Lara Briñón Arranz

Cooperative Control Design of Multi-Agent Systems: Application to Underwater Missions

NeCS Team, INRIA Rhône-Alpes & GIPSA-lab

Padova, 24th July 2012

(□) (@) (E) (E) E

Introduction ●0	Problem Statement	Circular Formation	Elastic Formation	Source-Seeking	Conclusion 000
Context					

NeCS Team - GIPSA-lab / INRIA Grenoble, France

PhD advisors

- Carlos Canudas de Wit
- Alexandre Seuret

Introduction ●0	Problem Statement	Circular Formation	Elastic Formation	Source-Seeking	Conclusion 000
Context					

PhD advisors

- Alexandre Seuret

- Carlos Canudas de Wit

NeCS Team - GIPSA-lab / INRIA Grenoble, France

FeedNetBack Project

- Networked Control Systems
- Partners: Università di Padova, Universidad de Sevilla, KTH, ETH, INRIA Grenoble

Introduction ●0	Problem Statement	Circular Formation	Elastic Formation	Source-Seeking	Conclusion 000
Context					

NeCS Team - GIPSA-lab / INRIA Grenoble, France

FeedNetBack Project

- Networked Control Systems

- Partners: Università di Padova, Universidad de Sevilla, KTH, ETH, INRIA Grenoble

Case Study: Autonomous Underwater Vehicles (AUVs)

Source-seeking task To locate and follow the source of the scalar field of interest

PhD advisors

- Alexandre Seuret

- Carlos Canudas de Wit

Introduction ○●	Problem Statement	Circular Formation	Elastic Formation	Source-Seeking	Conclusion

Case study

Final Objective

To design **collaborative control strategies** to steer a **fleet of AUVs** (Autonomous Underwater Vehicles) toward the **source localization** of a scalar field

Introduction O•	Problem Statement	Circular Formation	Elastic Formation	Source-Seeking	Conclusion 000

Case study

Final Objective

To design **collaborative control strategies** to steer a **fleet of AUVs** (Autonomous Underwater Vehicles) toward the **source localization** of a scalar field

Proposed solution: Mobile Sensor Networks

- Fleet of AUVs ⇒ Formation control of multi-agent systems
- Exchange of information ⇒ Collaborative Control
- Underwater scenario ⇒ Communication constraints

Introduction 00	Problem Statement	Circular Formation	Elastic Formation	Source-Seeking	Conclusion 000
Outline					

- Problem Statement
- 3 Time-varying Circular Formation control
- 4 Elastic Formation Control Design
- 5 Collaborative Source-Seeking
- 6 Conclusions and Future Works

Introduction	Problem Statement	Circular Formation	Elastic Formation	Source-Seeking	Conclusion
	•0				

2. Problem Statement: Control strategy

- Formation control of multi-agent systems: circular formation and other formations
- Collaborative Control: uniform distribution along the formation
- Communication constraints: Distributed algorithm for source-seeking

Introduction	Problem Statement	Circular Formation	Elastic Formation	Source-Seeking	Conclusion
	• •				

2. Problem Statement: Control strategy

- Formation control of multi-agent systems: circular formation and other formations
- Collaborative Control: uniform distribution along the formation
- Communication constraints: Distributed algorithm for source-seeking

Cooperative Control Design of Multi-Agent Systems: Application to Underwater Missions

Introd	

Problem Statement

Circular Formation

Elastic Formation

Source-Seeking

Conclusion

Model of the AUVs

 $\mathbf{r}_k = (x_k, y_k)^T$ is the position vector of agent k θ_k is its heading angle v_k, u_k are the control inputs

ntroduction	Problem	Statement	Circular F
			0000000

Circular Formation

Elastic Formation

Source-Seeking 0000000 Conclusion

3. Time-varying Circular Formation Control

7 / 40

Problem Statement

Circular Formation

Elastic Formation

Source-Seeking

Conclusion

Previous works: Collective Circular Motion

- Unicycle model with unit speed $v_k = 1 \quad \forall k$
- Cooperative approach: the vehicles only know relative distances $\mathbf{r}_k \mathbf{r}_j$
- Formation center: results from a consensus algorithm

$$\tilde{\mathbf{r}}_k = \mathbf{r}_k - \mathbf{c}_m = \frac{1}{N} \sum_{j=1}^{N} (\mathbf{r}_k - \mathbf{r}_j)$$

8 / 40

To stabilize each AUV to a circular motion with constant radius R tracking a time-varying center c(t).

Source-Seeking

g Conclusion 000

Translation Control Design [Briñón-Arranz et al. CDC'09]

To stabilize each AUV to a circular motion with constant radius R tracking a time-varying center c(t).

Problem Statement

Circular Formation

Elastic Formation

Source-Seeking

Conclusion 000

Translation Control Design

Control strategy

• **Reference model:** relation between the original system (position vector of each agent) and the reference system (relative position vector)

Problem Statement

Circular Formation

Elastic Formation

Source-Seeking

Conclusion 000

Translation Control Design

Control strategy

- **Reference model:** relation between the original system (position vector of each agent) and the reference system (relative position vector)
- Fixed circular control law: the reference system is stabilized to a circular motion with fixed center

Problem Statement

Circular Formation

Elastic Formation

Source-Seeking

Conclusion

Translation Control Design

Control strategy

- **Reference model:** relation between the original system (position vector of each agent) and the reference system (relative position vector)
- Fixed circular control law: the reference system is stabilized to a circular motion with fixed center
- Tracking approach:
 - Transformed system (with imposed closed loop dynamics) is considered as a reference \Longrightarrow Reference tracking

- Aim:
$$\dot{\mathbf{r}}_k
ightarrow \dot{\hat{\mathbf{r}}}_k + \dot{\mathbf{c}}$$
 and $\ddot{\mathbf{r}}_k
ightarrow \ddot{\hat{\mathbf{r}}}_k + \ddot{\mathbf{c}}$

- Control inputs $(\dot{\mathbf{v}}_k, u_k)$

Problem Statement

Circular Formation

Elastic Formation

Source-Seeking

Conclusion

Theorem: Translation of a circular motion

Translation Control Law

$$\dot{\mathbf{v}}_{k} = -\beta \mathbf{v}_{k} + \frac{\dot{\psi}_{k} \dot{\mathbf{r}}_{k}^{T} \mathbf{R}_{\frac{\pi}{2}} \dot{\hat{\mathbf{r}}}_{k} + \dot{\mathbf{r}}_{k}^{T} (\ddot{\mathbf{c}} + \beta (\dot{\hat{\mathbf{r}}}_{k} - \dot{\mathbf{c}}))}{\mathbf{v}_{k}}$$
$$u_{k} = \frac{\dot{\psi}_{k} \dot{\mathbf{r}}_{k}^{T} \dot{\hat{\mathbf{r}}}_{k} + \dot{\mathbf{r}}_{k}^{T} \mathbf{R}_{\frac{\pi}{2}}^{T} (\ddot{\mathbf{c}} + \beta (\dot{\hat{\mathbf{r}}}_{k} - \dot{\mathbf{c}}))}{\mathbf{v}_{k}^{2}}$$

where $\beta > 0$ and $R_{\frac{\pi}{2}} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ makes the AUVs converge to a circular motion tracking the time-varying center **c**.

- The center **c**(*t*) and its derivatives **ċ**(*t*), **ċ**(*t*) are external given references.
- $\dot{\psi}_k = \hat{u}_k = \omega_0 (1 + \kappa \dot{\hat{\mathbf{r}}}_k^T(\psi_k)(\mathbf{r}_k \mathbf{c}))$
- Singular point when $v_k = 0$

The convergence of the transformed system to a fixed circular motion is analyzed with the Lyapunov function:

$$S(\hat{\mathbf{r}},\psi) = \frac{1}{2} \sum_{k=1}^{N} \left\| \dot{\hat{\mathbf{r}}}_{k} - \omega_{0} \mathbf{R}_{\frac{\pi}{2}} \hat{\mathbf{r}}_{k} \right\|^{2} \ge 0$$

Equilibrium point when $S(\hat{\mathbf{r}},\psi)=0$

$$\dot{\hat{\mathbf{r}}}_{k} = \omega_{0} \mathbf{R}_{\frac{\pi}{2}} \hat{\mathbf{r}}_{k} \Rightarrow \dot{\hat{\mathbf{r}}}_{k} \perp \hat{\mathbf{r}}_{k} \qquad \Longrightarrow \qquad \dot{\mathbf{r}}_{k} = \dot{\mathbf{c}} + \omega_{0} \mathbf{R}_{\frac{\pi}{2}} (\mathbf{r}_{k} - \mathbf{c})$$

Differentiating

$$\dot{S}(\hat{\mathbf{r}},\psi) = \sum_{k=1}^{N} \omega_0 \dot{\hat{\mathbf{r}}}_k^T \hat{\mathbf{r}}_k (\omega_0 - \dot{\psi}_k) = -\kappa \sum_{k=1}^{N} (\omega_0 \dot{\hat{\mathbf{r}}}_k^T \hat{\mathbf{r}}_k)^2 \le 0$$

Lara Briñón Arranz

Cooperative Control Design of Multi-Agent Systems: Application to Underwater Missions

The control inputs of the original/real system are defined by a reference tracking process. The tracking error is denoted by:

$$e_k = \dot{\mathbf{r}}_k - (\dot{\hat{\mathbf{r}}}_k + \dot{\mathbf{c}})$$

We impose the following error dynamics to make the error e_k converge to zero:

$$\dot{e}_k = -\beta e_k$$

And this equation determines the control inputs (\dot{v}_k, u_k) because:

$$\frac{\mathbf{v}_k}{\mathbf{v}_k}\dot{\mathbf{r}}_k + \frac{\mathbf{u}_k}{\mathbf{R}_{\frac{\pi}{2}}}\dot{\mathbf{r}}_k - \dot{\psi}_k\mathbf{R}_{\frac{\pi}{2}}\dot{\hat{\mathbf{r}}}_k - \ddot{\mathbf{c}} = -\beta(\dot{\mathbf{r}}_k - \dot{\hat{\mathbf{r}}}_k - \dot{\mathbf{c}})$$

Lara Briñón Arranz Cooperative Control Design of Multi-Agent Systems: Application to Underwater Missions

13/40

Introduction 00	Problem Statement	Circular Formation	Elastic Formation	Source-Seeking	Conclusion 000
Simulat	ion				

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Introduction 00	Problem Statement	Circular Formation	Elastic Formation	Source-Seeking	Conclusion 000

4.e.,

Scaling Control Design [Briñón-Arranz et al. ACC'10]

To stabilize each AUV to a circular motion centered at a fixed point **c** whose radius tracks the time-varying reference R(t).

Problem Statement Elastic Formation Introduction Circular Formation Source-Seeking Conclusion Scaling Control Design [Briñón-Arranz et al. ACC'10] To stabilize each AUV to a circular motion centered at a fixed point c whose radius tracks the time-varying reference R(t). Coordinates transformation $\hat{\mathbf{r}}_k \triangleq \frac{\mathbf{r}_k - \mathbf{c}}{R(t)}$ R(t)Transformed system

Imposed dynamics to $\hat{\mathbf{r}}_k$

$$\dot{\hat{x}}_k = |\omega_0| \cos \psi_k \dot{\hat{y}}_k = |\omega_0| \sin \psi_k \dot{\psi}_k = \hat{u}_k$$

Introduction 00	Problem Statement	Circular Formation	Elastic Formation	Source-Seeking	Conclusion 000
Simulat	tion				

Problem Statement

Circular Formation

Elastic Formation

Source-Seeking

Conclusion

Uniform distribution along a circular formation

Motivations

- Formation control: previous translation/scaling control laws are not cooperative.
- Phase arrangement of vehicles is arbitrary
- Uniform distribution of a circular formation is appropriate for a source-seeking mission (Lemma: gradient approximation)

Circular Formation

Elastic Formation

Source-Seeking

Conclusion

Uniform distribution along a circular formation

Motivations

- Formation control: previous translation/scaling control laws are not cooperative.
- Phase arrangement of vehicles is arbitrary
- Uniform distribution of a circular formation is appropriate for a source-seeking mission (Lemma: gradient approximation)

Definition

$$\hat{\mathbf{r}}_k \perp \hat{\mathbf{r}}_k \quad \Rightarrow \quad \phi_k = \psi_k - \frac{\pi}{2}$$

Therefore $\phi_{kj} = \psi_{kj}$

Problem Statement

Circular Formation

Elastic Formation

Source-Seeking

Conclusion

Uniform Distribution Control Design

Previous works [Paley et al. 2005, Sepulchre et al. 2007/08] are based on the ideas from synchronization of coupled oscillators.

Potential function $U(\psi)$

- Invariant to rotations $abla U \mathbf{1} = 0$
- Heading angles of transformed system $\mathbf{B}_m = (\cos m\psi_1, \sin m\psi_1, \dots, \cos m\psi_N, \sin m\psi_N)^T$
- \bullet Communication constraints: Laplacian matrix $\boldsymbol{\bar{L}} = \boldsymbol{L} \otimes \boldsymbol{I}_2$

$$U(\psi) = \frac{\kappa}{N} \sum_{m=1}^{\lfloor N/2 \rfloor} \frac{1}{2m^2} \mathbf{B}_m \bar{\mathbf{L}} \mathbf{B}_m$$

Complete graph \Rightarrow Uniform distribution is the only equilibrium point of $U(\psi)$

Circular formation control law with uniform distribution

• Translation/scaling control law +

$$\dot{\psi}_{k} = \omega_{0}(1 + \kappa \dot{\mathbf{r}}_{k}^{T}(\mathbf{r}_{k} - \mathbf{c})) - \frac{\partial U}{\partial \psi_{k}}$$
$$\frac{\partial U}{\partial \psi_{k}} = -\frac{K}{N} \sum_{j \in \mathcal{N}_{k}} \sum_{m=1}^{\lfloor N/2 \rfloor} \frac{\sin m \psi_{kj}}{m}$$

Circular formation control law with uniform distribution

 \bullet Translation/scaling control law +

$$\dot{\psi}_{k} = \omega_{0}(1 + \kappa \dot{\mathbf{r}}_{k}^{T}(\mathbf{r}_{k} - \mathbf{c})) - \frac{\partial U}{\partial \psi_{k}}$$
$$\frac{\partial U}{\partial \psi_{k}} = -\frac{K}{N} \sum_{j \in \mathcal{N}_{k}} \sum_{m=1}^{\lfloor N/2 \rfloor} \frac{\sin m \psi_{kj}}{m}$$

Proof:

$$V(\hat{\mathbf{r}},\psi) = \kappa S(\hat{\mathbf{r}},\psi) + U(\psi) \ge 0$$
$$\dot{V}(\hat{\mathbf{r}},\psi) = \sum_{k=1}^{N} \left(\kappa \omega_0 \hat{\mathbf{r}}_k^T \dot{\hat{\mathbf{r}}}_k - \frac{\partial U}{\partial \psi_k} \right) (\omega_0 - \dot{\psi}_k) \le 0$$

troduction Problem S

oblem Statement

Circular Formation

Elastic Formation

Source-Seeking

Conclusion

Limited Communication Range [Briñón-Arranz et al. ACC'10]

Introduction 00	Problem Statement	Circular Formation ○○○○○○○○○○○●○	Elastic Formation	Source-Seeking	Conclusion 000
					<u> </u>

Simulations

rranz Cooperative Control Design of Multi-Agent Systems: Application to Underwater Missions 21

(&)

Introduction 00	Problem Statement	Circular Formation	Elastic Formation	Source-Seeking	Conclusion 000
Conclus	ions				

- Stabilization of a single vehicle to a circular motion which tracks a time-varying center c(t) or a time-varying radius R(t).
- $\mathbf{c}(t)$ and R(t) are external given references
- Uniform distribution of vehicles along the time-varying circular formation.
- Limited communication range: to avoid other phase arrangement

4. Elastic Formation Control Design

Introduction 00	Problem Statement	Circular Formation	Elastic Formation •••••	Source-Seeking 0000000	Conclusion 000
Affine	Transformati	ons			
	TRANSLATION	SCALI	NG	ROTATION	
	$c_d(t)$		$R_d(t)$		<u>α</u>
т	$C_c = \left(egin{array}{ccc} 1 & 0 & c_x \\ 0 & 1 & c_y \\ 0 & 0 & 1 \end{array} ight)$	$\mathbf{S}=\left(egin{array}{ccc} \mathbf{s}_x & 0\ 0 & \mathbf{s}_y\ 0 & 0 \end{array} ight.$	$\begin{pmatrix} 0\\0\\1 \end{pmatrix} \mathbf{R}_{\alpha} = \left(\begin{array}{c} \end{array} \right)$	$ \cos \alpha - \sin \alpha $ $ \sin \alpha \cos \alpha $ $ 0 0 $	$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$
	$\mathbf{T}_c^{-1} = \mathbf{T}_{-c}$	$s_x > 0, s_y$	> 0	$\mathbf{R}_{lpha}^{-1} = \mathbf{R}_{lpha}^{T}$	

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のQで

Introduction 00	Problem Statement 00	Circular Formation	Elastic Formation	Source-Seeking 0000000	Conclusion 000
Affine	Transformatio	ons			
	TRANSLATION	SCALI	NG	ROTATION	
			$R_d(t)$		α
-	$\mathbf{T}_{c} = \left(\begin{array}{ccc} 1 & 0 & c_{x} \\ 0 & 1 & c_{y} \\ 0 & 0 & 1 \end{array} \right)$	$\mathbf{S}=\left(egin{array}{cc} \mathbf{s}_x & 0\ 0 & \mathbf{s}_y\ 0 & 0 \end{array} ight.$	$\left(\begin{array}{c} 0\\ 0\\ 1\end{array}\right) \mathbf{R}_{\alpha} = \left(\begin{array}{c} \end{array}\right)$	$ \cos \alpha - \sin \alpha $ $ \sin \alpha \cos \alpha $ $ 0 0 $	$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$
	$\mathbf{T}_{c}^{-1} = \mathbf{T}_{-c}$	$s_x > 0, s_y > 0$	> 0	$\mathbf{R}_{\alpha}^{-1} = \mathbf{R}_{\alpha}^{T}$	

Homogeneous Coordinates

The homogeneous coordinates of a vector $\mathbf{z} \in \mathbb{R}^2$ are defined by $\mathbf{z}^h = (z_x, z_y, 1)^T$.

00	00	000000000000000000000000000000000000000	0000000	000
Electic	Eermation			ر میں

Elastic Formation

25 / 40

General transformation G Elastic Formation \mathcal{F} \mathcal{F} is a curve which results of IJK applying **G** to the unit circle C_0 $\mathbf{G} = \prod \prod \prod \mathbf{S}_i \mathbf{R}_{\alpha_i} \mathbf{T}_{c_k}$ $\mathcal{F} = \mathbf{G} \circ \mathcal{C}_0$ i i k F \mathcal{C}_0 \hat{y} elastic formation unit circle $\mathcal{F} = \mathbf{G} \circ \mathcal{C}_0$ $\hat{\mathbf{r}}_k$ ω_0 α G â r R = 1

To stabilize each AUV to an elastic motion $\mathcal{F} = \mathbf{G} \circ \mathcal{C}_0$.

Introduction 00	Problem Statement	Circular Formation	Elastic Formation	Source-Seeking	Conclusion 000
					~

Simulation

Introduction 00	Problem Statement	Circular Formation	Elastic Formation ○○○○●	Source-Seeking	Conclusion 000
Conclus	ions				

- Definition of Elastic Formation based on affine transformations.
- Stabilization of a single vehicle to an elastic motion which tracks several time-varying parameters.
- Desired motion parametrized by a few number of parameters.
- Uniform distribution of vehicles along the time-varying elastic formation.

Introduction	Problem Statement	Circular Formation	Elastic Formation	Source-Seeking	Conclusion

5. Collaborative Source-Seeking

Scalar field: continuous signal distribution $\sigma(\mathbf{r}_k)$

Problem Formulation

Scalar field: continuous signal distribution $\sigma(\mathbf{r}_k)$

Problem Statement

Circular Formation

Elastic Formation

Source-Seeking

Conclusion

Source-Seeking

Approximation of the gradient of a scalar field

Lemma: Gradient Approximation [Briñón-Arranz et al. CDC'11]

$$\frac{1}{N}\sum_{k=1}^{N}\sigma(\mathbf{r}_{k})(\mathbf{r}_{k}-\mathbf{c})=\frac{R^{2}}{2}\nabla\sigma(\mathbf{c})+o(R^{2})$$

Proof:

Based on multi-variable Taylor series expansion of σ at **c**:

$$\sigma(\mathbf{r}_k) - \sigma(\mathbf{c}) = \nabla \sigma(\mathbf{c})(\mathbf{r}_k - \mathbf{c}) + o(R)$$

and applying trigonometric proprieties.

- Each agent estimates its own gradient direction \mathbf{z}_k
- Each agent receives the estimated direction of its neighbors
- Distributed algorithm to obtain the same estimated direction (to keep the circular formation)

This estimated direction will be the reference velocity of the formation center in order to steer the group of agents to the source location.

In this work, we consider a fixed center

- Each agent estimates its own gradient direction \mathbf{z}_k
- Each agent receives the estimated direction of its neighbors
- Distributed algorithm to obtain the same estimated direction (to keep the circular formation)

The objective is to make all estimated directions z_k converge to the mean direction defined as:

$$\mathbf{g}^* = rac{1}{N}\sum_{k=1}^N \mathbf{g}_k; \quad \mathbf{g}_k = \sigma_k(\mathbf{r}_k - \mathbf{c})$$

32 / 40

g* approximates the gradient direction of signal distribution at c

Introduction P 00 C

Problem Statement

Circular Formation

Theorem: Distributed estimation [Briñón-Arranz et al. CDC'11]

Elastic Formation

Source-Seeking

글 🕨 🔺 글 🕨

Conclusion

Distributed Algorithm based on Consensus Filters

$$\dot{\mathsf{z}}_k = -\kappa \sum_{j \in \mathcal{N}_k} (\mathsf{z}_k - \mathsf{z}_j) + \sum_{j \in \mathcal{J}_k} (\mathsf{g}_j - \mathsf{z}_k)$$

Introduction Problem Statement

tatement Ci

Circular Formation

Theorem: Distributed estimation [Briñón-Arranz et al. CDC'11]

Elastic Formation

Source-Seeking

Conclusion

Distributed Algorithm based on Consensus Filters

$$\dot{\mathbf{z}}_k = -\kappa \sum_{j \in \mathcal{N}_k} (\mathbf{z}_k - \mathbf{z}_j) + \sum_{j \in \mathcal{J}_k} (\mathbf{g}_j - \mathbf{z}_k)$$

If g^* satisfies $\|\dot{g}^*\|\leq\nu,$ then $z^*=1\otimes g^*$ is a globally asymptotically $\epsilon\text{-stable}$ equilibrium with

$$\epsilon = rac{(
u\sqrt{2N}(1+d_{max})+lpha\gamma)\lambda_{max}^{rac{5}{2}}(\mathbf{A}_{\kappa})}{\lambda_{min}^{rac{5}{2}}(\mathbf{A}_{\kappa})}$$

Proof:

- error equation $\eta = {f z} {f 1} \otimes {f g}^*$
- error dynamics $\dot{\eta} = \dot{z} \mathbf{1} \otimes \dot{g}^* = -\mathbf{A}_{\kappa} \mathbf{z} + \mathbf{Bg} \mathbf{1} \otimes \dot{g}^*$ where $\mathbf{A}_{\kappa} = (\mathbf{I}_N + \Delta + \kappa \mathbf{L}) \otimes \mathbf{I}_2$ and $\mathbf{B} = (\mathbf{I}_N + A) \otimes \mathbf{I}_2$
- Lyapunov function $V = \frac{1}{2} \eta^T \mathbf{A}_{\kappa} \eta \geq 0$

Introduction 00	Problem Statement	Circular Formation	Elastic Formation	Source-Seeking ○○○○●○○	Conclusion 000
Simulat	tions				

Cooperative Control Design of Multi-Agent Systems: Application to Underwater Missions

Problem Statement

Circular Formation

Elastic Formation

Source-Seeking ○○○○○●○ Conclusion

Simulations (Input-average Consensus Algorithm)

Lara Briñón Arranz 👘

Cooperative Control Design of Multi-Agent Systems: Application to Underwater Missions

35 / 40

Introduction Problem Statement Circular Formation Elastic Formation Source-Seeking Conclusion

Simulations with time-varying source

Introduction 00	Problem Statement	Circular Formation	Elastic Formation	Source-Seeking	Conclusion ●○○
6 Cond	clusions				

Formation Control

- Stabilization of a fleet of AUVs to a time-varying circular motions (based on ideas from collective circular motions)
- Main idea: coordinates transformation + reference tracking
- Generalization to stabilize the AUVs to elastic formations
- Uniform distribution of vehicles along the formation

Introduction 00	Problem Statement	Circular Formation	Elastic Formation	Source-Seeking	Conclusion ●○○
6 Cond	clusions				

Formation Control

- Stabilization of a fleet of AUVs to a time-varying circular motions (based on ideas from collective circular motions)
- Main idea: coordinates transformation + reference tracking
- Generalization to stabilize the AUVs to elastic formations
- Uniform distribution of vehicles along the formation

Collaborative Source-Seeking

- Lemma: approximation of the gradient
- Distributed algorithm to estimate the gradient direction
- Analysis of the algorithm with a time-varying source

Introduction 00	Problem Statement	Circular Formation	Elastic Formation	Source-Seeking	Conclusion ○●○
Perspec	ctives				

Formation Control

- Generalization of proposed methodology to collective motions
- Time-varying formation in a flowfield
- Extension to 3-dimensions?
- Consider obstacle avoidance techniques

Introduction 00	Problem Statement	Circular Formation	Elastic Formation	Source-Seeking	Conclusion ○●○

Perspectives

Formation Control

- Generalization of proposed methodology to collective motions
- Time-varying formation in a flowfield
- Extension to 3-dimensions?
- Consider obstacle avoidance techniques

Collaborative Source-Seeking

- Lemma in the case of time-varying circular formation?
- Source-seeking algorithm: time-varying formation control + distributed estimation of the gradient
- Other communications problems (noise, packet drops, time delays)

Cooperative Translation Control based on Consensus with Reference Velocity: a Source-seeking Application with a Fleet of AUVs

Introduction 00	Problem Statement	Circular Formation	Elastic Formation	Source-Seeking 0000000	Conclusion 000

Grazie per la vostra attenzione

