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Motivation

* Accurate location of sensors plays a vital role in various
network applications
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» Accurate location of sensors plays a vital role in various
network applications

Location!/!l!
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« Many self-localization algorithms are proposed

* Generally, localization results are imprecise
* Environment: noise, non line of sight
 Hardware: range or angle measuring devices
* Localization algorithms

 Many enhancement techniques have been proposed to
improve the accuracy of localization

« Geometric Constraints
* Error Control Mechanisms (Baogi Huang)
 Bias Correction Methods



* Many self-localization algorithms are proposed

» Generally, localization results are imprecise

« Environment: noise, non line of sight

e Hardwy oo oo o oo oin e e oag
_ Why we choose bias?
 Localiz_.._.m 2. L.

 Many enhanced techniques have been proposed to
improve the accuracy of localization

« Geometric Constraints
 Error Control Mechanisms
 Bias Correction Methods
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Bias is a term in estimation theory and is defined as
the difference between the expected value of a
parameter estimate and the true value of the
parameter [1].

[1] J. L. Melsa and D. L. Cohn. Decision and Estimation Theory. McGraw-Hill Inc, 1978.
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[1] J. L. Melse * * Inc, 1978.
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In the noisy situation, we assumeg = (91, 92.--,9») denotes the

localization mapping from the measurements to the target
position estimates. We have:

X=g(0+0)=g(O)
where x = (71,72, ...,7,)" denotes the inaccurate estimates of
the target location, © = (6:.6,, ....6x) denotes the noisy

measurements and /0 = (564, 486,, ...,60x)T denotes the
measurement noise.

12
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In practice the measurement process will repeated A/times.
As M — o, we would expect the estimate to go to :

Eli;] = Eg:(0)]
Because 9:is nonlinear we have:

Elz;] = E[y?((f)”
# 9:(E(8])

— ;_1_?-_

Therefore the bias appears in the estimation process:

Bias,, = Flz;] — z; i=1,2,...n

13
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In practice the measurement process will repeated A/times.
As M — o, we would expect the estimate to go to :

The bias will exist if two conditions are satisfied:

Becat 1. the mapping function is nonlinear

2. the measurements are noisy

= ¢:(©)

Therefore the bias appears In the estimation process:

Bias,, = Flz;] — z; i=1,2,...n

14



« Two sensors at (0, 8) and

(O’ '8)

* y value of the target is fixed at
0 while x value changes from 6
to 20

* Measurements are bearing-
only

* Different variances used for
measurement errors, which are
Zzero mean.

K

's1 (0.8)

S2 (0,-8)
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« Table 1 and 2 illustrate the bias of the x component
compared to the standard deviation of the error in estimating
x with different level of noise

Value of x t 8 1y 12 Value of x 6 8 10 12
Percentage (%) | 1648 | 957 | 6.64 | 617 Percentage (%) | 20192 [ 5.2 14.14 12,5
Value of x |4 16 14 20 Value of X L4 L6 & 20
Percentage (%) | 652 | 7.87 | 851 | 972 Percemtage (%) | 1375 | 1523 | 17.24 | 1891
TABLE 1 TABLE 11
THE COMPARISON OF THE BIAS AND THE STANDARD DEVIATION OF X~ THE COMPARISON OF THE BIA S AND THE STANDARD DEVIATION OF X
COMPONENT (2 = 1) COMPONENT {o? = 2)

Bias (before removal) can be

a significant fraction of the errors. 16
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Normally the two conditions are satisfied easily:
« the mapping function is nonlinear
« the measurements are noisy

The bias can be a significant fraction of the error.

It is worth to analyse and remove
the bias in localization.

17
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Notations and Assumptions:
1. ndenotes the number of dimensions of the ambient space
2. Mdenotes the number of obtained measurements

3. x = (x1,79.....7,)" denotes the position of the target

4. © = (61.05,....0x)" denotes the measurement set

5. 00 = (804, 065, ....00x)" denotes measurement errors

6. £ = (f1,fo,....fn)" isthe mapping from the target
position to the measurements

7. ¢=(g1.92,....9,)" is the localization mapping from the

measurements to the target position
19
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In the noisy case, errors in measurements are inevitable.
Therefore the localization problem can be formulated as
follows:

X+ 0x =g(0 4+ 00)

Next @ 7aylor series is used to expand the above equation
truncating at second order:
T, +0x; = g-i(é1~é2~ wéw)
= qi(01 4+ 001,09 + 0o, ....0N + 60N )

N
X bas
gi(01.02. ... O8) + G; 56,

j=1

1 N N
"ol gg 00,901 09 a@a 20

%
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In the The approximate bias expression is immediate:

Theref . ;
follows 1 J
)= 20

._

NeXt a rayirvi 9GrIeY 10O UOTUU LU TApAIIU UITC AVUVe unation

truncating at second order:
v+ 6x; = gi(f1.02.....0n)
- g'i('gl + (591,92 + {592, ausg Hhﬁ; + {59&-’}

N
| 94,
gi(01.02. ... O8) + G; 56,

1 L& 524,
- 50,66, — 2
Y ZZ( 190,00, 21
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However it is very difficult to compute the localization
mapping g = (g1. 92, ..., gn)'Tand its derivatives.

The approximate bias expression is immediate:

22
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However it is very difficult to compute the localization
mapping g = (g1, g2. .... gn)'Tand its derivatives.

The approximate bias expression is immediate:

How to analytically express the bias in

an easy way?
23
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However it is very difficult to compute the localization
mapping g = (g1. ¢2. ..., g, )’ and its derivatives. In contrast

f = (f1./f2...../~n)" can be easily written down!

The approximate bias expression is immediate:

N _
=1 J

24
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Range Measurements

di = fi(z,y) =/ (z —21)2 + (y — n1)
dy = fo(z,y) = /(& — 22)? + (y — 1)’

[}

Bearing-Only Measurements

6 = filz,y) =m + actan(I — )(mod27r)
Yy—h
Oy = folz,y) :a::tan(;lT — mg)(monw)
y— 12
TDOA Measurements

(ta —t1) xc= fi(z,y) =

V(@ —2)" + (12 —y)* = V(@1 — @) + (11 —y)°
(t3 — t1) x ¢ = fa(z,y) =

Vizs —z)? + (ys —y)? — V(z1 — 2)? + (y1 — y)?

Se n50r2

Target (x, y)

f \ Sensor,
/ "ll (,.¥.)
° L 373
Sensor1 H-.I
(%,.¥,) b

Sensor,
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Range Meaciiramante A
d = fi(z.y) How to analytically express the bias in
, _ aneasyway?

E-EE — fg(Ia yj' v [ R B N\E
. Target (x. y
Bearing-Only Measurementsl )'
Target {3(, ':."::I
0, = filz,y) =+ actan(I — )(mod2m) ¢/
y N yl SEHSDF

0, = fa(x.y) I HoW 10 analytically express the bias by '
TDOA Me  using fand its derivatives?

/ II"., Sensor,
(ty — t1) x c = f1(x, u) ',“I " "-,I (X,.¥)
Viwe =22+ (y2 —v)? — V(@1 —2)> + (11 — v)? Sensor,
(ts —t1) x c = fa(z,y) = x,.¥,) V&
V(s —2)? + (yz —v)2 — V(z1 — ) + (11 — v)? Sensor,



e
’
==
hs

THE AUSTRALIAN NATIONAL UNIVERSITY

Jacobian maltrix and one of its property are used to
calculate the derivatives of g in terms of the derivatives of f.

- 9fr Ofr 7 1 99 dg1 7
Oxq O, 064 o0 nr
— In
Ofn Ofn 9gn 9gn
L Jxy or, 4 L 964 Al A

By solving the above equation set, we can obtain the
analytical expression for

Ogi (+ 1 « e \T
E&(E’ T J-'.'E'J ey NS ) — J--ME.HH‘_;\'}

27
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e & . T
Here we take 52+ for example. Assume g{"i =g, , differentiating
the equation in respectto x=i1,z2,...,z, respectively we can
obtain the following equation set:

i i - i - o 1
- Of Ofn - 8 g1 990,
dxq e dxq 0612 Oxq
Of1 OfN 9% g1 994,
L Oxp o Or, A 961 96 n 7
mn T | dﬂ]_ G"@p..- - | dﬂ‘_'ﬂ. -

28
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e & . T
Here we take 52+ for example. Assume g{"i =g, , differentiating
the equation in respectto x=i1,z2,...,z, respectively we can
obtain the following equation set:

] ; ) - o 1
- 9N Ify 1 [ Pa ] 990,
Oz B ’ dxq
1 o~ 3%
Sr.) = — 27 e
B(8z;) = 5 zlaj 507
- ’ ﬂ‘ |
A f1 IfN J L 0% g, J 994,
L Ox | 950+ 90 nl =
L, UIn dﬂ]_ G"@p..- | dﬂ‘_'ﬂ. -

Can be easily expressed analytically
29



How to analytically express the bias in an easy way?

Solved!

1. Taylor series

2. Jacobian matrix and its property

So we call the proposed method as 7aylor-Jacobian bias

correction method.

30
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Jacobian matrix and one of its property

dfa

E) I

Ofir 1 r 99

O, 064
OfN 9gn
or, 4 L 964

Important assumption:

dg1
OO

gy

D0 N

N=n

31
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Jacobian matrix and one of its property

- 9N 9fi 7 1 94 g1
Oxq e O, 064 e o0 nr
— In
E) f N U f*.*\.f U gn U Jn
L Oz, dxr, 4 L 964 Tt 00y 4

Important assumption: A>n

32
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Least squares method:

Feost-function X, ©) = Z(fz' —6;)% = Z 59? e

1= =1

33



Least squares method:

Feost-functionX: ©) = Z(fz‘ —0,)* = Z 59:?

=1 =1

Minimize the distance:

34



Least squares method:

Feost-functionX: ©) = Z(fz‘ —0,)* = Z 59:?

=1 =1

Minimize the distance:

For the white point:

af1 3f2 C)f N
dr; Ox; 7 ";?:ﬂ;

v, =

(e )g

35
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Least squares method:
N N
Fiost-functionX: ©) = Z{f-é —6;)% = Z 567

Minimize the distance: |

D Y 062 = ul] =
=1

min — -

For the white point:
Oh Ofs  Ofnr

dr; dx;’ 7 O,

The normal vector: .

v, = i=1,2..n L

u = [ug,ug,..., u._.«,r]T = V] % Vo... X ¥V,

36
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Least squares method:

Finally we 6an obtéin a
new mapping:

O =F(%, 2) = f(X) + cu b

V., — [afl df2 Ifn
! dr; dx;’ 7 O,

The normal vector: 0

T oi=1,2,....n i

u = [ug,ug,..., u._.«,r]T = V] % Vo... X ¥V,
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With N> n+1, the situation is similar to N=n+1 case except
that the extra variable is no longer a scalar. Instead, it is a
vector which can be defined as follows:
T
& = [815 €2, -1, 83\.-*_”}

Wheree; (i =1,2,..., N—n) denotes a coefficient to minimize
the moved distance in each dimension of the normal.

38
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Assume N=4 and n=2.
At the white point we can have:

dft dfy Ofs Ofs,p

Ej;rj ' 31‘1 ‘ 5;1?1 ‘ 3331

dfy dfy Ofs 5‘f4]r

E:J;rg ’ 31?;} ‘ 5;1?-2 ' -ri:j;?fg

Vi =

¥a =:[

These two tangent vectors define a
tangent plane P.... . %

O — (6,.0y,04,60)7

u/P
el

f
» eolla 3
\</

Vo

O = (61.62.605.04)7

39



Contributions:

1. Express the bias in an easy way by using the function £
(mapping from the target position to the measurements) and
its derivatives

2. Adopt a method based on least-squares idea to solve the
overdetermined problem

Mathematic tools:
1. Taylor series

2. Jacobian Matrix
40
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Simulation Assumption
 All simulations are done in two-dimensinol space

* The three sensors are fixed at (0, 8), (0, -8) and (8,0)

* The measurement noise for three sensors are produced
by i. i. d. Gaussian with zero mean and variance 2 = 1.

e All the simulation results are obtained from 5000 Monte
Carlo experiments.

* We compare our method with an well-cited bias-correction
method GW method [1]

[1] M. Gavish and A. J. Weiss. Performance analysis of bearing-only target location algorithms. IEEE

42
Transaction on Aerospace and Electronic Systems, 28(3): 817-827, 1992.
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S1(0,8)

I I I - = thl{:-ut bias zurre:rticn method
vl v With the GW miethod
d1 J.18 With the proposed method M
118 F -
Target (x,0)
5 014 .
g
. > é 0.12 .
d3 Z o
83 (8,0) £ 01pM 1
g \
d2 E 2081 ‘\ ]
& b -7
2 \ Y L
< godf h > ---"®" .
S2 (0,-8)
o N
*» Three sensors and a single target R o 1
* Range measurements onl . . .
9 y (5.0 (10.0) (12,0 {14,0) (18,0} (18,0} (20.0)

* Measurement errors are M0,1) Pasition of the Target

* The y value of the target is fixed at O; x value is
adjusted from 6 to 20 43
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1 1 T 1 1 1
= @ = Without bias correction method
ol With the GW method
0er With the proposed method N
nef .
Target (x,0) _
S31(8,0)
» B #
] -
9‘3 E ner o’ B
3 s
S 04k L7 ‘ o _
< paf J"' B .
s
82 (O,'8) 02 __.” ____.--'n T
) ol _,'I',f.. Lo d
 Three sensors and a single target - . P An /
»  Bearing-only measurements [ SR : .

(Es.n: (10.0) [1:;.|:|:- [11'.3:- (18,07 (18,0} (20,0}
* Measurement errors are MO0,1) Position of the Target

 The y value of the target is fixed at O; x value is
adjusted from 6 to 20 44



 Truncation of Taylor series is not necessarily justified when
the noise is large

* Noise level is adjusted over a large range via changing the
standard deviation of measurement errors, from 0.5 t0 3.5 in
steps of 0.5

» Bearing-only measurements are used

45
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Average Absolute Distance Error

151

= & =\Yithout higs correction method
vl With the GW method
m—— f\ith the propozed method

05
3 B##.—"a
St et I
0.5 1 15 2 25

Standard Deviation o

35

- 1ecessarily justified when

e range via changing the
errors, from 0.5t0 3.51In

Ised

46




S3

Target (10,0)

S2 (0,-7)

* Three physical sensors and a

single target, which is a radar
with a mechanically rotating
antenna.

Two usable sensor
measurements are obtained.

Noise In measurements is
N(0,0.02)

47
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1(0,9) » Three physical sensors and a
smgle target, which is a radar
Localization errors without bias-correction method 7 LUL 1|;.f Illﬂn‘L}l‘U]‘;‘;I;Im‘ h‘I as- LiU?l"LLIIUﬂ mu,‘lhml
(.6610 0.0785
(3.3435 0.0462
().3454 0.0465

measurements are obtained.

* Noise in measurements is
S2 (0,-7) N(0,0.02)

48



1. The Taylor-dJacobian method is generic
 Range Measurement
« Bearing-only Measurement
« Scan-based Measurement

 The performance of the Taylor-Jacobian method is better
than the GW method

* The Taylor-Jacobian method can be more robust to the
level of noise than the GW method

49



THE AUSTRALIAN NATIONAL UNIVERSITY

 Motivation

 Bias in Localization Problem

« Taylor-Jacobian Bias Correction Method
 Performance Evaluation and Simulation
« Conclusion

50



e
¥
==
& T s

THE AUSTRALIAN NATIONAL UNIVERSITY

* Bias arises due to simultaneous presence of noise and
nonlinear transformations.

* In localization, the map need for computing the bias may
not be analytically available; its inverse is available so the
bias computation needs to be varied

A generic Taylor-Jacobian bias correction method is
proposed

* The simulation results demonstrate the performance of the
proposed method

51
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