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 The operations of a node are specified by a set of protocols, or set of 
rules.  
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Cross-layer interaction

Wireless Networks Protocols

A. Bonivento, C. Fischione, L. Necchi, F.  Pianegiani, A. Sangiovanni-Vincentelli, “System Level  Design for Clustered 
Wireless Sensor Networks”, IEEE Transactions on Industrial Informatics,  2007 (best paper award of TII 2007).



Radio power control

 Let                                                      be a vector of radio powers
 Each element is the power used by a node for transmission 

 Let                       be the interference that the radio power has to 
overcome so that the receiver can detect the transmitted signal 

 Interference Function
 The radio powers of every sensor must be minimized subject to 

quality of communication constraints: 
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C. Fischione, K. H. Johansson, A. Sangiovanni-Vincentelli, B. Zurita Ares “Energy Consumption of Minimum Energy Coding in  
CDMA Wireless  Sensor Networks'', IEEE Transactions on Wireless Communications, February 2009.



Power control with unreliable 
components

 Unreliable transceivers introduce intermodulation powers difficult to 
compensate

 How to minimize the radio power consumption? 

 There is a lack of theory on how to solve these optimization problems by 
simple and fast algorithms that run on resource constrained nodes. 
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MAC and Routing over IEEE 
802.15.4 networks for Control

 IEEE 802.15.4 wireless sensor networks
 Nodes transmit their data directly to the cluster head
 The controller is reached via cluster-head multi-hop routing.

Plant Controller

Phy
MAC

Routing

Transport

Session

Application
Presentation



 Energy, bounded delay and packet transmission requirements must be
ensured by IEEE 802.15.4:

 Control applications require a packet delivery within some deadline
and with a guaranteed packet reception probability.

 N clusters give N parallel and coupled optimization problems as the one 
above to solve without central coordination

 How to do by nodes of reduced computational capability? 

IEEE 802.15.4 MAC and Routing 
for Control

Reliability

Delay

Energy Consumption



Göteborg: 
the IEEE 802.15.4 city

 October 2007: Ember & Göteborg Energi deployed 260.000 IEEE 
802.15.4 smart meters for electricity monitoring and control 

 http://www.ember.com

P. Park, P. Di Marco, P. Soldati, C. Fischione, K. H. Johansson, “A Generalized Markov Model for an Effective Analysis of Slotted 
IEEE 802.15.4”, IEEE Mobile Ad-hoc and Sensor Systems Conference, October 2009 (Best Paper Award).
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The Fast-Lipschitz optimization

nonempty compact set



, and can be non-convex

F-Lipschitz 3 qualifying 
properties



The F-Lipschitz optimization
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Objective function

 It is allowed to be both a composable or decomposable function of 
the decision variables.

 It can be a scalar or a vector, for example

 An F-Lipschitz problem is in general a vector optimization problem 
with multi-objective function. 



Pareto optimal solution



Computation of the solution

 Centralized optimization
 Problem solved by a central processor

 Distributed optimization
 Decision variables and constraints are associated to 

distributed nodes that compute the solution

Network of n nodes



Optimal Solution

 The Pareto optimal solution is just given by a set of (in general non-
linear) equations.

 Solving a set of equations is much easier than solving an optimization
problem by traditional Lagrangian methods.



Inequality 
constraints 
satisfy the 
equality at 

the optimum? 
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solution by 
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yes no

F-Lipschitz Optimization

 The F-Lipschitz optimization defines a class of problems for which all
the constraints are active at the optimal solution.

 The solution to the set of equations given by the projected constraints
is the optimal solution.

 This avoids using Lagrangian methods, which are computationally
expensive.



Centralized optimization

 The optimal solution is given by iterative methods to solve 
systems of non-linear equations, such as the Newton’s method

is a positive scalar to choose so that convergence speed is 
maximized.

 Many other methods are available, e.g., heavy balls. 



Traditional Lagrangian 
methods

An F-Lipschitz optimization can be solved by Lagrangian methods. 
 Strong duality always applies to F-Lipschitz problems
 The Pareto optimal solution is given be the Karush-Kuhn-Tucker 

(KKT) conditions:

Lagrangian



Distributed optimization
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Interference function theory

 vector of radio powers
 e             interference that the radio power has to overcome

 Properties of the (Type-I) interference function
nodes

Tx

Rx

Zander, ”Distributed cochannel control in cellular radio systems interference”, IEEE Trans. Veh. Technol., 1992.
Foschini, Miljanic, “A simple distributed autonomous power control algorithm and its convergence,” IEEE Trans. Veh. Technol., 1993.



Power control as an F-Lipschitz 
problem



 F-Lipschitz qualifying properties are much more general than the 
interference function properties.  



Problems in canonical form

F-Lipschitz form

Canonical form

Bertsekas, Non Linear Programming, 2004.



Problems in canonical form



Problems in canonical form



Example 1: from a convex 
problem to an F-Lipschitz one

 The problem is convex: KKT conditions could be used to compute the 
optimal solution, but the problem is F-Lipschitz:

 The solution is given by the constraints at the equality, trivially 



Example 2: a hidden F-Lipschitz 
problem

A convex non-F-Lipschitz problem

An F-Lipschitz problem



• Geometric problems are convex (via a simple mechanical conversion) and 
are solved by Lagrangian methods (interior point methods).

• Geometric problems play an essential role in electrical circuit design. 

Geometric programming

posynomial

monomial

S. Boyd, S. J. Kim, L. Vandenberghe, A. Hassibi, “A tutorial on geometric programming,” Optimization and 
Engineering, vol. 1, no. 1, p. 1, 1 2006.



When geometric problems 
are F-Lipschitz



Example: a geometric problem is 
easily recognized as F-Lipschitz

The exponent of the i-th decicion variable of the i-th constraint is 
always positive, whereas the other exponents are negative... 



The F-Lipschitz optimization
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Estimation

Centralized Estimation: 
no intelligence on sensors

phenomena

1 2 N

Fusion Center

sensors

phenomena

1 2 N

Peer-to-Peer Estimation: 
no central coordination

sensors

phenomena

1 2 N

Fusion Center

Distributed Estimation:
some processing on sensors

sensors



 Nodes perform a noisy measurement of a common time-varying
signal

 Communication subject to space-time varying packet losses

Peer-to-Peer Estimation

d(t)

A. Speranzon, C. Fischione, K. H.  Johansson, A. Sangiovanni-Vincentelli, “A Distributed Minimum Variance Estimator for Sensor 
Networks”,  IEEE Journal on Selected Areas in Communications, special issue on Control and Communications, May 2008.



Peer-to-Peer Estimator

 Nodes exchange local measurements and estimates

 Goal: find locally the estimation coefficients         and           that 
minimize the variance of the estimation error. 

Local estimate
at node i

Global vector of
the estimates



Estimation Coefficients

• Estimation Coefficients given by minimizing the average estimation 
error, under stability constraints

Small Bias
Stable Estimation Error

Estimation Error

• A centralized optimization problem

• How to distribute the computation of the optimal solution?
 An F-Lipschitz optimization problem



Simulation Example: 
Peer-to-peer estimation 

 Network with 30 nodes randomly deployed.

 Signal to track:

 Variance of the additive noise:



Simulation Example: 
Peer-to-peer estimation

Packet loss probability

“Laplacian” Estimator

Instantaneous Average Estimator Proposed Peer-to-Peer Estimator via 
F-Lipschitz Optimization



Conclusions

 F-Lipschitz optimization enables fast computations of the solution of a 
class of convex and non-convex optimization problems. 

 Central idea: optimal solution achieved when all the constraints are active. 

 F-Lipschitz optimization solve several problems much more efficiently than traditional 
Lagrangian methods.

 The interference function theory optimization is a particular case of F-
Lipschitz optimization. 

 Perhaps, in many situations, it is better to “F-Lipschitzfy” than 
“convexify”. 

 More info on http://www.ee.kth.se/~carlofi/
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