Static input allocation for reaction wheels desaturation using magnetorquers

Luca Zaccarian

in collaboration with

Denis Arzelier, Dimitri Peaucelle (LAAS-CNRS),
Christelle Pittet (CNES) and Jean-François Trégouët (Lab. Ampere, Lyon)

University of Padova

May 23, 2016

Reaction wheels suffer from total momentum problems

Reaction wheels

Nomenclature

- lacksquare $h_w \in \mathbb{R}^3$: angular momentum
- $T_w \in \mathbb{R}^3$: control torque

- The total momentum cannot be modified (wheel turns CW, satellite turns CCW)
- \nearrow risk of saturation of h_w

$$\Rightarrow h_w(t) = \int_0^t T_w(\tau) d\tau$$
 needs to be controlled

(University of Padova)

Allocation for attitude control

May 23, 2016

Magnetorquers confined to exert 2D torque

$$T_m = -\tilde{b}^{\times}(t,q)\tau_m = -(R(q)\tilde{b}_{\circ}(t))^{\times}\tau_m$$

Notation

$$z^{\times} = \begin{bmatrix} 0 & -z_z & z_y \\ z_z & 0 & -z_x \\ -z_y & z_x & 0 \end{bmatrix}$$

Nomenclature

- ▶ $T_m \in \mathbb{R}^3$: control torque
- $m{\tilde{b}} \in \mathbb{R}^3$: magnetic field
- ▶ $\tau_m \in \mathbb{R}^3$: magnetic momentum
- $q \in \mathbb{R}^4$: quaternion
- ▶ $R \in \mathbb{R}^{3 \times 3}$: rotation matrix

 \nearrow () $^{\times}$: instantaneous controllability restricted to a plane ($\forall z \in \mathbb{R}^3, \ z^{\times}$ is singular)

 κ $\tilde{b}_{\circ}(t)$: almost periodic and uncertain

Stabilization problem requires coordination of the actuators

Equations of the attitude motion

$$J\dot{\omega} = -\omega^{\times}(J\omega + h_{w}) - \tau_{w} - \overbrace{\tilde{b}^{\times}(t,q)\tau_{m}}^{\infty} \text{ (1a)}$$

$$\dot{h}_{w} = \tau_{w}$$

$$\begin{bmatrix} \dot{\varepsilon} \\ \dot{\eta} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -\omega^{\times} & \omega \\ -\omega^{T} & 0 \end{bmatrix} \begin{bmatrix} \varepsilon \\ \eta \end{bmatrix}$$
(1c)

Nomenclature

Satellite:

- \blacktriangleright ω : angular velocity
- $q = (\varepsilon, \eta)$: quaternion
- ▶ J: inertia matrix

Reaction wheels:

- \blacktriangleright h_w : angular momentum
- $au_w = T_w$: control torque

Magnetorquers:

- $\tilde{b}(t,q)$: geomagnetic field
- $ightharpoonup au_m$: magnetic momentum

Stabilizing state-feedback problem: find
$$\tau_w(x)$$
 and $\tau_m(x)$ such that $x = \begin{bmatrix} \omega \\ q \\ h_w \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{0} \\ q_o \\ h_{ref} \end{bmatrix}$

× actuators may badly interact

Global attitude properties via hybrid feedback laws

Ideal attitude feedback u_{att} must be selected as a hybrid control law

$$\begin{split} J\dot{\omega} &= -\omega^{\times}J\omega + u_{\text{att}} + d \\ \begin{bmatrix} \dot{\varepsilon} \\ \dot{\eta} \end{bmatrix} &= \frac{1}{2} \begin{bmatrix} \ -\omega^{\times} & \omega \\ -\omega^{\top} & 0 \end{bmatrix} \begin{bmatrix} \varepsilon \\ \eta \end{bmatrix} \end{split}$$

- Even if d=0, no time-invariant continuous selection $u_{att}(x)$ stabilizes the compact attractor $\mathcal{A}:=\{\omega=\varepsilon=0,\eta=\pm1\}$ [Bhat et al, 2000]
- ▶ hybrid solution available in the literature [Mayhew et al, 2009]:

For any scalars c>0, $\delta\in(0,1)$ and any matrix $K_\omega\succ0$, the attractor $\mathcal A$ is globally asymptotically and locally exponentially stabilized by the control law:

$$\begin{array}{l} u_{att} := -cx_c\varepsilon - K_\omega\omega \\ \dot{x}_c = 0, & (q, \omega, x_c) \in C \\ x_c^+ = -x_c, & (q, \omega, x_c) \in D \end{array}$$

where the flow set C and the jump set D are defined as

$$C := \{ (q, \omega, x_c) \in \mathbb{S}^3 \times \mathbb{R}^3 \times \{-1, 1\} : x_c \eta \ge -\delta \}$$

$$D := \{ (q, \omega, x_c) \in \mathbb{S}^3 \times \mathbb{R}^3 \times \{-1, 1\} : x_c \eta \le -\delta \},$$

X does not take into account limitations of the actuators

I. The industrial solution: "cross product control law"

Ignore the interaction of the two inputs

we inputs
$$U_{att}(x_c, \varepsilon, \omega)$$

$$J\dot{\omega} = -\omega^{\times} J\omega - \tau_w - \omega^{\times} h_w + T_m,$$

$$\begin{bmatrix} \dot{\varepsilon} \\ \dot{\eta} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -\omega^{\times} & \omega \\ -\omega^{T} & 0 \end{bmatrix} \begin{bmatrix} \varepsilon \\ \eta \end{bmatrix}$$

- loop 1: Attitude control performed by the reaction wheels
- ▶ loop 2: Regulation of h_w by the magnetorquers
- ▶ the two loops are treated separately

The cross-product control law

$$au_{w} = -\omega^{ imes} h_{w} - u_{att}, \qquad \quad au_{m} = -rac{ ilde{b}^{ imes}(t)}{| ilde{b}(t)|^{2}} k_{p}(h_{w} - h_{ref})$$

Lack of proof of stability

- formally proving desirable stabilization properties of the overall scheme seems hard
- ▶ frequency separation between the two loops (= very aggressive action of the attitude stabilizer) gives an engineering solution [Camillo,1980; Carrington 1981; Chen 1999]

II. New revisited version of "cross product control law" highlights cascade

New point of view on the classical approach

• quasi cascaded structure where $h_T^{[I]}$ refers to the total angular momentum (satellite + wheels)

A revisited version of the cross-product control law

$$au_w = -\omega^{ imes} h_w - u_{att}, \qquad \quad au_m = -rac{ ilde{b}^{ imes}(t)}{| ilde{b}(t)|^2} k_p (h_w + J\omega - R(q) h_{ref})$$

- the feedback branch (the dashed line) can be avoided by redefining τ_m
- GAS is achieved for any stabilizer u_{att} (under ISS and reasonable assumptions on $b_{\circ}(t)$)
- attitude dynamics is affected by the secondary task of momentum damping

III. New static-allocation-based controller induces desirable attitude

Allocation-based controller equations

$$au_w = -\omega^ imes h_w - (R(q) ilde{b}_\circ(t))^ imes au_m - u_{att}, \qquad \quad au_m = -rac{(R(q) ilde{b}_\circ(t))^ imes}{| ilde{b}_\circ(t)|^2} k_p (h_w - h_{ref})$$

Reversing the cascaded structure

- giving priority to the attitude control goal
- equivalent to a new different partition of the dynamics equation:

$$J\dot{\omega} + \omega^{\times}J\omega = \underbrace{-\tau_{w} - \omega^{\times}h_{w} + T_{m}}_{}.$$

 $\sqrt{}$ GAS is achieved for any stabilizer u_{att} (No ISS needed but same mild assumptions on $\tilde{b}_{\circ}(t)$)

May 23, 2016

III. New static-allocation-based controller induces desirable attitude

Allocation-based controller equations

$$au_w = -\omega^{ imes} h_w - (R(q) ilde{b}_{\circ}(t))^{ imes} au_{m} - u_{ ext{att}}, \qquad au_m = -rac{(R(q) ilde{b}_{\circ}(t))^{ imes}}{| ilde{b}_{\circ}(t)|^2} k_{
ho}(h_w - h_{ ext{ref}})$$

Proof of stability uses reduction theorem for hybrid systems

- ightharpoonup if attractor \mathcal{A} is GAS (and LES) for the upper system
- ▶ if the origin is GAS for the lower system with zero input
- ightharpoonup if all solutions are bounded (proved with exponential convergence of u+ Gronwall)

Then the attractor $\mathcal{A} \times \{h = h_{ref}\}$ is GAS for the overall system.

May 23, 2016 9 / 19

Simulation results reveal advantages of the proposed controller

Context of the simulations

- mission of the micro-satellite Demeter designed by CNES, the French space agency
- $ightharpoonup ilde{b}_{\circ}(t)$ evaluated by means of the IGRF (high fidelity model of the geomagnetic field)
- \triangleright rest-to-rest maneuvers with non-nominal h_w

Controllers used

- ► Classical "cross product control" controller
- Revisited version of the classical controller
- ► Allocation-based controller

Simulation tests

- ▶ Nominal: Shows that the classical solution diverges
- Perturbed J: Allocation outperforms Revisited
- Periodic disturbances: Allocation outperforms Revisited

Aggressive attitude controller u_{att}

√ Similar results

Non-aggressive attitude controller u_{att}

√ revisited and allocation controllers preserve stability

√ Attitude transient is more regular for the allocation-based strategy

√ Actuators do not saturate

Monte-Carlo study with uncertainties on J reveals improved transients

▶ Clear advantages emerge from swapping the cascaded structure

✓ Improved attitude transients with allocation-based controller

Monte-Carlo study with uncertainties on J reveals smaller inputs

Reduced spread and usage of the actuators efforts

√ Improved attitude transients with allocation-based controller

Periodic disturbanced are best handled by allocator

No formal analysis has been performed for this case

√ Improved attitude response with allocation-based controller

Conclusions

Summary of the advantages of the new allocation-based controller

- √ actuators are less inclined to saturate (non-aggressive attitude stabilizers can be handled)
- √ attitude dynamics independent of the momentum damping
- √ rigorous proof of stability
- \checkmark good properties of robustness w.r.t. uncertainties on $\tilde{b}_{\circ}(t)$ (according to simulation results)

Perspectives

- mean value of attitude perturbations induces a drift of the momenta of the reaction wheels [Lovera, 2001]
- How this new allocation framework can prevent these phenomena to occur?

References

- Jean-François Trégouët, Denis Arzelier, Dimitri Peaucelle and Luca Zaccarian. Static input allocation for reaction wheels desaturation using magnetorquers. In Automatic Control in Aerospace, volume 19, Würzburg, Germany, 2013.
- ▶ Jean-François Trégouët, Denis Arzelier, Dimitri Peaucelle, Christelle Pittet and Luca Zaccarian. Reaction wheels desaturation using magnetorquers and static input allocation. *IEEE Transactions on Control Systems Technology*, 23(2):525539, 2015.