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Robust and asynchronous Newton-Raphson Consensus

f1

f2

f3

f4

f5

Solve in a distributed way

minx∈X
∑

fi(x)

assuming an unreliable communication scenario and
using an asynchronous algorithm
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Newton Raphson (NR) algorithm

Aim: iteratively find optimizer of convex function f (x)

x(k + 1) = x(k)− f ′(x(k))
f ′′(x(k))

Approximate f (x) with f̂ |x(k), its quadratic approximation at the
current point x(k) and move to its optimizer

f

f̂ |x(k)

xk xk+1
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Intuition for Newton Raphson Consensus

f (x) =
∑N

j=1 fj(x)

Distributed: agent i approximates its own fi (x) at its current
xi (k) and selects xi (k + 1) as the minimizer of

∑N
i=1 f̂i |xi (k)(x)

If x1(k) = . . . = xN(k) = x(k) → traditional NR step
If xi (k)s close to each other → good approximation
If xi (k)s different → non correct NR step
Step requires exact average → time consuming

xi (k + 1) =
1
N

∑N
j=1 f

′′
j (xj (k))xj (k)f ′j (xj (k))

1
N

∑N
j=1 f

′′
j (xj (k))

xi (k + 1) =
1
N

∑N
j=1 f

′′
j (xj (k))xj (k)f ′j (xj (k))

1
N

∑N
j=1 f

′′
j (xj (k))

:=
1
N

∑N
j=1 gj (k)

1
N

∑N
j=1 hj (k)

Alternate between
consensus step on gi s and hi s

smoothed update of xi s

f1

f2

f3

f4

f5
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Block schematic representation - NRC
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Robust and Asynchronous NRC
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Convergence properties of ra-NRC

Assumptions

strongly convex functions fi (x)

fixed, strongly connected and directed network

persistent communications, bounded packet losses

Proposition

The robust and asynchronous Newton-Raphson Consensus is locally
exponentially convergent to the minimizer of f (x) =

∑
fi (x).

time scale separation in discrete time with time varying system

some state variables do not converge

Currently working to extend the result to semi-global convergence
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House regression problem

fi (x) =
∑

j∈Fi

(yj−χT
j x
′−x0)

2

|yj−χT
j x
′−x0|+β

+ γ ‖x′‖2
2

506 (house features,house value) examples
divided among N=10 agents

http://archive.ics.uci.edu/ml/datasets/Housing

MSE (k) = 1
N

∑N
i=1 ‖xi (k)− x∗‖2

ra-NRC for different packet loss probability

Iteration
0 100 200 300 400 500 600 700 800 900 1000

lo
g
10

(M
S
E

(k
))

1

1.5

2

2.5

3

p=0%
p=10%
p=20%
p=50%

Comparison ra-NRC and PDMM for p = 20%

Iteration
0 100 200 300 400 500 600 700 800 900 1000

lo
g
10

(M
S
E

(k
))

-5

0

5

ra-NRC
PDMM

Nicoletta Bof Multi-agent distr. optimization and estimation over lossy networks 18



House regression problem

fi (x) =
∑

j∈Fi

(yj−χT
j x
′−x0)

2

|yj−χT
j x
′−x0|+β

+ γ ‖x′‖2
2

506 (house features,house value) examples
divided among N=10 agents

http://archive.ics.uci.edu/ml/datasets/Housing

MSE (k) = 1
N

∑N
i=1 ‖xi (k)− x∗‖2

ra-NRC for different packet loss probability

Iteration
0 100 200 300 400 500 600 700 800 900 1000

lo
g
10

(M
S
E

(k
))

1

1.5

2

2.5

3

p=0%
p=10%
p=20%
p=50%

Comparison ra-NRC and PDMM for p = 20%

Iteration
0 100 200 300 400 500 600 700 800 900 1000

lo
g
10

(M
S
E

(k
))

-5

0

5

ra-NRC
PDMM

Nicoletta Bof Multi-agent distr. optimization and estimation over lossy networks 18



Current section

Distributed algorithms: motivations and challenges

Contributions

Distributed optimization with RA-NRC

Conclusions

Appendix

Nicoletta Bof Multi-agent distr. optimization and estimation over lossy networks 19



Conclusions

Approach Theory used

Lyapunov

Continuity argument

Discrete-time separation

of time scale

Ergodicity theory

Discrete-time separation

of time scale

algorithm

modification

Use of

memory

Additional

variables

Merging of

algorithms
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Future research

Step size selection

Density estimation → positivity constraints

Dynamic optimization: minimize f (x , t)

Optimal control of dynamic systems (MPC)
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Consensus algorithm for asynchronous protocols

y1, . . . , yN private quantities (y) → x∗ = y1+···+yN
N

Asymmetric broadcast → at time k one agent transmits

Ratio Consensus [Bénézit et al. 2010]

i active
agent

⇒ P(k) =




1 0 P1i 0
0 1 P2i 0
...

... · · ·
... · · ·

...
0 0 P(N−1)i 0
0 0 PNi 1



, P(k)1N = 1N

xi (k) =
si (k)

wi (k)
,

s(k + 1) = P(k)s(k), s(0) = y
w(k + 1) = P(k)w(k), w(0) = 1N

Ergodicity theory → x(k)→ x∗1N as k →∞
ni : numbers of out neighbours of agent i

Pji = 1
ni

if i communicates with j → i sends ri (k) = 1
ni
si (k)
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Consensus algorithm with packet losses (ra-AC)

[Vaidya et al. 2012] ratio consensus with “mass” counters (synch.)

x(k) = s(k)
w(k) , s(0) = y, w(0) = 1N

message actually sent by i : σi (k) =
∑k

t=0 ri (t)

ρ
(i)
j (k) last message received by j from i before time k

Agent j receives a message from agent i

sj(k + 1) = sj(k) + σi (k) − ρ
(i)
j (k)

Information sent and not receivedcommunications are persistent

bounded packet losses

Ergodicity theory → x(k) → x∗1N exponentially as k → ∞
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Time scale separation

xi (k + 1) = (1− ε)xi (k) + ε
yi (k + 1)

zi (k + 1)

ε is small

slow dynamics on xi s

fast dynamics on the ratios yi
zi

Fast dynamics

ε ≈ 0 =⇒ x(k + 1) ≈ x(k) = x (constant)

yi (k)

zi (k)
→

1
N

∑N
i=1 gi (xi )

1
N

∑N
i=1 hi (xi )

=
1
N

∑N
i=1 f

′′
i (xi )xi − f ′i (xi )

1
N

∑N
i=1 f

′′
i (xi )

=
ḡ(x)

h̄(x)

Slow dynamics

yi (k)

zi (k)
=

ḡ(x)

h̄(x)

xi (k + 1) = (1− ε)xi (k) + ε ḡ(x(k))

h̄(x(k))

same forcing term ⇒ lim
k→∞

xi (k)− xj(k) = 0⇒ lim
k→∞

xi (k) = x̄

x̄+ = x̄ − ε f ′(x̄)
f ′′(x̄) ⇒ centralized Newton Raphson step
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ḡ(x)

h̄(x)

Slow dynamics

yi (k)

zi (k)
=
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