An Overview on F-Lipschitz
Optimization with
Wireless Networks Applications

University of Padova
Padova, July 21, 2010

Carlo Fischione

carlofi@ee .kth.se

Electrical Engineering
KTH Royal Institute of Technology


mailto:carlofi@ee.kth.se�

Environmental monitoring

Transportation




Outline

Motivating examples for fast optimization in Wireless Networks
> Physical layer
> Medium access control and Routing
> Peer-to-peer estimation
F-Lipschitz optimization
> Existence and uniqueness of the Pareto optimal solution
> Centralized computation of the solutoin
> Distributed computation of the solution
Some F-Lipschitz applications
> Interference function theory as a particular case of F-Lipschitz optimization
> Problems in canonical form
> Convex optimization and geometric programming
Peer-to-peer estimation via F-Lipschitz optimization
Conclusions & future work



i

o S

1531 Wireless Networks Protocols

Sensedd®

= The operations of a node are specified by a set of protocols, or set of
rules.
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A. Bonivento, C. Fischione, L. Necchi, F. Pianegiani, A. Sangiovanni-Vincentelli, “System Level Design for Clustered
Wireless Sensor Networks”, IEEE Transactions on Industrial Informatics, 2007 (best paper award of TIl 2007).
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Letp = (p1,p2,...,pn) € R",p > 0, be a vector of radio powers
> Each element is the power used by a node for transmission

Let I;(p) : R” — R be the interference that the radio power has to
overcome so that the receiver can detect the transmitted signal

Interference Function I(p) = (I1(p),I2(p),...,In(p))

The radio powers of every sensor must be minimized subject to
quality of communication constraints:

() pi
s ' Tx .......... N
min p :‘/ dmeme %
() . .
P [em Rx & -

s.t. p > I(p) T n nodes

C. Fischione, K. H. Johansson, A. Sangiovanni-Vincentelli, B. Zurita Ares “Energy Consumption of Minimum Energy Coding in
CDMA Wireless Sensor Networks™, IEEE Transactions on Wireless Communications, February 2009.



Power control with unreliable
components

Unreliable transceivers introduce intermodulation powers difficult to
compensate

G?ﬁ-zlp?ﬁ
a; + Zk#’l G?ﬁ/ﬂpk + Zk;ﬁi A[?kp;‘)p%

How to minimize the radio power consumption?

SINR; =

min P
P

S.t. SIN'R?’ 2 Srrlj.[l? ?: — 13 LI n'j

1pmin <p=< 1pmax: N nodes

There is a lack of theory on how to solve these optimization problems by
simple and fast algorithms that run on resource constrained nodes.



MAC and Routing over IEEE ! ]5
802.15.4 networks for Control
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= TEEE 802.15.4 wireless sensor networks
> Nodes transmit their data directly to the cluster head
> The controller is reached via cluster-head multi-hop routing.



TEEE 802.15.4 MAC and Routing
for Control

= Energy, bounded delay and packet transmission requirements must be
ensured by TEEE 802.15.4:

> Control applications require a packet delivery within some deadline
and with a guaranteed packet reception probability.

min BE(x) Energy Consumption
X
S.T. P (X) > (), 1=1,...,n, Reliability
Pr|D;(x) < 1;] > A i=1,...,n Delay

= N clusters give N parallel and coupled optimization problems as the one
above to solve without central coordination

> How to do by nodes of reduced computational capability?
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L+ 4 the IEEE 802.15.4 city

= October 2007: Ember & Goteborg Energi deployed 260.000 IEEE
802.15.4 smart meters for electricity monitoring and control

= http://www.ember.com
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P. Park, P. Di Marco, P. Soldati, C. Fischione, K. H. Johansson, “A Generalized Markov Model for an Effective Analysis of Slotted
IEEE 802.15.4”, IEEE Mobile Ad-hoc and Sensor Systems Conference, October 2009 (Best Paper Award).
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max  fo(x)

st. oz < fi(lxe), i=1,...,1

folx) : 92 — R™, m<n
filx): 2 — R, i=1,....1

hl($).@—>R. i:l—l—l,...,n

9 CR" nonempty compact set



F-Lipschitz 3 qualifying
properties

max  fo(x)
€T

st. x; < file), i=1,...,1

Ve € 2.V fo(x) 1s a continuous stryctly increasing function;
Ve € 7, either V;fi(x) <0, Vjhi(x) <0, Vi#j;
or Vifolx) =V folx) Vi#j ., andV,fi(x)>0, V;hi(x)>0,
Lipschitz contractivity: Ve, y € 7., |fi(x) — fi(y)| < a4l|lxz —y|], i=1,
and  |hy(x) — h(y)| S oylle—y||, i=1+1,...,n, with oy € [0,1)V:

fo(x), fi(x) and h;(x) can be non-convex

Vi# g

ol



The F-Lipschitz optimization

Non-Convex Optimization

Convex Optimization

F-Lipschitz Optimization

Geometric
Programming



Objective function e

= Tt is allowed to be both a composable or decomposable function of
the decision variables.

= It can be a scalar or a vector, for example

folz) =
fol)=bTx. beR™ b>0

folx) = T Ax. Az = 0.A cR"

= An F-Lipschitz problem is in general a vector optimization problem
with multi-objective function.



max  fo(x)
st x; < file), i=1,..., [

Pareto optimal solution . .. .. .

T e D,

Definition : Consider the following set

—h( )z—l—l—lg...?n}?

and let 4 € R' be the image set of fy(x), namely fo(x) :
&/ — 9. Then, we make the natural assumption that the set
% 1s partially ordered in a natural way, namely if ¢,y € #
then =y if x; > y; Vi (e.g., R.. is the ordering cone).

Definition (Pareto Optimal): A vector " is called
a Pareto optimal (or an Edgeworth-Pareto optimal) point if
there 1s no @ € &/ such that fo(x) = fo(x™) (1.e., if fo(x™)
i1s the maximal element of the set A with respect to the
natural partial ordering defined by the cone R’ ).



Computation of the solution

= Centralized optimization
> Problem solved by a central processor

= Distributed optimization

> Decision variables and constraints are associated to
distributed nodes that compute the solution

max

S.t.




max  fo(x)
T

st. 2 < fi(e), i=1,..., l

Optimal Solution

re D,

= hie), i=l+1

Theorem : Let an F-Lipschitz optimization problem
be feasible. Then, the problem admits a unique Pareto
optimum x* € & given by the solutions of the following
set of equations:

f=[fi(xN)]? i=1,....1
C=hi(x") i=1l+1,....m.

¥ =%

x.
Xz,

]

= The Pareto optimal solution is just given by a set of (in general non-
linear) equations.

= Solving a set of equations is much easier than solving an optimization
problem by traditional Lagrangian methods.
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yes

Inequality

constraints no

Compute the
solution by F-
Lipschitz
algorithms

satisfy the
equality at
the optimum?

Compute the
solution by
Lagrangian methods

The F-Lipschitz optimization defines a class of problems for which all
the constraints are active at the optimal solution.

The solution to the set of equations given by the projected constraints
is the optimal solution.

This avoids using Lagrangian methods, which are computationally

expensive.



max  fo(x)
st. 2 < fi(e), i=1,..., l

Centralized optimization =, | |

re D,

= The optimal solution is given by iterative methods to solve
systems of non-linear equations, such as the Newton's method

2k +1) = [w(k) — 3 (1 = VE (@)™ (2(k) - F(k)]

flx) = [fi(z), falx),..., filz)]"

h(x) = [th( ). hiao(x). . ... h.n(_m):_T

F(x) = [f(z)'h(z)!]t
3 is a positive scalar to choose so that convergence speed is
maximized.

= Many other methods are available, e.g., heavy balls.



max  fo(x)

Traditional Lagrangian A, =l
me.'.hods ;:;(x) i=141,....n

An F-Lipschitz optimization can be solved by Lagrangian methods.
> Strong duality always applies to F-Lipschitz problems

> The Pareto optimal solution is given be the Karush-Kuhn-Tucker
(KKT) conditions:
— filz) <0 i=1,....1
;i —hi(®")=0 i=1+1,....n
A; >0 i=1,..., n
Nfile®) =0 i=1,..., n
VeL(z* ) =0,

[

Lz A)=—p" folx) + > Nilwi — filz)) + Z \i(; — hi(x)) Lagrangian
=1 i=l41

x(k+1) =x(k) — BV L(x(k), A(k))

A+ 1) = X(k) — BVAL(x(k), X(k))



Distributed optimization =~ |

" Proposition 3.7: Let z(0) € be an initial guess of the op-

timal solution to a feasible F-Lipschitz problem. Let x*(k) =
oy (TE(K)), o (TE(K)), ... . xt (7 (k)] the vector of decision

variables available at node : at time £ < IN,, where Tj?f(k)
1s the delay with which the decision variable of node
1s communicated to node :. Then, the following iterative

algorithm converges to the optimal solution:
ri(k+1) = [fi(x" (k)7 i=1,....1
zi(k+1) = hi(2*(k)) i=1+1,....,n

where & € IN, 1s an integer associated to the iterations.

3333333333
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Interference function theory

* p=(p1,po,...,pn) € R, p > 0, vector of radio powers
" I;(p) : R" — R interference that the radio power has to overcome

I(p) = (11(p), I2(p), - - ., In(P))

. () TX Z{]
Mmin P @ ------ i
p KA

st. . p=1p) e i

n nodes

= Properties of the (Type-I) interference function
1. I(p) =0

2. p=q=1I(p) = 1(q)

3. ceR. e¢>1 = CI([)) = I(Cp)

Zander, Distributed cochannel control in cellular radio systems interference, IEEE Trans. Veh. Technol., 1992,
Foschini, Miljanic, “A simple distributed autonomous power control algorithm and its convergence,” IEEE Trans. Veh. Technol., 1993.



Power control as an F-Lipschitz
problem

max. @
T

2. xr=y=—f(x)=f(y)

s.t. x < f(x)
3. ceR, c>1= f(ecx) > cf(x)

Theorem : Suppose that a function f(ax) satisfies the
type-I properties, then it satisfies the F-Lipschitz qualifying
properties.

= F-Lipschitz qualifying properties are much more general than the
interference function properties.



go(x)
gi(x) <0, i=1,...,1
pi(x)=0, i=1+1,....n
xecD,
fo(x) = —go(x)
file) =xi=vgi(x), ~ >0
hi(e) = i — ipi(z), u; € R
fo(x)
v, < fi(x), i=1,....1,
v, =hi(x) i=1+1,....,n,

Canonical form

Bertsekas, Non Linear Programming, 2004.

F-Lipschitz form



min gy (x)

i

gy, N -

ééc 34 ° ° st. gi(x) <0, i=1,....1
231 Problems in canonical form = o0 .
S andh reD,

Theorem Consider an optimization problem in canon-
ical form. Let

o ={x € D|gi(x) <0,i=1,...,1,
pi(x) =0, i=101+1,....n}.

For x € .o/, suppose that

1. Vgo(x) <0
2. Vigi(x)>0and V;p;(x) >0 Vi.
3. Either V;g;(x) > 0 and V;p;(x) >0 Vj#i
or Vigo(x) = Vjgo(x), V,g(x)<0and
Vipi(x) <0 Vj#i.



m min  go(x

oS T

1991 Problems in canonical form - -

Then, the problem is F-Lipschitz if for every : = 1,....1

cither Vigi(z) > Y |V;gi(z)]
ji
or |V,gi(x)| + Z Vjgi(x)| < L,, and VF(x) has full rank
j#i

and foreveryt=1[01+1....n

either V;p;(x) > Z Vipi(x
JjFi
or |V;pi(x)| + Z 'V;pi(x)| < Lp, and VF(x) has full rank.
JFi



Example 1: from a convex
problem to an F-Lipschitz one

min (ax® 4 cy?)?
T,y

s.t. r—05y—1<0
—x+2y <0
x>0, y=0,

a>0,b6>0
r.y € R

= The problem is convex: KKT conditions could be used to compute the
optimal solution, but the problem is F-Lipschitz:

Ve(r—05y—1)=1>0

Vy(r—=05y—1)=-05<0 Vol =05y —1)=1> |V, (r —05y—1)| =05
Vy(—r+2y) =2>0 Vy(—o+2y) =2> |Ve(—x +2y)| =1.
Vel—r+2y)=-1<0

= The solution is given by the constraints at the equality, trivially
r—05y—1=0 = 4/3
—x+2y=0, y* = 2/3



Example 2: a hidden F-Lipschitz
problem

min  (ax?y® + bz~ 7!
z,Y.2

st 2—05y+24+3<0 A convex non-F-Lipschitz problem
—r+2y—214+1<0 Vil =05y+2+3) >0
—3r—y+274+2<0

Tmin ST < Tmax;, Ymin S ¥ < Ymax; Zmin S 2 < Zmax

min  (aw?y? + bt)"L An F-Lipschitz problem
x,Yy.t

st. o—05y+t14+3<0
—x+2y—t4+1<0
—3r—y+t*+2<0
Tmin <0 < Tmax:  Ymin <Y < Ymax: 1/ Zmax <t < 1/2min
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Sensedd®

min  go(x)

£
st gile) <1 i=1...., [
pile)=1 i=1+1,..., m
re? x=-0
K
gilx) = Z Cip ] gk gtk g = ()L [ posynomial
k=1
ni(x) = ¢ phirgbio Lo g bim G 11 m '
Pil — tih1 P2 ““m S y+ ey HIO monomial

Cike = U, ik e ]R., bij c ]R.. VEJ k

« Geometric problems are convex (via a simple mechanical conversion) and
are solved by Lagrangian methods (interior point methods).

- Geometric problems play an essential role in electrical circuit design.

S. Boyd, S. J. Kim, L. Vandenberghe, A. Hassibi, “A tutorial on geometric programming,” Optimization and
Engineering, vol. 1, no. 1, p. 1, 1 2006.



When geometric problems

are F-Lipschitz i go(e)
st gile)<1 1=1.....1
pile)=1 i=1+1,..., m
re? x>0

Corollary Consider a geometric optimization prob-
lem. Let

o ={xecDlg(x)<1l,i=1,....I,pi(x)=1}.

The problem 1s an F-Lipschitz one if the following conditions
simultaneously hold:

1) Vgo(x) < 0 Vo € &;

2) ai;r > 0 and b; > 0 Vi,

3) either Aijk > 0 b;‘j > 0 or Vggg(m) = ng[j(:l?), Ajjk <
0,and b;; <0, Vi and Vj # i;

4) 9 = [Jfl,min-. ifl,max] X [41-'2,1111111 172,1’11&}{] X ... X
n min, Ln max)» With 0 < 2 min < 2 max < 00 Vi.



Example: a geometric problem is
easily recognized as F-Lipschitz

min 724+ 09y 14273

.Y,z
st 3ty 44y 42 <12
5672 4+ 6%t + 271 <10
‘1.'_1-_;;_1,:;2 = 10
= {1070 <w <1, 1070 <y <1, 10710 <2 <1

The exponent of the i-th decicion variable of the i-th constraint is
always positive, whereas the other exponents are negative...



The F-Lipschitz optimization

Non-Convex Optimization

Convex Optimization

F-Lipschitz Optimization

Geometric
Programming
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Centralized Estimation:
no intelligence on sensors
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s = =) ] [ T
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Distributed Estimation:
some processing on sensors

Peer-to-Peer Estimation:
no central coordination
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11 Peer-to-Peer Estimation

@€ OCH KONST

SN

A. Speranzon, C. Fischione, K. H. Johansson, A. Sangiovanni-Vincentelli, “A Distributed Minimum Variance Estimator for Sensor
Networks”, IEEE Journal on Selected Areas in Communications, special issue on Control and Communications, May 2008.

Ni={jeV:(,i)ecpudi}

= Nodes perform a noisy measurement of a common time-varying
signal

= Communication subject to space-time varying packet losses



Peer-to-Peer Estimator :o%

= Nodes exchange local measurements and estimates

Zkij (t)pij(t)z(t — 1) Zh” )®ij(t)u;(t) Local estimate
FENG (£) JEN(t) at node i

z(t) = (K(t) o ®(t)) z(t — 1) + (H(t) o ®(¢)) u(?) Global vector of
the estimates

K(t) = [ki(t)] € RY <Y
H(t) = [h,(t)] € RV*N
®(t) = [p;(1)] € RY*T

* Goal: find locally the estimation coefficients k;(t)and h;(t) that
minimize the variance of the estimation error.



Estimation Coefficients

e(t) = z(t) — d(t)1 Estimation Error

Estimation Coefficients given by minimizing the average estimation
error, under stability constraints

min Ee(t)!e(t)
K (¢).H(t)
st ((K@E) +H@E)-T)od(t)1=0 Small Bias
|

1K (t) o ®(t)]| < Ymax <1 Stable Estimation Error

A centralized optimization problem

How to distribute the computation of the optimal solution?
> An F-Lipschitz optimization problem



Simulation Example:
Peer-to-peer estimation

= Network with 30 nodes randomly deployed.

= Signal to track:

d(t) = 3sin(27t/1500) — 8 cos(27t/1800) sin(27t/800)

= Variance of the additive noise:

ot = 1.2 wi(t) = d(t) + vi(t)



=4 Simulation Example:
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Lo 4 Peer-to-peer estimation

Measurements

2 207 “Laplacian” Estimator
15 [l 1
L lﬂh | ' A
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».  Instantaneous Average Estimator . Proposed Peer-to-Peer Estimator via

F-Lipschitz Optimization

1 1 1 1 ] L L L 1 |
0 200 400 0o 800 1000 0 200 400 600 800 1000

Packet loss probability — q;; = 10% £ 5%



Conclusions

F-Lipschitz optimization enables fast computations of the solution of a
class of convex and non-convex optimization problems.

> Central idea: optimal solution achieved when all the constraints are active.

> F-Lipschitz optimization solve several problems much more efficiently than traditional
Lagrangian methods.

The interference function theory optimization is a particular case of F-
Lipschitz optimization.

Perhaps, in many situations, it is better to "F-Lipschitzfy" than
“convexify".

More info on http://www.ee.kth.se/~carlofi/
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