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Resource allocation in WiFi networks 

Å Infrastructure Network 

ïHow to tune the contention scheme according to the node 
applications and to the network congestion? 

ÅBandwidth saturation analysis 

ÅGame theoretical analysis and mechanism design 

ÅMulti -hop topologies 

ï How to combine contention and scheduling schemes? 

ÅNon saturation analysis of clique capacity  

ÅGraph coloring solution for scheduling and game 
theoretical approach for extra contention 
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Infrastructure Networks 

April 18, 2012 PADOVA 3 



DCF as a Slotted Access Protocol 

-Carrier sense synchronizes transmissions of waiting stations and protocol 
operations can be summarized in terms of average access probability 

-In each system slot, each station accesses with probability t (and does not access 
with probability 1-t). 

-t depends on the collision probability p and on the average CW value. For a given p, 
it can be increased by using non-standard CW values!  

Station strategy can be represented by the tuning of the 

transmission probability t 

 

é. 

Model Time 

Actual Time 



Contention-based access as  
a non-cooperative game 
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-Contending stations = players 

-Channel access probability ˍ = player strategy 

Game definition:  

N players, [0,1]N set of strategies, node payoff 
όWмΣ WнΣ ΧΣ Wbύ 

 

-Payoff perceived by each station depends on 
the whole set of probability (t1, t2Σ Χ tn) 
chosen by all the stations 

(t1, t2, Χ tn)->(ti, pi) with pi =   
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Node Payoff 
 -Which performance metric has to be optimized?? 

-Throughput: for a given pi, station i best response leads to ti = 1 

 

 

If exists tj=1 (pi=1)->resource collapse and equilibrium with 0 payoff! 

-Throughput + energy cost/penalty:  

 
 

Non-zero payoff at equilibrium states, but arbitrary cost definitions or 

penalty functions 
 

-Our idea: consider jointly transmission and reception process!! 
 

Nodes belonging to a network are usually interested not only in transmitting, but also in 
receiving packets!  
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AP AP 

If station X tries to get all 
wireless resources          no 
space for the other stations, 
including the AP! 

X 

If station X leaves spaces to the 
AP            also the other stations 
able to transmit.  ki - desired 
up/down ratio for each station 

X 
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Node Payoff with Bidirectional Traffic 

ÅAssumption: AP is a legacy station A̱P=f(pAP) sharing the 
downlink throughput among the stations.           

ÅFor the  i-station: 

ï Uplink throughput: 

 

ï  Downlink throughput: 
 

    

ï The utility function 

         ǿƛǘƘ ƪƛ ƛƴ  όлΣ қύ 
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Main Results  
 

ïDetermination of Nash Equilibria and Pareto 
Optimality 

ïMechanism design -> using of the AP to force 
desired equilibria  

ïImplementation of new DCF operations with best 
response strategy  

ïImplementation of Channel Monitoring 
functionalities (estimation of number of nodes 
and load conditions) 

ïAnalysis of NE convergence and stability  
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Node Best Response 
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ki=k=1, xi=1/n 
( ,̱ p) outcome 
 
 
 
where:  
 

A̱P=f(pAP) is function of 
the strategy set (̱,p) 
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 Nash Equilibrium (ki=k=cost,xi=1/n)   
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Proposition: The homogeneous strategy vector ( *̱, ̱ *ΣΧ̱*) such 
that 
 
 
is the only Nash equilibrium in [0,1)n of the game with non-null 
utility. 
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Proof sketch: 
At the NE point, two conditions 
simultaneously hold: 
 
 
 
 
being f() decreasing in ̱* starting 
from 0, and g()  increasing in ̱ AP,  
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Proof sketch: 
At the NE point, N+1 conditions 
simultaneously hold: 
 
 
 
 
 
 
 
 
 
 
 
The first N conditions represent a  
1-dim curve in a N+1 space; the last 
one a surface..  

Nash Equilibrium (ki, xi=1/n) 
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Proposition: For a given vector k=(k1,k2, ..kn) of application 
requirements, by equally sharing the downlink throughput, it exists a 
unique NE with non-null utility. 
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Nash Equilibrium (ki, xi) 

Proposition: For a given vector k=(k1,k2, ..kn) of application 
requirements, and a given vector of downlink throughput coefficients 
(x1,x2..,xn), it exists a unique NE with non-null utility. 
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Numerical Example: 
Resource Repartition 
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-Custom-made simulation platform; 
-Interval update:0.5 seconds; 802.11b; P=1500 bytes 

Standard 
DCF 

Infrastructred Networks 
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Game-based MAC Scheme 
implementation and evaluation 

ÅEach station has two estimators for probing uplink and 
downlink load conditions 

ÅThe station best response depends not only on the application 
requirements (Ki) but also on the uplink load (n) and downlink 
load (Tap)  

ÅCases  
ï1) AP as a legacy  

ï2) AP implementing the adaptive tuning mechanism of the channel 
access probability  

ÅAlgorithms:  AA (Application Agnostic scheduling)  and AW 
(Application aWare scheduling)  
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Effects of best response strategy 
(Time-varying Application requirements ) 

 

k2=5, k1=1 k1=k2=1 
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Final Remarks on Infrastructure Networks  
 

Å Contention-based access protocols can be defined in   
terms of non-cooperative games 

- Standards are somehow limited with the proliferation  
of open-source drivers 

Å In infrastructure networks, the node strategies converge 
to Nash equilibria with non-zero payoff, by considering 
both uplink and downlink bandwidth requirements of user 
applications 
Å AP can be used for mechanism design, in order to force 
desired equilibrium conditions 

 -  by tuning its channel access probability  
 - by employing scheduling policies for improving the    
 network fairness 
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Ad-Hoc Networks 
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Ad-hoc networks 
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ÅSuitable for a large number of applications:  
- from low-range sensor networks targeted to distributed 
monitoring 
- to high-range  mesh networks targeted to build 
infrastructure-less transport networks. 

Ad-hoc Networks 
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Ad-hoc Networks 
ÅMost ad-hoc networks rely on contention-based medium 

access protocols, regardless to the specific physical layer 
technology ( IEEE 802.15.4 PHY  or 802.11a/b/g/n PHY, 
defining available bandwidth, transmission power, modulation 
coding scheme..) 

ÅThe use of carrier sense and  random backoff mechanisms is a 
simple and well-established solution to  manage multiple 
access over a shared channel bandwidth.  

ÅCSMA/CA protocols exhibit very poor performance for multi-
hop  transmissions . 
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In multi-hop networks,  overlapping transmissions can seriously impair 

network performance! 

Ýchannel access based on carrier-sense suffers of collisions 

caused by hidden nods 

 

 

 

 

Small activity intervals (energy saving) or high load can bring 

some forms of synchronization.. 

 

 

 

 

 

 

 

 

Activity Intervals 
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Network scenario: simple chain of nodes with sources at the edge 

Throughput degrades down to zero with bi-directional traffic because of collisions!! 

 

 

 

 

 

 

 

Example of CSMA limits 

Ad-hoc Networks 


