Distributed Consensus Algorithms on Manifolds




Distributed algorithms in controls

Motion coordination Formation control
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Consensus algorithms
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Global agreement from
local interactions
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Today

Tasks

Application Areas
End Users

24 hrs/min

T

/ 30 million cameras
=q.

4 bn hrs/week

Detection, Segmentation, Motion Estimation,
Stabilization, Registration, Categorization

National Security —___, Recreation

Governments — (ONSUMEr



Camera Networks

e Classical approach

— One camera wired to one computer

e

— Multiple cameras wired to a central
processing unit

— Processing than by a human operator or
by a central computer

* Problems

— Flexibility: Wiring makes it hard to deploy
new cameras

— Robustness: central node failure = entire
system failure

— Scaling: processing and bandwidth
requirements do not scale well




Camera Sensor Networks

* Motes

— Small, wireless devices

— battery powered

— limited memory and
computing power

* Applications

— Surveillance

— Environmental
monitoring

— Smart homes




Challenges to Computer Vision Algorithms

Traditional computer vision algorithms

Existing algorithms are centralized: all images Computer
are sent to one node for processing Vision

e Sensor networks have limited resources

— Limited processing power and memory
— Slow wireless channel
— Nodes can have limited communication range

Challenge

Traditional computer vision algorithms require resources
not available in a camera sensor network




Challenges to Sensor Network Algorithms

Traditional distributed algorithms for sensor networks

Existing algorithms have been designed for
processing simple scalar measurements

* |In computer vision applications

— Measurements (images) are high-dimensional
— Measurements are corrupted by noise, outliers
— Estimates are non-Euclidean (e.g. rotations)

Challenge

Traditional sensor network algorithms cannot be directly
used for computer vision applications




Toward Distributed Computer Vision Algorithms

e Centralized  Distributed

d |g0rlth mSs Computer Sensor d |g0r|th mSs
 Considerable Vision Networks  Only simple
complexity problems

Our goal
* Develop distributed computer vision algorithms that
- Are efficient: local processing + short communications

- Converge to the centralized solution
- Can handle outliers, packet losses, data on manifolds




Consensus on manifolds example
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Previous work

Specific Manifolds
e Sphere [Olfati-Saber 2006]
 N-Torus [Kuramoto model, 1975], [Vicksek model, 1995], [Scardovi,
Sepulchre 2007]
Extrinsic approach
 Embedding + Projections [Sarlette, Sepulchre 2009], [Hatanaka, Bullo
2010], [lgarashi, Fujita 2010]
Coordination
* Lie groups [Sarlette, Sepulchre 2010]
* Rigid motions [Sarlette, Sepulchre 2009], [Thunberg, Hu 2011], [Bai,
Wen ], [Igarashi, Spong, 2012], [Smith, Leonard 2001]
Localization

* Planar case [Piovan, Bullo 2008]
* Centralized [Shirmohammadi, Taylor 2010]
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1. Consensus on any Riemannian

manifold with bounded curvature

\_______________________
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Introduction

* Consensus in Euclidean spaces

* Riemannian geometry
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Riemannian consensus

e Choice of step size

* Local convergence results
* Almost-global convergence on SO(3)



Image-based camera network localization

e Setup cost function

e Link with Riemannian Consensus
e Results



Review of

FEuclidean consensus




G = (V,E) Graph
U; Measurements
X; States
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Optimization cost function

o({zi}) = ) llzi — =l
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max # of neighbors


















Gradient Descent
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:E,L(t—l_l —xz —|—€Z x] _337, )

R
0.5/
0 o | meantzi(t))
7

"""""""

CCCCCCC



Convergence to the mean

0 10 20 30 40
lterations
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Review of

Riemannian geometry




Notation
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Riemannian Consensus




G = (V,E) Graph
U; Measurements

~0On manifold
X; States M
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Optimization cost function

o({x;}) Z d5(zi,x;)
(i,5)€F




Optimization cost function

o({x;}) Z dM Ty Tj)

(4,7)€E
Not convex!

Consensus configurations are
global minima
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Optimization cost function




Gradient descent

=&

‘ “'M‘. .
“\“ Yl
‘\“‘\\‘}‘,‘% T

.........

CCCCCCC



Gradient descent

zi(t+1) = CXPx; (t) Z (8 log,, 1) %; (t))
(i,g)eE




How to choose the step size

S
9
Deg(ihmleidng)

Deg(G) = max # of neighbors

limaz (d3y) = bound on max eval of Hessian of d3 ,

Tron, Afsari, Vidal - “Riemannian Consensus for Manifolds with Bounded Curvature” &
to appear in Transactions on Automatic Control, 2012 AGING
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Spaces of non-negative constant
curvature

Hmax (d

\

All other spaces

Hmazx (d.%\/t ) might depend on max distance
between neighboring states
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Gradient Descent

i(t+1) = exp,,y Y (elog,, 4 z;(t))
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Gradient Descent

i(t+1) = exp,,y Y (elog,, 4 z;(t))
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Gradient Descent

i(t+1) = exp,,y Y (elog,, 4 z;(t))
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Gradient Descent

i(t+1) = exp,,y Y (elog,, 4 z;(t))
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Convergence

* Measurements not
too dispersed

e Step size small enough

TN
w1 Y e, Convergence to
. consensus
configurations

Tron, Afsari, Vidal - “Riemannian Consensus for Manifolds with Bounded Curvature” &
to appear in Transactions on Automatic Control, 2012 AGING
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1. Given a set containing all global
minimizers

S={(x1,...,2n) € MY : 3z € M
s.t. maxda (@i, o) < r*}
* 1 . . . 7T MN
r zimm{mj ./\/l,—} S

VA

2. Guarantee iterates do not leave this set

Tron, Afsari, Vidal - “Average Consensus on Riemannian Manifolds with Bounded Curvature® -~
IEEE Conference on Decision and Control 2011 AGING
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Convergence

Spaces of constant,
non-negative curvature

\ 4

* Converge to a point
inside convex hull

* Point need not be the
global Frechet mean

Tron, Afsari, Vidal - “Riemannian Consensus for Manifolds with Bounded Curvature® &
to appear in Transactions on Automatic Control, 2012 AGING
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Convergence

* General result
 If initial measurements are inside Sconv
* And step size is small enough
* Then, Riemannian Consensus converges to a set in Sconv

* Constant non-negative curvature

e Convergence set is enlarged to Sr
* The convergence result is to a single consensus state instead of
to a set

* The consensus state is shown to lie in the convex hull of the
initial measurements



Experiments — Sphere(7)

Distance from node 1

0 5O 100 150
lterations

N=15 nodes, 4-regular graph (AGING
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Experiments — SO(7)

Distance from node 1
(0]
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N=15 nodes, 4-regular graph (AGING
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Experiments — SO(3) — Closed geodesic

Distances from node 1

100 200 300 400 500 600

N=15 nodes, 4-regular graph, closed geodesic (LGING
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{337, Z d./\/l CEZ?CI;J

(4,7)€E
X1
4 O o Local minimum
X3

ccccccccc

CCCCCCC



ccccccccc

CCCCCCC



(4,5)€E

Tron, Afsari, Vidal — “Intrinsic consensus on SO(3) with almost-global convergence” .
to appear in Conference on Decision and Control 2012 gd
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Tron, Afsari, Vidal — “Intrinsic consensus on SO(3) with almost-global convergence” gﬁ

to appear in Conference on Decision and Control 2012



o({z:}) = D [fsow) (dm(@i z)))

(4,5)€EE
T4 O Z2 Saddle point
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Almost-global convergence

On SO(3), the only set of stable
equilibria is the set of global
minimizers

fso)

a 1
Jso@) = b (5 + 0) exp(—b0)

—TT s

Tron, Afsari, Vidal — “Intrinsic consensus on SO(3) with almost-global convergence” &
to appear in Conference on Decision and Control 2012 AGING

CCCCCCC



Experiments — Squared distance

Distances from node 1

100 200 300 400 500 600

N=15 nodes, 4-regular graph, closed geodesic (LGING
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Experiments — Reshaped distance

Distances from node 1

)
/
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Average number of iterations for a K-regular
network with N nodes

50 100 200 500 100
4 8 16 40 4
2376 2593 2651 2932 4157




Image-based camera network

localization







Vision graph
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f?fﬁ f (dSE(S))
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Challenge 1: Inconsistent Transf.

SZQ’
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Optimization problem

min Z / (dSE(B)(gijagij))

{g9i;} (i F)eE

s.t.{g;; } are consistent
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Pose reparametrization

{gi;;} are consistent

gij = 97;_193'

Tron, Vidal — "Distributed image-based 3-D localization in camera sensor networks” &
Conference on Decision and Control 2009 AGING
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Optimization problem

gii' = 93-_192'
min Z / (dSE(S) (915> Gij ))

{gi5} (i )R

.........
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Optimization problem

Lf(dSE(i%)('? )) — fSO(3)('7 ) T f]R3(°7 )j

|
fm% Z fdses)(9; 955 3i))
Y i,5)eE

fS'TO(3) fiR?’
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Optimization problem
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Optimization problem

min Y fsom) (R; R, Rij)
{R;,T;,Xi; } <
(4,5)€EE

+ Y fra (BRI (Tj — Tp), Aijtsj)
(i,j)€EFE
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Challenge 2: Scale Ambiguity
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Fix shortest edge length
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Optimization problem

How to get global minimizer?

Tron, Vidal - “Distributed Image-Based 3-D Localization of Camera Sensor Networks” &
in Conference on Decision and Control 2009 AG]NG
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Initialization of rotations

.........



Initialization of translations

.........



Complete optimization

\min
{R_i
\lam




Gradient descent

Ri(t+ 1) = R;(t)exp(e Z log(R; R; RT )+...)
(4,J)€EE
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How to choose the step size

@({R%Tia )"ij})

(2,0)€E

— £
9
Deg(G) timaz (¥ij)

Deg(G) = max # of neighbors

Hmax (907;3') = bound on max eval of Hessian of ©ij
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Noiseless case

In noiseless case, equivalent
to Riemannian consensus

?HH Y fsoe) (R R, Rij)
(i,J)€E

?lm Z fso) (R;, RY)
(i,J)€E
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Noiseless case

In noiseless case, non-convex,
but no local minimal
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Experiments on synthetic data

Experiment: 8 cameras, 30 scene points,
4-regular graph

Camera poses and points
mages + Noise

Relative poses

= W

ocalization
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Experiments on synthetic data

Rotation errors [degrees]

Geometric variance of scale ratios

Translation direction errors [degrees]

Noise 0 pixels | 1 pixels 3 pixels

Initial 0.00 0.11 0.33
+0.00 +0.00 +0.05

Final 0.00 0.09 0.29
+0.00 +0.00 +0.03

Noise 0 pixels | 1 pixels 3 pixels Noise 0 pixels 1 pixels | 3 pixels
Initial 0.00 2.77 4.80 Final 1.000 1.002 1.005
+0.00 +0.58 +1.74
Final 0.00 0.13 0.39
+0.00 +0.00 +0.03
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Snavely, Seitz, Szeliski. “Photo Tourism: Exploring image collections in 3D” .
in ACM Transactions on Graphics



Experiments on real data
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Experiments on real data

Rotation errors per edge

100 \ ‘
lMeasurements
lAfter localization

50/ )
O —-— | 1 1 —
o) 5 10 15 20 25 30
Errors [degree]
Translation direction errors per edge

100 ‘ ‘

50 i
O | L | | | — | —
o} 20 40 60 8o 100 120 140 160 180

Errors [degree]



Conclusion

Riemannian Consensus

Theory Applications

Sufficient convergence on Image-based camera
any Riemannian manifold network localization

Almost-global convergence
on SO(3)




Convergence rate
Incorporate uncertainties
Dynamic case

* Time-varying measurements
* Pose + velocity

Improved localization
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Thanks!
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