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Advection

I N →∞ homogeneous agents with
dynamics

ẋ(t) = u(x(t))

I ẋ(t) defines vector field

I density m(x, t) in x evolves
according to advection equation

∂tm+ div(m · u(x)) = 0
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Mean field games

I Agents wish to minimize J =∫ T
0

[ 1
2
|u(t)|2︸ ︷︷ ︸

penalty on control

+ g(x(t),m(·, t))︸ ︷︷ ︸
...on state & distribution

]
dt+G(x(T ),m(·, T ))︸ ︷︷ ︸

...on final state

I optimal control u(t) = −∇xJ
I coupled partial differential equations

−∂tJ + 1
2 |∇xJ |2 = g(x,m)

u

��

(HJB) - backward

∂tm+ div(m · u(x)) = 0

m

TT

(advection) - forward

I boundary conditions
m(·, 0) = m0, J(x, T ) = G(x,m(·, T ))
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Hamilton Jacobi Bellman

I From Bellman

J(x0, t0)︸ ︷︷ ︸
today’s cost

= minu [
1
2
|u|2 + g(x,m)]dt︸ ︷︷ ︸

stage cost

+ J(x0 + dx, t0 + dt)︸ ︷︷ ︸
future cost

I Taylor expanding future cost

J(x0 + dx, t0 + dt) = J(x0, t0) + ∂tJdt+∇xJẋdt

I minu [
1
2
|u|2 + g(x,m) + ∂tJ +∇xJ

u︷︸︸︷
ẋ ]︸ ︷︷ ︸

Hamiltonian

= 0

I optimal control u(t) = −∇xJ yields

−∂tJ +
1
2
|∇xJ |2 = g(x,m) HJB
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Stochastic differential game

I stochastic dynamics is

dx = udt+ σdBt

I dBt infinitesimal Brownian motion

I Mean field games (∆ =
∑n

i=1
∂2

∂x2
i

Laplacian)

−∂tJ + 1
2 |∇xJ |2 − σ2

2 ∆J = g(x,m)

u

��

(HJB)-backward

∂tm+ div(m · u(x))− σ2

2 ∆m = 0

m

TT

(Kolmogorov)-forward
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Hamilton Jacobi Bellman (with dx = udt+ σdBt)

I From Bellman

J(x0, t0)︸ ︷︷ ︸
today’s cost

= minu [
1
2
|u|2 + g(x,m)]dt︸ ︷︷ ︸

stage cost

+ EJ(x0 + dx, t0 + dt)︸ ︷︷ ︸
exp. future cost

I Taylor expanding future cost (EdBt = 0, EdB2
t → dt)

J(x0+dx, t0+dt) = J(x0, t0)+∂tJdt+E∇xJdx︸ ︷︷ ︸
∇xJudt

+ E
1
2
dx′∇2

xJdx︸ ︷︷ ︸
σ2

2
∆JEdB2

t

I minu [
1
2
|u|2 + g(x,m) + ∂tJ +∇xJu+

σ2

2
∆J ]︸ ︷︷ ︸

Hamiltonian

= 0

I optimal control u(t) = −∇xJ yields

−∂tJ +
1
2
|∇xJ |2 −

σ2

2
∆J = g(x,m) HJB
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Average cost

I J = E lim supT→∞
1
T

∫ T
0

[
1
2 |u(t)|2 + g(x(t),m(·, t))

]
dt

I Mean field games (∆ =
∑n

i=1
∂2

∂x2
i

Laplacian)

λ̄+ 1
2 |∇xJ̄ |2 − σ2

2 ∆J̄ = g(x, m̄)

u

��

(HJB)

div(m̄ · u(x))− σ2

2 ∆m̄ = 0

m̄

TT

(Kolmogorov)
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Discounted cost

I J = E
∫∞

0 e−ρt
[

1
2 |u(t)|2 + g(x(t),m(·, t))

]
dt

I Mean field games (∆ =
∑n

i=1
∂2

∂x2
i

Laplacian)

−∂tJ + 1
2 |∇xJ |2 − σ2

2 ∆J + ρJ = g(x,m)

u

��

(HJB)

∂tm+ div(m · u(x))− σ2

2 ∆m = 0

m

TT

(Kolmogorov)
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Mexican wave (mimicry & fashion)

1
z

yL

m(y, t)

0

I state x = [y, z], y ∈ [0, L) coordinate, z position:

z =
{

1 standing
0 seated

, z ∈ (0, 1) intermediate

I dynamics dz = udt (u control)
I penalty on state and distribution g(x,m) =

Kzα(1− z)β︸ ︷︷ ︸
comfort

+
1
ε2

∫
(z − z̃)2m(ỹ; t, z̃)

1
ε
s(
y − ỹ
ε

)dz̃dỹ︸ ︷︷ ︸
mimicry
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Examples, (O. Guéant et al. 2011)

Meeting starting time (coordination with externality)

−xmax
x0

m(x, t)

I dynamics dxi = uidt+ σdBt

I τ̃i = mins(xi(s) = 0) arrival time, ts scheduled time,
t̄ actual starting time

I penalty on final state and distribution
G(x(τ̃i),m(·, τi)) = c1[τ̃i − ts]+︸ ︷︷ ︸

reputation

+ c2[τ̃i − t̄]+︸ ︷︷ ︸
inconvenience

+ c3[t̄− τ̃ ]+︸ ︷︷ ︸
waiting

I people arrived up to time s: F (s) = −
∫ s

0 ∂xm(0, v)dv
I starting time t̄ = F−1(θ), (θ is quorum)
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Large population (herd behaviour)

I behaviour dynamics
dxi = uidt+ σdBt

I penalty

g(x,m) = β(x−
∫
ym(y, t)dy︸ ︷︷ ︸
average

)2

I discounted cost J = E
∫∞

0 e−ρt
[

1
2 |u(t)|2 + g(x(t),m(·, t))

]
dt

I mean field game with discounted cost

−∂tJ + 1
2 |∇xJ |2 − σ2

2 ∆J + ρJ = g(x,m)

u

��

(HJB)

∂tm+ div(m · u(x))− σ2

2 ∆m = 0

m

TT

(Kolmogorov)
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Consensus

ẋi(t) = u(xi(t), x
(i)(t))

ẋ1(t) = u(x1(t), x
(1)(t))

ẋ2(t) = u(x2(t), x
(2)(t))

I N “dynamic agents” (vehicles, employes, computers,...)
I ...described by differential (difference) equations
I model interaction through communication graph
I vector x(i) represents neighbors’ states
I main feature: one agent is influenced only by neighbors:

ẋi(t) = u(xi(t), x(i)(t))
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why “consensus”?

ẋi(t) = u(xi(t), x
(i)(t))

ẋ1(t) = u(x1(t), x
(1)(t))

ẋ2(t) = u(x2(t), x
(2)(t))

I use local control u(xi, x(i))
I .. to converge to global “consensus value”

x(t)→ ave(x(0))

I consensus originates from computer science
I shown connections to potential games

[Lynch, Morgan Kaufmann, 1996], [Shamma et al., Trans. on Systems, Man, and Cyb., to appear]
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Where is game theory here?

ẋi(t) = u(xi(t), x
(i)(t))

ẋ1(t) = u(x1(t), x
(1)(t))

ẋ2(t) = u(x2(t), x
(2)(t))

J2(x2, x
(2))

J1(x1, x
(1))

Ji(xi, x
(i))

I Assign N local objective functions Ji(xi, x(i)) so that..
I if local control u(xi, x(i)) is optimal w.r.t. Ji(xi, x(i))
I all states converge to global “consensus value”

x(t)→ ave(x(0))

[Lynch, Morgan Kaufmann, 1996], [Shamma et al., Trans. on Systems, Man, and Cyb., to appear]
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Linear quadratic consensus problem

I linear dynamics ẋi = aixi + biui

I objective functions
Ji(xi, x(i), ui) = 1

2

∫∞
0 e−ρt

[
|u(t)|2 + (xi − x(i))2

]
dt

I averaging over neighbors x(i) =
∑

j∈Ni wijxj

I in compact form

ẋ = Ax+
∑N

i=1Biui

Ji(xi, x(i), ui) = 1
2

∫∞
0 e−ρt

[
Riu

2
i + x′Qx

]
dt
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Feedback Nash Equilibrium

I Nash equilibrium strategies are linear in state:

ui = µi(x, t) = −R−1
i B′iZix

I Zi are solutions to the coupled Riccati equations

Zi

(
A−

∑
i=N

SiZi

)
+
(
A−

∑
i=N

SiZi

)′
Zi +ZiSiZi +Qi = ρiZi

I Si = B′iR
−1
i Ri

I drawback:
1. can be convoluted when N is large,
2. strategies use full state vector
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Linear (averaging): Arithmetic Mean

I local linear control: u(xi, x(i)) =
∑

j∈Ni(xj − xi).

I local quadratic objective: F (xi, x(i)) =
(∑

j∈Ni(xj − xi)
)2

;

Ji(xi, x(i), ui) = limT−→∞
∫ T

0

(
F (xi, x(i)) + ρu2

i

)
dt

[Olfati-Saber, Fax, Murray, Proc. of the IEEE, 2007], [Ren, Beard, Atkins, ACC 2005]

Quanyan Zhu, Dario Bauso, Tamer Basar Robust Dynamic TU games



Mean field games
Connections to consensus

a game theoretic perspective
from state-feedback NE to mean-field NE

Nonlinear 1/2 (Geometric Mean)

I local nonlinear control: u(xi, x(i)) = xi
∑

j∈Ni(xj − xi).

I local objective: F (xi, x(i)) =
(
xi
∑

j∈Ni(xj − xi)
)2

;

Ji(xi, x(i), ui) = limT−→∞
∫ T

0

(
F (xi, x(i)) + ρu2

i

)
dt

[Bauso, Giarrè, Pesenti, Systems and Control Letters, 2006], [Cortes, Automatica, 2008]
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Nonlinear 2/2 (Harmonic Mean)

I local nonlinear control: u(xi, x(i)) = −x2
i

∑
j∈Ni(xj − xi)

I local objective: F (xi, x(i)) =
(
x2
i

∑
j∈Ni(xj − xi)

)2
;

Ji(xi, x(i), ui) = limT−→∞
∫ T

0

(
F (xi, x(i)) + ρu2

i

)
dt

[Bauso, Giarrè, Pesenti, Systems and Control Letters, 2006], [Cortes, Automatica, 2008]
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Disturbances 1/2 (Stochastic)

I Least-mean square consensus
[Xiao, Boyd, Kim, J. Parallel and Distributed Computing, 2007]
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Time-varying topology 1/3

I discrete-time gossip algorithms
I at t = 1

I Pick (randomly) one edge (i, j) and an increasing odd
function f(.)

I xi(t+ 1) = xi(t) + f(xi(t)− xj(t))
I xj(t+ 1) = xj(t) + f(xj(t)− xi(t))

[Boyd et al., IEEE trans. on Information Theory, 2006], [Giua et al., TAC, in press]
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Time-varying topology 2/3

I at t = 2
I Pick a second edge (k, l)
I xk(t+ 1) = xk(t) + f(xk(t)− xl(t))
I xl(t+ 1) = xl(t) + f(xl(t)− xk(t))

and so on for t = 3, 4, . . .

[Boyd et al., IEEE trans. on Information Theory, 2006], [Giua et al., TAC, in press]
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Time-varying topology 3/3

I slow convergence

[Boyd et al., IEEE trans. on Information Theory, 2006], [Giua et al., TAC, in press]
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From state-feedback NE to Mean field-feedback NE

I state feedback NE strategies

u1 = µ1(x, t) = µ1(x1, x2, . . . , x7, t)

⇓

I individual state feedback NE
strategies u1 = µ1(x1,m, t)

I m is aggregate and exogenous
representation of x2, . . . , x7
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homogeneous agents and complete graphs

I density m(x, t) = limN→∞
1
N

∑N
i=1 Ixi

I average m̄(t) =
∫
xm(x, t)dx

I track average signal m̄(t) (exogenous)

Ji(xi, m̄, ui) =
1
2

∫ ∞
0

e−ρt
[
|u|2 + (xi − m̄)2

]
dt

I initial states distribution m(x, 0) = m0 (xi ∈ R)
I distribution evolution

∂tm+ ∂x((ax+ bu)m(x, t)) = 0 (advection)
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Feedback mean-field equilibrium

I Solve tracking problem via Riccati method and plug the
optimal u in advection (below)

I solve advection and plug resulting m in offset condition
(above)
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Extensions

I Consensus with malicious
agents

I applications:
communication/social
networks

I malicious agent s:

Js =
1
2

∫ ∞
0

e−ρt
[
|u|2+(1− αs)(xs − x(s))2︸ ︷︷ ︸

track neighbors

+αs(xs − x̄s)2︸ ︷︷ ︸
track x̄s

]
dt

I stochastic dynamics

dxi = (aixi + biui)dt+ σidBit
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Conclusions

I Mean field games require solving coupled partial
differential equations (HJB-Kolmogorov)

I consensus translates into a mean field game when infinite
homogenous players (large population)

I analyze consensus with malicious agents
I inspect connections with opinion dynamics with stubborn

agents in social networks
I mean field stochastic games
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