M obtained by selecting the rows indexed by A and the columns indexed by B. Let the same

definition hold for a vector, i.e. vA is the subvector of v obtained by selecting the elements

indexed by A. Let moreover C̄i be the set complement C\Ci .

The optimization problem faced by the nodes in Ci can then be rewritten as

min
qCi

qT
Ci

MCiCi

2
qCi
+
�

qC̄i
MC̄iCi

+mT
Ci

�

qCi

subject to 1T qCi
= c− 1T qC̄i

.

(3.47)

It is easy to see that agents in Ci can reach the optimal solution by adding to qCi
the increment

∆qCi
which is equal to

∆qCi
=−M−1

CiCi
∇FCi

+
1T M−1

CiCi
∇FCi

1T M−1
CiCi

1
M−1

CiCi
1,

where M−1
CiCi

is the inverse of submatrix MCiCi
and

∇FCi
= MCiCi

qCi
+MCi C̄i

qC̄i
+mCi

is the subvector of the gradient of F(q) corresponding to the agents belonging to Ci .

It has been shown earlier in this section that an estimate of the gradient ∇F(q) = Mq+m

can be obtained by sensing the network when in the state q. More precisely, it has been

shown that, under a certain assumption on the impedance of the lines, the steady state

voltage angle measurement θu ∈ RN approximates ∇F(q) up to a scaling and a common

additive term, namely

θu ≈
1

2U2
0

∇F(q) +α1,

with α unknown.

Nodes in Ci can therefore solve their corresponding optimization subproblem by perform-
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ing the update

∆qCi
=−M−1

CiCi
2θu

Ci
+

1T M−1
CiCi

2θu
Ci

1T M−1
CiCi

1
M−1

CiCi
1,

as the uncertain term α1 get canceled in the expression.

The data that any node k in Ci has to know are then its corresponding row in M−1
CiCi

, the

angles θu
Ci

from the other nodes in Ci , and its own state qk.

Notice that the update law requires only local information or information that can be

gathered inside the subset Ci (which is a clique in the communication graph). This is

possible because the gradient, that otherwise would depend on the whole system state, can

be estimated from some local measurements. Moreover, the elements of MCiCi
depends only

on the length of the electric paths that connect nodes in Ci , and therefore it can be assumed

that that this information is available and shared among the nodes of the same cluster.

The proposed optimization algorithm will therefore consists of the following, repeated

steps:

i) a set Ci is chosen according to a sequence of symbols σ(t) ∈ {1, . . . ,`};

ii) agents in Ci sense the network and obtain, directly or via some filtering, an estimate of

the gradient;

iii) they determine a feasible update step that minimizes the given cost function, possibly by

coordinating their actions and communicating;

iv) they actuate the system by updating their state (the injected reactive power).

The iterated algorithm will then results in the following discrete time system for q

q(t + 1) = Tσ(t)[q(t)] := arg min
q

F(q)

subject to q− q(t) ∈ Sσ(t),
(3.48)

with initial conditions q(0) such that 1T q(0) = c.

Observe that Si = ImΩi , Ωi ∈ RN×N being defined as

Ωi = ICi
−

1

|Ci|
1Ci

1T
Ci

,

where |Ci| is the cardinality of the set Ci , ICi
is the diagonal matrix having diagonal entries 1

in positions belonging to Ci and zero elsewhere and 1Ci
is the column vector having entries 1
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in positions belonging to Ci and zero elsewhere. Notice that

Ωi =
1

2|Ci|

∑

h,k∈Ci

(eh− ek)(eh− ek)
T ,

where ei is the column vector having entry 1 in position i and zero elsewhere.

Convergence results

By introducing the auxiliary variable x = q− q∗, where q∗ is given in (3.31), it can be shown

that the optimization problem (3.29) is equivalent to

min
x

V (x) = x T M

2
x

subject to 1T x = 0,
(3.49)

and that the subproblems described in the previous section are equivalent to the subproblems

min
∆x

V (x +∆x)

subject to 1T∆x = 0,

∆x ∈ ImΩi .

(3.50)

In this notation, it is possible to explicitly express the solution of the individual subprob-

lems as a linear function of the starting point x(t):

x(t + 1) = Fi x(t), Fi = I − (Ωi MΩi)
]M , (3.51)

where ] means pseudoinverse.

The discrete time system (3.48) in the x coordinates results then to be a linear time

varying system of the form

x(t + 1) = Fσ(t)x(t). (3.52)

It is easy to verify from the properties of the pseudoinverse that ker(Ωi MΩi)] = kerΩi

and Im(Ωi MΩi)] = ImΩi . The matrices Fi are projection operators, i.e. F2
i = Fi , and they are

orthogonal projections with respect to the inner product 〈·, ·〉M , defined as 〈x , y〉M := x T M y .

In other words, 〈Fi x , Fi x−x〉M = x T M(Fi x−x) = 0. Moreover, they are self-adjoint matrices

with respect to the inner product 〈·, ·〉M , i.e. F T
i M = M Fi .

The following results characterize the uniqueness of the equilibrium for all maps Ti[x] =

Fi x .
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Lemma 3.3.7. Consider the family of linear transformations {Fi} as described in (3.51). x̄ = 0

is the only point in ker1T that is invariant for all Fi ’s if and only if

Im[Ω1 . . .Ω`] = ker1T .

Proof. Let us prove the reverse implication first. If Im[Ω1 . . .Ω`] = ker1T , then x̄ can be

expressed as

x̄ =
∑

i

Ωi yi .

Moreover, as Fi x̄ = x̄ for all i, then M x̄ ∈ kerΩi . Therefore

x̄ T M x̄ =
∑

i

y T
i Ωi M x̄ = 0,

and so, since M is positive definite, x̄ = 0.

Suppose conversely that

ker















1T

I − F T
1

...

I − F T
`















= 0

and take any x̄ ∈ ker1T . Then there exist a scalar α and vectors yi such that

M x̄ = α1+
∑

i

(I − Fi)
T yi

= α1+
T
∑

i

M(Ωi MΩi)
] yi

Then

x̄ = M−1α1+
T
∑

i

(Ωi MΩi)
] yi

Now observe that 1T x̄ = α1T M−11, which, since M−1 is positive definite, implies that α = 0

and so x̄ ∈ Im[Ω1 . . .Ω`]. The converse inclusion is trivial.

The condition Im[Ω1 . . .Ω`] = ker1T is then a necessary condition for the convergence

of the algorithm. Notice that this condition is equivalent to the fact that L+ 11T is positive
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definite, where

L :=[Ω1 . . .Ω`]diag{2|C1|I , . . . , 2|C`|I}[Ω1 . . .Ω`]
T

=
∑

i

2|Ci|Ωi =
∑̀

i=1

∑

h,k∈Ci

(eh− ek)(eh− ek)
T

=
N
∑

h,k=1

(eh− ek)(eh− ek)
T
∑̀

i=1

δCi
(h)δCi

(k),

and where the symbol δCi
(·)means the characteristic function of the set Ci , namely a function

of the nodes that is 1 when the node belongs to Ci and is zero otherwise. The matrix L can

be interpreted an the Laplacian matrix of a weighted graph G having nodes {1, . . . , N} and

weights on the edge h, k equal to the number of the sets Ci which contains both h and k. As

before, the family of sets {C1, . . . ,C`} can be interpreted as an hyper-graph H. It is quite

easy to see that the hyper-graph H with edges Ci is connected if and only if G is a connected

graph. From these arguments, the next result follows.

Proposition 3.3.8. The condition Im[Ω1 . . .Ω`] = ker1T holds if and only if H is a connected

hyper-graph.

To characterize now the convergence of the algorithm, the following assumption on the

sequence σ(t) is needed.

Assumption 3.3.9. The sequence σ(t) is a sequence of independently, uniformly distributed

symbols in {1, . . . ,`}.

The main tools that are needed for the convergence analysis are the formalism of set-

valued maps and the Invariance Principle for these maps.

A set-valued map T : X ⇒ X associates to an element of X a subset of X . T is non-empty

if T (x) 6= ; for all x ∈ X . An evolution of the dynamical system determined by a non-empty

set-valued map T is a sequence {x t}t∈Z≥0
with the property that x t+1 ∈ T (x t) for all t ∈ Z≥0.

A set W is strongly positively invariant for T if T(w) ⊂ W for all w ∈ W . The following

theorem holds.

Theorem 3.3.10 (Th. 4.5 in Bullo, Carli, and Frasca Submitted). Let (X , d) be a metric

space. Given a collection of maps T1, . . . , T`, define the set-valued map T : X ⇒ X by T(x) =

{T1(x), . . . , T`(x)}. Given a stochastic process σ : Z≥0 → {1, . . . ,`}, consider an evolution

{xn}n∈Z≥0
of T satisfying

xn+1 = Tσ(n)(xn).

Assume that
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i) there exists a compact set W ⊆ X that is strongly positively invariant for T;

ii) there exists a function U : W → R such that U(w′) < U(w), for all w ∈ W and w′ ∈
T (w)\{w};

iii) the maps Ti , for i ∈ {1, . . . ,`}, and U are continuous on W; and

iv) there exists p ∈]0,1[ and h ∈ N such that, for all i ∈ {1, . . . ,`} and n ∈ Z≥0

P[σ(n+ h) = i|σ(n), . . . ,σ(1)]≥ p.

If x0 ∈W, then there exists c ∈ R such that almost surely the evolution {xn}n∈Z≥0
approaches

the set

(J1 ∩ · · · ∩ J`)∩ U−1(c),

where Ji = {w ∈W |Ti(w) = w} is the set of fixed points of Ti in W, i ∈ {1, . . . ,`}.

This yields the following result.

Theorem 3.3.11. Consider the discrete time system (3.52), and let Assumption 3.3.9 hold. If

Im[Ω1 . . .Ω`] = ker1T , then

x(t)→ 0 as t →∞ almost surely

for all x(0) ∈ RN .

Proof. Consider the linear maps Fi(x) = Fi x and the corresponding set-valued map T (x) =

{F1(x), . . . , F`(x)}. Let W be the compact set V−1(x(0)). V is strongly positively invariant

for T as V (Fi x)≤ V (x) for all x , i (as Fi x solves the optimization subproblems initialized in

x). As Fi ’s are orthogonal projection matrices for the norm 〈·, ·〉M , V (Fi x) = V (x) implies

Fi x = x (as V (x) = ‖x‖2M/2), and then Fi x 6= x implies V (Fi x)< V (x). Moreover, because

of Assumption 3.3.9, for all n, i

P[σ(n+ 1) = i|σ(n), . . . ,σ(1)] = P[σ(n+ 1) = i] =
1

`
> 0.

Theorem 3.3.10 then applies. Because of Lemma 3.3.7, the intersection of the fixed points of

the maps Fi reduces to x = 0, and therefore x(t)→ 0 almost surely as t →∞.
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Rate of convergence

Consider the performance metric

R= sup
x(0)∈ker1T

limsup v(t)1/t

where v(t) = E [V (x(t))]. R describes the exponential rate of convergence to zero of v(t)

and so also the exponential rate of convergence of q(t) to the optimal solution q∗. Then, by

using (3.51),

v(t) =
1

2
E
�

x(t)T M x(t)
�

=
1

2
E
�

x(t)TΩMΩx(t)
�

=
1

2
E
h

x(t − 1)T F T
σ(t)ΩMΩFσ(t)x(t − 1)

i

=
1

2
x(0)TE

h

F T
σ(1) · · · F

T
σ(t)ΩMΩFσ(t) · · · Fσ(1)

i

x(0).

Let us then define

∆(t) = E
h

F T
σ(1) · · · F

T
σ(t)ΩMΩFσ(t) · · · Fσ(1)

i

.

Via Assumption 3.3.9, the following linear system can be derived

∆(t + 1) = E
�

F T∆F
�

= L(∆(t)), ∆(0) = ΩMΩ

Ξ(t) = Ω∆(t)Ω,
(3.53)

while the expected cost function can be expressed as

E [V (x(t))] = v(t) =
1

2
x(0)TΞ(t)x(0).

Let denote by F the N2× N2 matrix associated with the linear transformation L:

vec (∆(t + 1)) = Fvec (∆(t)) ,

where vec(·) is the operation of vectorization. Then

F= E
�

F T ⊗ F T
�

,

which is self-adjoint with respect to the inner product 〈·, ·〉M−1⊗M−1 . Therefore F has real
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eigenvalues. Consider the function

λL(i) : {1, . . . , N2} → R

that returns the i-th eigenvalue of F. Assume that the function is monotonically non increas-

ing, i.e. λL(i)≥ λL(i + 1) for all i. This map can be also represented as an N2-dimensional

ordered vector (in decreasing order, with possible repetitions) λL = [λL(1) · · ·λL(N2)]T . Let

moreover ∆L(i) be an eigenvector associated with the eigenvalue λL(i).

By decomposing ΩMΩ into
∑

i αi∆L(i), the convergence rate R can be rewritten as

R=max
�

|λL(i)| | αi 6= 0, Ω∆L(i)Ω 6= 0
	

. (3.54)

The following proposition relates the convergence result of Theorem 3.3.11 with the

approach of this section, showing how the same conditions for convergence also guarantee

asymptotic stability of the dynamics of (3.53).

Proposition 3.3.12. Let Im
h

Ω1 · · ·Ω`
i

= ker1T . Then R< 1.

Proof. Let us define Li as the linear transformation Li(∆) = F T
i ∆Fi. The N2 eigenvalues

of Li are λ(F T
i ⊗ F T

i ), and therefore belong to the set {0,1}. As F T
i ⊗ F T

i is self-adjoint, it

follows that ‖F T
i ⊗ F T

i ‖2 ≤ 1. By using the fact that L(∆) is a convex combination of the

elements of {Li(∆)}, it follows

max{|λL(i)|} ≤ ‖E
�

F T ⊗ F T
�

‖ ≤ 1.

Let us then consider λL(i) such that |λL(i)| = 1, and let x = vec(∆L(i)) be the corresponding

eigenvector of F. Then

‖x‖=







E
�

F T ⊗ F T
�

x







≤ E
�



F T ⊗ F T x






�

≤ ‖x‖,

and therefore




F T
i ⊗ F T

i x




= ‖x‖ ∀i.

F T
i ⊗ F T

i has only 0 and 1 eigenvalues, and eigenvectors v(i)h ⊗ v(i)k , where v(i)h,k are right

eigenvectors of Fi . Therefore it must be

(F T
i ⊗ F T

i )x = x ∀i

and then

x = vh⊗ vk, ΩT
i vh = Ω

T
i vk = 0 ∀i.
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As

Im
h

Ω1 · · ·Ω`
i

= ker1T ⇒
⋂

i

kerΩT
i = Im1,

it must be vh = vk = 1, and therefore the only eigenvector of L corresponding to an

eigenvalue of norm 1 is ∆L(1) = 11T . As it is not observable (Ω11TΩ = 0), then R< 1.

Computing R as defined in (3.54) is in general not simple. In the following, it is presented

an upper bound for R that can be computed from F̄ = E [F]. A few technical lemmas are

needed.

Lemma 3.3.13. Let P,Q ∈ RN×N and P ≥Q. Then Lk(P)≥ Lk(Q) for all k ∈ Z≥0.

Proof. From the definition of L, it results

x T [L(P)−L(Q)] x = x T
�

E
�

F T PF
�

−E
�

F TQF
��

x

= E
�

x T F T (P −Q)F x
�

≥ 0.

By iterating these steps k times, Lk(M)≥ Lk(N) follows.

Lemma 3.3.14. The following holds for all ∆:

ΩLt(Ω∆Ω)Ω = ΩLt(∆)Ω.

Proof. Proof is by induction. The statement is true for t = 0, as Ω2 = Ω. Suppose it is true up

to t. Then

ΩLt+1(∆)Ω = ΩL(Lt(∆))Ω

= ΩL(ΩLt(∆)Ω)Ω

= ΩL(ΩLt(Ω∆Ω)Ω)Ω

= ΩLt+1(Ω∆Ω)Ω.

Lemma 3.3.15. Let F̄ = E [F]. If Im
h

Ω1 · · ·Ω`
i

= ker1T , then all the eigenvalues of F̄ have

absolute value not larger than 1, and its only eigenvalue on the unitary circle is λ = 1, with

associated left eigenvector 1 and right eigenvector M−11.

Proof. The fact that all eigenvalues lie inside or on the unit circle follows from the fact that

F̄ is the convex combination of matrices Fi that satisfies ‖Fi‖M ≤ 1 for all i’s. Consider then
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an eigenvector x such that ‖x‖= ‖F̄ x‖. Then

‖F̄ x‖ ≤ E
�

‖Fi x‖
�

≤ ‖x‖,

and therefore ‖Fi x‖ = ‖x‖ for all i’s. As Fi are projection matrices, it means that Fi x = x and

then M x ∈ kerΩT
i ,∀i. Similarly to what has been done in the proof of Proposition 3.3.12,

using the fact that Im
h

Ω1 · · ·Ω`
i

= ker1T , it must be x = M−11. By inspection it can be

verified that the left eigenvector corresponding to the same eigenvalue is 1.

The following result can now be presented.

Theorem 3.3.16. Consider the linear system (3.53) and the rate of convergence R defined in

(3.54). Define

β =max{|λ| | λ ∈ λ(F̄),λ 6= 1}

where F̄ = E [F]. Then R≤ β .

Proof. Let us first prove that ΩL(ΩMΩ)Ω≤ βΩMΩ. Indeed, using the fact that ΩFΩ = FΩ

and that F T
i M Fi = M Fi ,

x TΩL(ΩMΩ)Ωx = E
�

x TΩF TΩMΩFΩx
�

= E
�

x TΩF T M FΩx
�

= x TΩM1/2E
�

M1/2F M−1/2
�

M1/2Ωx .

E
�

M1/2F M−1/2
�

= M1/2 F̄ M−1/2 is symmetric and, by Lemma 3.3.15, it has only one

eigenvalue on the unit circle (precisely in 1), with eigenvector M−1/21. As M1/2Ωx ⊥ M−1/21

for all x , it must be

x TΩL(ΩMΩ)Ωx ≤ βΩMΩ,

with β =max{|λ| | λ ∈ λ(F̄),λ 6= 1}.
From this result, using Lemmas 3.3.13 and 3.3.14, one can conclude

ΩLt(ΩMΩ)Ω = ΩLt−1 (L(ΩMΩ))Ω

= ΩLt−1 (ΩL(ΩMΩ)Ω)Ω

≤ ΩLt−1 �βΩMΩ
�

Ω

= βΩLt−1 (ΩMΩ)Ω

≤ · · · ≤ β tΩMΩ,

and therefore R≤ β .
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The following result allows to compute R when the spectra of L and F̄ are available

(analytically or numerically).

Let define O as the non observable space for the system (3.53):

O=
¦

∆ ∈ RN×N | Ω∆Ω = 0
©

,

and let RO be the rate

RO =max
�

|λL(i) |∆L(i) /∈ O
	

. (3.55)

The following proposition holds.

Proposition 3.3.17. Let R and RO be defined by (3.54) and (3.55) respectively. Then

R= RO.

Proof. For any eigenvector ∆L(i), there exists γ > 0 such that ∆L(i) ≤ γM . Therefore

ΩLt(∆L(i))Ω≤ γΩLt(M)Ω, and thus λL(i)tΩ∆L(i)Ω≤ γΩLt(M)Ω. If ∆L(i) /∈ O, it must

be λL(i)≤ R, therefore RO ≤ R. As of course RO ≥ R, one concludes that R= RO.

The following result, illustrated also in Figure 3.23, can now be stated (remembering that

λL ∈ RN2
and λF̄ ∈ RN are the ordered vector of possibly repeated eigenvalues of L and F̄).

Theorem 3.3.18. The elements of the vector

λ′F̄ = [λF̄ (2), . . . ,λF̄ (N)]

appear twice in the vector

λ′L = [λL(2), . . . ,λL(N
2)],

and so R is the largest element in absolute value of the remaining ones in λ′
L

.

Proof. Via Lemma 3.3.14 it is possible to show that O is an invariant set:

ΩL(∆)Ω = ΩL(Ω∆Ω)Ω = 0 ∀∆ ∈ O.

As the dimension of O is 2N − 1 (the dimension of the kernel of Ω⊗Ω), there must exist

2N − 1 eigenvectors of L in O. These eigenvectors can be constructed from the eigenvectors

of F̄ T . Indeed, consider N linearly independent vectors v1, . . . , vN such that F̄ T vi = µi vi with
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λF̄ 1 λ2 λ3 · · · λN

λL 1 λ2 λ2 λ3 λ3 R · · · · · · · · · · · ·

Figure 3.23: Representation of the eigenvalues of L and of F̄ , according to Theorem 3.3.18.

1= µ1 ≥ · · · ≥ µN . Then for all i

L(1vT
i ) = E

�

F T 1vT
i F
�

= 1vT
i E [F] = µi1vT

i

L(vi1
T ) = E

�

F T vi1
T F
�

= E [F] vi1
T = µi vi1

T .

For all these eigenvectors it holds Ωvi1
TΩ = Ω1vT

i Ω = 0. They are therefore a basis of

2N − 1 linearly independent eigenvectors of O. One of them, ∆L(1) = 11T , corresponds

to the eigenvalue λL(1) = 1. The remaining 2(N − 1) correspond to the eigenvalues

λF̄ (2), . . . ,λF̄ (N), taken twice. According to Proposition 3.3.17, R is then the largest among

the eigenvalues left when removing (twice) [λF̄ (2), . . . ,λF̄ (N)] from [λL(2), . . . ,λL(N2)].

Clustering choices and performances

The rate of convergence R and the bound β has been analyzed for different networks and

different decomposition choices. For some of them (namely for the 1-dimensional case) it

is possible to compute them analytically, gaining also some insight on how they scale with

the number of nodes. For a more general case, analytic results have been completed with

numerical estimates and compared with simulations. Moreover, a bound on the best β has

been found, showing how a specific clustering choice provides the best performance.

Consider the specific case of a 1-dimensional graph, i.e. an electrical network consisting

in one single line with compensators equally distributed at unitary distances along the

line4. Loads (passive agents) can be connected everywhere in this line, as their location and

their demands are uninfluential on the matrix M and on the speed of convergence of the

optimization algorithm.

Three different decompositions of the optimization problem have been considered, corre-

sponding to different clustering of the nodes into subsets. In all of them that compensators

have been allowed to update their state in pairs. This can be conveniently described by

4The hypothesis of equally spaced compensators on the line allows easier comparison between strategies and
simplifies the analytical results, but it not critical. Indeed, some of the rates and bounds are independent from
the distance between compensators. These cases will be pointed out later, when they appear in the text.
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1 2 3 N

1 2 3 N 1 2 3 N

Figure 3.24: Three possible clustering choices (1-step, circle, complete) illustrated via their corre-
sponding hyper-graphs H (in dashed line). Edges of H connect nodes that are allowed to update
their state together (each edge corresponds to a different subproblem). The graph in continuous line

describes the physical system.

an hyper-graph H (a graph in this case) where an edge connecting node i with node j

corresponds to the optimization subproblem in which only the states qi and q j are updated.

The three following graphs H have been considered in the analysis (see Figure 3.24),

corresponding to different clustering choices:

• edges of H connect compensators which are adjacent in the electric line (1-step);

• edges of H connect compensators which are adjacent in the electric line and moreover

the first agent is connected with the last agent (circle);

• edges of H connect any pair of compensators (complete).

The Hessian M for the 1-dimensional electric network takes the form

M = M0−



















0 1 2 · · · N−1

1 1 2 N−1

2 2 2 N−1
...

...

N−1 N−1 N−1 · · · N−1



















,

where M0 = m011T and therefore it can be safely ignored, as x T M0 x = 0 for all x ∈ ker1T .

For the 1-step case, the i-th element of {Fi}N−1
i=1 corresponds to the subproblem in which
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node i and node i+ 1 are allowed to update their state:

Fi =































1
...

1

−1 · · · −1 0

1 · · · · · · · · · 1
...

1































.

It is possible to analytically compute F̄ , which results to be a lower triangular matrix with

elements on the diagonal (and eigenvalues):

λF̄ =

�

1, 1−
1

N−1
, . . . , 1−

1

N−1
︸ ︷︷ ︸

N−1

�T

.

In this specific case it is also possible to compute the matrix F associated with the linear

transformation L, which results to be an upper triangular N2× N2 matrix whose elements

on the diagonal are

λL =

�

1,1−
1

N−1
, . . . , 1−

1

N−1
︸ ︷︷ ︸

3(N−1)

, 1−
2

N−1
, . . . , 1−

2

N−1
︸ ︷︷ ︸

(N−1)(N−2)

�T

.

Therefore, from the analysis of the previous section, it follows

β1step = R1step = 1−
1

N − 1
.

Interestingly, both β1step and R1step do not depend on the length of the electric paths between

adjacent compensators.

Consider now the case in which the graph H is a circle, i.e. every node can communicate

with its closest neighbors on the line and in addition an edge connects the first and the last

node.

In this case the set of matrices {Fi}Ni=1 includes the Fi ’s of the previous case (1-step),
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together with

FN =





















0 1
N−1
−1 2

N−1
−1 · · · 0

1
...

1

1 1− 1
N−1

· · · 1− N−2
N−1

1





















.

Also in this case, by exploiting the block-triangular structure of the resulting F̄ , it is

possible to list its eigenvalues:

λF̄ =

�

1,1−
1

N
, . . . , 1−

1

N
︸ ︷︷ ︸

N−2

, 1−
2

N

�T

,

and therefore obtain

βcircle = 1−
1

N
.

βcircle too does not depend on the length of the paths between compensators.

In this case, however, λL (and therefore R) cannot be easily expressed analytically as for

the 1step case. Rcircle has then be computed numerically, together with the both the bound

βcomplete and the exact rate Rcomplete for the third clustering choice, in which every couple of

nodes is allowed to communicate.

In Table 3.4 it is possible to compare the rate of convergence of these different clustering

(or decomposition) choices for different values of N , and to realize how the bound is tight.

The tightness of the bound justifies the choice of including in the table also the a larger

network (N = 500), for which the problem of computing the exact convergence rate R results

to be numerically intractable.

It is worth noticing that the well studied problem of randomized gossip algorithms for

average consensus can be casted into the framework of this paper by choosing M = I . These

results are therefore quite interesting in the fact that they contrast with the phenomena

generally observed in gossip consensus algorithms (e.g. Fagnani and Zampieri 2008), in

which long-distance communication, by decreasing the diameter of the graph, tends to be

extremely beneficial for the rate of convergence.

Similar result can be obtained for a more general tree T. Consider the matrix L ∈ RN×N−1,
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N = 10 N = 100 N = 500

1− β 1− R 1− β 1− R 1− β

1-step 0.11111 0.11111 0.010101 0.010101 20.040× 10−4

circle 0.10000 0.10572 0.010000 0.010051 20.000× 10−4

complete 0.03129 0.05196 0.000427 0.000560 0.204× 10−4

Table 3.4: Exact convergence rate R and bound β for different network lengths N and different
communication topologies.

whose elements are

Li, j =











−1 if i = j+ 1

1 if i = p( j+ 1)

0 otherwise

where p(k) is the parent of node k in the tree.

It can be shown that




K

1T





h

L e1

i

= I ,

where K has been defined in (3.27) and e1 is the vector of zeros everywhere but in position

1. The Hessian M of the optimization problem can be rewritten as

M =
h

K T 1
i





D 0

0 γ









K

1T





where γ > 0 and D has been defined in (3.30). Therefore the Hessian inverse can be rewritten

as

M−1 =
h

L e1

i





D−1 0

0 γ−1









LT

eT
1



 .

By Theorem 3.3.16 and by (3.51),

β = λ2(F̄) = 1−λN−1
�

Ē
�

,

where Ē = E
�

(Ωi MΩi)]M
�

. In the 1-step clustering strategy Ē =
∑N

i=2 pi vi(vT
i M vi)−1vT

i M ,

where pi is the probability of triggering the subset corresponding to the edge from p(i) to i,

and vi = ei − ep(i). The vector vi is the i − 1th column of L, and therefore, by introducing
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P = diag(p2, . . . , pN ),

Ē = LP(LT M L)−1 LT M

= LP

 

LT
h

K T 1
i





D 0

0 γ









K

1T



 L

!−1

LT
h

K T 1
i





D 0

0 γ









K

1T





= LPD−1DK

=
h

L e1

i





P 0

0 0









K

1T





= T−1





P 0

0 0



 T.

Therefore λN−1
�

Ē
�

= λN (P) and then

β ≥ 1−
1

N − 1
.

Moreover, as Tr(P) = 1 and pi > 0 for all i, the smallest β is obtained when all pi are the

same, i.e. the clusters are triggered with equal probability.

The following result gives also a bound on the smallest possible value for β that can be

achieved with different clustering choices. Interestingly, the 1-step strategy returns exactly

this bound, therefore proving to be the optimal clustering strategy for this problem (at least

according to the bound β , which has been proved to be very tight).

Theorem 3.3.19. Consider a tree T, with arbitrary electric lengths ri associated to its edges.

Consider the iterative algorithm (3.48), where the clusters Ci are the edges of an arbitrary

connected graph H on the set of compensators C, and they are triggered with arbitrary (non

zero) probabilities. Then the bound β on the convergence rate of the algorithm, as defined in

Theorem 3.3.16, satisfies

β ≥ 1−
1

N − 1
.
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Proof. The sum of the eigenvalues of Ē = E
�

(Ωi MΩi)]M
�

is

N
∑

i=1

λi(Ē) = Tr





N
∑

i=2

pi vi(v
T
i M vi)

−1vT
i M





=
N
∑

i=2

pi Tr
�

vi(v
T
i M vi)

−1vT
i M
�

=
N
∑

i=2

pi Tr
�

vT
i M vi(v

T
i M vi)

−1
�

=
N
∑

i=2

pi = 1.

As λN (Ē) = 0, then λN−1(Ē)≤ 1/(N − 1), and therefore β ≥ 1− 1
N−1

.

This result has been confirmed via numerical simulations on a test tree of height, with 33

nodes and an average of 2.4 children for every node that is not a leaf.

Two clustering choices have been implemented: in the first one, only nodes that are

neighbors on the tree can communicate (1-step); in the second one, every pair of node is

allowed to communicate (complete).

The following values for the convergence rates and the bound β have been numerically

computed:

β1step = 0.9688= 1−
1

32
, R1step = 0.9688,

βcomplete = 0.9967, Rcomplete = 0.9937.

In the upper part of Figure 3.25 the signal v̄(t), corresponding to the cost function

averaged over 100 realizations, has been plotted for the two strategies. In the lower part,

instead, the function v̄(t)1/t has been compared with the computed rates of convergence

(and bounds).

Even in this case, it is clear how adding long distance links (i.e. enabling communication

between agents with are connected to distant points of the distribution network) is detrimen-

tal for the convergence speed of the algorithm. On the contrary, the optimal strategy consists

in choosing a clustering hyper-graph which resembles (or is the same in the case of clusters

of two nodes) the graph describing the physical interconnection of the electric network.
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Figure 3.25: Algorithm behavior when applied to the generic case (tree). The continuous line refers
to the 1-step communication strategy, while the dashed line refers to the complete one.

Comments

Among the great number of possible applications of NCS to smart power distribution networks,

the design of distributed optimization methods for reactive power compensation results to be

effective and motivating.

Because the problem of optimal reactive power flows in a microgrid has been casted into

the much wider class of convex quadratic optimization problems, the algorithms and the

results presented in this section can be applied to completely different scenarios. In particular,

it should be of interest for those distributed optimization problems in which the global cost

function that have to be minimized is not separable into agents’ individual additive term, and

when one or more linear equality constraints couple the whole set of decision variables and

do not allow independent updates.

There is however a characterizing aspect of the problem of optimal reactive power flows

that is critical in both the presented algorithms: because of the physical laws of the underlying

system, agents can estimate the gradient of the cost function (which is, in general, function

of the whole state) from local measurements and from the information that they can gather

in their neighborhood. To exploit this fact, the steps of the designed optimization algorithms

must alternate the operations of sensing, processing and actuating the system. As showed in
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Section 2.3, this aspect of the problem is among the most important facts that differentiate

the application of distributed optimization methods in NCS from the methodologies available

in the literature of distributed and parallel computation.

Among the issues that characterize NCS, the following have been addressed for this

specific application:

• Multi-agent architecture – the development of an effective architecture is one of the

critical and open issues in smart power distribution systems; by adopting the concept

of microgrids and with the clustering idea proposed in the gossip-like algorithm, the

concept of hierarchical structure has been kept in mind;

• Distributed information – it has been assumed that the agents in the system only know

a small fraction of the system structure and state, corresponding to their neighborhood

in the electrical graph; to deal with this issue, the proposed algorithms have been

designed to build an estimate of the local system structure, to share data effectively

(also via consensus), and to exploit the physics of the underlying system to avoid

unnecessary exchange of information;

• Communication constraints – the communication graph among agents is not required

to resemble the electrical grid, and different other options have been considered; how-

ever, it is remarkable to see how the proposed algorithms exhibit better performances

when this correspondence is enforced, both in the quality of the quasi-Newton estima-

tion process and in the performance of the gossip-like algorithm;

• Interaction with an underlying physical system – as remarked before, it is critical

in this application how the agents exploit and have to cope with the physics of the

underlying system; this also motivates a great number of directions of investigation

about the dynamical aspect of this interaction;

• Performances – the precise analysis of the algorithm performances in the gossip-like

method is of particular interest; while the algorithm is similar to the class of consensus

problems, the dependence of the rate of convergence on the communication graph is

very specific and does not follow some of the main intuitions developed in the general

cases.
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Part II

Feedback control design for quantum

systems





4
Introduction

Since the pioneering intuitions in Feynman (1982), Quantum Information (QI) has been

the focus of an impressive research effort. Its potential has been clearly demonstrated, not

only as a new paradigm for fundamental physics, but also as the key ingredient for a new

generation of information technologies. Today the goal is to design and produce quantum

chips, quantum memories, and quantum secure communication protocols (Everitt, 2005;

Nielsen and Chuang, 2002; Bouwmeester, Ekert, and Zeilinger, 2000).

The main difficulties in building effective QI processing devices are mainly related to

scalability issues and to the disruptive action of the environment on the quantum correlations

that embody the key advantage of QI. Many of these issues do not appear to be fundamental,

and their solution is becoming mainly an engineering problem. Most of the proposed ap-

proaches to realize quantum information technology require the ability to perform sequences

of a limited number of fundamental operations. Two typical key tasks are concerned with

the preparation of states of maximal information (Di Vincenzo, 1995; Nielsen and Chuang,

2002; Viola, Knill, and Laflamme, 2001) and engineering of protected realization of quantum

information (Viola, Knill, and Lloyd, 1999; Lidar, Chuang, and Whaley, 1997; Knill, Laflamme,

and Viola, 2000; Knill, 2006), i.e. the realization of information encodings that preserve the

fragile quantum states from the action of noise.

This paper will focus on these issues, providing a design strategy for engineering stable

quantum subspaces.
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While controllability issues and optimal and Lyapunov control design techniques are well

established and provide effective tools for steering quantum systems driven by Hamiltonian

dynamics (see e.g. D’Alessandro 2007; D’Alessandro and Dahleh 2001; Khaneja, Brockett,

and Glaser 2001; Grivopoulos and Bamieh 2003; Ferrante, Pavon, and Raccanelli 2002;

Altafini 2007; Wang and Schirmer 2010), their potential for state-preparation, as well as

state purification and cooling problems, is limited by the isospectral character of unitary

evolutions. Hence, feedback state stabilization, and in particular pure-state stabilization

problems, have been tackled in the quantum domain under a variety of modeling and control

assumptions, with a rapidly growing body of work dealing with the Lyapunov approach, see

e.g. Wiseman (1994); van Handel, Stockton, and Mabuchi (2005); Mirrahimi, Rouchon, and

Turinici (2005); Ticozzi and Viola (2008, 2009) and references therein. Lyapunov analysis of

quantum discrete-time semigroups has been also considered, with emphasis on ergodicity

properties, in Burgarth and Giovannetti (2007).

In this thesis unitary controllability has been assumed as a starting point, show how

some of the limitations of this framework can be overcome with the aid of discrete-time

measurements and a feedback control policy.

The same analysis and synthesis techniques are relevant in the preparation of quantum

information in noiseless subspaces: in Shabani and Lidar (2005) and Ticozzi and Viola (2008)

the seminal linear-algebraic approach of Lidar et al. (1997) to study noise-free subspaces

has been extended to the general setting of noiseless subsystems (which usually entails an

operator-algebraic approach, see Knill et al. 2000) and developed in two different directions,

both concerned with the robustness of the encoded quantum information. In Shabani and

Lidar (2005), it has been studied the cases in which the encoded information does not

degenerate in the presence of initialization errors; Ticozzi and Viola (2008), instead, aims to

ensure that the chosen encoding is an invariant, asymptotically stable set for the dynamics

in presence of the noise. The latter tightly connects the encoding task to a set of familiar

stabilization control problems.

The approach of Ticozzi and Viola (2008, 2009) has been later embraced in Bolognani and

Ticozzi (2010b,a), where those techniques have been extended to Markovian discrete-time

evolutions.

A good review of the role of discrete-time models for quantum dynamics and control

problems can be found in Bouten, van Handel, and James (2009). In this work discrete-time

quantum dynamics will be described by sequences of trace-preserving quantum operations

in Kraus representation Kraus (1983); Nielsen and Chuang (2002). This choice implies

the Markovian character of the evolution Kummerer (2006), which, along with a forward

composition law, ensures a semigroup structure. The class of dynamics of interest and the
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relevant notation will be introducted in Chapter 5, together with a quick review of the

formalism of generalized measurement. A basic analysis of kinematic controllability for Kraus

maps has been provided in Wu, Pechen, Brif, and Rabitz (2007).

After recalling the key concepts relative to quantum subspaces and dynamical stability,

Section 5.3 is devoted to the analysis of the dynamics. The results provide necessary and

sufficient conditions on the dynamical model that ensure global stability of a certain quantum

subspace. A Lyapunov approach is employed, exploiting the linearity of the dynamics, as

well as the convex character of the state manifold. With respect to the analysis in Ticozzi

and Viola (2008, 2009) the main difference lies in the fact that the dynamical contributions

given from the Hamiltonian and the noise terms cannot be separated, as one would be able

to do when considering continuous-time model like the GKS-Lindblad master equations. In

addition to this, the normalization condition on the Kraus operators needs to be taken into

account.

The control scheme introduced in Chapter 7 modifies the underlying dynamics of the

system by indirectly measuring it, and applying unitary control actions, conditioned on the

outcome of the measurement. By averaging over the possible outcomes, a new semigroup

evolution is obtained, where the choice of the control can be used to achieve the desired

stabilization. This control scheme can be seen as an instance of discrete-time Markovian

reservoir engineering: the use of “noisy” dynamics to obtain a desired dynamical behavior has

long been investigated in a variety of contexts, see e.g. Poyatos, Cirac, and Zoller (1996);

Carvalho, Milman, de Matos Filho, and Davidovich (2001); de Matos Filho and Vogel (1998);

Verstraete, Wolf, and Ignacio Cirac (2009).

The synthesis results of Chapter 7 include a simple characterization of the controlled

dynamics that can be enacted, and an algorithm that builds unitary control actions stabilizing

the desired subspace. If such controls cannot be found, it is proven that no choice of controls

can achieve the control task for the same measurement. The main tools employed for this

result come from the stability theory of dynamical systems, namely Krasovskii-LaSalle’s

Invariance principle LaSalle (1980), and linear algebra, namely the QR matrix decomposition

Horn and Johnson (1990). A “special form” of the QR decomposition need to be constructed:

in particular, it will be proved that the upper triangular factor R can be rendered a canonical

form with respect to the left action of the unitary matrix group. This result and the related

discussion is presented in Chapter 6.
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5
Discrete-time open quantum systems

Let I denote the physical quantum system of interest. Consider the associated separable

Hilbert space HI over the complex field C. Finite-dimensional quantum systems are consid-

ered, i.e. dim(HI)<∞. In Dirac’s notation, vectors are represented by a ket |ψ〉 ∈HI , and

linear functionals by a bra, 〈ψ| ∈H
†
I (the adjoint of HI), respectively. The inner product of

|ψ〉, |ϕ〉 is then represented as 〈ψ|ϕ〉.

Let B(HI) represent the set of linear bounded operators on HI , H(HI) denoting the

real subspace of hermitian operators, with I and O being the identity and the zero operator,

respectively. A (possibily uncertain) knowledge of the state of the quantum system is

condensed in a density operator, or state ρ, with ρ ≥ 0 and Trρ = 1. Density operators form

a convex set D(HI) ⊂ H(HI), with one-dimensional projectors corresponding to extreme

points (pure states, ρ|ψ〉 = |ψ〉〈ψ|). Given an X ∈ H(HI), ker(X ) indicates its kernel (0-

eigenspace) and supp(X ) :=HI 	 ker(X ) indicates its range, or support. If a quantum system

Q is obtained by composition of two subsystems Q1, Q2, the corresponding mathematical

description is carried out in the tensor product space, H12 = H1 ⊗H2 (Sakurai, 1994),

observables and density operators being associated with Hermitian and positive-semidefinite,

normalized operators on H12, respectively.
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5.1 Quantum measurements

Projective Quantum Measurements

In quantum mechanics, observable quantities are associated to Hermitian operators, with

their spectrum associated to the possible outcomes. Consider the measure of the observable

C =
∑

i ciΠi. The basic postulates that describe the quantum (strong, projective, or von

Neumann’s) measurements are the following:

(i’) The probability of obtaining ci as the outcome of a measure on a system described by

the density operator ρ is pi = Tr(ρΠi).

(ii’) (Lüders’s Postulate) Immediately after a measurement that gives ci as an outcome the

system state becomes: ρ|i =
1

Tr(ΠiρΠi)
ΠiρΠi .

Notice that the spectrum of the observable does not play any role in the computation of

the probabilities.

Generalized Quantum Measurements

If the information about a quantum system is obtained by measuring another system which is

correlated to the former, the projective measurement formalism is not enough, but it can be

used to derive a more general one. A typical procedure to obtain generalized measurements

on a quantum system of interest is the following:

• the system of interest A is augmented by adding another subsystem B, initially decou-

pled from A. Let ρA⊗ρB, with ρB = |φ〉〈φ|, be the joint state;

• the two systems are coupled through a joint unitary evolution UAB;

• a direct, von Neumann measurement of an observable XB =
∑

j x jΠ j , Π j = |ξ j〉〈ξ j|, is

performed on B;

• the conditioned state of the joint system after the measurement is then of the form

ρAB| j =
1

p j
(IA⊗Π j)UAB(ρA⊗ρB)U

†
AB
(IA⊗Π j) = ρ

′
A, j ⊗Π j ,

with p j the probability of obtaining the j-th outcome;

• one can compute the effect of the measurement on A alone, which is nontrivial if UAB

entangled the two subsystems, i.e. UAB(ρA⊗ρB)U
†
AB

cannot be written in factorized

form; one then gets that ρ′
A, j =

1
p j

M jρAM†
j , with M j = 〈ξ j|UAB|φ〉.
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By taking the average over the possible outcomes, a state transformation in Kraus form

is obtained. This construction is actually general, in the sense that if the dimension of B

corresponds (at least) to the necessary number of outcomes, any Kraus map can be actually

generated this way.

5.2 Discrete-time quantum dynamical semigroups

In the presence of coupling between subsystems, quantum measurements, or interaction

with surrounding environment, the dynamics of a quantum system cannot in general be

described by Schrödinger’s dynamics: the evolution is no longer unitary and reversible, and

the formalism of open quantum systems is required (Davies, 1976; Breuer and Petruccione,

2006; Alicki and Lendi, 1987; Nielsen and Chuang, 2002). An effective tool to describe

these dynamical systems, of fundamental interest for QI, is given by quantum operations

(Nielsen and Chuang, 2002; Kraus, 1983). The most general, linear and physically admissible

evolutions which take into account interacting quantum systems and measurements, are

described by Completely Positive (CP) maps, that via the Kraus-Stinespring theorem (Kraus,

1983) admit a representation of the form

T[ρ] =
∑

k

MkρM†
k (5.1)

(also known as operator-sum representation of T), where ρ is a density operator and {Mk} a

family of operators such that the completeness relation

∑

k

M†
k Mk = I (5.2)

is satisfied. Under this assumption the map is then Trace-Preserving and Completely-Positive

(TPCP), and hence maps density operators to density operators. In Alicki and Lendi (1987);

Nielsen and Chuang (2002); Breuer and Petruccione (2006); Davies (1976) a detailed

discussions of the properties of quantum operations and the physical meaning of the complete-

positivity property is available.

One can then consider the discrete-time dynamical semigroup, acting on D(HI ), induced

by iteration of a given TPCP map. The resulting discrete-time quantum system is described

by

ρ(t + 1) = T[ρ(t)] =
∑

k

Mkρ(t)M
†
k . (5.3)

Given the initial conditions ρ(0) for the system, it results ρ(t) = T t[ρ(0)], t = 1,2, . . .
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where T t[·] indicates t applications of the TPCP map T[·]. Hence, the evolution obeys a

forward composition law and, in the spirit of Alicki and Lendi (1987), is called a Discrete-time

Quantum Dynamical Semigroup (DQDS). Notice that while the dynamic map is linear, the

“state space” D(HI) is a convex, compact subset of the cone of the positive elements in

H(HI).

While a TPCP maps can indeed represent general dynamics, assuming dynamics of

the form (5.3), with Mk ’s that do not depend on the past states, is equivalent to assume

Markovian dynamics (see Kummerer 2006 for a discussion of Markovian properties for

quantum evolutions). From a probabilistic viewpoint, if density operators play the role of

probability distributions, TPCP maps are the analogue of transition operators for classical

Markov chains.

5.3 Quantum subspaces, invariance and attractivity

Follow the subsystem approach of Ticozzi and Viola (2008, 2009), and focusing on the case

of subspaces, some definitions of quantum subspaces invariance and attractivity are now

recalled. This is motivated by the fact that the general subsystem case is derived in the

continuous-time case as a specialization with some additional constraints, and that for many

applications of interest for the present work, namely pure-state preparation and engineering of

protected quantum information, the subspace case is enough, as it is suggested by the results

in Ticozzi and Viola (2008).

Definition 5.3.1 (Quantum subspace). A quantum subspace S of a system I with associated

Hilbert space HI is a quantum system whose Hilbert space is a subspace HS of HI ,

HI =HS ⊕HR, (5.4)

for some remainder space HR. The set of linear operators on S, B(HS), is isomorphic to the

algebra on HI with elements of the form X I = XS ⊕OR.

Let n= dim(HI), m= dim(HS), and r = dim(HR), and let {|φ〉Sj }
m
j=1, {|φ〉Rk}

r
k=1 denote

orthonormal bases for HS and HR, respectively. Decomposition (5.4) is then naturally

associated with the following basis for HI :

{|ϕl〉}= {|φ〉Sj }
m
j=1 ∪ {|φ〉

R
k}

r
k=1.
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This basis induces a block structure for matrices representing operators acting on HI :

X =





XS XP

XQ XR



 .

In the rest of the paper the subscripts S, P,Q and R will follow this convention. Let moreover

ΠS and ΠR be the projection operators over the subspaces HS and HR, respectively. The

following definitions are independent of the choices of {|φ〉Sj }
m
j=1, {|φ〉Rk}

r
k=1.

Definition 5.3.2 (State initialization). The system I with state ρ ∈D(HI) is initialized in S

with state ρS ∈D(HS) if ρ is of the form

ρ =





ρS 0

0 0



 . (5.5)

Let JS(HI) denote the set of states of the form (5.5) for some ρS ∈D(HS).

Definition 5.3.3 (Invariance). Let I evolve under iterations of a TPCP map. The set JS(HI )

is invariant if the evolution of any initialized ρ ∈ JS(HI) obeys

ρ(t) =





T t
S[ρS] 0

0 0



 ∈ JS(HI)

∀t ≥ 0, and with TS being a TPCP map on HS .

Definition 5.3.4 (Attractivity). Let I evolve under iterations of a TPCP map T. The set

JS(HI) is attractive if

lim
t→∞





T t(ρ)−ΠST
t[ρ]ΠS





= 0

for all ρ ∈D(HI).

Definition 5.3.5 (Global asymptotic stability). Let I evolve under iterations of a TPCP map

T. The set JS(HI) is Globally Asymptotically Stable (GAS) if it is invariant and attractive.

Characterization of invariance and global asymptotic stability

Necessary and sufficient conditions on the form of the TPCP map T for a given quantum

subspace S to be GAS will now be presented.

The following proposition gives a sufficient and necessary condition on T such that

JS(HI) is invariant.
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Proposition 5.3.6. Let the TPCP transformation T be described by the Kraus map (5.1). Let

the matrices Mk be expressed in their block form

Mk =





Mk,S Mk,P

Mk,Q Mk,R





according to the state space decomposition (5.4). Then the set JS(HI) is invariant if and only if

Mk,Q = 0 ∀k . (5.6)

Proof. Verifying Definition 5.3.3 is equivalent to verifying that there exists a TPCP map TS

such that

T









ρS 0

0 0







=





TS(ρS) 0

0 0



 (5.7)

for all ρS in D(HS). The block form of the Mk matrices in (5.1) given by the decomposition

(5.4) yields

T









ρS 0

0 0







=
∑

k

Mk





ρS 0

0 0



M†
k

=
∑

k





Mk,S Mk,P

Mk,Q Mk,R









ρS 0

0 0









M†
k,S M†

k,Q

M†
k,P M†

k,R





=
∑

k





Mk,SρS M†
k,S Mk,SρS M†

k,Q

Mk,QρS M†
k,S Mk,QρS M†

k,Q





(5.8)

Sufficiency of (5.6) to have invariance of JS(HI) is trivial. Necessity is given by the fact

that the lower right blocks Mk,QρS M†
k,Q are positive semi-definite for all k’s, and therefore,

for (5.7) to hold, it has to be Mk,QρS M†
k,Q = 0 ∀k. For Mk,QρS M†

k,Q to be zero for any state

ρS ∈ D(HS), it has then to be Mk,Q = 0. Equation (5.7) then implies that the completely-

positive transformation

TS[ρS] =
∑

k

Mk,SρS M†
k,S

is also trace preserving.

To derive a characterization of TPCP maps that render a certain HS GAS, LaSalle’s

invariance principle in its discrete-time form is needed (LaSalle, 1980).

Theorem 5.3.7 (La Salle’s theorem for discrete-time systems). Consider a discrete-time system
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x(t + 1) = T[x(t)]. Suppose V is a C1 function of x ∈ Rn, bounded below and satisfying

∆V (x) = V (T[x])− V (x)≤ 0, ∀x (5.9)

i.e. V (x) is non-increasing along forward trajectories of the plant dynamics. Then any bounded

trajectory converges to the largest invariant subset W contained in the locus E = {x |∆V (x) = 0}.

Being any TPCP map a map from the compact set of density operators to itself, any

trajectory is bounded. Let us then consider the function

V (ρ) = Tr(ΠRρ)≥ 0. (5.10)

The function V (ρ) is C1 and bounded from below, and it is a natural candidate for a Lyapunov

function for the system. In fact, it represents the probability of the event ΠR (see Section 5.1),

that is, the probability that the system is found in the reminder subspace HR after the

measurement. The following lemma shows that V (ρ) is non-increasing along the trajectories

of the system when JS(HI) is invariant.

Lemma 5.3.8. Let T be the generator of a DQDS, and assume the set JS(HI) to be invariant.

Then V (ρ) = Tr(ΠRρ) satisfies the hypothesis (5.9) of Theorem 5.3.7.

Proof. The variation of V (ρ) along forward trajectories of the system (5.3) is

∆V (ρ) = Tr
�

ΠRT[ρ]
�

− Tr(ΠRρ)

= Tr



ΠR

 

∑

k

MkρM†
k −ρ

!



(5.11)

Notice that Tr(
∑

k MkρM†
k −ρ) = 0, and that V (ρ) = 0 for all ρ’s that have support in HS.

Let us express
∑

k MkρM†
k − ρ in its block form, using the fact that MQ = 0 by assuming

invariance of JS(HI):

∑

k





Mk,S Mk,P

0 Mk,R









ρS ρP

ρ†
P ρR









M†
k,S 0

M†
k,P M†

k,R



−ρ =





∆S[ρ] ∆P[ρ]

∆Q[ρ] ∆R[ρ]



 , (5.12)
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where

∆S[ρ] =
∑

k

�

Mk,SρS M†
k,S +Mk,Pρ

†
P M†

k,S +Mk,SρP M†
k,P +Mk,PρRM†

k,P

�

−ρS

∆P[ρ] =
∑

k

�

Mk,SρP M†
k,R+Mk,PρRM†

k,R

�

−ρP

∆Q[ρ] =
∑

k

�

Mk,RρP M†
k,S +Mk,RρRM†

k,P

�

−ρ†
P

∆R[ρ] =
∑

k

�

Mk,RρRM†
k,R

�

−ρR.

Therefore

∆V (ρ) = Tr



ΠR

 

∑

k

MkρM†
k −ρ

!

= Tr





∑

k

Mk,RρRM†
k,R−ρR



 , (5.13)

so that in order to get ∆V ≤ 0 the map TR[ρR] :=
∑

k Mk,RρRM†
k,R has to be trace non-

increasing.

Note that this condition is automatically verified, once T is a TPCP map. Indeed, consider

the application of T on a state ρ̄ which has support on HR. According to the block form in

(5.12), the total trace of T[ρ̄] is

Tr
�

T[ρ̄]
�

= Tr

 

∑

k

Mk,P ρ̄RM†
k,P

!

+ Tr

 

∑

k

Mk,Rρ̄RM†
k,R

!

.

Therefore, as both the terms are positive, being ρ̄R ≥ 0, and as T is TP, it results for any

ρ̄R ∈D(HR)

Tr

 

∑

k

Mk,Rρ̄RM†
k,R

!

≤ Tr
�

T[ρ̄]
�

= Tr
�

ρ̄R
�

and thus TR is trace non-increasing.

To determine when JS(HI) contains the largest invariant set in E, conditions will be

derived that ensure that no other invariant set W exists in E = {ρ|∆V (ρ) = 0} such that

JS(HI)⊂W .

The next technical result shows that the existence of invariant sets is in fact equivalent to

the existence of invariant states on the same support.

Lemma 5.3.9. Let T be a TPCP transformation described by the Kraus map (5.1). Consider an

orthogonal subspace decomposition HS ⊕HR. Then the set JR(HI) contains an invariant subset

if and only if it contains an invariant state.
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Proof. The “if” part is trivial. On the other hand, JR(HI) is convex and compact, hence if it

contains an invariant subset W it also contains the closure of its convex hull, call it W̄ . The

map T is linear and continuous, so the convex hull of an invariant subset is invariant, and so

is its closure. Hence, by Brouwer’s fixed point theorem (Zeidler, 1999) it admits a fixed point

ρ̄ ∈ W̄ ⊆ JR(HI).

The next lemma states that if a certain subset of states is invariant, its support is itself an

invariant subspace.

Lemma 5.3.10. Let W be an invariant subset of D(HI ) for the TPCP transformation T, and let

HW = supp(W ) =
⋃

ρ∈W

supp(ρ).

Then JW (HI) is invariant.

Proof. Let Ŵ be the convex hull of W . By linearity of dynamics it is easy to show that

Ŵ is invariant too. Furthermore, from the definition of Ŵ , there exists a ρ̂ ∈ Ŵ such

that supp(ρ̂) = supp(Ŵ ) = HW . Consider the decomposition HI = HW ⊕H⊥W , and the

corresponding matrix partitioning

X =





XW X L

XM XN



 .

With respect to this partition, ρ̂W is full rank while ρ̂L,M ,N are zero blocks. The state ρ̂ is

then mapped by T according to (5.8) (up to a relabeling of the blocks) and therefore, as ρ̂W

is full rank, it has to be Mk,M = 0 for all k’s. By comparing it with the conditions given in

Proposition 5.3.6, invariance of JW (HI) can be inferred.

The following proposition is key in the proof of a characterization of attractive subspaces,

since it indicates where to look for invariant sets that are not contained in the target one.

Proposition 5.3.11. Consider ρ̄ ∈ JR(HI) and evolving under the TPCP transformation T

described by the Kraus map (5.1). Let the matrices Mk be expressed in the block form

Mk =





Mk,S Mk,P

0 Mk,R





according to the state space decomposition HS ⊕HR, with JS(HI) invariant. Then ρ̄ ∈ E =
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{ρ ∈D(HI)|∆V (ρ) = 0}, where V (ρ) is defined by (5.10), if and only if its ρR block satisfies

supp(ρR)⊆
⋂

k

ker
�

Mk,P

�

.

Proof. Note that from the definition of V (ρ) in (5.10), it follows that ρ ∈ JR(HI ) if and only

if V (ρ) = 1. Therefore ρ̄ ∈ E ∩ JR(HI) if and only if also T[ρ̄] ∈ JR(HI). Consider then

the following expression for T[ρ̄], obtained from the expansion of
∑

k Mkρ̄M†
k in (5.12)

specialized to the case ρ̄ ∈ JR(HI):

T[ρ̄] =
∑

k

Mkρ̄M†
k =

∑

k





Mk,PρRM†
k,P Mk,PρRM†

k,R

Mk,RρRM†
k,P Mk,RρRM†

k,R



 . (5.14)

By the form of the upper-left block of (5.14), it can be concluded that ρ̄ ∈ E ∩ JR(HI) if and

only if supp(ρR)⊆
⋂

k ker
�

Mk,P

�

.

Proposition 5.3.11, along with lemmas above, yields the following characterization of

global, asymptotical stability of JS(HI).

Theorem 5.3.12. Let the TPCP transformation T be described by the Kraus map (5.1). Consider

an orthogonal subset decomposition HS ⊕HR, with JS(HI) invariant. Let the matrices Mk be

expressed in their block form

Mk =





Mk,S Mk,P

0 Mk,R





according to the same state space decomposition. Then the set JS(HI ) is GAS if and only if there

are no invariant states with support on
⋂

k ker
�

Mk,P

�

.

Proof. Necessity is immediate: if there was an invariant state supported by
⋂

k ker
�

Mk,P

�

, it

would have non trivial support on HR, and therefore HS could not be attractive. In order to

prove the other implication, consider LaSalle’s theorem. By hypotesis, JS(HI ) is invariant and

is contained in E, therefore it is contained in the largest invariant set W in the zero-difference

locus E. Suppose that JS(HI )⊂W , but JS(HI ) 6=W . That is, there exists a set W ⊆ E which

is invariant and strictly contains JS(HI). Therefore its support has to be

HW =HS ⊕HR′

with HR′ subspace of HR, and by Lemma 5.3.10 JW (HI) must be invariant too. Consider
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then a state ρ̂ which belongs to JW (HI), with non trivial support on HR′ , and define

ρ̃ =
ΠR′ρ̂ΠR′

Tr(ΠR′ρ̂)
=





0 0

0 ρ̃R





which has support on HR′ only. By construction, ρ̃ is in JW (HI), and therefore its trajectory

is contained in JW (HI). It is also in E, that is ∆V (ρ̃) = 0. As V (ρ̃) = 1, then its evolution

must be also remain in HR′ ⊆HR at any time. Therefore an invariant set with support on HR

exists. By reversing the implication, this means that if does not exist an invariant set with

support on HR, then JS(HI ) is the largest invariant set in E. Furthermore, Proposition 5.3.11

indicates that if there is an invariant set in E with support on HR, its support must actually

be contained in
⋂

k

ker
�

Mk,P

�

.

Therefore, if no such subset exists, attractivity of JS(HI) is guaranteed by LaSalle’s theorem.

By Lemma 5.3.9 and Lemma 5.3.10, the existence of an invariant set is equivalent to the

existence of an invariant state with support on
⋂

k ker
�

Mk,P

�

.

Given the usual decomposition HI =HS ⊕HR, let further decompose HR in

HR′ =HR	
⋂

k

ker
�

Mk,P

�

and HR′′ =
⋂

k

ker
�

Mk,P

�

and consider the operation elements Mk in a basis induced by the decomposition HI =

HS ⊕HR′ ⊕HR′′:

Mk =











Mk,S Mk,P ′ 0

0 Mk,R1 Mk,R2

0 Mk,R3 Mk,R4











.

Density operators ρ which have support on the bottom right block clearly belong to JR′′(HI ).

Sufficient, although not necessary, conditions to be sure that no invariant sets have support

on that subspace are that
⋂

k ker
�

Mk,R2

�

= {0} and Mk,R3 = 0 ∀k . This way, the states that

have support on
⋂

k ker
�

Mk,P

�

will be mapped into states which has non-trivial support on
h

⋂

k ker
�

Mk,P

�i⊥
, and therefore no invariant set will exist in

⋂

k ker
�

Mk,P

�

. This intuition

will be further developed in Chapter 7, where a control design tool capable of achieving

attractivity of a given subspace is obtained.
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6
A canonical matrix form

based on the QR decomposition

In this chapter some technical results about QR decomposition will be recalled, allowing the

development of a new algebraic tool, namely a canonical form with respect to the left action

of the unitary matrix group. With this tool it will then be possible to move from the analysis

results presented in the previous chapter to an algorithm for the synthesis of stabilizing

control laws.

On the uniqueness of QR decomposition

Definition 6.0.13 (QR decomposition, Horn and Johnson 1990). A QR decomposition of a

complex-valued square matrix A is a decomposition of A as

A=QR,

where Q is an orthogonal matrix (meaning that Q†Q = I ) and R is an upper triangular

matrix.

The uniqueness of the QR decomposition of a complex-valued matrix A, both in the case

in which A is non-singular and in the case in which it is singular, will now be investigated.
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While the real-matrix case is well known (see e.g. Horn and Johnson 1990), a little extra

care is needed in the complex case. Consider first the case of A non-singular.

Lemma 6.0.14. Let

A=Q1R1 , A=Q2R2

be two QR decompositions of the same non-singular square matrix A. Then R1 and R2 only differ

for the phase of their rows, that is

R1 = ΦR2 , Q1 =Q2Φ
−1

where Φ = diag
�

e jφ1 , . . . , e jφn
�

.

Proof. Using the fact that A and its factors are non singular, it results

Q†
2Q1 = R2R−1

1 = Φ

where Φ is upper triangular because it is the product of two upper triangular matrices. The

matrix Φ must also be orthonormal, because it is the product of two orthonormal matrices.

Therefore, starting from the first column of Φ, it results |Φ11|= 1, where Φi j is the element

of Φ in position (i, j).

Proceed now by induction on the column index j. Assume that all the columns Φk with

k < j satisfy Φlk = 0 for any l 6= k. In order for Φ j to satisfy Φ†
kΦ j = 0 ∀k < j, it must be

Φ1 j = · · ·= Φ j−1, j = 0.

Moreover, as Φ is upper triangular, it must be Φ j+1, j = · · · = Φn, j = 0. Therefore, by

othonormality of Φ, it has to be |Φ j j|= 1.

When A is singular, on the other hand, this is not true, as the following example shows.

Example 1. Consider the following matrix:

M =





0 1

0 1



 .

Since it is already upper triangular, a valid QR decomposition is given by Q = I , R= M . On

the other hand, consider

Q =
1
p

2





1 1

1 −1



 , R=





0
p

2

0 0



 ,
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which clearly also give QR= M , with Q†Q = I .

However, introducing some conditions on the R matrix, it is possible to obtain a canonical

form for the QR decomposition in a sense that will be explained later in this section. The

following lemma suggests that the columns of Q might be chosen e.g. in a way that its first r

columns would span the whole range of A, r being the rank of A.

Lemma 6.0.15. Consider a QR decomposition of a square matrix A of dimension n, and an

index j̄ in [1, n], such that

ri j = 0 ∀ j ≤ j̄,∀i > ρ j (6.1)

where ρ j is the rank of the first j columns of A. Let ai and qi, be the i-th column of A and Q

respectively. Then

< a1, . . . , a j >=< q1, . . . , qρ j
> ∀ j = 1, . . . , j̄.

Proof. Consider the expression for the j-th column of A, a j =Qr j . By the hypothesis, the last

n−ρ j elements of r j are zeros, hence it results

a j ∈< q1, . . . , qρ j
> ∀ j = 1, . . . , j̄

and therefore

< a1, . . . , a j >⊆< q1, . . . , qρ j
> ∀ j = 1, . . . , j̄.

As the rank of the first j columns is ρ j, which is also the dimension of < q1, . . . , qρ j
>,

equality of the two subspaces holds.

A QR decomposition will now be constructed via a Gram-Schmidt orthonormalization

process, fixing the degrees of freedom of the upper-triangular factor R and verifying that

the resulting decomposition satifies the hypotesis of Lemma 6.0.15 for j̄ = n. This par-

ticular choice of the QR decomposition gives a canonical form on Cn×n with respect to

left-multiplication for elements of the unitary matrix group U(n).

Construction of the QR decomposition by orthonormalization

Theorem 6.0.16. Given any (complex) square matrix A of dimension n, it is possible to derive

a QR decomposition A=QR such that hypotheses of Lemma 6.0.15 are satisfied for j̄ = n, and

such that the first nonzero element of each row of R is real and positive.

Proof. The QR decomposition of A will be explicitly constructed column by column. Denote

by A,Q, R the matrices, with ai , qi , ri their i-th columns and with ai, j , qi, j , ri, j their elements,
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respectively. Start from the first non zero column of A∈ Cn×n, ai0 , and define

q1 =
ai0

‖ai0‖
, r1,i0 = ‖ai0‖, r2,i0 = . . .= rn,i0 = 0. (6.2)

Also fix r j = 0 for all j < i0.

The next columns of Q, R are constructed by an iterative procedure. Define ρi−1 as the

rank of the first i− 1 columns of A. It can be assumed (by induction) to have the first ρi−1

columns of Q and the first i− 1 columns of R constructed in such a way that rk, j = 0 for

k > ρ j and j ≤ i− 1.

Consider the next column of A, ai. Assume as a first case that ai is linearly dependent

with the previous columns of A, that is ρi = ρi−1. Since Lemma 6.0.15 applies, ai can be

written as

ai =
i−1
∑

j=1

α ja j =
i−1
∑

j=1

α j

ρ j
∑

`=1

r`, jq`

and therefore, being ai a linear combination of the columns {q1, . . . , qρi−1
}, the elements of

ri are defined as

r`,i = q†
`
ai , for `= 1, . . . ,ρi .

On the other hand, if the column ai is linearly independent from the previous columns of

A, then the rank ρi = ρi−1+ 1. As before, the first ρi−1 coefficients of ri must be defined as

r`,i = q†
`
ai , for `= 1, . . . ,ρi − 1.

Let us also introduce

ãi := ai −
ρi
∑

`=1

r`,iq` 6= 0 (6.3)

and define

qρi
=

ãi

‖ãi‖
rρi ,i = ‖ãi‖. (6.4)

In both cases, let r`,i = 0 for `= ρi + 1, . . . , n. It is immediate to verify that the obtained qρi

is orthonormal to the columns q1, . . . , qρi−1, and that ai =Qrρi
.

After iterating until the last column of R is defined, the remaining columns of Q have

to be chosen, so that the set {q1, . . . , qn} is an orthonormal basis for Cn×n. By construction,

A=QR.
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R is a canonical form

Let G be a group acting on Cn×n. Let A, B ∈ Cn×n. If there exists a g ∈ G such that g(A) = B,

then A and B are said to be G-equivalent, denoted by A∼G B.

Definition 6.0.17. A canonical form with respect to G is a function F : Cn×n→ Cn×n such

that for every A, B ∈ Cn×n:

i. F(A)∼G A;

ii. F(A) = F(B) if and only if A∼G B.

Consider the unitary matrix group U(n)⊂ Cn×n and consider its action on Cn×n through

left-multiplication, that is, for any U ∈ U(n), M ∈ Cn×n:

U(M) = U M .

The following result can thus be proved.

Theorem 6.0.18. Define F(A) = R, with R the upper-triangular matrices obtained by the

procedure described in the proof of Theorem 6.0.16. Then F is a canonical form with respect to

U(n) (and its action on Cn×n by left multiplication).

Proof. By construction A=QR, with unitary Q, so F(A)∼U(n) A. If A, B ∈ Cn×n are such that

F(A) = F(B) = R, thus A=QR and B = VR for some Q, V ∈ U(n), and hence A=QV−1B.

On the other hand, if A= UB, U ∈ U(n), it has to be proved that the upper-triangular

matrix in the canonical QR decompositions A=QR(A) and B = VR(B) is the same. If the first

non zero column of B is bi0 , then the first column nonzero column of A is, being U unitary,

ai0 = U bi0 . One then finds from (6.2)

v1 =
U†ai0

‖U†ai0‖
= U†q1 r(B)1,i0

= ‖U†ai0‖= r(A)1,i0
. (6.5)

Hence the first i0 columns of R(A) and R(B) are identical. Proceed then by induction. Assume

that r(A)j = r(B)j , q j = U v j for j = 1, ..., i− 1. If the column ai is linearly dependent from the

previous i− 1 so it must be bi . The elements of r(A)i are defined as

r(A)k,i = q†
kai = q†

kUU†ai = v†
k bi = r(B)k,i ,

for k = 1, . . . ,ρi − 1. On the other hand, if the column ai is linearly independent from the

previous columns of A, then the rank ρi = ρi−1 + 1. As before, the first ρi − 1 coefficients of
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ri are defined as

r(A)k,i = q†
kai = q†

kUU†ai = v†
k bi = r(B)k,i ,

for k = 1, . . . ,ρi − 1, and r(A)k,i = r(B)k,i = 0 for k = ρi + 1, . . . , n. Consider as before

ãi := ai −
ρi−1
∑

k=1

r(A)ki qk 6= 0.

By using the equivalent definition and the inductive hypothesis it follows that b̃i = U†ãi and

vρi
=

U†ãi

‖U†ãi‖
= U†qρi

r(B)ρi ,i
= ‖U†ãi‖= r(A)ρi ,i

.

Hence r(A)i = r(B)i , and by induction R(A) = R(B).



7
Engineering attractivity via closed-loop control

This chapter deals with the problem of stabilization of a given quantum subspace by discrete-

time measurements and unitary control. The employed control scheme follows the ideas of

Lloyd and Viola (2001); Ticozzi and Viola (2006), and is in fact an instance of the Markovian

feedback models studied in e.g. Belavkin (1983); James (2004). Suppose that a generalized

measurement operation can be performed on the system at times t = 1, 2, . . ., resulting in an

open system, discrete-time dynamics described by a given Kraus map, with associated Kraus

operators {Mk}. This can be realized, for example, when the system is coupled to an auxiliary

measurement apparatus, it is manipulated coherently, and then a projective measurement

is performed on the auxiliary system (see Section 5.1). Suppose moreover that the state

of the system can be unitarily controlled, i.e. ρcontrolled = UρU†, U ∈ U(HI). Assume that

the control is fast with respect to the measurement time scale, or the measurement and the

control acts in distinct time slots.

The generalized measurement outcome k can then be used to condition the control choice,

that is, a certain coherent transformation Uk is applied after the k-th output is recorded. In

other words, a Markovian feedback control can be implemented, consisting in a map from

the set of measurement outcomes to the set of unitary matrices, U(k) : k 7→ Uk ∈ U(HI ). The

measurement-control loop is then iterated: by averaging over the measurement results at

each step, a different TPCP map results, which depends on the design of the set of unitary

controls {Uk} and describes the evolution of the state immediately after each application of
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{Mk}

Gen. Measurement

{Uk}

Unitary Control

ρt|k =
MkρtM

†
k

trace
(
MkρtM

†
k

) ρt+1 = Ukρt|kU
†
kρt

k

Classical Information

Figure 7.1: A measurement-dependent unitary control scheme.

the controls:

ρ(t + 1) =
∑

k

UkMkρ(t)M
†
k U†

k .

Figure 7.1 depicts the feedback control loop (before the averaging).

In the next section it will be considered the problem of characterizing the set of open

loop dynamics that can be engineered through this feedback setup by designing the set {Uk}
with fixed measurement operator {Mk}.

Then, on the basis of the analysis results of Chapter 5, it will be derived an algorithm

that allows to design the set of unitary controls such that global asymptotical stability of

a given subspace is achieved. Notice that the desired result is going to be achieved for the

averaged time-evolution that describes the system immediately after the control step. It is

easy to show that if a certain subspace is GAS for the averaged dynamics, it must be so also

for the conditional ones.

7.1 Simulating generalized measurements

A first straightforward application of the canonical form derived in the previous section is

to establish which quantum operation can be realized applying a given generalized mea-

surement and feedback control. Assume that a generalized measurement can be done, with

associated operators {Mk}mk=1, and consider the problem of implementing a different state

transformation, or measurement, with associated operators {Nk}mk=1, by using the unitary

control loop as above. Notice that the employed control scheme allows to modify only the con-

ditioned states, not the probability of the outcomes, since Tr(M†
k Mkρ) = Tr(M†

k U†
k UkMkρ).

The following result holds.

Proposition 7.1.1. A measurement with associated operators {Nk}mk=1 can be simulated by a

certain choice of unitary controls from a measurement {Mk}mk=1, if and only if there exist a
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reordering j(k) of the first m integers such that:

F(Nk) = F(M j(k)),

where F returns the canonical R factor of the argument, as described in Chapter 6.

Proof. Assume that for a given reordering j(k) it holds F(Nk) = F(M j(k)) = Rk. Therefore

the canonical QR decomposition of Nk and M j(k) gives

Nk = UkRk , M j(k) = Vj(k)Rk.

Let then UkV †
j(k) be the unitary control associated with the measurement outcome k. Then

Tclosed loop[ρ] =
∑

k

UkV †
j(k)M j(k)ρM†

j(k)Vj(k)U
†
k =

∑

k

UkRkρR†
kU†

k =
∑

k

NkρN †
k

and therefore it simulates the measurement associated with the operators {Nk}mk=1.

On the other hand, suppose that there exists a set of unitary controls {Qk}mk=1 and there

is a reordering j(k) of the first m integers such that

Q j(k)M j(k) = Nk.

According to Theorem 6.0.18, F is a canonical form with respect to U(n) and its action on

Cn×n by left multiplication, and therefore if Q j(k)M j(k) = Nk then F(M j(k)) = F(Nk).

7.2 Global asymptotic stabilization of a quantum subspace

Suppose that the operators {Mk} are given, corresponding to a measurement that is per-

formed on the quantum system, with corresponding outcomes {k}. Consider the problem of

finding a set of unitary transformations {Uk} such that, once they are applied to the system,

the resulting semigroup generator

T[ρ] =
∑

k

Uk MkρM†
k U†

k

makes a given set JS(HI) GAS.

The following preliminary, technical result is needed.

Lemma 7.2.1. Let R be the upper triangular factor of a canonical QR decomposition in the
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form

R=





RS RP

0 RR





(according to the block structure induced by (5.4)) and suppose RP = 0. Consider the matrix N

obtained by left multiplying R by a unitary matrix V :

N = VR=





VS VP

VQ VR









RS 0

0 RR



=





NS NP

NQ NR



 .

Then NQ = 0 implies NP = 0.

Proof. Consider first the case in which RS is full rank. Let r ×m be the dimension of VQ, and

m×m be the dimension of RS. Since it must be NQ = VQRS = 0 and RS is full rank, it must

be VQ = 0.

As V is unitary, its column must be orthonormal. Being VQ = 0, VS must be itself an

orthonormal block in order to have orthonormality of the first m columns of V . It then

follows that VP = 0, because any j-th column, j > m, must be orthonormal to all the first m

columns. It then follows that

NP = VPRR = 0.

Consider now the other case in which RS is singular. This implies that ρm < m (ρm being

the rank of the first m columns of R); therefore, as R is a triangular factor of a canonical QR

decomposition, the element Rρm+1,m = 0.

Now, by construction of the canonical QR decomposition, if there were non-zero columns

of index j > m, one of them would have a non-zero element on the row of index ρm+ 1. By

recalling that RP = 0, it results Rρm+1, j = 0, ∀ j ∈ [m+ 1, m+ r]. Therefore, all the last r

columns are zero-vectors, and in particular RR = 0. It then follows that

NP = VPRR = 0.

This result will be instrumental in proving the main theorem of the section, which provides

an iterative control design procedure that renders the desired subspace asymptotically stable

whenever it is possible.

Theorem 7.2.2. Consider a subspace orthogonal decomposition HI =HS ⊕HR and a given

generalized measurement associated to Kraus operators {Mk}.
The task of achieving global asymptotic stability of JS(HI) by a feedback unitary control
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policy is feasible if and only if the following algorithm is completed successfully. In this case, the

algorithm returns a control law {Uk} that makes JS(HI) GAS for the controlled dynamics.

Control design algorithm

Let {|φ〉Sj }
m
j=1, {|φ〉Rk}

r
k=1 denote orthonormal bases for HS and HR, and represent each

Mk as a matrix with respect to the basis {|φ〉Sj }
m
j=1

⋃

{|φ〉Rk}
r
k=1. Compute a QR decomposition

Mk =QkRk with canonical Rk for each k. Call H(0)R =HR, H(0)S =HS , U (0)k =Q†
k and rename

the matrix blocks R(0)S,k = RS,k, R(0)P,k = RP,k and R(0)R,k = RR,k.

If RP,k = 0 ∀k, then the problem is not feasible and a unitary control law cannot be found.

Otherwise define V (0) = I , Z (0) = I , and consider the following iterative procedure, starting

from i = 0:

1. Define H
(i+1)
R =

⋂

k ker R(i)P,k :

If H(i+1)
R = {0} then the iteration is successfully completed. Go to step 8).

If H(i+1)
R (H

(i)
R , define H

(i+1)
S =H

(i)
R 	H

(i+1)
R and Y (i+1) = I .

If H(i+1)
R =H

(i)
R (i.e. R(i)P,k = 0 ∀k) then, if dim(H(i)R )≥ dim(H(i)S ):

(a) Choose a subspace H
(i+1)
S ⊆ H

(i)
R of the same dimension of H(i)S . (Re)-define

H
(i+1)
R =H

(i)
R 	H

(i+1)
S .

(b) Let H(i)T =
⊕i−1

j=0 H
( j)
S . Construct a unitary matrix Y with the following block form,

according to a Hilbert space decomposition HI =H
(i)
T ⊕H

(i)
S ⊕H

(i+1)
S ⊕H

(i+1)
R :

Y (i+1) =















I 0 0 0

0 1/
p

2I 1/
p

2I 0

0 1/
p

2I −1/
p

2I 0

0 0 0 I















. (7.1)

If instead dim(H(i)R )< dim(H(i)S ):

(a) Choose a subspace H
(i+1)
S ⊆H

(i)
S of the same dimension of H(i)R .

(b) Let H(i)T =
�

⊕i−1
j=0 H

( j)
S

�

⊕
�

H
(i)
S 	H

(i+1)
S

�

. Construct a unitary matrix Y with

the following block form, according to a Hilbert space decomposition HI =

H
(i)
T ⊕H

(i+1)
S ⊕⊕H(i+1)

R :

Y (i+1) =









I 0 0

0 1/
p

2I 1/
p

2I

0 1/
p

2I −1/
p

2I









. (7.2)
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(c) Define Z (i+1) = Z (i)Y (i+1) and go to step 8).

2. Define Z (i+1) = Z (i)Y (i+1).

3. Rewrite R̃(i)R,k = W (i+1)R(i)R,kW (i+1)† in a basis according to the H
(i)
R = H

(i+1)
S ⊕H

(i+1)
R

decomposition.

4. Compute the canonical QR decomposition of R̃(i)R,k =Q(i+1)
k R(i+1)

k . Compute the matrix

blocks R(i+1)
P,k , R(i+1)

R,k of R(i+1)
k , again according to the decomposition H

(i)
R = H

(i+1)
S ⊕

H
(i+1)
R .

5. Define U (i+1) =







I 0

0 W (i+1)†
�

Q(i+1)
k

�†
W (i+1)






U (i).

6. Define V (i+1) =





I 0

0 W (i+1)



V (i).

7. Increment the counter and go back to step 1).

8. Return the unitary controls Uk = V (i)†Z (i)V (i)U (i)k .

Proof. Consider first the case in which the algorithm stops before the iterations. This happens

if RP,k = 0 for every k. Remember that each Rk has been put in canonical form, so it follows

from Lemma 7.2.1 that any control choice that ensures invariance of the desired subspace,

that is Nk = UkRk with NQ,k = 0, makes also JR(HI) invariant, since NP,k = 0. Hence an

invariant state with support on HR always exists. This, via Theorem 5.3.12, precludes the

existence of a control choice that renders JS(HI) GAS.

If the algorithm does not stop, then at each step of the iteration the dimension of H(i)R is

reduced by at at least 1, hence the algorithm is completed in at most n steps. If the algorithm

is successfully completed at a certain iteration j, a set of unitary controls {U ( j)k } and a unitary

V ( j) have been built, such that the controlled quantum operation element, under the change
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of basis V ( j), is of the form:

Ñk = V ( j)UkMkV ( j)† = Z ( j)





















R(0)S,k R̄(0)P,k 0 0 0

0 R(1)S,k
. . . 0 0

0 0
... R̄( j−1)

P,k 0

0 0 0 R( j)S,k R̄( j)P,k

0 0 0 0 R( j)R,k





















(7.3)

where the block structure is consistent with the decomposition
⊕ j+1

i=0 H
(i)
S (where to simplify

the notation it has been set H( j+1)
S =H

( j)
R ). Let R̄k be the block matrix above and consider

its upper-triangular part. The rows have the form
h

R̄(i)P,k 0 . . . 0
i

because at each step of

the iteration a basis W (i) is chosen according to the decomposition H
(i+1)
S ⊕H

(i+1)
R , where

H
(i+1)
R ⊆

⋂

k ker R(i)P,k, hence obtaining R(i)P,kW (i)† =
h

R̄(i)P,k 0 . . . 0
i

. It is easy to verify that

the subsequent unitary transformations have no effects on the blocks R̄(i)P,k.

The upper-triangular form of each R̄k and the form of Z ( j) and V ( j), both block-diagonal

with respect to the orthogonal decomposition HS ⊕HR, ensure invariance of HS .

By construction, for all i = 0, . . . , j, either
⋂

k ker R̄(i)P,k = {0} and Y (i) = I , or R̄(i)P,k = 0 for

all k and Y (i) differs from the identity matrix and has the form (7.1) or (7.2).

Let us prove that no invariant state can have support on
⊕ j+1

i=1 H
(i)
S by induction. First

consider a state with support on H
( j+1)
S =H

( j)
R alone:

ρ̄ =





0 0

0 ρ̄R



 .

If
⋂

k ker R̄( j)P,k = {0}, then ρ̄ is mapped by
∑

k R̄k · R̄
†
k into a state ρ̄′ with non-trivial support

on H
( j)
S . Being in this case Y ( j) = I , Z ( j) is block-diagonal with respect to the considered

decomposition and it cannot be Z ( j)ρ̄′Z ( j)† = ρ̄, for any ρ̄ in D(H( j)R ).

On the other hand, if R̄( j)P,k = 0 ∀k, then Y ( j) contains off-diagonal full-rank blocks and

maps the state

ρ̄′ =





0 0

0
∑

k R( j)R,kρ̄RR( j)†R,k





into a state with non-trivial support on H
( j)
S . The subsequent application of Z ( j−1) will then

map the state into a state with nontrivial support on
⊕ j

i=1 H
(i)
S , and therefore ρ̄ cannot be

invariant.

Let us now proceed with the inductive step, with m as the induction index. Assume that
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no invariant state can have support on
⊕ j+1

i= j+1−m H
(i)
S alone (induction hypothesis), and

consider the subspace
⊕ j+1

i= j−m H
(i)
S . By the induction hypothesis if there were an invariant

state with support on this subspace, it would be in the form

ρ̄ =









0 0 0

0 ρ̄S ρ̄P

0 ρ̄†
P ρ̄R









with ρ̄S 6= 0 having support on H
( j−m)
S . Let us rewrite

Z ( j) = Z ( j−m−1)Y ( j−m)Z( j−m+1)

where Z( j−m+1) = Y ( j−m+1) · . . . · Y ( j).
Again, two cases may happen. If

⋂

k ker R̄( j−m−1)
P,k = {0}, then Y ( j−m) = I and ρ̄ is mapped

by R̄k into a state with non trivial support on H
( j−m−1)
S . The subsequent application of

Z( j−m+1) and of Y ( j−m) does not affect this, and because of Z ( j−m−1), the first complete

iteration will map ρ̄ into a state with non trivial support on
⊕ j−m−1

i=1 H
(i)
S . Therefore ρ̄

cannot be invariant.

On the other hand, if R̄( j−m−1)
P,k = 0 ∀k, then Y ( j−m) has the form (7.1) and the closed

loop evolution of ρ̄ is

ρ̄′ =
∑

k

�

Z ( j−m−1)Y ( j−m) Z( j−m+1)R̄kρ̄R̄†
kZ†
( j−m+1)

︸ ︷︷ ︸

ρ̃k

· Y ( j−m)†Z ( j−m−1)†
�

.

If ρ̃k has support on
⊕ j+1

i= j+1−m H
(i)
S for all k, then ρ̄′ will have the same support, and

therefore ρ̄ is not invariant. If instead ρ̃k has non trivial support on H
( j−m)
S for some k, then

because of the subsequent application of Z ( j−m−1)Y ( j−m), ρ̄′ will have non trivial support on
⊕ j−m−1

i=1 H
(i)
S , and again ρ̄ is not invariant.

When the induction process reaches m= j − 1, then it states that no invariant states are

supported on H
(1)
S ⊕ · · · ⊕H

( j)
S ⊕H

( j)
R , and therefore according to Theorem 5.3.12 global

asymptotic stability of the subspace S is achieved.

The algorithm is clearly constructive. The following corollary holds.

Corollary 7.2.3. A desired subspace HS can be made GAS if and only if the RP,k blocks of the

canonical R-factors, computed with respect to the decomposition HI = HS ⊕HR, are not all

zero.
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Proof. The control design algorithm described in Theorem 7.2.2 fails to run to completion

if and only if RP,k = 0 ∀k. According to the same theorem, this is therefore a sufficient and

necessary condition for feasibility of global asymptotic stabilization of the subspace HS .

It has been noticed in Bolognani and Ticozzi (2010b) that from Corollary 7.2.3 it follows

that a pure state ρd can be rendered GAS for some feedback control strategy if and only if

there exists a k̄ such that:

[ρd , Rk̄] 6= 0.

While this condition does resemble the one emerging from the study of the Markovian

feedback master equation in continuous-time Ticozzi and Viola (2009), where the Rk ’s are

substituted by the Hermitian part of the measurement operator M , a remarkable difference

is apparent: the structure of the Rk ’s also depends on the choice of target state, rendering

the determination of the stabilizable pure-state manifold non trivial.

7.3 Robustness of state-preparation

A potential limitation to the implementation of this feedback strategy lays in the fact it

requires strong control capabilities and perfect detection. That is, it is assumed that the form

of the measurement map is known exactly, and that every measurement leads to a valid

outcome.

In Ticozzi and Bolognani (2010) it has been evaluated how critical this hypothesis is for

the whole procedure following the approach of Ticozzi and Viola (2009). Let us choose a

suitable Hermitian basis in B(Hi)≈ Cd×d . This can always be done for finite d, for example

by employing the natural d-dimensional extension of the Pauli matrices (Alicki and Lendi,

1987; Altafini, 2004). In such a basis, all density operators are represented by d2-dimensional

vectors ρ̄ = (ρ0, ρ1, . . . , ρd2−1)
T , where the first component ρ0, relative to 1p

d
Id , is invariant

and equal to 1p
d

for TP-dynamics. Let ρv = (ρ1, . . . , ρd2−1)
T . Hence any Kraus map E[·],

being a TP linear map, in this vectorized representation must take the form:

ρ̄(t + 1) =





1/
p

d

ρv(t + 1)



=





1 0

C D









1/
p

d

ρv(t)



 .

Assume that the dynamics has a unique attractive state ρ̄(0). Thus I−D must be invertible

and then:

ρ̄(0) =
1
p

d





1

(I − D)−1C



 .
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Consider now a small perturbation of the Kraus map, Ẽ[·] = (1−ε)E[·]+εE′[·] depending

on the continuous parameter ε, and ε sufficiently small so that (I − D− ε(D′− D)) remains

invertible. This may account for small detection errors, imperfect knowledge of the model

and other non-idealities. The vectorized dynamics becomes:

ρ̄(t + 1) =

 

(1− ε)





1 0

C D



+ ε





1 0

C ′ D′





!



1/
p

d

ρv



 ,

and the new attractive, unique equilibrium state is:

ρ̄(ε) =
1
p

d

 

1

(I − (1− ε)D− εD′)−1((1− ε)C + εC ′)

!

.

Because ρ̄(ε) is a continuous function of ε, this guarantees that for a sufficiently high detection

efficiency the perturbed attractive state will be arbitrarily close to the desired one in trace

norm. Therefore, if the control task is relaxed to a state preparation problem with sufficiently

high fidelity, this may be accomplished with a sufficiently high detection efficiency, yet strictly

less than 1.

7.4 Examples

In this section the capabilities of the proposed feedback unitary control are studied, and

when possible the proposed algorithm is applied to design an effective control law.

Projective measurements

A particularly simple case is worth mentioning: when the Mk are rank one projectors, that is,

represent a non-degenerate von Neumann’s measurement, the stabilization of any pure state

can be achieved. In fact, being a canonical form:

F(Mk) = F(UΠkU†) = F(ΠkU†) = Rk,

where Πi is the rank one projector on the k-th basis element, and hence ΠkU† is different

from zero only in the k-th row, which is in turn the k-th column of U , uk. Thus each Rk has

only the first row different from zero, and it is proportional to u†
k. Being {uk} a basis, some

RP,k has to be non-zero as it corresponds to the last n− 1 components of the uk ’s.

Physically, at any measurement step a known pure state is obtained, which can then be

driven back to desired one. While the achieved “cyclic” stabilization may appear weak, the
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use of projective measurements renders it robust with respect unwanted noise effects: at each

cycle a state of maximal information is deterministically determined by the measurement,

virtually erasing any unwanted dynamics.

Entanglement Generation

Consider two-qubit system, defined on a Hilbert space HI ' C2 ⊗C2. Consider the task of

stabilizing the maximally entangled state

ρd =
1

2
(|00〉+ |11〉) (〈00|+ 〈11|) , (7.4)

which has the representation ρd =
1
2

� 1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

�

in the computational basis C = {|ab〉 =

|a〉 ⊗ |b〉|a, b = 0, 1}.
In order to apply the proposed control design technique, let us consider a different

basis B such that in the new representation ρB
d = diag ([ 1 0 0 0 ]). This can be achieved by

considering the Bell-basis

B=
� |00〉+ |11〉

p
2

,
|00〉 − |11〉
p

2
,
|01〉+ |10〉
p

2
,
|01〉 − |10〉
p

2

�

.

Let B be the unitary matrix realizing the change of basis, i.e. ρB
d = B†ρd B. Consider the

space decomposition

HI =HS ⊕HR

where HS = span
n

1p
2
(|00〉+ |11〉)

o

and HR = H⊥S . The problem of stabilizing the maxi-

mally entangled state (7.4) has then been successfully casted into the problem of achieving

asymptotic stability of the subspace HS .

Suppose that the following generalized measurement is available

T[ρ] =
3
∑

k=1

MkρM†
k

with operators (represented in the computational basis):

M1 =
1
p

4

�

σ+⊗ I
�

, M2 =
1
p

4

�

I ⊗σ+
�

,

M3 =
Æ

I −M†
1 M1−M†

2 M2,

where σ+ =
� 0 1

0 0
�

. These Kraus operators may be used to describe a discrete-time sponta-
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neous emission process, where the event associated to M1,2 corresponds to the decay of one

qubit (with probability 1
4

each), and the event of the two qubits decaying in the same time

interval is neglected.

In the Bell basis, the operators take the form

M B
1 =















0 0 1
4
−1

4

0 0 1
4
−1

4
1
4
−1

4
0 0

1
4
−1

4
0 0















, M B
2 =















0 0 1
4

1
4

0 0 1
4

1
4

1
4
−1

4
0 0

−1
4

1
4

0 0















,

M B
3 =















0.8536 0.1464 0 0

0.1464 0.8536 0 0

0 0 0.8660 0

0 0 0 0.8660















.

Let us then apply the proposed algorithm. The canonical QR decomposition of the

matrices M B
k returns the following triangular factors (the corresponding orthogonal matrices

Qk are not reported here, see (7.6) for the final form of the controls):

R1 =















p
2

4
−
p

2
4

0 0

0 0
p

2
4
−
p

2
4

0 0 0 0

0 0 0 0















, R2 =















p
2

4
−
p

2
4

0 0

0 0
p

2
4

p
2

4

0 0 0 0

0 0 0 0















,

R3 =















0.8660 0.2887 0 0

0 0.8165 0 0

0 0 0.8660 0

0 0 0 0.8660















.

According to the proposed approach, by inspection of the upper triangular factors Ri

it is possible to decide about the feasibility of the stabilization task. Indeed, as the blocks

RP,k, k = 1, . . . , 3 are non-zero blocks, namely

RP,1 =
h

−
p

2
4

0 0
i

, RP,2 =
h

−
p

2
4

0 0
i

,

RP,3 =
h

0.2887 0 0
i

,
(7.5)

then the stabilization problem is feasible.

Moreover, notice that at this step no further transformation is needed on the matrices, as
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the obtained R factors are already decomposed according to

HI =HS ⊕H
(1)
S ⊕H

(1)
R .

where H
(1)
R =

⋂

k ker RP,k. Continuing with the iteration, the subspace H
(2)
R =

⋂

k ker R(1)P,k

has to be determined. By inspection one can see that this space is empty, and therefore the

iteration stops successfully. The set of unitary controls that have to be applied when the

corresponding outcome k is measured is then

Uk = BQ†
kB†,

that is:

U1 =















p
2

2
0 0 −

p
2

2p
2

2
0 0

p
2

2

0 0 1 0

0 −1 0 0















, U2 =















p
2

2
0 0 −

p
2

2

0 1 0 0
p

2
2

0 0
p

2
2

0 0 −1 0















,

U3 =















0.9856 0 0 0.1691

0 1 0 0

0 0 1 0

−0.1691 0 0 0.9856















.

(7.6)

It can be shown by direct computation that the Hamiltonians needed to implement

these unitary transformation (using ideally unbounded control pulses in order to make the

dissipation effect negligible on when the control is acting) form a 3-dimensional control

algebra (D’Alessandro, 2007).

Figure 7.2 illustrates the typical behavior of closed loop evolution, where the initial

density matrix is constructed from a finite ensemble of 10 randomly chosen pure states. The

four curves represent the probability of finding the system in each one of the four Bell states.

The solid line corresponds to the target state 1p
2
(|00〉+ |11〉) and it approaches 1 as the

control law is iterated, confirming that HS is rendered asymptotically stable by the designed

feedback control. The dashed curve corresponds to the second Bell state 1p
2
(|00〉 − |11〉),

i.e. to the probability of finding the system in H
(1)
S , while the two dotted lines represent

the probability of finding the system in the two remaining Bell states belonging to H
(1)
R .

Their behavior is consistent with the block structure of the closed loop operators reported

in (7.5): since
⋂

k ker R(1)P,k is empty, the trace of the projection of the ρ(t) onto H
(1)
R must

decrease monotonically as the control protocol is iterated. On the other hand, the dashed
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Figure 7.2: Evolution of the probability of finding the simulated system in one of the Bell’s basis
states, as the control algorithm iterates. The system has been initialized as an ensemble of N = 10
randomly picked states, i.e. ρ(0) = 1

N

∑N
i=1 |ψi〉〈ψi | where |ψi〉’s belong to HI and are randomly

generated as linear combinations of the four Bell states. The solid line correspond to the probability
of finding the system in the desired state 1p

2
(|00〉+ |11〉).

curve exhibits an initial growth: in fact, H(1)S acts as a “transition” subspace which collects

states from H
(1)
R , and it is then attracted by H

(0)
S .

A non-stabilizable case

As a third example, consider the case in which the problem of achieving global asymptotic

stability of a given pure state by a feedback unitary control law is not feasible.

Consider a system of dimension d = 2, and consider the problem of stabilizing ρ0 =
� 1 0

0 0
�

.

Suppose that the following set of two measurements is given:

M1 =





p
p 0

0 0



 , M2 =





p

1− p 0

0 1



 .

Both M1 and M2 are already in the canonical upper triangular form prescribed by

Theorem 6.0.16. Following Theorem 7.2.2, feasibility of the control problem can be checked

by inspecting

[ρ0, R1] =
� 1 0

0 0
�

�p
p 0

0 0

�

−
�p

p 0
0 0

�

� 1 0
0 0
�

=
� 0 0

0 0
�

[ρ0, R2] =
� 1 0

0 0
�

hp
1−p 0
0 1

i

−
hp

1−p 0
0 1

i

� 1 0
0 0
�

=
� 0 0

0 0
�

.

As both the terms are zero, the problem is not feasible (there is no feedback unitary

control that makes ρ0 GAS).



8
Conclusions

Completely positive, trace-preserving maps represent general quantum dynamics for open

systems, and if the environment is memoryless, also represent generators of discrete-time

quantum Markov semigroups. Theorem 5.3.12 provides a characterization of the semigroup

dynamics that render a certain pure state, or the set of states with support on a subspace,

attractive, by employing LaSalle’s Invariance Principle. In order to exploit this result for con-

structive design of stabilizing unitary feedback control strategies, a suitable linear algebraic

tool has been developed, which holds some interest per se. It has been proved that a canon-

ical QR decomposition can be derived by specializing the well-known orthonormalization

approach, and that it is key to study the potential of the simple feedback control scheme

presented in Chapter 7. The applicability of the derived synthesis results is twofold, since they

go in the direction of both establishing the potential of discrete-time feedback strategies for

pure state preparation, overcoming some intrinsic limitations that pure open-loop strategies

present, and investigating the possibility of engineering invariant subspaces for quantum

information encodings by feeding back information leaking into the environment. It has been

determined which quantum generalized measurements, and hence non-unitary dynamics,

can be simulated by unitarily controlling a given one, and whether pure states or subspaces

can be rendered globally asymptotically stable. Theorem 7.2.2 gives a constructive procedure

to build the unitary control, and also a test on the existence of such controls: if the algorithm

does not stop on the first step, then the control problem has a solution.
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