

Study of the modular organization of motor control: experimental and modeling approaches

Dr. Enrico Chiovetto

Section for Computational Sensomotorics, Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, Centre for Integrative Neuroscience, University Clinic Tübingen, Tübingen, Germany.

Redundancy in motor control

A large number of joints implies a high level of redundancy

Enrico Chiovetto

Redundancy in motor control Motor primitives (MPs)

Redundancy in motor control

Hierarchical organization of motor control

Redundancy in motor control Questions:

- What is, at each level, the minimum number of motor primitives necessary?
- How do motor primitives of different levels relate to one another?

Redundancy in WBP movements

Two motor sub-tasks:

- Pointing at a target
- keeping the balance

Kinematic modularity of WBP

(Berret et al. 2009)

Kinematic modularity of WBP

From PCA on the elevation angles the existence of **two** flexible modules was found:

- A **postural** one, responsible of the co-variation of trunk plus lower-limbs joint-angles
- A **pointing** one, more dedicated to finger trajectory formation

(Berret et al. 2009)

Experimental setup

- Twelve male subjects
- Kinematic data
- Force platform under the feet (forces, torques and centre of pressure)
- Twenty-four muscles activation (EMG) recorded
- 3 conditions: one basic normal pointing (B), one postural condition with no knee flexion (K) and one reaching condition with imposed curved finger trajectory (C)

Non-Negative Matrix Factorization (Lee and Seung, 1999) was applied to the EMGs data

$$E^{2} = \sum_{k=1}^{T} \left\| \mathbf{m}(t_{k}) - \sum_{i=1}^{N} c_{i}(t_{k}) \cdot \mathbf{w}_{i} \right\|^{2}$$

Enrico Chiovetto

Inverse dynamic analysis + muscle dynamics modelling

Results

Typical muscle activity recorded during one trial

(Chiovetto et al. 2008, 2010)

5/9/2011

Max. EMG Val.

of Mass

5/9/2011

Enrico Chiovetto

and

backward

Muscle organization of WBP K and C

K and C are the dashed lines, B the solid one.

(Chiovetto et al. 2010)

Enrico Chiovetto

Muscle organization of WBP Results (local analysis)

(Chiovetto et al. 2010)

Take home message

• 24 muscle \rightarrow 3 temporal components (TRIPHASIC PATTERN)

• 3 components also when postural and focal (reaching) constraints were introduced

• 3 components also at local level (single joints)

Elbow Flexion and Extension

For both F and E same strategy: Ag1 burst, followed by Ant1 and then Ag2

Enrico Chiovetto

Elbow Flexion and Extension

2 muscles \rightarrow 3 functional components

Take home message

• 24 muscles \rightarrow 3 components (TRIPHASIC PATTERN)

• 3 components also when postural and focal constraints were introduced

• 3 components also at local level (single joints)

• The triphasic pattern is independent of the number of muscles and might represent a standard mode to generate movement

Relationship between modularity in kinematic and muscle space

Enrico Chiovetto

Take home message

• 24 muscles → 3 components (TRIPHASIC PATTERN)

• 3 components also when postural and focal constraints were introduced

- 3 components also at local level (single joints)
- The triphasic pattern is independent of the number of muscles and might represent a standard mode to generate movement

 In a hierarchical view of motor control the triphasic muscle organization would ensure co-variation at kinematic level

Adaptive Modular Architectures for Rich Motor Skills

www.amarsi-project.eu

Muscle synergies

Enrico Chiovetto

Anechoic algorithm

An mixture $x_i(t) = \sum_{j=1}^n a_{ij} s_j (t - \tau_{ij})$

Wigner-Ville Spectrum (WVS)

$$W_{x_i}(t,\omega) \coloneqq \int E\left\{x_i(t+\frac{\tau}{2})\overline{x_i}(t-\frac{\tau}{2})\right\} e^{-2\pi i\omega\tau} d\tau$$

Anechoic algorithm

An mixture $x_i(t) = \sum_{j=1}^n a_{ij} s_j (t - \tau_{ij})$

WVS applied to $x_i(t)$

$$W_{x_i}(t,\boldsymbol{\omega}) \coloneqq \sum_{j} \left| a \right|_{ij}^2 W_{s_j}(t-\tau_{ij},\boldsymbol{\omega})$$

under the assumption that the sources are statistically independent

(Omlor and Giese, 2010)

5/9/2011

Anechoic algorithm

The previous equation is redundant -> computation of a set of projections onto lower dimensional spaces that specify the same information as the original problem. Solution comes the iterative solution of the following two equations:

$$\left|Fx_{i}(\boldsymbol{\omega})\right|^{2} = \sum_{j} \left|a\right|_{ij}^{2} \left|Fs_{j}(\boldsymbol{\omega})\right|^{2}$$
$$\left|Fx_{i}(\boldsymbol{\omega})\right|^{2} \frac{\delta}{\delta\boldsymbol{\omega}} \arg\left\{Fx_{i}(\boldsymbol{\omega})\right\} = \sum_{j} \left|a\right|_{ij}^{2} \left|Fs_{j}(\boldsymbol{\omega})\right|^{2} \left[\frac{\delta}{\delta\boldsymbol{\omega}} \arg\left\{Fs_{j}(\boldsymbol{\omega})\right\} + \tau_{ij}\right]$$

where *Fx* and *Fs* indicate the Fourier transformations of the trajectory data and the sources.

Dynamic coupling of periodic and nonperiodic motor primitives: experimental setup

Dynamic coupling of periodic and nonperiodic motor primitives: experimental setup

Dynamic coupling of periodic and nonperiodic motor primitives: experimental setup

Setup to study walking and reaching in virtual reality

Enrico Chiovetto

My collaborators

Compsens Lab, Hertie Institute (Tuebingen)

Prof. Martin Giese Dr. Lars Omlor Mr. Albert Mukovskiy

RBCS Lab, Italian Institute of Technology (Genova)

Prof. Thierry Pozzo Dr. Bastien Berret Dr. Francesco Nori

Neuromotor Lab, Fondazione Santa Lucia (Roma)

Dr. Andrea d'Avella

Thank you Questions?

www.compsens.uni-tuebingen.de