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Where is the center of the world?

Synchronization on a sphere

Where is the mean position? How do agents move?
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3. Link with graph coloring :  (just) a complexity result



I. Orientation synchronization e.g. in 
   formations of spacecraft

State space of orientations = manifold of rotation matrices  SO(3) 

DARWIN interferometer
(NASA / ESA concept study)



II. Coordination on the circle appears in
    problems involving oscillator networks



Autonomous underwater vehicles, sparse communication
Buoyancy-driven at constant speed ~ 40 cm/s

Goal : collective trajectory planning
           on a simplified AUV model

III. Distributed sensor networks e.g. to collect 
     ocean data    (Naomi Leonard et al.)



Agreement on collective motion
involves nonlinear spaces
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NB:  In nonlinear spaces, coordinated motion 
        differs (more difficult) from consensus

Algorithms for coordinated motion on Lie groups, see:

“Coordinated motion design on Lie groups”
A. Sarlette, S. Bonnabel and R. Sepulchre,
IEEE Trans. Automatic Control, vol. 55 nr. 5, pp. 1047-1058 (2010)



IV.  Coordination on nonlinear spaces
      is linked to algorithmic applications



Setting
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A linear algorithm achieves global exponential 
synchronization on vector spaces



A linear algorithm achieves global exponential 
synchronization on vector spaces



This result has two fundamental limitations

The convergence result involves a condition on G. 
But often interconnections depend on the states of the agents. 

What about state-dependent graphs ?

⇒ under investigation      see Bullo et al., Aeyels/De Smet, Blondel/Hendrickx 

The global convergence argument does not extend to nonconvex
spaces like the circle, sphere,... 

How do synchronization algorithms behave globally on manifolds ?

⇒ topic of this talk



An algorithm with the same local behavior
can be designed on the circle



In the following we will extend this to other
“perfectly symmetric”  nonlinear spaces

=  compact homogeneous manifolds  (CCH)

Formally :      quotient manifold of a Lie group by a subgroup

Intuitively:  “all points are identical”

Examples:  sphere Sn

    rotation matrices SO(n)  (and all other compact groups)
    Grassmann manifolds    (see last part)

In this talk:
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The “induced arithmetic mean” of the
chordal distance is easily computable
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The induced arithmetic mean allows to define 
several specific configuration types



The gradient of  VG yields  consensus algorithms



These developments can be adapted
to more complex agent dynamics
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Synchronization is ensured locally.
The global behavior is a priori unclear.



Fixed but directed graphs can lead to
limit cycles, quasi-periodic behavior,...



Undirected graphs ensure convergence
to an equilibrium set, but which one ?

What about repulsive agents?

          Agents drive away to infinity Stable equilibria
are not trivial 

- -on Rn on circle



The existence of local equilibria is sensitive to
the attraction profile between connected agents



Alternative algorithms can overcome spurious 
local equilibria of standard consensus motion

Gossip algorithm     = forced asynchrony
    At each time, select a single link, and only
    its 2 agents move towards each other

Thm:  If G is uniformly connected, synchronizes 
with probability 1  also on the circle, sphere,...



Alternative algorithms can overcome spurious 
local equilibria of standard consensus motion

Auxiliary variables     (can be written with agent-based coordinates)
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Attractive agents, fixed undirected interaction graph
➱  seems difficult to say if synchronization is the only stable equilibrium

How hard can equilibrium characterization be ?

“Consensus on nonlinear spaces and graph coloring”
A. Sarlette, CDC Orlando, pp. 4885-4890 (2011) 

Consensus algorithms seem much
harder to analyze on nonlinear spaces



Idea:        interacting agents setting
                graph coloring

Analog computation: 

  continuous dynamics solve 
  computational problem

Graph theory 

    many complexity results

Graph parametrizes 
   interacting agents in
   continuous dynamics



 Result:    equilibrium characterization
                on projective space is NP-hard

    graph k-coloring 

    NP-hard for k>2

   (robust) repulsion on
   projective space  Pk-1R



≜ Given graph G(V,E) and integer k,
    find  ϱ : V       {1,2,...,k}   (        )
    s.t.  ϱ(a) ≠ ϱ(b)   for all   (a,b) ∈ E

   
    Ex. country maps, Sudoku,...

Graph coloring is a classical
computational problem

colors ☺



≜ Given graph G(V,E) and integer k,
    find  ϱ : V       {1,2,...,k}   (        )
    s.t.  ϱ(a) ≠ ϱ(b)   for all   (a,b) ∈ E

   
    Ex. country maps, Sudoku,...

Graph coloring is a classical
computational problem

colors

Complexity

    For k=2:  G is 2-colorable  ⇔  G is bipartite  (polynomial)
    For k>2:  NP-hard (in #V) to determine if G(V,E) is k-colorable



k different equivalent colors
{1,2,...,k}

Graph k-coloring         &      Directions in Rk

k orthogonal lines of Rk 



x ∈ Pk-1R   represents a line of  Rk 

Lines of Rk define the projective space  Pk-1R

x
v

Handy representation: 
     orthonormal projection Π onto line x
     Π ∈ Rk×k  ,  rank(Π)=1 ,  trace(Π)=1               Π = v vT  /  (vTv)

Chordal distance on  Pk-1R

v1
v2

x1 x2

ϕ



Cost function

     with  g(x)  a strictly monotonically increasing function on  [0, 2]

Repulsive agents try to maximize
their mutual distance

graph dependence

Gradient dynamics

     

     = anti-consensus motion on projective space



Stable equilibria = local maxima of  W  

       result about complexity of characterizing stable equilibrium set 
       (as complex as deciding graph coloring)

       possibility to solve graph coloring by swarm optimization?
       (continuous evolution of the swarm converges to solution
         = distributed analog computation)

Goal:  relate the stable equilibria
           to graph coloring solutions



So = 
           all states belong to a discrete set of k orthogonal lines = “colors”

Sp(G) =  
                every edge is stretched to the maximum distance

Two particular sets in Pk-1R

    Properties  :        

       Sp(G)  can be empty depending on G
       Sp(G)  global maxima of  W  if  ≠  ∅                              (*)
       So ∩ Sp(G) ≠ ∅     if and only if    G is k-colorable      (**) 



  Question :   Given G(V,E)  and  Pk-1R,  is any point in So a
                      stable equilibrium for the repulsive agents ?

yes/no  question  (typical decision problem) 
about specific property of equilibrium set

The complexity result

   Theorem:   This question is as difficult as graph coloring
                       -- that is NP-hard  for  k>2 -- 
                       if  g(x)  satisfies   



Condition                                                             

Large class of  g(x)  coupling functions 
Allows   g(x) ∝ identity   (canonical consensus) for   N/k       ∞

The condition on  coupling function  g(x)
is not too restrictive ...

x1 x2

ϕ

x = 2 sin2 ϕ

g(x)

0 2

Kuramoto: g ∝ identity



ensure
unstable

role of the condition on g(x)

Proof idea  

?

Sp(G) So

always
stable

not empty  ⇔  graph is k-colorable

➱  stable eq. in So  ⇔  graph k-colorable



Petersen graph,  3-colorable

    

Simulations with   g(x) = atan(x/2)   for  k=3



Grötzsch graph,  not  3-colorable

    

Simulations with   g(x) = atan(x/2)   for  k=3



Can we use the distributed dynamical system 
to solve graph coloring ?

OK

Stable equilibria = local maxima of  W  

       result about complexity of characterizing stable equilibrium set 
       (as complex as deciding graph coloring)

       possibility to solve graph coloring by swarm optimization?
       (continuous evolution of the swarm converges to solution
         = distributed analog computation) ??



Global maxima of W in So ∩ Sp(G)          graph k-coloring 

The multi-agent system on Pk-1R 
does not solve graph-coloring

[Kochen-Specker Theorem] 
There exist non-colorable G   
for k=3   with Sp(G) ≠ ∅    

NO

➱  A system that converges to a point in Sp(G)\So  
     can correspond to colorable or non-colorable G...

ensure
unstable

Sp(G) So

always
stable

Multi-agent system for
 colorable  G  converges to 
 Sp(G)  ≠   So∩Sp(G)



element of  Pk-1R   
≡  possible result of projective quantum measurement on Rk 

Kochen-Specker:
 For k≥3, there does not exist a function  f   from the set of possible 
 measurement projectors Pi ∈ Pk-1R to associated measurement results in {0,1}
 such that  for every {Pi} that form a physical observable (i.e. that commute and 
 ∑ Pi = I)  we have  ∑  f (Pi) = 1

Use:  show a contradiction with classical re-interpretations of quantum laws

The Kochen-Specker theorem discusses
fundamentals of quantum measurement



Proof:  

   Constructs an example of  N  elements of  Pk-1R, where mutually 
   orthogonal lines are connected in a graph. Then assigning

   f (color 1)=1 ,   f (other colors)=0   would solve the task if colorable

   They have a counterexample with  N=31 agents for k=3

➱  They construct a situation where all pairs of connected agents 
     are orthogonal in R3 , but the graph is  NOT  3-colorable

The Kochen-Specker theorem discusses
fundamentals of quantum measurement



General geometric interpretation of consensus
allows extension to nonlinear spaces

Consensus motion yields more complex global behavior than on Rn

- possible limit cycles, quasi-periodicity,... for directed graphs 

- multiple equilibria for undirected graphs
  depending on precise coupling function & interaction graph

Conclusion



Graph-coloring         complexity of consensus on projective space 

     For a class of repulsion functions (robustly difficult)

     Link not bi-directional: provides no solution for graph coloring

     Equilibrium stability as key feature to characterize

NP-hard for k>2 

     ➱ leaves open the case k=2 correspoding to the circle
     (which seems not trivial, but further unclear how hard)

Conclusion
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