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Well known:
● Optimal control may be used to provide stabilization, tracking, etc.,

for nonlinear systems

● Model predictive/receding horizon strategies have been used
successful for a number of nonlinear systems with constraints
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Well known:
● Optimal control may be used to provide stabilization, tracking, etc.,

for nonlinear systems

● Model predictive/receding horizon strategies have been used
successful for a number of nonlinear systems with constraints

Also:
● Trajectory exploration : What cool stuff can this system do?

✦ capabilities

✦ limitations

● Trajectory modeling : Can the trajectories of this (complex) system
be modeled by those of a simpler system? [e.g., reduced order, flat, ...]

● Objective function design : needed to exploit system capabilities

● Systems analysis : investigate system structure, e.g., controllability
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Consider the problem of minimizing a functional

h(x(·), u(·)) :=

∫ T

0

l(x(τ), u(τ), τ) dτ +m(x(T ))

over the set T of bounded trajectories of the nonlinear system

ẋ(t) = f(x(t), u(t))

with x(0) = x0 (... without additional constraints).

We write this constrained problem as

min
ξ∈T

h(ξ)

where

ξ = (α(·), µ(·)) is a bounded curve with α(·) continuous and α(0) = x0.
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Consider the problem of minimizing a functional

h(x(·), u(·)) :=

∫ T

0

l(x(τ), u(τ), τ) dτ +m(x(T ))

over the set T of bounded trajectories of the nonlinear system

ẋ(t) = f(x(t), u(t))

with x(0) = x0 (... without additional constraints).

We write this constrained problem as

min
ξ∈T

h(ξ)

where

ξ = (α(·), µ(·)) is a bounded curve with α(·) continuous and α(0) = x0.

How can we approach this problem?



Unconstrained (?) Optimal Control

Introduction
❖ Why do Trajectory
Optimization?

❖ Minimization of
Trajectory Functionals

❖ Unconstrained (?)
Optimal Control

❖ Projection Operator
Approach

❖ Projection Operator

❖ Projection Operator
Properties

❖ Trajectory Manifold

❖ Equivalent
Optimization Problems

❖ Projection operator
Newton method

❖ Derivatives

❖ Computation of D2
P

❖

Mathematical
Preliminaries

Control systems on Lie
groups

The Projection Operator
approach on Lie groups

Left-trivialized
linearization around a
trajectory

Projection Operator

Quadratic approximation
of the cost function

5 / 40

● In the usual case, the choice of a control trajectory u(·) determines
the state trajectory x(·) (recall that x0 has been specified). With
such a trajectory parametrization , one obtains so-called
unconstrained optimal control problem

min
u(·)

h(x(·;x0, u(·)), u(·))

● Why not just search over control trajectories u(·)? If the system
described by f is sufficiently stable, then such a shooting method
may be effective.

● Unfortunately, the modulus of continuity of the map
u(·) 7→ (x(·), u(·)) is often so large that such shooting is
computationally useless :

small changes in u(·) may give LARGE changes in x(·)
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Key Idea: a trajectory tracking controller may be used to minimize the
effects of system instabilities, providing a numerically effective, redundant
trajectory parametrization .

Let ξ(t) = (α(t), µ(t)), t ≥ 0, be a bounded curve and
let η(t) = (x(t), u(t)), t ≥ 0, be the trajectory of f determined by
the nonlinear feedback system

ẋ = f(x, u), x(0) = x0,

u = µ(t) +K(t)(α(t)− x) .

The map

P : ξ = (α(·), µ(·)) 7→ η = (x(·), u(·))

is a continuous, Nonlinear Projection Operator .

For each ξ ∈ domP, the curve η = P(ξ) is a trajectory.

Note: the trajectory contains both state and control curves.
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η = P(ξ)

ξ
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Suppose that f is Cr and that K is bounded and
exponentially stabilizes ξ0 ∈ T . Then [1]

● P is well defined on an L∞ neighborhood of ξ0

● P is Cr (Fréchet diff wrt L∞ norm)

● ξ ∈ T if and only if ξ = P(ξ)

● P = P ◦ P (projection )

On the finite interval [0, T ], choose K(·) to obtain stability-like properties
so that the modulus of continuity of P is relatively small .

On the infinite horizon, instabilities must be stabilized in order to obtain
a projection operator; consider ẋ = x+ u.

[1] J. Hauser and D. Meyer,
”The trajectory manifold of a nonlinear control system”,
Proceedings of the 37th IEEE Conference of
Decision and Control (CDC), vol. 1, pp.1034-1039, 1998
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ξ

ξ+ζ

η = P(ξ+ζ)

Theorem: T is a Banach manifold : Every η ∈ T near ξ ∈ T can be
uniquely represented as

η = P(ξ + ζ), ζ ∈ TξT

Key: the projection operator DP(ξ) provides the required subspace
splitting . Note: ζ ∈ TξT if and only if ζ = DP(ξ) · ζ
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Using the projection operator , we see that

min
ξ∈T

h(ξ) = min
ξ=P(ξ)

h(ξ)

where

h(x(·), u(·)) =

∫ T

0

l(τ, x(τ), u(τ)) dτ +m(x(T ))

Furthermore, defining
h̃(ξ) := h(P(ξ))

for ξ ∈ U with P(U) ⊂ U ⊂ domP, we see that

min
ξ∈T

h(ξ)

︸ ︷︷ ︸

constrained

and min
ξ∈U

h̃(ξ)

︸ ︷︷ ︸

unconstrained

are equivalent in the sense that

● if ξ∗ ∈ T ∩ U is a constrained local minimum of h,
then it is an unconstrained local minimum of h̃;

● if ξ+ ∈ U is an unconstrained local minimum of h̃ in U ,
then ξ∗ = P(ξ+) is a constrained local minimum of h.
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given initial trajectory ξ0 ∈ T

for i = 0, 1, 2, . . .

redesign feedback K(·) if desired/needed

descent direction ζi = arg min
ζ∈Tξi

T
Dh(ξi)·ζ +

1
2
D2h̃(ξi)·(ζ, ζ) (LQ)

line search γi = arg min
γ∈(0,1]

h(P(ξi + γζi))

update ξi+1 = P(ξi + γiζi)

end
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given initial trajectory ξ0 ∈ T

for i = 0, 1, 2, . . .

redesign feedback K(·) if desired/needed

descent direction ζi = arg min
ζ∈Tξi

T
Dh(ξi)·ζ +

1
2
D2h̃(ξi)·(ζ, ζ) (LQ)

line search γi = arg min
γ∈(0,1]

h(P(ξi + γζi))

update ξi+1 = P(ξi + γiζi)

end

This direct method generates a descending trajectory sequence in
Banach space ! Also, quadratic convergence rate.

Note that

h(ξ)+εDh(ξ)·ζ + 1
2
ε2 D2h̃(ξ)·(ζ, ζ)

is the second order approximation of h̃(ξ + εζ) = h(P(ξ + εζ))

when ξ ∈ T and ζ ∈ TξT .
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First and second derivative of h̃(ξ) = h(P(ξ)) are given by

Dh̃(ξ) · ζ = Dh(P(ξ)) ·DP(ξ) · ζ

D2h̃(ξ) · (ζ1, ζ2) =

D2h(P(ξ)) · (DP(ξ) · ζ1, DP(ξ) · ζ2)

+Dh(P(ξ)) ·D2P(ξ) · (ζ1, ζ2)
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First and second derivative of h̃(ξ) = h(P(ξ)) are given by

Dh̃(ξ) · ζ = Dh(P(ξ)) ·DP(ξ) · ζ

D2h̃(ξ) · (ζ1, ζ2) =

D2h(P(ξ)) · (DP(ξ) · ζ1, DP(ξ) · ζ2)

+Dh(P(ξ)) ·D2P(ξ) · (ζ1, ζ2)

When ξ ∈ T and ζi ∈ TξT , they specialize into

Dh̃(ξ) · ζ = Dh(ξ) · ζ

D2h̃(ξ) · (ζ1, ζ2) = D2h(ξ) · (ζ1, ζ2) +Dh(ξ) ·D2P(ξ) · (ζ1, ζ2)
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First and second derivative of h̃(ξ) = h(P(ξ)) are given by

Dh̃(ξ) · ζ = Dh(P(ξ)) ·DP(ξ) · ζ

D2h̃(ξ) · (ζ1, ζ2) =

D2h(P(ξ)) · (DP(ξ) · ζ1, DP(ξ) · ζ2)

+Dh(P(ξ)) ·D2P(ξ) · (ζ1, ζ2)

When ξ ∈ T and ζi ∈ TξT , they specialize into

Dh̃(ξ) · ζ = Dh(ξ) · ζ

D2h̃(ξ) · (ζ1, ζ2) = D2h(ξ) · (ζ1, ζ2) +Dh(ξ) ·D2P(ξ) · (ζ1, ζ2)

How to compute D2P(ξ) · (ζ1, ζ2) ?
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We may use ODEs to calculate D2P(ξ) · (ζ1, ζ2):

η = (x, u) = P(ξ) = P(α, µ)
γi = (zi, vi) = DP(ξ) · ζi = DP(ξ) · (βi, νi)
ω = (y, w) = D2P(ξ) · (ζ1, ζ2)

η(t) : ẋ(t) = f(x(t), u(t)), x(0) = x0

u(t) = µ(t) +K(t)(α(t)− x(t))

γi(t) : żi(t) = A(η(t))zi(t) +B(η(t))vi(t), zi(0) = 0
vi(t) = νi(t) +K(t)(βi(t)− zi(t))

ω(t) : ẏ(t) = A(η(t))y(t) +B(η(t))w(t) +D2f(η(t)) · (γ1(t), γ2(t))
w(t) = −K(t)y(t), y(0) = 0

● The derivatives are about the trajectory η = P(ξ)

● The feedback K(·) stabilizes the state at each level
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This was the introduction...

What if the system evolves on a Lie group?
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A smooth manifold M is a set which “locally looks like R
n”.

Think about, e.g., the 2-sphere S
2 in R

3.

● Manifolds with be indicated with capital letters, usually M or N .

● A point on the manifold will be denoted simply by x.

● TxM and T ∗xM denote, respectively, the tangent and cotangent
spaces of M at x.

● A generic tangent vector is usually written as vx or wx.

● The tangent and cotangent bundles of M are denoted by TM and
T ∗M , respectively.
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● The natural bundle projection from TM to M is the mapping

π : TM → M
vx 7→ x

● A vector field on a manifold M is a mapping

X : M → TM
x 7→ X(x)

which is a section of the tangent bundle TM , that is, it satisfies

πX(x) = x
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● A Lie group is a smooth manifold endowed with a group structure.
The group operation must be smooth .

● A generic Lie group is denoted by G.

● Typical examples are the groups SO(3), SE(2), SE(3), and U(n)...

● ...but also TSO(3), TSE(2), TSE(3) are Lie groups!

These are called the tangent groups .
Our theory apply to mechanical systems.
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● Left and right translations of x ∈ G (a group element) by the group
element g ∈ G are denoted by

Lgx and Rgx,

respectively.

● When convenient, we will adopt also the shorthand notation

gx, xg, gvx, vxg

for, in the same order,

Lgx, Rgx, TxLg(vx), TxRg(vx)

.
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● A left-invariant vector field on G is a vector field X that satisfies

X(Lgx) = (TxLg)X(x).

● Given ̺ ∈ TeG, the symbol X̺ is the associated left-invariant vector
field

X̺(g) := TeLg(̺).

● The Lie algebra g is identified with the tangent space TeG
endowed with the Lie bracket operation

[·, ·] : g× g → g,

defined by
[̺, ς] := [X̺, Xς ](e),

where the later bracket is the Jacobi-Lie bracket evaluated at the
group identity.
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● The tangent bundle TG of Lie groups G is trivial. That is,

TG ≈ G× g.

● The exponential map exp : g → G is a diffeomorphism between a
neighborhood of the origin of the Lie Algebra g and a neighborhood
of the identity of the Lie group G.

● The exponential map exp : g → G can be used to parameterize the
neighborhood of any point g ∈ G.

Using left translation, we parameterize a neighborhood of g ∈ G as

g exp(ξ) , ξ ∈ g
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● The tangent bundle TG of Lie groups G is trivial. That is,

TG ≈ G× g.

● The exponential map exp : g → G is a diffeomorphism between a
neighborhood of the origin of the Lie Algebra g and a neighborhood
of the identity of the Lie group G.

● The exponential map exp : g → G can be used to parameterize the
neighborhood of any point g ∈ G.

Using left translation, we parameterize a neighborhood of g ∈ G as

g exp(ξ) , ξ ∈ g

● Key idea: On a Lie group, the expansion of a function f : G1 → G2

is written as

f(g expG1
(tv)) = f(g) expG2

(nv(t)).

This generalized on a vector space

f(x+ tv) = f(g) + nv(t)
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● A control system on a Lie group G is a mapping

f : G× R
m × R → TG
(g, u, t) 7→ f(g, u, t) ,

such that πf(g, u, t) = g for each (g, u, t) ∈ G× R
m × R

● A state trajectory g(t), t ≥ 0, of f is an absolutely continuous curve
in G that satisfies (a.e.), for an assigned input u(t),

ġ(t) = f(g(t), u(t), t) .

We will assume f is sufficiently smooth, Lipschitz, ... to guarantee
existence and uniqueness of solutions.

● We can rewrite ġ(t) = f(g(t), u(t), t) as

ġ(t) = g(t)λ(g(t), u(t), t) ,

where λ : G× R
m × R → g, λ(g, u, t) := g−1f(g, u, t) is

the left trivialization of the control vector field f .
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Consider the problem of minimizing a functional

h(g(·), u(·)) :=

∫ T

0

l(g(τ), u(τ), τ) dτ +m(g(T ))

over the set T of (bounded) trajectories of the nonlinear system

ġ(t) = f(x(t), u(t)) = gλ(g(t), u(t))

with g(0) = g0.

As in the vector case, we write this constrained problem as

min
ξ∈T

h(ξ)

where ξ = (α(·), µ(·)) is in general a (bounded) curve with α(·) continuous
and α(0) = g0.
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Consider the problem of minimizing a functional

h(g(·), u(·)) :=

∫ T

0

l(g(τ), u(τ), τ) dτ +m(g(T ))

over the set T of (bounded) trajectories of the nonlinear system

ġ(t) = f(x(t), u(t)) = gλ(g(t), u(t))

with g(0) = g0.

As in the vector case, we write this constrained problem as

min
ξ∈T

h(ξ)

where ξ = (α(·), µ(·)) is in general a (bounded) curve with α(·) continuous
and α(0) = g0.

How can we generalize the Projection Operator approach
to Lie groups?
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The Newton algorithm is structurally the same:

given initial trajectory ξ0 ∈ T

for i = 0, 1, 2, . . .

redesign feedback K(·) if desired/needed

descent direction
ζi = arg min

ξiζ∈Tξi
T
Dh(ξi)·ξiζ +

1
2
D

2h̃(ξi)·(ξiζ, ξiζ) (LQ)

line search γi = arg min
γ∈(0,1]

h(P(ξi exp(γζi)))

update ξi+1 = P(ξi exp(γiζi))

end
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The Newton algorithm is structurally the same:

given initial trajectory ξ0 ∈ T

for i = 0, 1, 2, . . .

redesign feedback K(·) if desired/needed

descent direction
ζi = arg min

ξiζ∈Tξi
T
Dh(ξi)·ξiζ +

1
2
D

2h̃(ξi)·(ξiζ, ξiζ) (LQ)

line search γi = arg min
γ∈(0,1]

h(P(ξi exp(γζi)))

update ξi+1 = P(ξi exp(γiζi))

end

● What is the linearization of a system evolving of a Lie group ?
ξiζ ∈ TξiT .

● What does it mean to compute a second derivative on a Lie groups ?
Dh(ξi)·ξiζ +

1
2
D

2h̃(ξi)·(ξiζ, ξiζ)
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● Let
η(t) = (g(t), u(t)), t ∈ [0,∞)

be a the state-input trajectory of f .

● Consider the linear perturbation of the input defined as

uε(t) := u(t) + εv(t)

● Indicate with gε the perturbed state trajectory associated with uε.

● The state trajectory gε satisfies

ġε(t) = gε(t)λ(gε(t), uε(t), t) ,

gε(0) = g0 .
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● Define the left-trivialized perturbed trajectory

zε(t), t ∈ [0, T (ε)),

so that
gε(t) = g(t) exp(zε(t)), t ∈ [0, T (ε))

● Define xε(t) := exp zε(t).

● The left trivialized perturbed trajectory satisfies

żε = d logzε

(

Adxελ
(

gxε, uε, t
)

−λ
(

g, u, t
)

)

zε(0) = 0 .

where
d log̺ ς = D log(exp(̺)) · exp(̺)ς (trivialized tangent )

and
Ad is the adjoint action of G on g.
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The left-trivialized perturbed trajectory zε(t), t ≥ 0,
can be expanded to first order as zε(t) = εz(t) + o(ε),
where z(t) is given by the left-trivialized linearization

ż(t) = A(η(t), t) z(t) +B(η(t), t) v(t) ,

z(0) = z0 ,

with

A(η, t) := D1λ(g, u, t) ◦ TLg − adλ(g,u,t) ,

B(η, t) := D2λ(g, u, t) ,

where
ad is the adjoint action of g on itself.
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● Vector space R
n

The Projection Operator η = (x, u) = P(α, µ) = P(ξ) is given by

ẋ = f(x, k(x, ξ, t))

u = k(x, ξ, t) = α+K(t)(µ− x)

● Lie group G
The Projection Operator η = (x, u) = P(α, µ) = P(ξ) is given by

ġ = f(g, k(g, ξ, t)) = gλ(g, k(g, ξ, t))

u = k(g, ξ, t) = α+K(t)[log(g−1µ)]
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● Vector space R
n

The Projection Operator η = (x, u) = P(α, µ) = P(ξ) is given by

ẋ = f(x, k(x, ξ, t))

u = k(x, ξ, t) = α+K(t)(µ− x)

● Lie group G
The Projection Operator η = (x, u) = P(α, µ) = P(ξ) is given by

ġ = f(g, k(g, ξ, t)) = gλ(g, k(g, ξ, t))

u = k(g, ξ, t) = α+K(t)[log(g−1µ)]

● Note that (Rn,+) is an abelian Lie group!
Given x1, x2 ∈ R

n, x−1
2 x1 = x1 − x2 = −x2 + x1.

Also, exp(v) = v, Ad = id, and ad = id.

The theory on R
n is a special case of the general theory!
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Vector Space Lie Group
Curve ξ = (α, µ) R

n × R
m G× R

m

Perturbation ζ = (β, ν) R
n × R

m
g× R

m

Trajectory η = (g, u) R
n × R

m G× R
m

Traj. perturbation γ = (z, v) R
n × R

m
g× R

m

● Vector space R
n

P(ξ + εζ) = η + εγ + o(ε). We obtain

ż = A(η(t))z +B(η(t))v , z(0) = 0

v = ν +K(t)(β − z)

● Lie group G
P(ξ exp(εζ)) = P(ξ) exp(εγ + o(ε)). We obtain, recall P(ξ) = η,

ż = A(η(t)) z +B(η(t)) v , z(0) = 0

v = ν +K(t)d loglog(g−1α)(Adg−1αβ − z)
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Vector Space Lie Group
Curve ξ = (α, µ) R

n × R
m G× R

m

Perturbation ζ = (β, ν) R
n × R

m
g× R

m

Trajectory η = (g, u) R
n × R

m G× R
m

Traj. perturbation γ = (z, v) R
n × R

m
g× R

m

● Vector space R
n

P(ξ + εζ) = η + εγ + o(ε). We obtain

ż = A(η(t))z +B(η(t))v , z(0) = 0

v = ν +K(t)(β − z)

● Lie group G
P(ξ exp(εζ)) = P(ξ) exp(εγ + o(ε)). We obtain, recall P(ξ) = η,

ż = A(η(t)) z +B(η(t)) v , z(0) = 0

v = ν +K(t)d loglog(g−1α)(Adg−1αβ − z)

When ξ = P(ξ) = η, d loglog(g−1α) = id and Adg−1α = id!
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We can expand h̃(ξ exp(εζ)) := h(P(ξ exp(εζ)) as

h̃(ξ exp(εζ)) = h(P(ξ)) + εDh̃(ξ) · ξζ

+ 1/2 ε2 D2h̃(ξ) · (ξζ, ξζ) + o(ε2)
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We can expand h̃(ξ exp(εζ)) := h(P(ξ exp(εζ)) as

h̃(ξ exp(εζ)) = h(P(ξ)) + εDh̃(ξ) · ξζ

+ 1/2 ε2 D2h̃(ξ) · (ξζ, ξζ) + o(ε2)

First and second derivative of h̃(ξ) = h(P(ξ)) are given by

Dh̃(ξ) · ξζ = Dh(P(ξ)) ·DP(ξ) · ξζ

D
2h̃(ξ) · (ξζ1, ξζ2) =

D
2h(P(ξ)) · (DP(ξ) · ξζ1, DP(ξ) · ξζ2)

+Dh(P(ξ)) · D2P(ξ) · (ξζ1, ξζ2)
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We can expand h̃(ξ exp(εζ)) := h(P(ξ exp(εζ)) as

h̃(ξ exp(εζ)) = h(P(ξ)) + εDh̃(ξ) · ξζ

+ 1/2 ε2 D2h̃(ξ) · (ξζ, ξζ) + o(ε2)

First and second derivative of h̃(ξ) = h(P(ξ)) are given by

Dh̃(ξ) · ξζ = Dh(P(ξ)) ·DP(ξ) · ξζ

D
2h̃(ξ) · (ξζ1, ξζ2) =

D
2h(P(ξ)) · (DP(ξ) · ξζ1, DP(ξ) · ξζ2)

+Dh(P(ξ)) · D2P(ξ) · (ξζ1, ξζ2)

When ξ ∈ T and ξζi ∈ TξT , they specialize into

Dh̃(ξ) · ξζ = Dh(ξ) · ξζ

D
2h̃(ξ) · (ξζ1, ξζ2) = D

2h(ξ) · (ξζ1, ξζ2) +Dh(ξ) · D2P(ξ) · (ξζ1, ξζ2)
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We can expand h̃(ξ exp(εζ)) := h(P(ξ exp(εζ)) as

h̃(ξ exp(εζ)) = h(P(ξ)) + εDh̃(ξ) · ξζ

+ 1/2 ε2 D2h̃(ξ) · (ξζ, ξζ) + o(ε2)

First and second derivative of h̃(ξ) = h(P(ξ)) are given by

Dh̃(ξ) · ξζ = Dh(P(ξ)) ·DP(ξ) · ξζ

D
2h̃(ξ) · (ξζ1, ξζ2) =

D
2h(P(ξ)) · (DP(ξ) · ξζ1, DP(ξ) · ξζ2)

+Dh(P(ξ)) · D2P(ξ) · (ξζ1, ξζ2)

When ξ ∈ T and ξζi ∈ TξT , they specialize into

Dh̃(ξ) · ξζ = Dh(ξ) · ξζ

D
2h̃(ξ) · (ξζ1, ξζ2) = D

2h(ξ) · (ξζ1, ξζ2) +Dh(ξ) · D2P(ξ) · (ξζ1, ξζ2)

How to compute D
2P(ξ) · (ζ1, ζ2) ?
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● Vector space R
n.

ω = DP
2(ξ) · (ζ1, ζ2)

with ξ ∈ T and γi = DP(ξ) · ζi,

ẏ = A(η)y +B(η)w + D2λ(η) · (γ1, γ2) , y(0) = 0 ,

w = −K(t)y ,

● Lie group G.
P(ξ)ω = DP

2(ξ) · (ξζ1, ξζ2)

with ξ ∈ T and P(ξ)γi = DP(ξ) · ξζi,

ẏ = A(η)y +B(η)w y(0) = 0 ,

− 1/2
[

(adz1adz2 + adz2adz1)λ(η)

− adz1(A(η)z2 +B(η)v2)

− adz2(A(η)z1 +B(η)v1)
]

+ D
2λ(η) · (ηγ1, ηγ2) ,

w = −K(t)
[

y + 1/2
(

[z1, β2] + [z2, β1]
)]

Recall γi = (zi, vi), ζi = (βi, νi).
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Let M1 and M2 be two smooth manifolds
endowed with affine connections 1∇ and 2∇, respectively.
Let f : M1 → M2 be a smooth mapping.

The second geometric derivative is a tool to extend the classical (Leibniz’s)
product rule to the covariant derivative of the “product” Df(γ1(t)) · V1(t),
for a curve γ1 and a vector field V1 along γ1 in M1.

Chosen x ∈ M1 and two tangent vectors vx and wx ∈ TxM1.
Let γ1 : I → M1 be a smooth curve in M1 such that

γ1(t0) = x and γ̇1(t0) = wx .

Let V1 a smooth vector field along γ1 such that

V1(t0) = vx ,

and
V2(t) := Df(γ1(t)) · V1(t) ∈ Tf(γ1(t))M2

a smooth vector field along the curve γ2(t) := f(γ1(t)) in M2.
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The second geometric derivative of the map f : M1 → M2 at x ∈ M1 in
the directions vx and wx ∈ TxM1 is the bilinear mapping
D

2f(x) : TxM1 × TxM1 → Tf(x)M2 defined as

D
2f(x) · (vx,wx) :=DtV2(t0)−Df(γ1(t0)) ·DtV1(t0) , (1)

where DtV1 and DtV2 denote the covariant differentiation with respect to
1∇ and 2∇, respectively.
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The second geometric derivative of the map f : M1 → M2 at x ∈ M1 in
the directions vx and wx ∈ TxM1 is the bilinear mapping
D

2f(x) : TxM1 × TxM1 → Tf(x)M2 defined as

D
2f(x) · (vx,wx) :=DtV2(t0)−Df(γ1(t0)) ·DtV1(t0) , (1)

where DtV1 and DtV2 denote the covariant differentiation with respect to
1∇ and 2∇, respectively.

Denote by 1P and 2P the parallel displacements associated to 1∇ and 2∇,
respectively. Then, equation (1) is equal (for t = t0) to

lim
ε→0

1

ε

(

2P t←t+ε
γ2

Df(γ1(t+ ε)) · 1P t+ε←t
γ1

X1(γ1(t))

− Df(γ1(t)) ·X1(γ1(t))
)

, (2)
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The second geometric derivative of the map f : M1 → M2 at x ∈ M1 in
the directions vx and wx ∈ TxM1 is the bilinear mapping
D

2f(x) : TxM1 × TxM1 → Tf(x)M2 defined as

D
2f(x) · (vx,wx) :=DtV2(t0)−Df(γ1(t0)) ·DtV1(t0) , (1)

where DtV1 and DtV2 denote the covariant differentiation with respect to
1∇ and 2∇, respectively.

Denote by 1P and 2P the parallel displacements associated to 1∇ and 2∇,
respectively. Then, equation (1) is equal (for t = t0) to

lim
ε→0

1

ε

(

2P t←t+ε
γ2

Df(γ1(t+ ε)) · 1P t+ε←t
γ1

X1(γ1(t))

− Df(γ1(t)) ·X1(γ1(t))
)

, (2)

Those concepts need to be specialized for Lie groups.
We used the symmetric (0)-Cartan-Shouten connection...
no time for the details, unfortunately!
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● we have extended the projection operator based trajectory
optimization approach to the class of nonlinear systems that
evolve on non-compact Lie groups [2].

● This required the introduction of a geometric derivative notion for
the repeated differentiation of a mapping between two Lie groups,
endowed with affine connections.
(Not explained for time constraints...)

● With this tool, chain rule like formulas where used to develop
expressions for the basic objects needed for trajectory optimization.

● Coding of the algorithm and numerical tests are under
development!

[2] A. Saccon, J. Hauser and A. P. Aguiar,
”Optimal Control on Non-Compact Lie Groups:

A Projection Operator Approach”,
Submitted to the IEEE Conference of Decision and Control (CDC), 2010
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Obrigado pela vossa atenç ão!
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