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■ We are interested in solving optimal control problems on a Lie group G

min
u(·)

∫ T

0
l(g(τ), u(τ)) dτ +m(g(T ))

subject to

ġ(t) = f(g(t), u(t))

g(0) = g0

with g(t) ∈ G, t ≥ 0, and u(t) ∈ R
m, t ≥ 0.

■ Constrained kinematic and dynamic motion planning for single and multiple aerial and
underwater vehicles is the driving application

■ Other possible interesting applications: Optimal transfer in quantum mechanical systems,
satellite maneuvering, ...
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■ We recently developed the extension to Lie groups (Saccon et al., CDC, 2010) of the
Projection operator approach to optimization of trajectory functionals proposed in 2002, by
Prof. John Hauser,

Hauser, J., A Projection Operator Approach to the Optimization of Trajectory Functionals,
15th IFAC World Congress, 2002

■ The projection operator approach is an iterative algorithm to find the solution of a continuous
time nonlinear optimal control problem (including state and input constrained problems via a
barrier functional approach).

■ At each iteration, a continuous-time quadratic approximation of the original problem around
the current iterate is constructed (this amounts to solving a suitable continuous-time LQ
optimal control problem).

■ We are developing a series of tests to asset the numerical performance of Lie group projection
operator approach and to compare it against standard methods (e.g., based on discretization,
local coordinates).

■ The simplest non trivial example of optimal control we could think about is the extension
of the (infinite horizon) Linear Quadratic Regulator to the Lie group SO(3), the group of
rotational matrices in R

3.

This presentation wants to outline our findings for this particular problem.
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■ A Lie group is a differentiable manifold with smooth group structure. The set
SO(3) =

{
g ∈ R

3×3 : gT g = I, det(g) = 1
}
with standard matrix multiplication is the

special orthogonal group.

■ Being a smooth manifold, at each point g ∈ SO(3) we can attach a tangent space TgSO(3)
(vectors). The cotangent space T ∗

g SO(3) is the set of linear applications α : TgSO(3) 7→ R

(covectors).

■ The disjoint union of all tangent spaces forms the the tangent bundle TSO(3) and, similarly,
the disjoint union of all cotangent spaces forms the cotangent bundle T ∗SO(3).

■ The natural pairing between a covector α ∈ T ∗

g SO(3) and a vector v ∈ TgSO(3) is denoted
by 〈α, v〉 := α(v).

■ By differentiating “twice” the inner automorphism Ihg = hgh−1, one can define a binary
operation [·, ·] : TeSO(3)× TeSO(3) → TeSO(3), the Lie bracket.
The Lie bracket operation turns the tangent space at the identity TeSO(3) into a Lie algebra,
denoted so(3). In matrix form, so(3) is the space of skew-symmetric 3× 3 matrices and the
Lie bracket is the matrix commutator [A,B] = AB −BA.
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■ Linear Quadratic Regulator (LQR) problem

min
u(·)

1

2

∫
∞

0
‖x(τ)‖2Q + ‖u(τ)‖2R dτ ,

subject to

ẋ(t) = Ax(t) + Bu(t) , x(0) = x0 ∈ R
n .

■ A standard method to obtain an asymptotic stabilizing controller.

■ The weighting matrices Q and R affect the closed loop behavior of the system, and provide a

penalty of the state and input of the system, respectively.
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■ We are studying the following problem (where e is the group identity)

min
u(·)

1

2

∫
∞

0
‖g(τ)− e‖2Q + ‖ξ(τ)‖2R dτ ,

subject to

ġ(t) = ξ(t)g(t) , g(0) = g0 ∈ SO(3) ,

where ξ is the spatial angular velocity of the coordinate frame g

Not so many papers addressing optimal control with state penalty!

■ ‖g − e‖2
Q̄

= tr((g − e)TQ(g − e)), a weighted squared Frobenius norm. In particular, for

Q = I, we simply get ‖g − e‖2 = 2tr(e− g).

■ The main theoretical tool we use is the Pontryagin’s Maximum Principle for Lie groups (e.g.,
Jurdjevic, 1997, Chapter 12)

■ The incremental cost

l(g, ξ) = ‖g − e‖2Q + ‖ξ‖2R

has a unique local minimum on SO(3)× R
3 for (g, ξ) = (e, 0)
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■ For unconstrained optimal control problems, the PMP requires one to form the
pre-Hamiltonian function

Ĥ(g, ξ, p) = l(g, ξ) + 〈µ, f(g, ξ)〉 = 1/2 tr(e− g) + 1/2 ξTRξ +
〈
p, ξ̂g

〉
(1)

where p ∈ T ∗SO(3) is the adjoint state.

■ Then, one defines the Hamiltonian H : T ∗SO(3) → R

H(g, p) = min
ξ

Ĥ(g, ξ, p)

with associated optimal control

ξ∗(g, p) = argmin
ξ

Ĥ(g, ξ, p) .

■ The PMP states that, for extremal trajectories, the state and adjoint variables must satisfy
the Hamiltonian equations

ġ =
∂H

∂p
, ṗ = −∂H

∂g
(2)

with suitable boundary (aka transversality) conditions.
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■ It is possible to define a diffeomorphism between T ∗SO(3) and the direct product
SO(3)× g

∗, i.e., the bundle is trivial.

■ The diffeomorphism is constructed using p = (TRg−1)∗µ where p ∈ T ∗SO(3) and µ ∈ g
∗.

■ Main tool in the trivialization: 〈p, vg〉TG = 〈p, TRgξ〉 = 〈(TRg)∗p, ξ〉 = 〈µ, ξ〉
g

■ Equivalent necessary conditions for optimality can be obtained using a right-trivialized
version of the Hamiltonian equations.

■ The right-trivialized pre-Hamiltonian H+ : SO(3)× g
∗ → R is defined as

Ĥ+(g, ξ, µ) := Ĥ(g, ξ, p)|p=(TR
g−1 )∗µ

where µ ∈ so
∗(3) is the right-trivialized adjoint variable.
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■ For our problem

Ĥ+(g, ξ, µ) = l(g, ξ) + 〈µ, ξ〉 = 1/2 tr(e− g) + 1/2 ξTRξ + 〈µ, ξ〉

Minimizing the pre-Hamiltonian Ĥ+ with respect to the input ξ, we obtain the
right-trivialized Hamiltonian

H+(g, µ) = min
ξ

Ĥ+(g, ξ, µ) = 1/2 tr(e− g)− 1/2µTR−1µ

where the associated optimal control is

ξ∗(g, µ) = argmin
ξ

H+(g, ξ, µ) = −R−1 µ .



Pontryagin’s Maximum Principle on Lie groups (cont’d)

Introduction Kinematic Optimal Control on SO(3) Pontryagin’s Maximum Principle Obtained results

13 / 23

■ The PMP requires the optimal state-adjoint trajectory to satisfy the following right-trivialized
Hamiltonian equations

ġg−1 =
∂H

∂µ

+

µ̇ = −ad∗
∂H+/∂µ

µ− (TRg)
∗
∂H

∂g

+

with boundary conditions g(0) = g0 and limT→∞ µ(T ) = 0.

■ For our problem, one sees that

(TRg)
∗
∂H

∂g

+

= w(g)

where ŵ(g) = (g − gT )/2.

■ The right-trivialized Hamiltonian equations describe a mechanical system:

ġg−1 = −(R−1 µ)∧ ,

µ̇ = (−R−1 µ)× µ− w(g) .
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■ For the special case Q = I and R = rI, r > 0, r ∈ R, we can obtain explicit expressions for
the value function and optimal feedback

■ Define

Π := {g ∈ SO(3) : g = exp(πn̂), n ∈ R
3, ‖n‖ = 1} .

The set Π is the set of all rotation matrices which define a rotation of π radians about some
axis.

■ The value function is

V (g) = 2
√
r(2−

√
1 + tr(g)) .

Note that V (g) is continuous on SO(3) but it is not differentiable on Π.

■ Minimum value attained at g = e, where V (g) = 0.

■ Maximum value attained at g ∈ Π, where V (g) = 4
√
r.
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■ Recall that ξ∗(t) = −R−1µ(t) and w(g) := (g − gT )∨/2

■ The optimal control is

ξ∗(g) = −1

r
µs(g) = − 2√

r

w(g)
√

1 + tr(g)
.

■ The optimal control is a function of (right-trivialized) adjoint variable µ.

■ But µ(t) = µs(g(t)) is a function of the state!

■ As we will soon explain, g(t) → 0 and µ(t) → 0 for t → ∞: The trajectory (g(t), µ(t)),
t ≥ 0, lives in the stable manifold of the equilibrium point (e, 0) ∈ G× g

∗.
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■ This fact (explained in details in the paper Saccon et al., 2010, NOLCOS) is due to the
existence of a stable Lagrange submanifold for the Hamiltonian equations, passing through
the point (e, 0) in T ∗SO(3).

■ (e, 0) ∈ SO(3)× g
∗ is a hyperbolic equilibrium point! Stable and unstable manifolds are

present.

■ (e, 0) ∈ T ∗SO(3) is also hyperbolic for the (non-trivialized) Hamiltonian equations

■ A Lagrangian submanifold of a Hamiltonian system of dimension 2n is a submanifold of
dimension n in which the symplectic form vanishes

■ In (Van der Schaft, 91) it is shown that the stable manifold of an hyperbolic equilibrium point
is Lagrangian.

■ The stable submanifold {(g, ps(g)) ∈ T ∗SO(3)|g ∈ SO(3)/Π} is the graph of the 1-form
ps(g).

■ A 1-form is closed if and only if it is a graph of a Lagrangian submanifold (Abraham and
Marsden, 87)

■ as SO(3)/Π is simply connected, ps(g) is exact.

■ It should not be surprising that ps(g) = ∂V (g)/∂g.
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■ Note that this is a standard fact: In the standard LQR, the optimal control satisfies
u∗(t) = −R−1BT p(t) = −R−1BTPx(t), with P the stabilizing solution of the Riccati
equation.

■ In the linear case the Lagrangian submanifold is just the stable subspace (x, Px) ∈ R
n × R

n,
x ∈ Rn.

■ Returning to our problem...

■ We have also showed that V (g) = 2
√
r(2−

√
1 + tr(g)) is the viscosity solution of the

associated HJB equation.

■ For a infinite horizon optimal control problem, the HJB equation is
maxξ −Ĥ(g, ξ,DV (g)) = −H(g,DV (g)) = 0 .

■ A function u(·) is a viscosity solution of −H(g,Du(g)) = 0 iff

−H(g, p) ≤ 0 ∀p ∈ D+u(g) ,

−H(g, p) ≥ 0 ∀p ∈ D−u(g) ,

where D+u(g) ⊂ T ∗SO(3) and D−u(g) ⊂ T ∗SO(3) are super- and sub-differential of u(·).

■ Understanding this on a Lie groups is a “little” tricky...



General control weighting

Introduction Kinematic Optimal Control on SO(3) Pontryagin’s Maximum Principle Obtained results

19 / 23

■ We could not find an explicit expression for the value function V when R is not a multiple of
the identity matrix.

■ We have solved the optimization problem numerically in order to explore the relationship
between the weighting matrix R and value function V .

■ We can restrict our attention without loss of generality to diagonal positive definite weighting
matrix R.

■ For the special case R = rI, we concluded that the set of non-differentiable points for the
value function is Π. According to numerical evidence, we claim that this is also true for an
arbitrary positive definite diagonal weighting matrix.

■ The infinite time horizon optimal control problem satisfies

V (g(0)) := min
ξ(·)

1

2

∫
∞

0
l(g(τ), ξ(τ)) dτ =

= min
ξ(·)

{
1

2

∫ T

0
l(g(τ), ξ(τ)) dτ + V (g(T ))

}
(3)

where ġ(t) = ξ̂(t)g(t), g(0) = g0. V is a suitable approximation of the value function around
the origin (Jadbabaie et al., 2001).
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■ Image of the x-z disk
of radius one through
the mapping µs(·) :
SO(3)\Π → so

∗(3)

■ SO(3)\Π ≈ BR
3

[0,1)

■ so
∗(3) ≈ R

3

■ ‖µ‖2R ≤ 4

■ ξ∗(t) = −R−1µ(t)

■ R = diag(1, 2, 3)
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■ A very interesting phenomenon, which has not an explanation yet, has being noted when the
weighting matrix R has two equal elements. A representation of the value function for the
case R = (1, 1, 3) is shown.

■ x0(ρ, θ) = [ρ cos θ 0 ρ sin θ]T

■ Different value of the radial distance ρ ∈ 0.999× {10−3 .1 .2 .3 .4 .5 .6 .7 .8 .85 .9 .95 1} and for
θ ∈ [0, 2π].

■ The value function appear to have a ridge not only as we approach Π but a kink also appears
as we consider the value of V on a series of concentric spheres whose radius (ρ) tends to one.
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■ We have presented an optimal stabilizing controller for the driftless dynamics ġ(t) = ξ̂(t)g(t),
g(0) = g0, showing that a closed form solution exist for the special case Q = I and R = rI

■ We have studied the nature of the optimal solution by means of numerical optimization for a
general weight R and Q = I.

■ We are interested to further investigate the optimal solution for an arbitrary weighting matrix
R and introduce a general weighting matrix Q for the rotational matrix g.

■ The numerical exploration of the solutions for this problem using the weighted Frobenius
norm ‖e− g‖2Q has shown to be much more efficient using the Lie group projection operator

(than the standard flat space approach).

■ We are investigating the convergence rate of the standard projection operator approach
(based on quaternion parametrization) against the Lie group projection operator approach

Saccon, A., Hauser, J., and Aguiar, P., Optimal Control on Non-Compact Lie Groups: A Projection

Operator Approach, accepted at 49th IEEE Conference on Decision & Control, 2010

Saccon, A., Hauser, J., and Aguiar, P. Optimal Control on Non-Compact Lie Groups: A Projection

Operator Approach, To be submitted to IEEE Transactions of Automatic Control, 2010
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Thank you for your attention!


	Introduction
	Motivation
	Motivation (cont'd)
	Notation

	Kinematic Optimal Control on SO(3)
	The Linear Quadratic Regulator
	The problem studied in this work

	Pontryagin's Maximum Principle
	Pontryagin's Maximum Principle
	Pontryagin's Maximum Principle redon Lie groups
	Pontryagin's Maximum Principle redon Lie groups (cont'd)
	Pontryagin's Maximum Principle redon Lie groups (cont'd)

	Obtained results
	Scalar control weighting R = r I
	Scalar control weighting R = r I (cont'd)
	Scalar control weighting R = r I (cont'd)
	Scalar control weighting R = r I (cont'd)
	General control weighting
	General control weighting (cont'd)
	Kinks along the ridge
	Conclusion and future work
	


