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Resource allocation INViIFinetworks

A Infrastructure Network

I How to tune the contention scheme according to the node
applications and to the network congestion?

ABandwidthsaturationanalysis
A Gametheoreticalanalysisand mechanisndesign
A Multi-hop topologies
I How to combine contention and scheduling schemes?
ANon saturation analysis of clique capacity

AGraph coloring solution for scheduling and game
theoreticalapproachfor extracontention
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DCF as a Slotted Access Protocol

Model Time

00 | e ||

Actual Time

-Carrier sensgynchronizesransmissions of waiting stations and protocol
operations can be summarized in terms of average access probability

-In each system slot, each station accesses with probabildaypd does not access
with probability kt).

-t depends on the collision probability p and on the average CW value. For a given
it can be increased by using nestandard CW values!

Station strategy can be represented by the tuning of the
transmission probability ¢



InfrastructuredNetworks

Contentionbased access as
a non-cooperative game

-Contending stations = players \/‘j background
-Channel access probability= player strategy

Game definition:

N players, [0,1set of strategies, node payoff
OWMZE WHZXI XX Wby

-Payoff perceived by each station depends on
the whole set of probabilityt(, t,2 t X N
chosen by all the stations Finitenumber N-1 of STA

(ty, t, Xt,)->(t;, p)with pi =1- CA) 1-¢)) u Pi

J,

April 18, 2012 PADOVA 5



Node Payoff

-Which performance metric has to be optimized??

-Throughput: for a given pi, station i best response leadstot; =1

J == ti(l' p.)P ) :(1_ p|)P
T @ e p)s H- @ 0)a- pIT ™ T

If exists t;=1 (p;=1)->resource collapse and equilibrium with O payoff!

-Throughput + enerqy cost/penalty:
J=3-¢(-1)

Non-zero payoff at equilibrium states, but arbitrary cost definitions or
penalty functions

-Our idea: cconsiderqoitty tiansmissionnand ceceptiondarocass!!

Nodes belonging to a network are usually interested not only in transmitting, but also in
receiving packets!



Infrastructured Networks

If station Xtries to get all If stationX leaves spaces the
wireless resources=  no AP ==  a|so the other statior
space for the other stations, able to transmit.ki - desired
Including the AP! up/down ratio for each station
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Node Payoff with Bidirectional Traffic

A Assumption: AP is a legacy statiqe=f(p,p sharing the
downlink throughput among the stations.

A For the istation:

i Uplink throughput: Siu(fi,pi):ti(l' 2[)sfllc;t][AP)P Tu

i Downlink throughput:

Sid(fi, pl) = X tAP(l_ pAP)P l ['_"j

E[slof]

I The utility function
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InfrastructuredNetworks

Main Results

I Determination of Nash Equilibria and Pareto
Optimality

I Mechanism desigr> using of the AP to force
desired equilibria

I Implementation of new DCF operations with best
response strategy

I Implementation of Channel Monitoring
functionalities (estimation of number of nodes
and load conditions)

I Analysis of NE convergence and stabllity
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InfrastructuredNetworks

Node Best Response

1 ! i LN | . ! i TR
Sjp:kl%own
08

ki=k=1, xi=1/n
(_, p) outcome

~~l«-b — kixil‘.AP
- 1- (1' kixi)[AP

where:

Station utility [Mbps]

_ap=—T(Pap Is function of
the strategy set_(p)

01 1

0.001 0.01

Channel access probability
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InfrastructuredNetworks

Nash EquilibriumKi=k=cost,x=1/n)

Propositiort Thehomogeneousstrategyvector(_", "2 X) such

that

*

kf(1- (1- £)")

“n-(n- k) f(L- (L- )Y

Isthe only Nashequilibriumin [0,1) of the gamewith non-null
utility.
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Proof sketch:
At the NE point, two conditions
simultaneously hold:

e . kt
st = P =gt
‘: n- (n' k)[AP g( AP)

b= f(1- (- £)Y)

being f() decreasing in starting
from O, and g()increasingn _,p
a singlantersectionexists
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InfrastructredNetworks

Nash EquilibriumK )

Proposition Foragivenvectork=(k;,k,, .k.) of application
requirements by equallysharingthe downlinkthroughput, it existsa

unique NEwith non-null utility.
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Proof sketch:

At the NE point, N+1 conditions
simultaneously hold:

?e — kit AP

ITl‘l_
1 n- (n' k1)pr
%}[ — kZI.AP

2
11 N- (N- Ky)Z pp
17
ET”
T _ kn[AP
T'[[n -
11 n- (n' kn)[AP
IrAP = f(l' P(l' ti))

The first N conditions represent a
1-dim curve in a N+1 space; the last
one a surface..
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InfrastructredNetworks

Nash EquilibriumKi, xi)

Proposition Foragivenvectork=(k;,k,, .k.) of application
requirements and agivenvectorof downlinkthroughputcoefficients
(x1,x2.xn), it existsa unigue NEwith non-null utility.

k1 =1 s k2=2
k1 =50, k2=5 ———————

k1=100, k2=200 --------
NE L]

AP
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InfrastructredNetworks

Numerical Example:
Resource Repartition

-Custommade simulation platform;
-Interval update:0.5 seconds; 802.11b; P=1500 bytes

Aggregated Throughput [Mbps]
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InfrastructredNetworks

GamebasedMACScheme
Implementation and evaluation

A Each station has two estimators for probing uplink and
downlink load conditions

A The station best response depends not only on the applicatiol
requirements (Ki) but also on the uplink load (n) and downlink
load (Tap)

A Cases
I 1) AP as a legacy

I 2) AP implementing the adaptive tuning mechanism of the channel
access probability

A Algorithms: AA (Application Agnostic scheduling) and AW
(Application aWare scheduling)
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InfrastructuredNetworks

Effects of best response strategy
(Timevarying Application requirements )
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InfrastructredNetworks

Final Remarks on Infrastructure Networks

AContentionbased accessprotocols can be defined in
terms of non-cooperativegames

- Standardsare somehowlimited with the proliferation

of opensourcedrivers
Aln infrastructure networks, the node strategiesconverge
to Nash equilibria with non-zero payoff, by considering
both uplink and downlink bandwidth requirementsof user
applications
AAP can be usedfor mechanismdesign,in order to force
desiredequilibriumconditions

- by tuningits channelaccesgprobability

- by employing schedulingpolicies for improving the

networkfairness
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Ad-hoc Networks

Ad-hoc networks
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ASuitable for a large number of applications:
- from low-rangesensor networks targeted to distributed
monitoring
- to high-range mesh networks targeted to build
Infrastructureless transport networks
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Ad-hoc Networks

Ad-hoc Networks

A Most adhoc networks rely on contentichased medium
access protocols, regardless to the specific physical layer
technology ( IEEE 802.15.4 PHY or 802.11a/b/g/n PHY,
defining available bandwidth, transmission power, modulation

coding scheme..)

A The use of carrier sense and random backoff mechanisms is
simple and wetestablished solution to manage multiple
access over a shared channel bandwidth.

A CSMA/CA protocols exhibit very poor performancenfoti-
hop transmissions .
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Ad-hoc Networks

Activity Intervals

In multi-hop networks, overlapping transmissions can seriously impair
network performance!

Y channel access based on carrier-sense suffers of collisions
caused by hidden nods

Small activity intervals (energy saving) or high load can bring
some forms of synchronization..
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Ad-hoc Networks

Example of CSMA limits

Network scenario: simple chain of nodes with sources at the edge
Throughput degrades down to zero with bi-directional traffic because of collisions!!
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