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Where is the center of the world?

Synchronization on a sphere

Where is the mean position? How do agents move?



Consensus on nonlinear spaces & Graph coloring

1. Some examples to motivate nonlinear consensus

2. Formalizing consensus on nonlinear spaces

3. Link with graph coloring : (just) a complexity result



|. Orientation synchronization e.g. in
formations of spacecraft

State space of orientations = manifold of rotation matrices SO(3)
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ll. Coordination on the circle appears in
problems involving oscillator networks

Synchronized fireflies
Huygens' clocks

huyaens’ \6 clocks

For 6, € S', k=1,2,...,N

phase synchronization :

frequency synchronization :

Laser tuning
Cell/neuron action
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lll. Distributed sensor networks e.g. to collect

ocean data (NaomiLeonard et al.)

Autonomous underwater vehicles, sparse communication
Buoyancy-driven at constant speed ~ 40 cm/s

Goal : collective trajectory planning
on a simplified AUV model
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Agreement on collective motion
Involves nonlinear spaces

Decision on a direction of Synchronization on S’
straight motion
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General motion “in formation”

translations IR?
non-trivial coupling: Lie group SE(2)
rotations S’



NB: In nonlinear spaces, coordinated motion
differs (more difficult) from consensus

Coordinate motion in IR" = synchronize velocities in IR"
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Motion “in formation”: relative positions of the agents are constant

o >

Equal velocities for all the agents in TR" = IR"



NB: In nonlinear spaces, coordinated motion
differs (more difficult) from consensus

Coordinate motion on the sphere = 7?77

=t
y 4

The velocities belong to
different tangent spaces TS"

The intersection of all tangent

E ﬁ spaces is generically empty



NB: In nonlinear spaces, coordinated motion
differs (more difficult) from consensus

Algorithms for coordinated motion on Lie groups, see:

“Coordinated motion design on Lie groups”
A. Sarlette, S. Bonnabel and R. Sepulchre,
IEEE Trans. Automatic Control, vol. 55 nr. 5, pp. 1047-1058 (2010)




V. Coordination on nonlinear spaces
Is linked to algorithmic applications

Packing Clustering
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- points on a sphere
- lines or subspaces of R" (Grassmann manifolds)

Applications: optimal coding, numerical integration, learning of
structure in data, optimal placement of converging
laser beams / representative planar projections,...



Setting

Identical autonomous agents ° °
®
same control law for each agent ® °
no “leader” , no external supervisor ® g ®

Limited interconnection links between agents

agent k has access only to some agents | °o— \
interconnection graph G (directed, varying) e e — "

Invariance with respect to absolute position
the agents' behavior only depends

on their relative positions @ = @



Consensus on nonlinear spaces & Graph coloring

1. Some examples to motivate nonlinear consensus

2. Formalizing consensus on nonlinear spaces
Synchronization: from vector spaces to the circle
Formalization on compact homogeneous manifolds
Global synchronization properties

3. Link with graph coloring : (just) a complexity result



A linear algorithm achieves global exponential
synchronization on vector spaces

l
T = Z (zj—z)) = d(mj—xy)

jk

with
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Mg = 32 ik Tj

For graph G fixed undirected : gradient of % Z Z |z — ;z:A.]|2
ko j~k



A linear algorithm achieves global exponential
synchronization on vector spaces

Exponential synchronization is ensured for any initial condition
iff G is uniformly connected, i.e. 3 T such that the union of links

during [ t, t+T ] is connected for all t.

Stability of multi-agent systems with time-dependent communication links,
L.Moreau, IEEE Trans. Automatic Control vol. 50(2), 2005
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For G undirected: final state = arithmetic mean of the x,(0)



This result has two fundamental limitations

The convergence result involves a condition on G.
But often interconnections depend on the states of the agents.

What about state-dependent graphs ?

= under investigation  see Bullo et al., Aeyels/De Smet, Blondel/Hendrickx

The global convergence argument does not extend to nhonconvex
spaces like the circle, sphere,...

How do synchronization algorithms behave globally on manifolds ?
= topic of this talk



An algorithm with the same local behavior
can be designed on the circle

L0, = Y _sin(0; — 0;) = d Projpgig, <M"' B ‘OmA)
J~k

with M, = ij ? el

Similar to Kuramoto and
Vicsek models describing
natural behavior

For graph G fixed undirected : gradient of 'Z Z H(’H cfiek'|\2
k g~k



In the following we will extend this to other
“perfectly symmetric” nonlinear spaces

= compact homogeneous manifolds (CCH)

Formally :  quotient manifold of a Lie group by a subgroup
Intuitively:  “all points are identical”

Examples: sphere S"
rotation matrices SO(n) (and all other compact groups)
Grassmann manifolds (see last part)

In this talk: compact homogeneous manifolds H embedded in IR"
such that |x| =r constant for x € H



An alternative distance measure
yields convenient properties

Geodesic distance Chordal distance

). —0.;
dy(0y,0;) =0, — 0;] ONS"  4.(0,.0.) = 2sin| 2| onS]
Not obvious on On CCH manifolds:
general manifolds consider dc(zy, ;) = ||z} — ]|

dy® not smooth everywhere d.2 smooth everywhere
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Not obvious on
general manifolds

dy® not smooth everywhere

Chordal distance
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An alternative distance measure
yields convenient properties

Geodesic distance

dg(0y,0;) = |0, — 0;] onS'

Not obvious on
general manifolds

dy* not smooth everywhere

Chordal distance

dc(0y,,0;) =|e'’k — %] on §'

On CCH manifolds:
consider (l(’(:‘ﬁk? I’J) — H'T/{ = I“JH

d.? smooth everywhere



The “induced arithmetic mean” of the
chordal distance is easily computable

Induced arithmetic mean

M = min (ZI de(x, 1:/1,)2) = Projp (nz,. = %Z; :lfA.)

zeH

ige ’ . 2
# traditional Karcher (or Fréchet) mean i (Z r ATz k)-)
AS

Anti-M  — max (ZA d(.(:z:,a;*;‘.)z) = Projg (—m)
TE



The “induced arithmetic mean” of the
chordal distance is easily computable

OnS" M = arg (ZA ()1'9]\.)

On SO(n): M = polar decomposition of m

On the Grassmann manifold, representing an element of Gr(p,n) by
the orthogonal projection matrix IT_on the corresponding subspace:

M = p-dimensional principal eigenspace of m = > IT



The induced arithmetic mean allows to define
several specific configuration types

Synchronization

Consensus

Anti-Consensus

Balancing

X.

i =x, foralljk

each agent k moves as close as possible to
its fixed neighbors, such that

each agent k moves as far as possible to
its fixed neighbors, such that

Vk, zp€ Anti-M({z;:j~ k})

each point on the manifold is equally close to
the agents, i.e. M ({z.}) = H



The gradient of Vg yields consensus algorithms

Ly = —a grady i (V) for k=1,2,..,N

with o > 0 for consensus, a <0 for anti-consensus

{ . N
= ((]—filfl‘. = Pl‘(’)-]TH(.I'/\.) ( Z (‘IJ —
{

Jg:j~k or k~jg} OK only for undirected G

Final algorithm (not gradient for directed, varying graphs)

1 S
(;_1‘171 = « PloJTH(:,.k) (ZJ-W,\,(:EJ- — TL))

explicit forms on SO(n), Grassmann,...



These developments can be adapted
to more complex agent dynamics

“Cascade” approach

use the result of the consensus algorithm as desired velocity,
function of the relative positions of the agents, at the input of
a tracking algorithm

Planning (consensus) » | Tracking (dynamics)

“‘Energy shaping” approach

for a mechanical system, use V. as artificial potential
combined with appropriate artificial dissipation

M, (o=
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Synchronization is ensured locally.
The global behavior is a priori unclear.

Contraction arguments hold if Convergence ?
all agents are in a semicircle What is the mean of 6,(0) ?



Fixed but directed graphs can lead to
limit cycles, quasi-periodic behavior,...

Y =




Undirected graphs ensure convergence
to an equilibrium set, but which one ?

Some graphs feature stable local attraction equilibria # synchronization

What about repulsive agents?

l ,, :
ok = 'Z (zj=x) onRr %HA' = 'Z sin(0; — 0r)  on circle
gk Gk

Agents drive away to infinity Stable equilibria
are not trivial



The existence of local equilibria is sensitive to
the attraction profile between connected agents

Circle : %ﬁl,- = Z g0 —0y)

Variation 1

Variation 2
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IAM gradient:

g(f) =sin(0)

Synchronization is only stable

equilibirum for any fixed
undirected graph

3

Stable equilibrium different from

synchronization even for
all-to-all graph

&2



Alternative algorithms can overcome spurious
local equilibria of standard consensus motion

Gossip algorithm = forced asynchrony

At each time, select a single link, and only
its 2 agents move towards each other

Thm: If G is uniformly connected, synchronizes
with probability 1 also on the circle, sphere,...

180 —

Simulations
on S’

90}

0

-90

‘ : -180 :
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75% of random runs : full circle | half circle
nothing at 800 iterations oscillation | convergence
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Alternative algorithms can overcome spurious
local equilibria of standard consensus motion

Auxiliary variables (can be written with agent-based coordinates)

Embed the manifold in vector space R"
Assign an auxiliary variable y, € R" to each agent

The y, reach agreement by consensus in R"
o« " 4

—)
| X ¢~ —>

Positions x, € H are made to follow the projection of y, on H
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Consensus algorithms seem much
harder to analyze on nonlinear spaces

Attractive agents, fixed undirected interaction graph
= seems difficult to say if synchronization is the only stable equilibrium

{ How hard can equilibrium characterization be ? ]

“Consensus on nonlinear spaces and graph coloring”
A. Sarlette, CDC Orlando, pp. 4885-4890 (2011)



|dea: C: Interacting agents setting
graph coloring

Graph theory

many complexity results
Analog computation:

continuous dynamics solve
computational problem

Graph parametrizes
interacting agents in
continuous dynamics




Result:

equilibrium characterization
on projective space is NP-hard

graph k-coloring

NP-hard for k>2

(robust) repulsion on <

projective space PK'R




Graph coloring is a classical
computational problem

= Given graph G(V,E) and integer Kk,
find o:V—{1,2,...,k} (colors)
s.t. o(a)#o(b) forall (a,b)eE

Ex. country maps, Sudoku,...




Graph coloring is a classical
computational problem

= Given graph G(V,E) and integer Kk,

find o:V—{1,2,...,k} (colors) <.
s.t. o(a)#o(b) forall (a,b)eE

Ex. country maps, Sudoku,...

Complexity

For k=2: G is 2-colorable & G is bipartite (polynomial)
For k>2: NP-hard (in #V) to determine if G(V,E) is k-colorable



Graph k-coloring &  Directions in R¥

k different equivalent colors k orthogonal lines of Rk
{1,2,....,k}

Q@ ® >




Lines of Rk define the projective space PX'R

x € P*'R represents a line of Rk

Handy representation: X/

orthonormal projection I1 onto line x
IT € Rk | rank(IT)=1, trace(IT1)=1 IM=vvh /[ (vlv)

Chordal distance on PK1R

dc(HlsH‘Z) L= HH1—H2HF




Repulsive agents try to maximize
their mutual distance

Cost function

W = Z(a,b)GE g(d. (11, Hb)z) graph dependence

with g(x) a strictly monotonically increasing function on [0, 2]

Gradient dynamics
%Ha = grady W
==Y ¢(de(T, 1)) (T, TI,IT, + T TI,10,)

= anti-consensus motion on projective space



Goal. relate the stable equilibria
to graph coloring solutions

Stable equilibria = local maxima of W

|—> result about complexity of characterizing stable equilibrium set
(as complex as deciding graph coloring)

|—> possibility to solve graph coloring by swarm optimization?
(continuous evolution of the swarm converges to solution
= distributed analog computation)



Two particular sets in P*1R

So - {(H17H27 7HN> = (Pk_lR)N : HCLHb — HbHCL \V/a/, b }

all states belong to a discrete set of k orthogonal lines = “colors”

Sp(G) = {111, My, ... TIy) € (PP 'R)Y : TI,IT, =0 VY (a,b) € E'}

every edge is stretched to the maximum distance

Properties :

Sp(G) can be empty depending on G
Sp(G) global maxima of W if # & ()
SoNSp(G)#Y ifandonlyif Gis k-colorable  (**)



The complexity result

[Question . Given G(V,E) and P¥'R, is any pointin S, a

stable equilibrium for the repulsive agents ?

yes/no question (typical decision problem)
about specific property of equilibrium set

7

Theorem: This question is as difficult as graph coloring
-- that is NP-hard for k>2 --
if g(x) satisfies ¢'(0)/g'(2) > [5£1/([F]—1)

J




The condition on coupling function g(x)
IS not too restrictive ...

Condition  ¢(0)/¢'(2) > [ 3-]/([3]—1)

g(x)

. X1\ /x2
_.=""Kuramoto: g oc identity

> x =2 sin? ¢

0 >

Large class of g(x) coupling functions
Allows g(x) oc identity (canonical consensus) for N/k — o



Proof idea

role of the condition on g(x)

always ensure

stable unstable

not empty < graph is k-colorable

(D stable eq. in So & graph k-colorable)




Simulations with g(x) = atan(x/2) for k=3

Petersen graph, 3-colorable
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Simulations with g(x) = atan(x/2) for k=3

Grotzsch graph, not 3-colorable
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Can we use the distributed dynamical system
to solve graph coloring ?

Stable equilibria = local maxima of W

|—> result about complexity of characterizing stable equilibrium set
(as complex as deciding graph coloring) OK

|—> possibility to solve graph coloring by swarm optimization?
(continuous evolution of the swarm converges to solution

= distributed analog computation) 7



The multi-agent system on PR

e does not solve graph-coloring

Global maxima of W in So N Sp(G) «— graph k-coloring

So Multi-agent system for
colorable G converges to
always ensure Sp(G) # SoNSH(G)

stable unstable

[Kochen-Specker Theorem]
There exist non-colorable G
for k=3 with Sp(G) # &

= A system that converges to a point in Sp(G)\So
can correspond to colorable or non-colorable G...



The Kochen-Specker theorem discusses
fundamentals of quantum measurement

element of P*'R
= possible result of projective quantum measurement on Rk

Kochen-Specker:
For k=3, there does not exist a function f from the set of possible

measurement projectors P; € P¥'R to associated measurement results in {0,1}
such that for every {Pi} that form a physical observable (i.e. that commute and

> Pi=1) we have Y f(Pi)=1

Use: show a contradiction with classical re-interpretations of quantum laws



The Kochen-Specker theorem discusses
fundamentals of quantum measurement

Proof:

Constructs an example of N elements of P¥'R, where mutually
orthogonal lines are connected in a graph. Then assigning

f(color 1)=1, f(other colors)=0 would solve the task if colorable

They have a counterexample with N=31 agents for k=3

= They construct a situation where all pairs of connected agents
are orthogonal in R3, but the graph is NOT 3-colorable



Conclusion

General geometric interpretation of consensus
allows extension to nonlinear spaces

Consensus motion yields more complex global behavior than on R"
- possible limit cycles, quasi-periodicity,... for directed graphs

- multiple equilibria for undirected graphs
depending on precise coupling function & interaction graph



Conclusion

Graph-coloring —> complexity of consensus on projective space
For a class of repulsion functions (robustly difficult)
Link not bi-directional: provides no solution for graph coloring

Equilibrium stability as key feature to characterize

NP-hard for k>2

= leaves open the case k=2 correspoding to the circle
(which seems not trivial, but further unclear how hard)
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