

An Overview on F-Lipschitz Optimization with Wireless Networks Applications

University of Padova Padova, July 21, 2010

Carlo Fischione

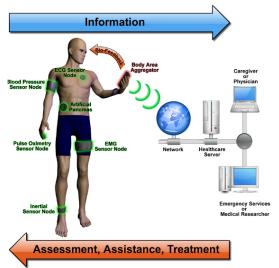
carlofi@ee.kth.se

Electrical Engineering
KTH Royal Institute of Technology

Optimization in Networked Systems

Industrial control

Health care



Environmental monitoring

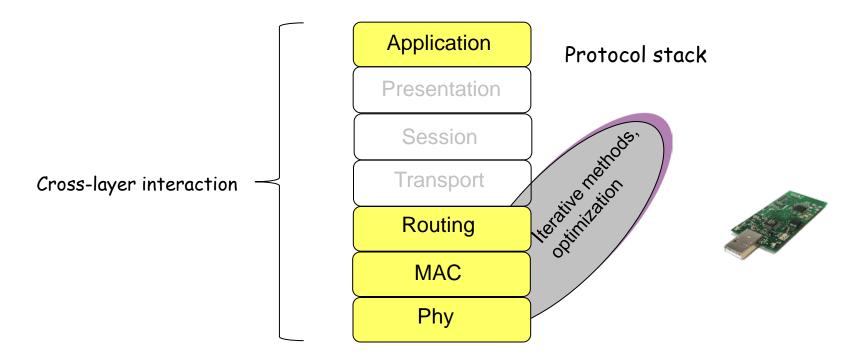
Transportation

Smart grids

- Motivating examples for fast optimization in Wireless Networks
 - > Physical layer
 - > Medium access control and Routing
 - > Peer-to-peer estimation
- F-Lipschitz optimization
 - > Existence and uniqueness of the Pareto optimal solution
 - > Centralized computation of the solutoin
 - > Distributed computation of the solution
- Some F-Lipschitz applications
 - > Interference function theory as a particular case of F-Lipschitz optimization
 - > Problems in canonical form
 - > Convex optimization and geometric programming
- Peer-to-peer estimation via F-Lipschitz optimization
- Conclusions & future work

Wireless Networks Protocols

 The operations of a node are specified by a set of protocols, or set of rules.



A. Bonivento, C. Fischione, L. Necchi, F. Pianegiani, A. Sangiovanni-Vincentelli, "System Level Design for Clustered Wireless Sensor Networks", IEEE Transactions on Industrial Informatics, 2007 (best paper award of TII 2007).

Radio power control

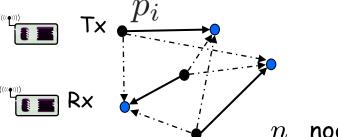
Application

Transpor

Routing

MAC

- Phy
- Let $\mathbf{p} = (p_1, p_2, \dots, p_n) \in \mathbb{R}^n, \mathbf{p} \succeq 0$, be a vector of radio powers
 - > Each element is the power used by a node for transmission
- Let $I_i(\mathbf{p}): \mathbb{R}^n \to \mathbb{R}$ be the interference that the radio power has to overcome so that the receiver can detect the transmitted signal
- Interference Function $I(\mathbf{p}) = (I_1(\mathbf{p}), I_2(p), \dots, I_n(\mathbf{p}))$
- The radio powers of every sensor must be minimized subject to quality of communication constraints:



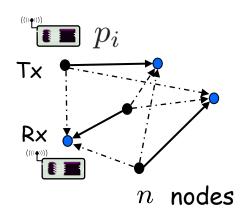
Power control with unreliable components

 Unreliable transceivers introduce intermodulation powers difficult to compensate

$$SINR_i = \frac{G_{ii}p_i}{\sigma_i + \sum_{k \neq i} G_{ik}p_k + \sum_{k \neq i} M_{ik}p_i^2 p_k^2}$$

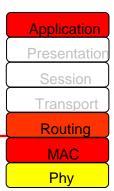
How to minimize the radio power consumption?

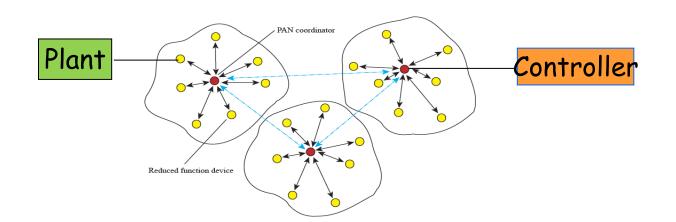
$$\min_{\mathbf{p}} \quad \mathbf{p}$$
s.t. $SINR_i \geq S_{\min}, \quad i = 1, \dots, n,$
 $\mathbf{1}p_{\min} \leq \mathbf{p} \leq \mathbf{1}p_{\max},$

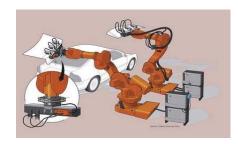


 There is a lack of theory on how to solve these optimization problems by simple and fast algorithms that run on resource constrained nodes.

MAC and Routing over IEEE 802.15.4 networks for Control







- IEEE 802.15.4 wireless sensor networks
 - > Nodes transmit their data directly to the cluster head
 - > The controller is reached via cluster-head multi-hop routing.

IEEE 802.15.4 MAC and Routing for Control

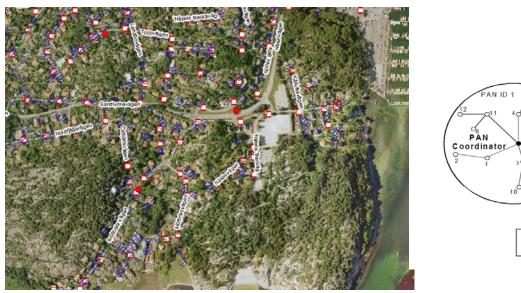
- Energy, bounded delay and packet transmission requirements must be ensured by IEEE 802.15.4:
 - > Control applications require a packet delivery within some deadline and with a guaranteed packet reception probability.

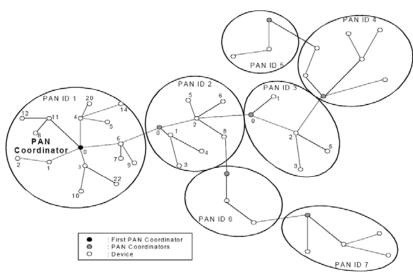
$$\begin{array}{ll} \min\limits_{\mathbf{x}} & E(\mathbf{x}) & \text{Energy Consumption} \\ \text{s.t.} & P_i(\mathbf{x}) \geq \Omega_i, \quad i=1,\dots,n \,, \\ & \Pr[D_i(\mathbf{x}) \leq \tau_i] \geq \Delta_i \quad i=1,\dots,n \end{array}$$
 Reliability

- N clusters give N parallel and coupled optimization problems as the one above to solve without central coordination
 - > How to do by nodes of reduced computational capability?

Göteborg: the IEEE 802.15.4 city

- October 2007: Ember & Göteborg Energi deployed 260.000 IEEE
 802.15.4 smart meters for electricity monitoring and control
- http://www.ember.com





P. Park, P. Di Marco, P. Soldati, C. Fischione, K. H. Johansson, "A Generalized Markov Model for an Effective Analysis of Slotted IEEE 802.15.4", IEEE Mobile Ad-hoc and Sensor Systems Conference, October 2009 (Best Paper Award).

- Motivating examples for fast optimization in WSNs
 - > Physical layer
 - > Medium access control
 - > Routing
 - > Peer-to-peer estimation
- F-Lipschitz optimization
 - > Existence and uniqueness of the Pareto optimal solution
 - > Centralized computation of the solutoin
 - > Distributed computation of the solution
- Some F-Lipschitz applications
 - > Interference function theory as a particular case of F-Lipschitz optimization
 - > Problems in canonical form
 - Convex optimization and geometric programming
- Peer-to-peer estimation via F-Lipschitz optimization
- Conclusions & future work

The Fast-Lipschitz optimization

$$\max_{\boldsymbol{x}} f_0(\boldsymbol{x})$$
s.t. $x_i \le f_i(\boldsymbol{x}), \quad i = 1, \dots, l$

$$x_i = h_i(\boldsymbol{x}), \quad i = l + 1, \dots, n$$

$$\boldsymbol{x} \in \mathcal{D},$$

$$f_0(\boldsymbol{x}): \mathscr{D} \to \mathbb{R}^m, \qquad m \leq n$$

$$f_i(\boldsymbol{x}): \mathscr{D} \to \mathbb{R}, \qquad i = 1, \dots, l$$

$$h_i(\boldsymbol{x}): \mathcal{D} \to \mathbb{R}, \qquad i = l+1, \ldots, n$$

 $\mathscr{D} \subset \mathbb{R}^n$ nonempty compact set

F-Lipschitz 3 qualifying properties

$$\max_{\boldsymbol{x}} f_0(\boldsymbol{x})$$
s.t. $x_i \leq f_i(\boldsymbol{x}), \quad i = 1, \dots, l$

$$x_i = h_i(\boldsymbol{x}), \quad i = l + 1, \dots, n$$

$$\boldsymbol{x} \in \mathcal{D},$$

- 1. $\forall x \in \mathcal{D}, \nabla f_0(x)$ is a continuous stryctly increasing function;
- 2. $\forall \boldsymbol{x} \in \mathcal{D}$, either $\nabla_j f_i(\boldsymbol{x}) \leq 0$, $\nabla_j h_i(\boldsymbol{x}) \leq 0$, $\forall i \neq j$; or $\nabla_i f_0(\boldsymbol{x}) = \nabla_j f_0(\boldsymbol{x}) \quad \forall i \neq j$, and $\nabla_j f_i(\boldsymbol{x}) \geq 0$, $\nabla_j h_i(\boldsymbol{x}) \geq 0$, $\forall i \neq j$;
- 3. Lipschitz contractivity: $\forall x, y \in \mathcal{D}$, $|f_i(x) f_i(y)| \le \alpha_i ||x y||$, i = 1, ..., l, and $|h_i(x) h_i(y)| \le \alpha_i ||x y||$, i = l + 1, ..., n, with $\alpha_i \in [0, 1) \forall i$

 $f_0(oldsymbol{x})$, $f_i(oldsymbol{x})$ and $h_i(oldsymbol{x})$ can be non-convex

The F-Lipschitz optimization

Non-Convex Optimization Convex Optimization F-Lipschitz Optimization Interference Function Geometric **Optimization Programming**

Objective function

```
\max_{\boldsymbol{x}} \quad f_0(\boldsymbol{x})
s.t. x_i \leq f_i(\boldsymbol{x}), \quad i = 1, \dots, l
x_i = h_i(\boldsymbol{x}), \quad i = l + 1, \dots, n
\boldsymbol{x} \in \mathcal{D},
```

- It is allowed to be both a composable or decomposable function of the decision variables.
- It can be a scalar or a vector, for example

$$f_0(\mathbf{x}) = \mathbf{x}$$

 $f_0(\mathbf{x}) = \mathbf{b}^T \mathbf{x}, \quad \mathbf{b} \in \mathbb{R}^n, \quad \mathbf{b} \succ 0$
 $f_0(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}, \quad \mathbf{A} \mathbf{x} \succ 0, \mathbf{A} \in \mathbb{R}^n$

 An F-Lipschitz problem is in general a vector optimization problem with multi-objective function.

Pareto optimal solution

```
\max_{\boldsymbol{x}} \quad f_0(\boldsymbol{x})
s.t. x_i \leq f_i(\boldsymbol{x}), \quad i = 1, \dots, l
x_i = h_i(\boldsymbol{x}), \quad i = l + 1, \dots, n
\boldsymbol{x} \in \mathcal{D},
```

Definition: Consider the following set

$$\mathscr{A} = \{ \boldsymbol{x} \in \mathscr{D} : x_i \le f_i(\boldsymbol{x}), i = 1, \dots, l, \\ x_i = h_i(\boldsymbol{x}), i = l + 1, \dots, n \},$$

and let $\mathscr{B} \in \mathbb{R}^l$ be the image set of $f_0(x)$, namely $f_0(x)$: $\mathscr{A} \to \mathscr{B}$. Then, we make the natural assumption that the set \mathscr{B} is partially ordered in a natural way, namely if $x, y \in \mathscr{B}$ then $x \succeq y$ if $x_i \geq y_i \ \forall i$ (e.g., \mathbb{R}^l_+ is the ordering cone).

Definition (Pareto Optimal): A vector x^* is called a Pareto optimal (or an Edgeworth-Pareto optimal) point if there is no $x \in \mathscr{A}$ such that $f_0(x) \succeq f_0(x^*)$ (i.e., if $f_0(x^*)$ is the maximal element of the set \mathscr{B} with respect to the natural partial ordering defined by the cone \mathbb{R}^l_+).

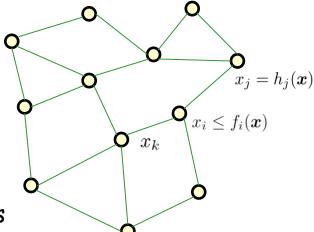
Computation of the solution

- Centralized optimization
 - > Problem solved by a central processor
- Distributed optimization
 - > Decision variables and constraints are associated to distributed nodes that compute the solution

$$\max_{\boldsymbol{x}} f_0(\boldsymbol{x})$$
s.t. $x_i \leq f_i(\boldsymbol{x}), \quad i = 1, \dots, l$

$$x_i = h_i(\boldsymbol{x}), \quad i = l + 1, \dots, n$$

$$\boldsymbol{x} \in \mathcal{D},$$



Network of n nodes

Optimal Solution

```
\max_{\boldsymbol{x}} f_0(\boldsymbol{x})
s.t. x_i \leq f_i(\boldsymbol{x}), \quad i = 1, \dots, l
x_i = h_i(\boldsymbol{x}), \quad i = l+1, \dots, n
\boldsymbol{x} \in \mathcal{D},
```

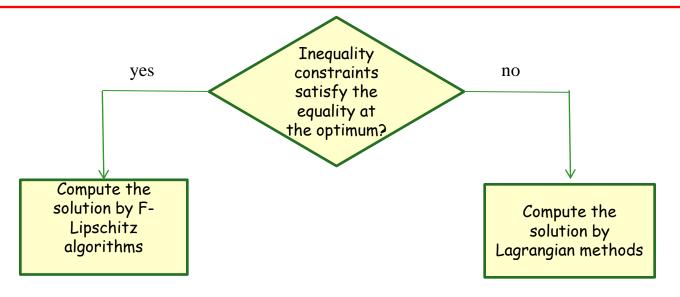
Theorem: Let an F-Lipschitz optimization problem be feasible. Then, the problem admits a unique Pareto optimum $x^* \in \mathcal{D}$ given by the solutions of the following set of equations:

$$x_i^* = [f_i(\mathbf{x}^*)]^{\mathscr{D}} \quad i = 1, \dots, l$$

 $x_i^* = h_i(\mathbf{x}^*) \quad i = l + 1, \dots, m$.

- The Pareto optimal solution is just given by a set of (in general non-linear) equations.
- Solving a set of equations is much easier than solving an optimization problem by traditional Lagrangian methods.

F-Lipschitz Optimization



- The F-Lipschitz optimization defines a class of problems for which all the constraints are active at the optimal solution.
- The solution to the set of equations given by the projected constraints is the optimal solution.
- This avoids using Lagrangian methods, which are computationally expensive.

Centralized optimization

$$\max_{\boldsymbol{x}} f_0(\boldsymbol{x})$$
s.t. $x_i \leq f_i(\boldsymbol{x}), \quad i = 1, \dots, l$

$$x_i = h_i(\boldsymbol{x}), \quad i = l + 1, \dots, n$$

$$\boldsymbol{x} \in \mathcal{D},$$

 The optimal solution is given by iterative methods to solve systems of non-linear equations, such as the Newton's method

$$\mathbf{x}(k+1) = \left[\mathbf{x}(k) - \beta \left(I - \nabla \mathbf{F}(\mathbf{x}(k))\right)^{-1} \left(\mathbf{x}(k) - \mathbf{F}(\mathbf{x}(k))\right)\right]^{\mathscr{D}}$$

$$\mathbf{f}(\mathbf{x}) = \left[f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_l(\mathbf{x})\right]^T$$

$$\mathbf{h}(\mathbf{x}) = \left[h_{l+1}(\mathbf{x}), h_{l+2}(\mathbf{x}), \dots, h_n(\mathbf{x})\right]^T$$

$$\mathbf{F}(\mathbf{x}) = \left[\mathbf{f}(\mathbf{x})^T \mathbf{h}(\mathbf{x})^T\right]^T$$

 β is a positive scalar to choose so that convergence speed is maximized.

Many other methods are available, e.g., heavy balls.

Traditional Lagrangian methods

```
\max_{\boldsymbol{x}} \quad f_0(\boldsymbol{x})
s.t. x_i \leq f_i(\boldsymbol{x}), \quad i = 1, \dots, l
x_i = h_i(\boldsymbol{x}), \quad i = l + 1, \dots, n
\boldsymbol{x} \in \mathcal{D},
```

An F-Lipschitz optimization can be solved by Lagrangian methods.

- > Strong duality always applies to F-Lipschitz problems
- The Pareto optimal solution is given be the Karush-Kuhn-Tucker (KKT) conditions:

$$\begin{split} x_i - f_i(\boldsymbol{x}^*) &\leq 0 \quad i = 1, \dots, l \\ x_i - h_i(\boldsymbol{x}^*) &= 0 \quad i = l+1, \dots, n \\ \lambda_i^* &\geq 0 \qquad i = 1, \dots, n \\ \lambda_i^* f_i(\boldsymbol{x}^*) &= 0 \quad i = 1, \dots, n \\ \nabla_{\boldsymbol{x}} L(\boldsymbol{x}^*, \boldsymbol{\lambda}^*) &= 0 \,, \\ L(\boldsymbol{x}, \boldsymbol{\lambda}) &= -\boldsymbol{\rho}^T f_0(\boldsymbol{x}) + \sum_{i=1}^l \lambda_i (x_i - f_i(\boldsymbol{x})) + \sum_{i=l+1}^n \lambda_i (x_i - h_i(\boldsymbol{x})) \quad \text{Lagrangian} \\ x(k+1) &= x(k) - \beta \nabla_{\boldsymbol{x}} L(\boldsymbol{x}(k), \boldsymbol{\lambda}(k)) \\ \boldsymbol{\lambda}(k+1) &= \boldsymbol{\lambda}(k) - \beta \nabla_{\boldsymbol{\lambda}} L(\boldsymbol{x}(k), \boldsymbol{\lambda}(k)) \end{split}$$

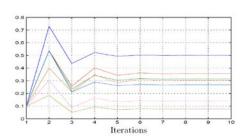
Distributed optimization

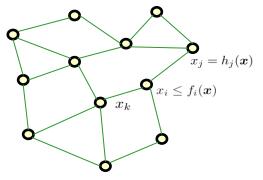
```
\max_{\boldsymbol{x}} f_0(\boldsymbol{x})
s.t. x_i \leq f_i(\boldsymbol{x}), \quad i = 1, \dots, l
x_i = h_i(\boldsymbol{x}), \quad i = l + 1, \dots, n
\boldsymbol{x} \in \mathcal{D},
```

Proposition 3.7: Let $x(0) \in$ be an initial guess of the optimal solution to a feasible F-Lipschitz problem. Let $x^i(k) = [x_1(\tau_1^i(k)), x_2(\tau_2^i(k)), \dots, x_n^i(\tau_n(k))]$ the vector of decision variables available at node i at time $k \in \mathbb{N}_+$, where $\tau_j^i(k)$ is the delay with which the decision variable of node j is communicated to node i. Then, the following iterative algorithm converges to the optimal solution:

$$x_i(k+1) = [f_i(\mathbf{x}^i(k))]^{\mathscr{D}} \quad i = 1, \dots, l$$
$$x_i(k+1) = h_i(\mathbf{x}^i(k)) \quad i = l+1, \dots, n$$

where $k \in \mathbb{N}_+$ is an integer associated to the iterations.



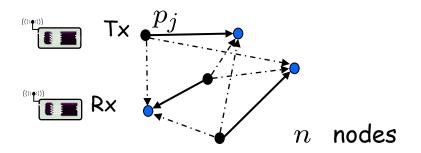


- Motivating examples for fast optimization in WSNs
 - > Physical layer
 - > Medium access control
 - > Routing
 - > Peer-to-peer estimation
- F-Lipschitz optimization
 - > Existence and uniqueness of the Pareto optimal solution
 - > Centralized computation of the solutoin
 - > Distributed computation of the solution
- Some F-Lipschitz applications
 - > Interference function theory as a particular case of F-Lipschitz optimization
 - > Problems in canonical form
 - Convex optimization and geometric programming
- Peer-to-peer estimation via F-Lipschitz optimization
- Conclusions & future work

Interference function theory

- $\mathbf{p} = (p_1, p_2, \dots, p_n) \in \mathbb{R}^n, \mathbf{p} \succeq \mathbf{0}$, vector of radio powers
- $I_j(\mathbf{p}):\mathbb{R}^n o \mathbb{R}$ interference that the radio power has to overcome

$$I(\mathbf{p}) = (I_1(\mathbf{p}), I_2(p), \dots, I_n(\mathbf{p}))$$



- Properties of the (Type-I) interference function
 - 1. $\mathbf{I}(\mathbf{p}) \succ 0$
 - 2. $\mathbf{p} \succeq \mathbf{q} \Longrightarrow \mathbf{I}(\mathbf{p}) \succeq \mathbf{I}(\mathbf{q})$
 - 3. $c \in \mathbb{R}, \quad c > 1 \Longrightarrow c\mathbf{I}(\mathbf{p}) > \mathbf{I}(c\mathbf{p})$

Power control as an F-Lipschitz problem

1.
$$\mathbf{f}(x) \prec 0$$
 $\max_{\mathbf{x}} \mathbf{x}$
2. $\mathbf{x} \succeq \mathbf{y} \Longrightarrow \mathbf{f}(\mathbf{x}) \succeq \mathbf{f}(\mathbf{y})$ s.t. $\mathbf{x} \leq \mathbf{f}(\mathbf{x})$
3. $c \in \mathbb{R}, c > 1 \Longrightarrow \mathbf{f}(c\mathbf{x}) > c\mathbf{f}(\mathbf{x})$

Theorem: Suppose that a function f(x) satisfies the type-I properties, then it satisfies the F-Lipschitz qualifying properties.

• F-Lipschitz qualifying properties are much more general than the interference function properties.

Problems in canonical form

$$\min_{\boldsymbol{x}} g_0(\boldsymbol{x})$$

s.t.
$$g_i(\boldsymbol{x}) \leq 0$$
, $i = 1, ..., l$
 $p_i(\boldsymbol{x}) = 0$, $i = l + 1, ..., n$
 $\boldsymbol{x} \in \mathcal{D}$,

Canonical form

Bertsekas, Non Linear Programming, 2004.

$$f_0(\mathbf{x}) = -g_0(\mathbf{x}),$$

$$f_i(\mathbf{x}) = x_i - \gamma_i g_i(\mathbf{x}), \quad \gamma_i > 0$$

$$h_i(\mathbf{x}) = x_i - \mu_i p_i(\mathbf{x}), \quad \mu_i \in \mathbb{R}$$

$$\max_{\boldsymbol{x}} f_0(\boldsymbol{x})$$

s.t.
$$x_i \leq f_i(\boldsymbol{x}), \quad i = 1, \dots, l,$$

 $x_i = h_i(\boldsymbol{x}) \quad i = l+1, \dots, n,$
 $\boldsymbol{x} \in \mathcal{D},$

F-Lipschitz form

Problems in canonical form

```
\min_{\boldsymbol{x}} \quad g_0(\boldsymbol{x})
s.t. g_i(\boldsymbol{x}) \leq 0, i = 1, ..., l

p_i(\boldsymbol{x}) = 0, i = l + 1, ..., n

\boldsymbol{x} \in \mathcal{D}.
```

Theorem Consider an optimization problem in canonical form. Let

$$\mathscr{A} = \{ \boldsymbol{x} \in \mathscr{D} | g_i(\boldsymbol{x}) \le 0, i = 1, \dots, l,$$

$$p_i(\boldsymbol{x}) = 0, \quad i = l + 1, \dots, n \}.$$

For $x \in \mathcal{A}$, suppose that

- 1. $\nabla g_0(\boldsymbol{x}) \prec 0$
- 2. $\nabla_i g_i(\boldsymbol{x}) > 0$ and $\nabla_i p_i(\boldsymbol{x}) > 0 \quad \forall i$.
- 3. Either $\nabla_j g_i(\boldsymbol{x}) \geq 0$ and $\nabla_j p_i(\boldsymbol{x}) \geq 0$ $\forall j \neq i$ or $\nabla_i g_0(\boldsymbol{x}) = \nabla_j g_0(\boldsymbol{x})$, $\nabla_j g_i(\boldsymbol{x}) \leq 0$ and $\nabla_j p_i(\boldsymbol{x}) \leq 0$ $\forall j \neq i$.

Problems in canonical form

$$\begin{aligned} & \min_{\boldsymbol{x}} \quad g_0(\boldsymbol{x}) \\ & \text{s.t.} \quad g_i(\boldsymbol{x}) \leq 0 \,, \quad i = 1, \dots, l \\ & \quad p_i(\boldsymbol{x}) = 0 \,, \quad i = l+1, \dots, n \\ & \quad \boldsymbol{x} \in \mathscr{D} \,. \end{aligned}$$

Then, the problem is F-Lipschitz if for every $i = 1, \ldots, l$

either
$$\nabla_i g_i(\boldsymbol{x}) > \sum_{j \neq i} |\nabla_j g_i(\boldsymbol{x})|$$

or
$$|\nabla_i g_i(\boldsymbol{x})| + \sum_{j \neq i} |\nabla_j g_i(\boldsymbol{x})| < L_{g_i}$$
 and $\nabla \mathbf{F}(\boldsymbol{x})$ has full rank

and for every $i = l + 1 \dots, n$

either
$$\nabla_i p_i(\boldsymbol{x}) > \sum_{j \neq i} |\nabla_j p_i(\boldsymbol{x})|$$

or
$$|\nabla_i p_i(x)| + \sum_{j \neq i} |\nabla_j p_i(x)| < L_{h_i}$$
 and $\nabla \mathbf{F}(x)$ has full rank.

Example 1: from a convex problem to an F-Lipschitz one

$$\min_{\substack{x,y \\ \text{s.t.}}} (ax^2 + cy^2)^{-1}
\text{s.t.} \quad x - 0.5y - 1 \le 0
- x + 2y \le 0
x \ge 0, \quad y \ge 0,$$

$$a > 0, b > 0
x, y \in \mathbb{R}$$

 The problem is convex: KKT conditions could be used to compute the optimal solution, but the problem is F-Lipschitz:

$$\nabla_{x}(x - 0.5y - 1) = 1 > 0$$

$$\nabla_{y}(x - 0.5y - 1) = -0.5 < 0$$

$$\nabla_{y}(x - 0.5y - 1) = 1 > |\nabla_{y}(x - 0.5y - 1)| = 0.5$$

$$\nabla_{y}(-x + 2y) = 2 > 0$$

$$\nabla_{y}(-x + 2y) = -1 < 0$$

$$\nabla_{x}(x - 0.5y - 1) = 1 > |\nabla_{y}(x - 0.5y - 1)| = 0.5$$

$$\nabla_{y}(-x + 2y) = 2 > |\nabla_{x}(-x + 2y)| = 1,$$

The solution is given by the constraints at the equality, trivially

$$x - 0.5y - 1 = 0$$
 $x^* = 4/3$
 $-x + 2y = 0$, $y^* = 2/3$

Example 2: a hidden F-Lipschitz problem

$$\min_{x,y,z} (ax^2y^2 + bz^{-1})^{-1}$$

s.t.
$$x - 0.5y + z + 3 \le 0$$

 $-x + 2y - z^{-1} + 1 \le 0$
 $-3x - y + z^{-2} + 2 \le 0$

A convex non-F-Lipschitz problem

$$\nabla_z(x - 0.5y + z + 3) > 0$$

$$x_{\min} \le x \le x_{\max}, \quad y_{\min} \le y \le y_{\max}, \quad z_{\min} \le z \le z_{\max},$$

$$t = z^{-1} \qquad \boxed{}$$

$$\min_{x,y,t} (ax^2y^2 + bt)^{-1}$$

An F-Lipschitz problem

s.t.
$$x - 0.5y + t^{-1} + 3 \le 0$$

 $-x + 2y - t + 1 \le 0$
 $-3x - y + t^2 + 2 \le 0$
 $x_{\min} \le x \le x_{\max}, \quad y_{\min} \le y \le y_{\max}, \quad 1/z_{\max} \le t \le 1/z_{\min}$

$$1/z_{\max} \le t \le 1/z_{\min}$$

Geometric programming

$$\min_{\boldsymbol{x}} \quad g_0(\boldsymbol{x})$$
s.t. $g_i(\boldsymbol{x}) \le 1 \quad i = 1, \dots, l$

$$p_i(\boldsymbol{x}) = 1 \quad i = l + 1, \dots, m$$

$$\boldsymbol{x} \in \mathscr{D} \quad \boldsymbol{x} \succ 0$$

$$\begin{split} g_i(\boldsymbol{x}) &= \sum_{k=1}^K c_{ik} x_1^{a_{i1k}} x_2^{a_{i2k}} \cdots x_m^{a_{imk}} \quad i = 0, \dots, l \\ p_i(\boldsymbol{x}) &= c_i x_1^{b_{i1}} x_2^{b_{i2}} \cdots x_m^{b_{im}} \quad i = l+1, \dots, m \\ c_{ik} &> 0, \ a_{ijk} \in \mathbb{R}, \ b_{ij} \in \mathbb{R}, \ \forall i,j,k \end{split} \qquad \text{posynomial}$$

- Geometric problems are convex (via a simple mechanical conversion) and are solved by Lagrangian methods (interior point methods).
- Geometric problems play an essential role in electrical circuit design.

S. Boyd, S. J. Kim, L. Vandenberghe, A. Hassibi, "A tutorial on geometric programming," *Optimization and Engineering*, vol. 1, no. 1, p. 1, 1 2006.

When geometric problems are F-Lipschitz $\min_{x} g_0(x)$

s.t.
$$g_i(\boldsymbol{x}) \leq 1$$
 $i = 1, ..., l$
 $p_i(\boldsymbol{x}) = 1$ $i = l+1, ..., m$
 $\boldsymbol{x} \in \mathscr{D}$ $\boldsymbol{x} \succ 0$

Corollary Consider a geometric optimization problem. Let

$$\mathscr{A} = \{ x \in \mathscr{D} | g_i(x) \le 1, i = 1, \dots, l, p_i(x) = 1 \}.$$

The problem is an F-Lipschitz one if the following conditions simultaneously hold:

- 1) $\nabla g_0(\boldsymbol{x}) \prec 0 \ \forall \boldsymbol{x} \in \mathscr{A};$
- 2) $a_{iik} > 0$ and $b_{ii} > 0 \ \forall i$;
- 3) either $a_{ijk} \geq 0$ $b_{ij} \geq 0$ or $\nabla_i g_0(\mathbf{x}) = \nabla_j g_0(\mathbf{x})$, $a_{ijk} \leq 0$, and $b_{ij} \leq 0$, $\forall i$ and $\forall j \neq i$;
- 4) $\mathscr{D} = [x_{1,\min}, x_{1,\max}] \times [x_{2,\min}, x_{2,\max}] \times \ldots \times [x_{n,\min}, x_{n,\max}], \text{ with } 0 < x_{i,\min} < x_{i,\max} < \infty \ \forall i.$

Example: a geometric problem is easily recognized as F-Lipschitz

$$\min_{x,y,z} x^{-2} + 9y^{-1} + z^{-3}$$
s.t.
$$3x^{3.1}y^{-1} + 4y^{-2} + z^{-1} \le 12$$

$$5x^{-2} + 6y^{2}x^{-1} + z^{-1} \le 10$$

$$x^{-1}y^{-1}z^{2} = 10$$

$$\mathscr{D} = \{10^{-10} \le x \le 1, \quad 10^{-10} \le y \le 1, \quad 10^{-10} \le z \le 1\}$$

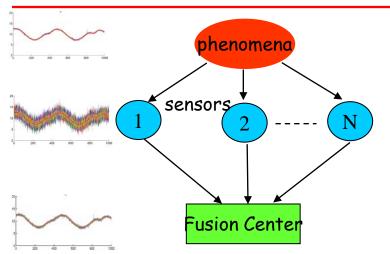
The exponent of the i-th decicion variable of the i-th constraint is always positive, whereas the other exponents are negative...

The F-Lipschitz optimization

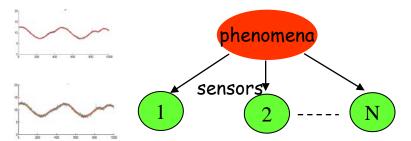
Non-Convex Optimization Convex Optimization F-Lipschitz Optimization Interference Function Geometric **Optimization Programming**

- Motivating examples for fast optimization in WSNs
 - > Physical layer
 - > Medium access control
 - > Routing
 - > Peer-to-peer estimation
- F-Lipschitz optimization
 - > Existence and uniqueness of the Pareto optimal solution
 - Centralized computation of the solutoin
 - > Distributed computation of the solution
- Some F-Lipschitz applications
 - > Interference function theory as a particular case of F-Lipschitz optimization
 - > Problems in canonical form
 - Convex optimization and geometric programming
- Peer-to-peer estimation via F-Lipschitz optimization
- Conclusions & future work

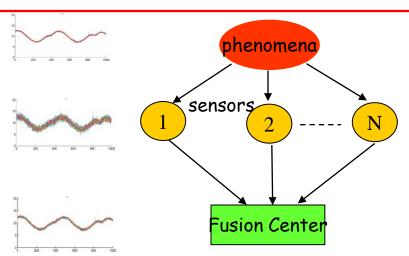
Estimation



Centralized Estimation: no intelligence on sensors



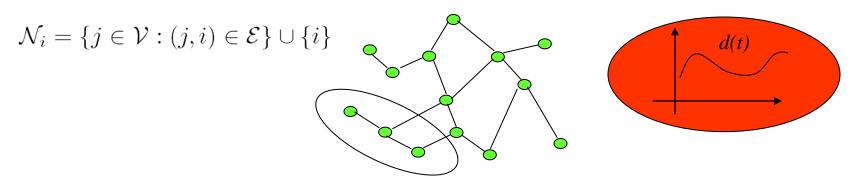
Peer-to-Peer Estimation: no central coordination



Distributed Estimation: some processing on sensors

Peer-to-Peer Estimation

A. Speranzon, C. Fischione, K. H. Johansson, A. Sangiovanni-Vincentelli, "A Distributed Minimum Variance Estimator for Sensor Networks", IEEE Journal on Selected Areas in Communications, special issue on Control and Communications, May 2008.

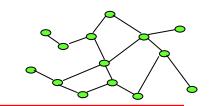


Nodes perform a noisy measurement of a common time-varying signal

$$u_i(t) = d(t) + v_i(t)$$

Communication subject to space-time varying packet losses

Peer-to-Peer Estimator



Nodes exchange local measurements and estimates

$$z_i(t) = \sum_{j \in \mathcal{N}_i(t)} \!\! k_{ij}(t) \phi_{ij}(t) z_j(t-1) + \sum_{j \in \mathcal{N}_i(t)} \!\! h_{ij}(t) \phi_{ij}(t) u_j(t) \quad \text{Local estimate at node } i$$

$$\mathbf{z}(t) = (\mathbf{K}(t) \circ \mathbf{\Phi}(t)) \, \mathbf{z}(t-1) + (\mathbf{H}(t) \circ \mathbf{\Phi}(t)) \, \mathbf{u}(t)$$
 Global vector of the estimates
$$\mathbf{K}(t) = [\mathbf{k}_i(t)] \in \mathbb{R}^{N \times N}$$

$$\mathbf{H}(t) = [\mathbf{h}_i(t)] \in \mathbb{R}^{N \times N}$$

$$\Phi(t) = [\phi_i(t)] \in \mathbb{R}^{N \times N}$$

• Goal: find locally the estimation coefficients $\mathbf{k}_i(t)$ and $\mathbf{h}_i(t)$ that minimize the variance of the estimation error.

Estimation Coefficients

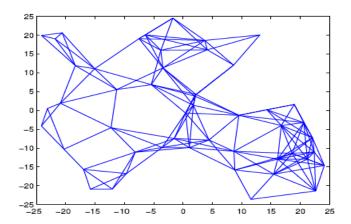
$$\mathbf{e}(t) = \mathbf{z}(t) - d(t)\mathbf{1}$$
 Estimation Error

 Estimation Coefficients given by minimizing the average estimation error, under stability constraints

$$\begin{split} \min_{\mathbf{K}(t),\mathbf{H}(t)} & & \mathbb{E} \, \mathbf{e}(t)^T \mathbf{e}(t) \\ \text{s.t.} & & \left((\mathbf{K}(t) + \mathbf{H}(t) - \mathbf{I}) \circ \mathbf{\Phi}(t) \right) \mathbf{1} = 0 \quad \text{Small Bias} \\ & & & \| \mathbf{K}(t) \circ \mathbf{\Phi}(t) \| \leq \gamma_{\max} < 1 \quad \text{Stable Estimation Error} \end{split}$$

- A centralized optimization problem
- How to distribute the computation of the optimal solution?
 - An F-Lipschitz optimization problem

Network with 30 nodes randomly deployed.



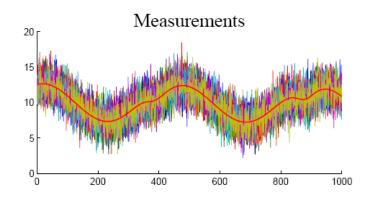
Signal to track:

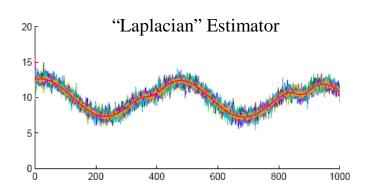
$$d(t) = 3\sin(2\pi t/1500) - 8\cos(2\pi t/1800)\sin(2\pi t/800)$$

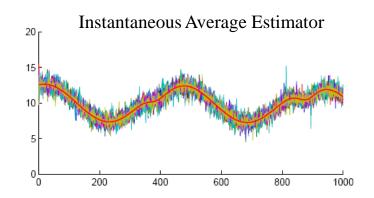
Variance of the additive noise:

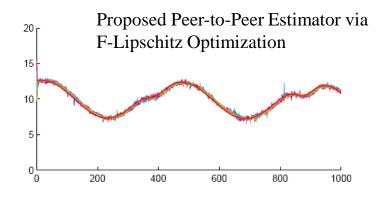
$$\sigma^2 = 1.2 \qquad u_i(t) = d(t) + v_i(t)$$

Simulation Example: Peer-to-peer estimation









Packet loss probability $q_{ij} = 10\% \pm 5\%$

$$q_{ij} = 10\% \pm 5\%$$

- F-Lipschitz optimization enables fast computations of the solution of a class of convex and non-convex optimization problems.
 - > Central idea: optimal solution achieved when all the constraints are active.
 - > F-Lipschitz optimization solve several problems much more efficiently than traditional Lagrangian methods.
- The interference function theory optimization is a particular case of F-Lipschitz optimization.
- Perhaps, in many situations, it is better to "F-Lipschitzfy" than "convexify".
- More info on http://www.ee.kth.se/~carlofi/

Acknowledgements

- S. Boyd (Stanford Univ.)
- K. H. Johansson, M. Johansson, U. Jönsson, A. Möller (KTH)
- A. Speranzon (UTRC)