Optimal Control on Non-Compact Lie Groups: A Projection Operator approach

Alessandro Saccon

Institute for Systems and Robotics, Instituto Superior Técnico, Lisboa

Joint work with Prof. John Hauser and Prof. A. Pedro Aguiar

Padova, 24 May 2010

Introduction

Why do Trajectory
Optimization?

* Minimization of

Trajectory Functionals

* Unconstrained (?)

Optimal Control

* Projection Operator

Approach

* Projection Operator
* Projection Operator

Properties

* Trajectory Manifold
* Equivalent

Optimization Problems

* Projection operator

Newton method

* Derivatives
* Computation of $D^{2} \mathcal{P}$
*

Mathematical
Preliminaries
Control systems on Lie groups

The Projection Operator approach on Lie groups

Left-trivialized
linearization around a trajectory

Projection Operator

Introduction

Why do Trajectory Optimization?

Introduction
\& Why do Trajectory
Optimization?

* Minimization of Trajectory Functionals
* Unconstrained (?)

Optimal Control

* Projection Operator Approach
* Projection Operator
* Projection Operator

Properties

* Trajectory Manifold
* Equivalent

Optimization Problems

* Projection operator

Newton method

* Derivatives
* Computation of $D^{2} \mathcal{P}$
*

Mathematical
Preliminaries
Control systems on Lie groups

The Projection Operator approach on Lie groups

Left-trivialized
linearization around a trajectory

Well known:

- Optimal control may be used to provide stabilization, tracking, etc., for nonlinear systems
- Model predictive/receding horizon strategies have been used successful for a number of nonlinear systems with constraints

Why do Trajectory Optimization?

Introduction

* Why do Trajectory Optimization?
* Minimization of

Trajectory Functionals

* Unconstrained (?)

Optimal Control

* Projection Operator Approach
* Projection Operator
* Projection Operator

Properties

* Trajectory Manifold
* Equivalent

Optimization Problems

* Projection operator Newton method
* Derivatives
* Computation of $D^{2} \mathcal{P}$
*

Mathematical
Preliminaries
Control systems on Lie groups

Well known:

- Optimal control may be used to provide stabilization, tracking, etc., for nonlinear systems
- Model predictive/receding horizon strategies have been used successful for a number of nonlinear systems with constraints

Also:

- Trajectory exploration: What cool stuff can this system do?
- capabilities
- limitations
- Trajectory modeling: Can the trajectories of this (complex) system be modeled by those of a simpler system? [e.g., reduced order, flat, ...]
- Objective function design: needed to exploit system capabilities
- Systems analysis: investigate system structure, e.g., controllability

Minimization of Trajectory Functionals

Introduction *Why do Trajectory Optimization?

* Projection Operator
* Projection Operator

Properties

* Trajectory Manifold
* Equivalent

Optimization Problems

* Projection operator Newton method
* Derivatives
* Computation of $D^{2} \mathcal{P}$
*

Mathematical
Preliminaries
Control systems on Lie groups

The Projection Operator approach on Lie groups
Left-trivialized
linearization around a trajectory

Consider the problem of minimizing a functional

$$
h(x(\cdot), u(\cdot)):=\int_{0}^{T} l(x(\tau), u(\tau), \tau) d \tau+m(x(T))
$$

over the set \mathcal{T} of bounded trajectories of the nonlinear system

$$
\dot{x}(t)=f(x(t), u(t))
$$

with $x(0)=x_{0} \quad$ (\ldots without additional constraints).
We write this constrained problem as

$$
\min _{\xi \in \mathcal{T}} h(\xi)
$$

where
$\xi=(\alpha(\cdot), \mu(\cdot))$ is a bounded curve with $\alpha(\cdot)$ continuous and $\alpha(0)=x_{0}$.

Minimization of Trajectory Functionals

* Projection Operator
* Projection Operator

Properties

* Trajectory Manifold
* Equivalent

Optimization Problems

* Projection operator

Newton method

* Derivatives
* Computation of $D^{2} \mathcal{P}$
*

Mathematical
Preliminaries
Control systems on Lie groups

The Projection Operator approach on Lie groups
Left-trivialized
linearization around a trajectory

Consider the problem of minimizing a functional

$$
h(x(\cdot), u(\cdot)):=\int_{0}^{T} l(x(\tau), u(\tau), \tau) d \tau+m(x(T))
$$

over the set \mathcal{T} of bounded trajectories of the nonlinear system

$$
\dot{x}(t)=f(x(t), u(t))
$$

with $x(0)=x_{0} \quad$ (\ldots without additional constraints).
We write this constrained problem as

$$
\min _{\xi \in \mathcal{T}} h(\xi)
$$

where
$\xi=(\alpha(\cdot), \mu(\cdot))$ is a bounded curve with $\alpha(\cdot)$ continuous and $\alpha(0)=x_{0}$.
How can we approach this problem?

Unconstrained (?) Optimal Control

* Why do Trajectory

Optimization?

* Minimization of

Trajectory Functionals

* Unconstrained (?)

Optimal Control

* Projection Operator Approach
* Projection Operator
* Projection Operator Properties
* Trajectory Manifold
* Equivalent

Optimization Problems

* Projection operator

Newton method

* Derivatives
* Computation of $D^{2} \mathcal{P}$
*

Mathematical
Preliminaries
Control systems on Lie groups

- In the usual case, the choice of a control trajectory $u(\cdot)$ determines the state trajectory $x(\cdot)$ (recall that x_{0} has been specified). With such a trajectory parametrization, one obtains so-called unconstrained optimal control problem

$$
\min _{u(\cdot)} h\left(x\left(\cdot ; x_{0}, u(\cdot)\right), u(\cdot)\right)
$$

- Why not just search over control trajectories $u(\cdot)$? If the system described by f is sufficiently stable, then such a shooting method may be effective.
- Unfortunately, the modulus of continuity of the map $u(\cdot) \mapsto(x(\cdot), u(\cdot))$ is often so large that such shooting is computationally useless:
small changes in $u(\cdot)$ may give LARGE changes in $x(\cdot)$

Projection Operator Approach

Key Idea: a trajectory tracking controller may be used to minimize the effects of system instabilities, providing a numerically effective, redundant trajectory parametrization.

Let $\xi(t)=(\alpha(t), \mu(t)), t \geq 0$, be a bounded curve and let $\eta(t)=(x(t), u(t)), t \geq 0$, be the trajectory of f determined by the nonlinear feedback system

$$
\begin{aligned}
& \dot{x}=f(x, u), \quad x(0)=x_{0} \\
& u=\mu(t)+K(t)(\alpha(t)-x)
\end{aligned}
$$

The map

$$
\mathcal{P}: \xi=(\alpha(\cdot), \mu(\cdot)) \mapsto \eta=(x(\cdot), u(\cdot))
$$

is a continuous, Nonlinear Projection Operator.
For each $\xi \in \operatorname{dom} \mathcal{P}$, the curve $\eta=\mathcal{P}(\xi)$ is a trajectory.
Note: the trajectory contains both state and control curves.

Projection Operator

Projection Operator Properties

Optimization?

* Minimization of

Trajectory Functionals

* Unconstrained (?)

Optimal Control

* Projection Operator

Approach

* Projection Operator
\& Projection Operator
Properties
* Trajectory Manifold
* Equivalent

Optimization Problems

* Projection operator Newton method
* Derivatives
* Computation of $D^{2} \mathcal{P}$
*

Mathematical
Preliminaries
Control systems on Lie groups

The Projection Operator approach on Lie groups

Left-trivialized
linearization around a trajectory

Suppose that f is C^{r} and that K is bounded and exponentially stabilizes $\xi_{0} \in \mathcal{T}$. Then [1]

- \mathcal{P} is well defined on an L_{∞} neighborhood of ξ_{0}
- \mathcal{P} is C^{r} (Fréchet diff wrt L_{∞} norm)
- $\xi \in \mathcal{T}$ if and only if $\xi=\mathcal{P}(\xi)$
- $\mathcal{P}=\mathcal{P} \circ \mathcal{P}$ (projection)

On the finite interval $[0, T]$, choose $K(\cdot)$ to obtain stability-like properties so that the modulus of continuity of \mathcal{P} is relatively small.

On the infinite horizon, instabilities must be stabilized in order to obtain a projection operator; consider $\dot{x}=x+u$.
[1] J. Hauser and D. Meyer, "The trajectory manifold of a nonlinear control system", Proceedings of the 37th IEEE Conference of Decision and Control (CDC), vol. 1, pp.1034-1039, 1998

Trajectory Manifold

Left-trivialized
linearization around a trajectory

Projection Operator

Theorem: \mathcal{T} is a Banach manifold: Every $\eta \in \mathcal{T}$ near $\xi \in \mathcal{T}$ can be uniquely represented as

$$
\eta=\mathcal{P}(\xi+\zeta), \quad \zeta \in T_{\xi} \mathcal{T}
$$

Key: the projection operator $D \mathcal{P}(\xi)$ provides the required subspace splitting. Note: $\zeta \in T_{\xi} \mathcal{T}$ if and only if $\zeta=D \mathcal{P}(\xi) \cdot \zeta$

Equivalent Optimization Problems

Using the projection operator, we see that
*Why do Trajectory
Optimization?

* Minimization of

Trajectory Functionals

* Unconstrained (?)

Optimal Control

* Projection Operator Approach
* Projection Operator
* Projection Operator

Properties

* Trajectory Manifold
* Equivalent

Optimization Problems

* Projection operator Newton method
* Derivatives
* Computation of $D^{2} \mathcal{P}$
*

Mathematical
Preliminaries
Control systems on Lie groups

The Projection Operator approach on Lie groups

Left-trivialized
linearization around a trajectory

$$
\min _{\xi \in \mathcal{T}} h(\xi)=\min _{\xi=\mathcal{P}(\xi)} h(\xi)
$$

where

$$
h(x(\cdot), u(\cdot))=\int_{0}^{T} l(\tau, x(\tau), u(\tau)) d \tau+m(x(T))
$$

Furthermore, defining

$$
\tilde{h}(\xi):=h(\mathcal{P}(\xi))
$$

for $\xi \in \mathcal{U}$ with $\mathcal{P}(\mathcal{U}) \subset \mathcal{U} \subset \operatorname{dom} \mathcal{P}$, we see that

are equivalent in the sense that

- if $\xi^{*} \in \mathcal{T} \cap \mathcal{U}$ is a constrained local minimum of h, then it is an unconstrained local minimum of \tilde{h};
- if $\xi^{+} \in \mathcal{U}$ is an unconstrained local minimum of \tilde{h} in \mathcal{U}, then $\xi^{*}=\mathcal{P}\left(\xi^{+}\right)$is a constrained local minimum of h.

Projection operator Newton method

Introduction
Opt do Trajectory
Optimization?
Trajectory Functional
Optimal Control
Projection Operator
Approach
Projection Operator
Projection Operator
Properties
Trajectory Manifold
Equivalent
Optimization Problems
Projection operator
Newton method
Derivatives
Computation of $D^{2} \mathcal{P}$
Mathematical
Preliminaries
Control systems on Lie
groups
The Projection Operator
approach on Lie groups
Left-trivialized
linearization around a
trajectory
Projection Operator
Quadratic approximation
of the cost function

given initial trajectory $\xi_{0} \in \mathcal{T}$
for $\quad i=0,1,2, \ldots$
redesign feedback $K(\cdot)$ if desired/needed
descent direction $\quad \zeta_{i}=\arg \min _{\zeta \in T_{\xi_{i}} \mathcal{T}} D h\left(\xi_{i}\right) \cdot \zeta+\frac{1}{2} D^{2} \tilde{h}\left(\xi_{i}\right) \cdot(\zeta, \zeta)$
line search
$\gamma_{i}=\arg \min _{\gamma \in(0,1]} h\left(\mathcal{P}\left(\xi_{i}+\gamma \zeta_{i}\right)\right)$
$\xi_{i+1}=\mathcal{P}\left(\xi_{i}+\gamma_{i} \zeta_{i}\right)$

Projection operator Newton method

*Why do Trajectory
Optimization?

* Minimization of

Trajectory Functional

* Unconstrained (?)

Optimal Control

* Projection Operator Approach
* Projection Operator
* Projection Operator

Properties

* Trajectory Manifold
* Equivalent

Optimization Problems

\star Projection operator

Newton method

* Derivatives
* Computation of $D^{2} \mathcal{P}$
*

Mathematical
Preliminaries
Control systems on Lie groups

The Projection Operator approach on Lie groups

Left-trivialized
linearization around a trajectory
given initial trajectory $\xi_{0} \in \mathcal{T}$
for $\quad i=0,1,2, \ldots$
redesign feedback $K(\cdot)$ if desired/needed
descent direction $\quad \zeta_{i}=\arg \min _{\zeta \in T_{\xi_{i}} \mathcal{T}} D h\left(\xi_{i}\right) \cdot \zeta+\frac{1}{2} D^{2} \tilde{h}\left(\xi_{i}\right) \cdot(\zeta, \zeta)$
line search
update

$$
\begin{equation*}
\gamma_{i}=\arg \min _{\gamma \in(0,1]} h\left(\mathcal{P}\left(\xi_{i}+\gamma \zeta_{i}\right)\right) \tag{CQ}
\end{equation*}
$$

$$
\xi_{i+1}=\mathcal{P}\left(\xi_{i}+\gamma_{i} \zeta_{i}\right)
$$

end
This direct method generates a descending trajectory sequence in Banach space! Also, quadratic convergence rate.

Note that

$$
h(\xi)+\varepsilon D h(\xi) \cdot \zeta+\frac{1}{2} \varepsilon^{2} D^{2} \tilde{h}(\xi) \cdot(\zeta, \zeta)
$$

is the second order approximation of $\tilde{h}(\xi+\varepsilon \zeta)=h(\mathcal{P}(\xi+\varepsilon \zeta))$
when $\xi \in \mathcal{T}$ and $\zeta \in T_{\xi} \mathcal{T}$.

Derivatives

Introduction
Why do Trajectory
Optimization?

* Minimization of

Trajectory Functionals

* Unconstrained (?)

Optimal Control

* Projection Operator Approach
* Projection Operator
* Projection Operator

Properties

* Trajectory Manifold
* Equivalent

Optimization Problems

* Projection operator

Newton method

\& Derivatives

* Computation of $D^{2} \mathcal{P}$
*

Mathematical
Preliminaries
Control systems on Lie groups
The Projection Operator approach on Lie groups
Left-trivialized
linearization around a trajectory

Projection Operator

First and second derivative of $\tilde{h}(\xi)=h(\mathcal{P}(\xi))$ are given by

$$
\begin{aligned}
& D \tilde{h}(\xi) \cdot \zeta=D h(\mathcal{P}(\xi)) \cdot D \mathcal{P}(\xi) \cdot \zeta \\
& D^{2} \tilde{h}(\xi) \cdot\left(\zeta_{1}, \zeta_{2}\right)= \\
& D^{2} h(\mathcal{P}(\xi)) \cdot\left(D \mathcal{P}(\xi) \cdot \zeta_{1}, D \mathcal{P}(\xi) \cdot \zeta_{2}\right) \\
&+D h(\mathcal{P}(\xi)) \cdot D^{2} \mathcal{P}(\xi) \cdot\left(\zeta_{1}, \zeta_{2}\right)
\end{aligned}
$$

Derivatives

Introduction

Why do Trajectory
Optimization?

* Minimization of

Trajectory Functionals

* Unconstrained (?)

Optimal Control

* Projection Operator Approach
* Projection Operator
* Projection Operator

Properties

* Trajectory Manifold
* Equivalent

Optimization Problems

* Projection operator Newton method

* Derivatives

* Computation of $D^{2} \mathcal{P}$
*

Mathematical
Preliminaries
Control systems on Lie groups

The Projection Operator approach on Lie groups

Left-trivialized
linearization around a trajectory

First and second derivative of $\tilde{h}(\xi)=h(\mathcal{P}(\xi))$ are given by

$$
\begin{aligned}
& D \tilde{h}(\xi) \cdot \zeta=D h(\mathcal{P}(\xi)) \cdot D \mathcal{P}(\xi) \cdot \zeta \\
& D^{2} \tilde{h}(\xi) \cdot\left(\zeta_{1}, \zeta_{2}\right)= \\
& D^{2} h(\mathcal{P}(\xi)) \cdot\left(D \mathcal{P}(\xi) \cdot \zeta_{1}, D \mathcal{P}(\xi) \cdot \zeta_{2}\right) \\
&+D h(\mathcal{P}(\xi)) \cdot D^{2} \mathcal{P}(\xi) \cdot\left(\zeta_{1}, \zeta_{2}\right)
\end{aligned}
$$

When $\xi \in \mathcal{T}$ and $\zeta_{i} \in T_{\xi} \mathcal{T}$, they specialize into

$$
\begin{aligned}
& D \tilde{h}(\xi) \cdot \zeta=D h(\xi) \cdot \zeta \\
& D^{2} \tilde{h}(\xi) \cdot\left(\zeta_{1}, \zeta_{2}\right)=D^{2} h(\xi) \cdot\left(\zeta_{1}, \zeta_{2}\right)+D h(\xi) \cdot D^{2} \mathcal{P}(\xi) \cdot\left(\zeta_{1}, \zeta_{2}\right)
\end{aligned}
$$

Derivatives

Introduction

Why do Trajectory
Optimization?

* Minimization of

Trajectory Functionals

* Unconstrained (?) Optimal Control
* Projection Operator Approach
* Projection Operator
* Projection Operator

Properties

* Trajectory Manifold
* Equivalent

Optimization Problems

* Projection operator

Newton method

* Derivatives

* Computation of $D^{2} \mathcal{P}$
*

Mathematical
Preliminaries
Control systems on Lie groups

The Projection Operator approach on Lie groups
Left-trivialized
linearization around a trajectory

First and second derivative of $\tilde{h}(\xi)=h(\mathcal{P}(\xi))$ are given by

$$
\begin{aligned}
& D \tilde{h}(\xi) \cdot \zeta=D h(\mathcal{P}(\xi)) \cdot D \mathcal{P}(\xi) \cdot \zeta \\
& D^{2} \tilde{h}(\xi) \cdot\left(\zeta_{1}, \zeta_{2}\right)= \\
& D^{2} h(\mathcal{P}(\xi)) \cdot\left(D \mathcal{P}(\xi) \cdot \zeta_{1}, D \mathcal{P}(\xi) \cdot \zeta_{2}\right) \\
&+D h(\mathcal{P}(\xi)) \cdot D^{2} \mathcal{P}(\xi) \cdot\left(\zeta_{1}, \zeta_{2}\right)
\end{aligned}
$$

When $\xi \in \mathcal{T}$ and $\zeta_{i} \in T_{\xi} \mathcal{T}$, they specialize into

$$
\begin{aligned}
& D \tilde{h}(\xi) \cdot \zeta=D h(\xi) \cdot \zeta \\
& D^{2} \tilde{h}(\xi) \cdot\left(\zeta_{1}, \zeta_{2}\right)=D^{2} h(\xi) \cdot\left(\zeta_{1}, \zeta_{2}\right)+D h(\xi) \cdot D^{2} \mathcal{P}(\xi) \cdot\left(\zeta_{1}, \zeta_{2}\right)
\end{aligned}
$$

How to compute $D^{2} \mathcal{P}(\xi) \cdot\left(\zeta_{1}, \zeta_{2}\right)$?

Computation of $D^{2} \mathcal{P}$

Introduction

 Why do Trajectory Optimization?* Minimization of

Trajectory Functionals

- Unconstrained (?)

Optimal Control

* Projection Operator Approach
* Projection Operator
* Projection Operator Properties
* Trajectory Manifold
* Equivalent

Optimization Problems

* Projection operator

Newton method

* Derivatives

\star Computation of $D^{2} \mathcal{P}$

Mathematical
Preliminaries
Control systems on Lie groups

The Projection Operator approach on Lie groups

Left-trivialized
linearization around a trajectory

We may use ODEs to calculate $D^{2} \mathcal{P}(\xi) \cdot\left(\zeta_{1}, \zeta_{2}\right)$:

$$
\begin{array}{rllll}
\eta & = & (x, u) & = & \mathcal{P}(\xi) \\
\gamma_{i} & = & \left(z_{i}, v_{i}\right) & = & D \mathcal{P}(\xi) \cdot \zeta_{i} \\
\omega & = & = & D \mathcal{P}(\xi) \cdot \mu) \\
& & \\
\eta(y, w) & =D^{2} \mathcal{P}(\xi) \cdot\left(\zeta_{1}, \zeta_{2}\right) & \\
\eta(t): & \dot{x}(t) & =f(x(t), u(t)), & x(0)=x_{0} \\
u(t) & =\mu(t)+K(t)(\alpha(t)-x(t)) & \\
\gamma_{i}(t): & \dot{z}_{i}(t)=A(\eta(t)) z_{i}(t)+B(\eta(t)) v_{i}(t), & z_{i}(0)=0 \\
& v_{i}(t)=\nu_{i}(t)+K(t)\left(\beta_{i}(t)-z_{i}(t)\right) \\
\omega(t): & \dot{y}(t)=A(\eta(t)) y(t)+B(\eta(t)) w(t)+D^{2} f(\eta(t)) \cdot\left(\gamma_{1}(t), \gamma_{2}(t)\right) \\
& w(t)=-K(t) y(t), & y(0)=0
\end{array}
$$

- The derivatives are about the trajectory $\eta=\mathcal{P}(\xi)$
- The feedback $K(\cdot)$ stabilizes the state at each level

Introduction

*Why do Trajectory
Optimization?
$*$ Minimization of
Trajectory Functionals

* Unconstrained (?)

Optimal Control

* Projection Operator Approach
* Projection Operator
* Projection Operator

Properties

* Trajectory Manifold
* Equivalent

Optimization Problems
*Projection operator
Newton method

* Derivatives
* Computation of $D^{2} \mathcal{P}$
*

Mathematical
Preliminaries
Control systems on Lie groups

The Projection Operator approach on Lie groups

Left-trivialized
linearization around a trajectory

This was the introduction...

What if the system evolves on a Lie group?

Mathematical Preliminaries

 groupsThe Projection Operator approach on Lie groups

Left-trivialized
linearization around a trajectory

Projection Operator
Quadratic approximation of the cost function

Smooth manifolds

A smooth manifold M is a set which "locally looks like $\mathbb{R}^{n "}$. Think about, e.g., the 2-sphere \mathbb{S}^{2} in \mathbb{R}^{3}.

- Manifolds with be indicated with capital letters, usually M or N.
- A point on the manifold will be denoted simply by x.
- $T_{x} M$ and $T_{x}^{*} M$ denote, respectively, the tangent and cotangent spaces of M at x.
- A generic tangent vector is usually written as v_{x} or w_{x}.
- The tangent and cotangent bundles of M are denoted by $T M$ and $T^{*} M$, respectively.

Vector fields on a manifold

- The natural bundle projection from $T M$ to M is the mapping

$$
\begin{aligned}
\pi: \quad T M & \rightarrow \\
\mathrm{v}_{x} & \mapsto
\end{aligned}
$$

- A vector field on a manifold M is a mapping

$$
\begin{aligned}
X: \quad M & \rightarrow T M \\
x & \mapsto
\end{aligned}
$$

which is a section of the tangent bundle $T M$, that is, it satisfies

$$
\pi X(x)=x
$$

Lie groups

- A Lie group is a smooth manifold endowed with a group structure. The group operation must be smooth.
- A generic Lie group is denoted by G.
- Typical examples are the groups $\operatorname{SO}(3), \operatorname{SE}(2), \operatorname{SE}(3)$, and $\mathrm{U}(n) \ldots$
- ...but also TSO(3), TSE(2), TSE(3) are Lie groups!

These are called the tangent groups.
Our theory apply to mechanical systems.

Lie groups (cont'd)

Mathematical
Preliminaries

- Left and right translations of $x \in G$ (a group element) by the group element $g \in G$ are denoted by

$$
L_{g} x \quad \text { and } \quad R_{g} x,
$$

respectively.

- When convenient, we will adopt also the shorthand notation

$$
g x, \quad x g, \quad g \mathrm{v}_{x}, \quad \mathrm{v}_{x} g
$$

for, in the same order,

$$
L_{g} x, \quad R_{g} x, \quad T_{x} L_{g}\left(\mathrm{v}_{x}\right), \quad T_{x} R_{g}\left(\mathrm{v}_{x}\right)
$$

Lie Algebras

- A left-invariant vector field on G is a vector field X that satisfies

$$
X\left(L_{g} x\right)=\left(T_{x} L_{g}\right) X(x)
$$

- Given $\varrho \in T_{e} G$, the symbol X_{ϱ} is the associated left-invariant vector field

$$
X_{\varrho}(g):=T_{e} L_{g}(\varrho) .
$$

- The Lie algebra \mathfrak{g} is identified with the tangent space $T_{e} G$ endowed with the Lie bracket operation

$$
[\cdot, \cdot]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

defined by

$$
[\varrho, \varsigma]:=\left[X_{\varrho}, X_{\varsigma}\right](e),
$$

where the later bracket is the Jacobi-Lie bracket evaluated at the group identity.

Triviality and exponential map

- The tangent bundle $T G$ of Lie groups G is trivial. That is,

$$
T G \approx G \times \mathfrak{g} .
$$

- The exponential map exp : $\mathfrak{g} \rightarrow G$ is a diffeomorphism between a neighborhood of the origin of the Lie Algebra \mathfrak{g} and a neighborhood of the identity of the Lie group G.
- The exponential map exp : $\mathfrak{g} \rightarrow G$ can be used to parameterize the neighborhood of any point $g \in G$.

Using left translation, we parameterize a neighborhood of $g \in G$ as

$$
g \exp (\xi), \quad \xi \in \mathfrak{g}
$$

Triviality and exponential map

- The tangent bundle $T G$ of Lie groups G is trivial. That is,

$$
T G \approx G \times \mathfrak{g} .
$$

- The exponential map exp : $\mathfrak{g} \rightarrow G$ is a diffeomorphism between a neighborhood of the origin of the Lie Algebra \mathfrak{g} and a neighborhood of the identity of the Lie group G.
- The exponential map exp : $\mathfrak{g} \rightarrow G$ can be used to parameterize the neighborhood of any point $g \in G$.

Using left translation, we parameterize a neighborhood of $g \in G$ as

$$
g \exp (\xi), \quad \xi \in \mathfrak{g}
$$

- Key idea: On a Lie group, the expansion of a function $f: G_{1} \rightarrow G_{2}$ is written as

$$
f\left(g \exp _{G_{1}}(t v)\right)=f(g) \exp _{G_{2}}\left(n_{v}(t)\right) .
$$

This generalized on a vector space

$$
f(x+t v)=f(g)+n_{v}(t)
$$

Introduction

Mathematical
Preliminaries
Control systems on Lie
groups

* Control systems on a

Lie group
The Projection Operator approach on Lie groups

Left-trivialized
linearization around a trajectory

Control systems on Lie groups

Projection Operator
Quadratic approximation of the cost function

Control systems on a Lie group

- A control system on a Lie group G is a mapping

$$
\begin{aligned}
f: \quad G \times \mathbb{R}^{m} \times \mathbb{R} & \rightarrow T G \\
(g, u, t) & \mapsto f(g, u, t),
\end{aligned}
$$

such that $\pi f(g, u, t)=g$ for each $(g, u, t) \in G \times \mathbb{R}^{m} \times \mathbb{R}$

- A state trajectory $g(t), t \geq 0$, of f is an absolutely continuous curve in G that satisfies (a.e.), for an assigned input $u(t)$,

$$
\dot{g}(t)=f(g(t), u(t), t) .
$$

We will assume f is sufficiently smooth, Lipschitz, ... to guarantee existence and uniqueness of solutions.

- We can rewrite $\dot{g}(t)=f(g(t), u(t), t)$ as

$$
\dot{g}(t)=g(t) \lambda(g(t), u(t), t),
$$

where $\lambda: G \times \mathbb{R}^{m} \times \mathbb{R} \rightarrow \mathfrak{g}, \lambda(g, u, t):=g^{-1} f(g, u, t)$ is the left trivialization of the control vector field f.

* Minimization of Trajectory Functionals
*Projection operator Newton method
Left-trivialized
linearization around a trajectory

Projection Operator
Quadratic approximation of the cost function

The Projection Operator approach on Lie groups

Minimization of Trajectory Functionals

Consider the problem of minimizing a functional

$$
h(g(\cdot), u(\cdot)):=\int_{0}^{T} l(g(\tau), u(\tau), \tau) d \tau+m(g(T))
$$

over the set \mathcal{T} of (bounded) trajectories of the nonlinear system

$$
\dot{g}(t)=f(x(t), u(t))=g \lambda(g(t), u(t))
$$

with $g(0)=g_{0}$.
As in the vector case, we write this constrained problem as

$$
\min _{\xi \in \mathcal{T}} h(\xi)
$$

where $\xi=(\alpha(\cdot), \mu(\cdot))$ is in general a (bounded) curve with $\alpha(\cdot)$ continuous and $\alpha(0)=g_{0}$.

Minimization of Trajectory Functionals

Consider the problem of minimizing a functional

$$
h(g(\cdot), u(\cdot)):=\int_{0}^{T} l(g(\tau), u(\tau), \tau) d \tau+m(g(T))
$$

over the set \mathcal{T} of (bounded) trajectories of the nonlinear system

$$
\dot{g}(t)=f(x(t), u(t))=g \lambda(g(t), u(t))
$$

with $g(0)=g_{0}$.
As in the vector case, we write this constrained problem as

$$
\min _{\xi \in \mathcal{T}} h(\xi)
$$

where $\xi=(\alpha(\cdot), \mu(\cdot))$ is in general a (bounded) curve with $\alpha(\cdot)$ continuous and $\alpha(0)=g_{0}$.

How can we generalize the Projection Operator approach to Lie groups?

Projection operator Newton method

The Newton algorithm is structurally the same:
given initial trajectory $\xi_{0} \in \mathcal{T}$
for $\quad i=0,1,2, \ldots$
redesign feedback $K(\cdot)$ if desired/needed
descent direction

$$
\zeta_{i}=\arg \min _{\xi_{i} \zeta \in T_{\xi_{i}} \mathcal{T}} D h\left(\xi_{i}\right) \cdot \xi_{i} \zeta+\frac{1}{2} \mathbb{D}^{2} \tilde{h}\left(\xi_{i}\right) \cdot\left(\xi_{i} \zeta, \xi_{i} \zeta\right) \quad \text { (LQ) }
$$

line search

$$
\gamma_{i}=\arg \min _{\gamma \in(0,1]} h\left(\mathcal{P}\left(\xi_{i} \exp \left(\gamma \zeta_{i}\right)\right)\right)
$$

update

$$
\xi_{i+1}=\mathcal{P}\left(\xi_{i} \exp \left(\gamma_{i} \zeta_{i}\right)\right)
$$

end

Projection operator Newton method

The Newton algorithm is structurally the same:
given initial trajectory $\xi_{0} \in \mathcal{T}$
for $\quad i=0,1,2, \ldots$
redesign feedback $K(\cdot)$ if desired/needed
descent direction

$$
\zeta_{i}=\arg \min _{\xi_{i} \zeta \in T_{\xi_{i}} \mathcal{T}} D h\left(\xi_{i}\right) \cdot \xi_{i} \zeta+\frac{1}{2} \mathbb{D}^{2} \tilde{h}\left(\xi_{i}\right) \cdot\left(\xi_{i} \zeta, \xi_{i} \zeta\right) \quad \text { (LQ) }
$$

line search

$$
\gamma_{i}=\arg \min _{\gamma \in(0,1]} h\left(\mathcal{P}\left(\xi_{i} \exp \left(\gamma \zeta_{i}\right)\right)\right)
$$

update

$$
\xi_{i+1}=\mathcal{P}\left(\xi_{i} \exp \left(\gamma_{i} \zeta_{i}\right)\right)
$$

end

- What is the linearization of a system evolving of a Lie group ? $\xi_{i} \zeta \in T_{\xi_{i}} \mathcal{T}$.
- What does it mean to compute a second derivative on a Lie groups ? $D h\left(\xi_{i}\right) \cdot \xi_{i} \zeta+\frac{1}{2} \mathbb{D}^{2} \tilde{h}\left(\xi_{i}\right) \cdot\left(\xi_{i} \zeta, \xi_{i} \zeta\right)$

```
Introduction
Mathematical
Preliminaries
Control systems on Lie
groups
The Projection Operator
approach on Lie groups
Left-trivialized
linearization around a
trajectory
* Left-trivialized
linearization
around a trajectory
* Left-trivialized
perturbed trajectory
* Left-trivialized
linearization around a
trajectory
Projection Operator

\title{
Left-trivialized linearization around a trajectory
}

\section*{Left-trivialized linearization around a trajectory}
- Let
\[
\eta(t)=(g(t), u(t)), \quad t \in[0, \infty)
\]
be a the state-input trajectory of \(f\).
- Consider the linear perturbation of the input defined as
\[
u_{\varepsilon}(t):=u(t)+\varepsilon v(t)
\]
- Indicate with \(g_{\varepsilon}\) the perturbed state trajectory associated with \(u_{\varepsilon}\).
- The state trajectory \(g_{\varepsilon}\) satisfies
\[
\begin{aligned}
\dot{g}_{\varepsilon}(t) & =g_{\varepsilon}(t) \lambda\left(g_{\varepsilon}(t), u_{\varepsilon}(t), t\right) \\
g_{\varepsilon}(0) & =g_{0}
\end{aligned}
\]

\section*{Left-trivialized perturbed trajectory}
- Define the left-trivialized perturbed trajectory
\[
z_{\varepsilon}(t), \quad t \in[0, T(\varepsilon)),
\]
so that
\[
g_{\varepsilon}(t)=g(t) \exp \left(z_{\varepsilon}(t)\right), \quad t \in[0, T(\varepsilon))
\]
- Define \(x_{\varepsilon}(t):=\exp z_{\varepsilon}(t)\).
- The left trivialized perturbed trajectory satisfies
\[
\begin{aligned}
\dot{z}_{\varepsilon} & =\mathbf{d} \log _{z_{\varepsilon}}\left(\operatorname{Ad}_{x_{\varepsilon}} \lambda\left(g x_{\varepsilon}, u_{\varepsilon}, t\right)-\lambda(g, u, t)\right) \\
z_{\varepsilon}(0) & =0 .
\end{aligned}
\]
where
\[
\mathbf{d} \log _{\varrho} \varsigma=\mathbf{D} \log (\exp (\varrho)) \cdot \exp (\varrho) \varsigma \quad(\text { trivialized tangent })
\]
and

\section*{Left-trivialized linearization around a trajectory}

The left-trivialized perturbed trajectory \(z_{\varepsilon}(t), t \geq 0\), can be expanded to first order as \(z_{\varepsilon}(t)=\varepsilon z(t)+o(\varepsilon)\), where \(z(t)\) is given by the left-trivialized linearization
\[
\begin{aligned}
\dot{z}(t) & =A(\eta(t), t) z(t)+B(\eta(t), t) v(t) \\
z(0) & =z_{0}
\end{aligned}
\]
with
\[
\begin{aligned}
& A(\eta, t):=\mathbf{D}_{1} \lambda(g, u, t) \circ T L_{g}-\operatorname{ad}_{\lambda(g, u, t)}, \\
& B(\eta, t):=\mathbf{D}_{2} \lambda(g, u, t),
\end{aligned}
\]
where ad is the adjoint action of \(\mathfrak{g}\) on itself.

\section*{Mathematical}

Preliminaries
Control systems on Lie groups

The Projection Operator approach on Lie groups

Left-trivialized
linearization around a
trajectory
Projection Operator
* Projection Operator on a Lie Group
* Linearization of the Projection Operator

Quadratic approximation of the cost function

\title{
Projection Operator
}

\section*{Projection Operator on a Lie Group}
- Vector space \(\mathbb{R}^{n}\)

The Projection Operator \(\eta=(x, u)=\mathcal{P}(\alpha, \mu)=\mathcal{P}(\xi)\) is given by
\[
\begin{aligned}
\dot{x} & =f(x, k(x, \xi, t)) \\
u & =k(x, \xi, t)=\alpha+K(t)(\mu-x)
\end{aligned}
\]
- Lie group \(G\)

The Projection Operator \(\eta=(x, u)=\mathcal{P}(\alpha, \mu)=\mathcal{P}(\xi)\) is given by
\[
\begin{aligned}
& \dot{g}=f(g, k(g, \xi, t))=g \lambda(g, k(g, \xi, t)) \\
& u=k(g, \xi, t)=\alpha+K(t)\left[\log \left(g^{-1} \mu\right)\right]
\end{aligned}
\]

\section*{Projection Operator on a Lie Group}
- Vector space \(\mathbb{R}^{n}\)

The Projection Operator \(\eta=(x, u)=\mathcal{P}(\alpha, \mu)=\mathcal{P}(\xi)\) is given by
\[
\begin{aligned}
\dot{x} & =f(x, k(x, \xi, t)) \\
u & =k(x, \xi, t)=\alpha+K(t)(\mu-x)
\end{aligned}
\]
- Lie group \(G\)

The Projection Operator \(\eta=(x, u)=\mathcal{P}(\alpha, \mu)=\mathcal{P}(\xi)\) is given by
\[
\begin{aligned}
& \dot{g}=f(g, k(g, \xi, t))=g \lambda(g, k(g, \xi, t)) \\
& u=k(g, \xi, t)=\alpha+K(t)\left[\log \left(g^{-1} \mu\right)\right]
\end{aligned}
\]
- Note that \(\left(\mathbb{R}^{n},+\right)\) is an abelian Lie group!

Given \(x_{1}, x_{2} \in \mathbb{R}^{n}, x_{2}^{-1} x_{1}=x_{1}-x_{2}=-x_{2}+x_{1}\).
Also, \(\exp (v)=v, \operatorname{Ad}=\mathrm{id}\), and \(\mathrm{ad}=\mathrm{id}\).
The theory on \(\mathbb{R}^{n}\) is a special case of the general theory!

\section*{Linearization of the Projection Operator}
\begin{tabular}{lllcc} 
& & & Vector Space & Lie Group \\
Curve & \(\xi=(\alpha, \mu)\) & \(\mathbb{R}^{n} \times \mathbb{R}^{m}\) & \(G \times \mathbb{R}^{m}\) \\
Perturbation & \(\zeta=(\beta, \nu)\) & \(\mathbb{R}^{n} \times \mathbb{R}^{m}\) & \(\mathfrak{g} \times \mathbb{R}^{m}\) \\
Trajectory & \(\eta=(g, u)\) & \(\mathbb{R}^{n} \times \mathbb{R}^{m}\) & \(G \times \mathbb{R}^{m}\) \\
Traj. perturbation & \(\gamma=(z, v)\) & \(\mathbb{R}^{n} \times \mathbb{R}^{m}\) & \(\mathfrak{g} \times \mathbb{R}^{m}\)
\end{tabular}
- Vector space \(\mathbb{R}^{n}\)
\(\mathcal{P}(\xi+\varepsilon \zeta)=\eta+\varepsilon \gamma+o(\varepsilon)\). We obtain
\[
\begin{array}{ll}
\dot{z}=A(\eta(t)) z+B(\eta(t)) v, & z(0)=0 \\
v=\nu+K(t)(\beta-z) &
\end{array}
\]
- Lie group \(G\)
\(\mathcal{P}(\xi \exp (\varepsilon \zeta))=\mathcal{P}(\xi) \exp (\varepsilon \gamma+o(\varepsilon))\). We obtain, recall \(\mathcal{P}(\xi)=\eta\),
\[
\begin{array}{ll}
\dot{z}=A(\eta(t)) z+B(\eta(t)) v, & z(0)=0 \\
v=\nu+K(t) \mathbf{d} \log _{\log \left(g^{-1} \alpha\right)}\left(\operatorname{dd}_{g^{-1} \alpha} \beta-z\right) &
\end{array}
\]

\section*{Linearization of the Projection Operator}
\begin{tabular}{lllcc} 
& & & Vector Space & Lie Group \\
Curve & \(\xi=(\alpha, \mu)\) & \(\mathbb{R}^{n} \times \mathbb{R}^{m}\) & \(G \times \mathbb{R}^{m}\) \\
Perturbation & \(\zeta=(\beta, \nu)\) & \(\mathbb{R}^{n} \times \mathbb{R}^{m}\) & \(\mathfrak{g} \times \mathbb{R}^{m}\) \\
Trajectory & \(\eta=(g, u)\) & \(\mathbb{R}^{n} \times \mathbb{R}^{m}\) & \(G \times \mathbb{R}^{m}\) \\
Traj. perturbation & \(\gamma=(z, v)\) & \(\mathbb{R}^{n} \times \mathbb{R}^{m}\) & \(\mathfrak{g} \times \mathbb{R}^{m}\)
\end{tabular}
- Vector space \(\mathbb{R}^{n}\)
\(\mathcal{P}(\xi+\varepsilon \zeta)=\eta+\varepsilon \gamma+o(\varepsilon)\). We obtain
\[
\begin{array}{ll}
\dot{z}=A(\eta(t)) z+B(\eta(t)) v, & z(0)=0 \\
v=\nu+K(t)(\beta-z) &
\end{array}
\]
- Lie group \(G\)
\(\mathcal{P}(\xi \exp (\varepsilon \zeta))=\mathcal{P}(\xi) \exp (\varepsilon \gamma+o(\varepsilon))\). We obtain, recall \(\mathcal{P}(\xi)=\eta\),
\[
\begin{array}{ll}
\dot{z}=A(\eta(t)) z+B(\eta(t)) v, & z(0)=0 \\
v=\nu+K(t) \mathbf{d} \log _{{\log \left(g^{-1} \alpha\right)}\left(\operatorname{Ad}_{g^{-1} \alpha} \beta-z\right)} &
\end{array}
\]

When \(\xi=\mathcal{P}(\xi)=\eta, \mathbf{d} \log _{\log \left(g^{-1} \alpha\right)}=\mathrm{id}\) and \(\mathrm{Ad}_{g^{-1} \alpha}=\mathrm{id}\) !
IntroductionMathematical
PreliminariesControl systems on Lie
groups
The Projection Operator
approach on Lie groups
Left-trivialized
linearization around a
trajectory
Projection Operator

\section*{Quadratic approximation}
of the cost function
* Derivatives
* Second order
approximation of the Projection Operator
*Second geometric derivative
* Second geometric derivative (cont'd)
* Conclusions

\section*{Quadratic approximation of the cost function}

\section*{Derivatives}

\section*{Introduction}

Mathematical
Preliminaries
Control systems on Lie groups

The Projection Operator approach on Lie groups

\section*{Left-trivialized}
linearization around a
trajectory
Projection Operator
Quadratic approximation of the cost function

\section*{* Derivatives}
* Second order
approximation of the Projection
Operator
* Second geometric derivative
* Second geometric derivative (cont'd)
* Conclusions

We can expand \(\tilde{h}(\xi \exp (\varepsilon \zeta)):=h(\mathcal{P}(\xi \exp (\varepsilon \zeta))\) as
\[
\begin{aligned}
\tilde{h}(\xi \exp (\varepsilon \zeta)) & =h(\mathcal{P}(\xi))+\varepsilon D \tilde{h}(\xi) \cdot \xi \zeta \\
& +1 / 2 \varepsilon^{2} \mathbb{D}^{2} \tilde{h}(\xi) \cdot(\xi \zeta, \xi \zeta)+o\left(\varepsilon^{2}\right)
\end{aligned}
\]

\section*{Derivatives}

Introduction
Mathematical
Preliminaries
Control systems on Lie groups

The Projection Operator approach on Lie groups

Left-trivialized linearization around a trajectory

Projection Operator
Quadratic approximation of the cost function

We can expand \(\tilde{h}(\xi \exp (\varepsilon \zeta)):=h(\mathcal{P}(\xi \exp (\varepsilon \zeta))\) as
\[
\begin{aligned}
\tilde{h}(\xi \exp (\varepsilon \zeta)) & =h(\mathcal{P}(\xi))+\varepsilon D \tilde{h}(\xi) \cdot \xi \zeta \\
& +1 / 2 \varepsilon^{2} \mathbb{D}^{2} \tilde{h}(\xi) \cdot(\xi \zeta, \xi \zeta)+o\left(\varepsilon^{2}\right)
\end{aligned}
\]

First and second derivative of \(\tilde{h}(\xi)=h(\mathcal{P}(\xi))\) are given by
\[
\begin{aligned}
& D \tilde{h}(\xi) \cdot \xi \zeta=D h(\mathcal{P}(\xi)) \cdot D \mathcal{P}(\xi) \cdot \xi \zeta \\
& \mathbb{D}^{2} \tilde{h}(\xi) \cdot\left(\xi \zeta_{1}, \xi \zeta_{2}\right)= \\
& \mathbb{D}^{2} h(\mathcal{P}(\xi)) \cdot\left(D \mathcal{P}(\xi) \cdot \xi \zeta_{1}, D \mathcal{P}(\xi) \cdot \xi \zeta_{2}\right) \\
& \quad+D h(\mathcal{P}(\xi)) \cdot \mathbb{D}^{2} \mathcal{P}(\xi) \cdot\left(\xi \zeta_{1}, \xi \zeta_{2}\right)
\end{aligned}
\]

\section*{Derivatives}

\section*{Introduction}

Mathematical
Preliminaries
Control systems on Lie groups

The Projection Operator approach on Lie groups

Left-trivialized linearization around a trajectory

Projection Operator
Quadratic approximation of the cost function

\section*{* Derivatives}
* Second order approximation of the Projection Operator
* Second geometric derivative * Second geometric derivative (cont'd)
* Conclusions

We can expand \(\tilde{h}(\xi \exp (\varepsilon \zeta)):=h(\mathcal{P}(\xi \exp (\varepsilon \zeta))\) as
\[
\begin{aligned}
\tilde{h}(\xi \exp (\varepsilon \zeta)) & =h(\mathcal{P}(\xi))+\varepsilon D \tilde{h}(\xi) \cdot \xi \zeta \\
& +1 / 2 \varepsilon^{2} \mathbb{D}^{2} \tilde{h}(\xi) \cdot(\xi \zeta, \xi \zeta)+o\left(\varepsilon^{2}\right)
\end{aligned}
\]

First and second derivative of \(\tilde{h}(\xi)=h(\mathcal{P}(\xi))\) are given by
\[
\begin{aligned}
& D \tilde{h}(\xi) \cdot \xi \zeta=D h(\mathcal{P}(\xi)) \cdot D \mathcal{P}(\xi) \cdot \xi \zeta \\
& \mathbb{D}^{2} \tilde{h}(\xi) \cdot\left(\xi \zeta_{1}, \xi \zeta_{2}\right)= \\
& \mathbb{D}^{2} h(\mathcal{P}(\xi)) \cdot\left(D \mathcal{P}(\xi) \cdot \xi \zeta_{1}, D \mathcal{P}(\xi) \cdot \xi \zeta_{2}\right) \\
& \quad+D h(\mathcal{P}(\xi)) \cdot \mathbb{D}^{2} \mathcal{P}(\xi) \cdot\left(\xi \zeta_{1}, \xi \zeta_{2}\right)
\end{aligned}
\]

When \(\xi \in \mathcal{T}\) and \(\xi \zeta_{i} \in T_{\xi} \mathcal{T}\), they specialize into
\[
\begin{aligned}
& D \tilde{h}(\xi) \cdot \xi \zeta=D h(\xi) \cdot \xi \zeta \\
& \mathbb{D}^{2} \tilde{h}(\xi) \cdot\left(\xi \zeta_{1}, \xi \zeta_{2}\right)=\mathbb{D}^{2} h(\xi) \cdot\left(\xi \zeta_{1}, \xi \zeta_{2}\right)+D h(\xi) \cdot \mathbb{D}^{2} \mathcal{P}(\xi) \cdot\left(\xi \zeta_{1}, \xi \zeta_{2}\right)
\end{aligned}
\]

\section*{Derivatives}

We can expand \(\tilde{h}(\xi \exp (\varepsilon \zeta)):=h(\mathcal{P}(\xi \exp (\varepsilon \zeta))\) as
\[
\begin{aligned}
\tilde{h}(\xi \exp (\varepsilon \zeta)) & =h(\mathcal{P}(\xi))+\varepsilon D \tilde{h}(\xi) \cdot \xi \zeta \\
& +1 / 2 \varepsilon^{2} \mathbb{D}^{2} \tilde{h}(\xi) \cdot(\xi \zeta, \xi \zeta)+o\left(\varepsilon^{2}\right)
\end{aligned}
\]

First and second derivative of \(\tilde{h}(\xi)=h(\mathcal{P}(\xi))\) are given by
\[
\begin{aligned}
& D \tilde{h}(\xi) \cdot \xi \zeta=D h(\mathcal{P}(\xi)) \cdot D \mathcal{P}(\xi) \cdot \xi \zeta \\
& \mathbb{D}^{2} \tilde{h}(\xi) \cdot\left(\xi \zeta_{1}, \xi \zeta_{2}\right)= \\
& \mathbb{D}^{2} h(\mathcal{P}(\xi)) \cdot\left(D \mathcal{P}(\xi) \cdot \xi \zeta_{1}, D \mathcal{P}(\xi) \cdot \xi \zeta_{2}\right) \\
& \quad+D h(\mathcal{P}(\xi)) \cdot \mathbb{D}^{2} \mathcal{P}(\xi) \cdot\left(\xi \zeta_{1}, \xi \zeta_{2}\right)
\end{aligned}
\]

When \(\xi \in \mathcal{T}\) and \(\xi \zeta_{i} \in T_{\xi} \mathcal{T}\), they specialize into
\[
\begin{aligned}
& D \tilde{h}(\xi) \cdot \xi \zeta=D h(\xi) \cdot \xi \zeta \\
& \mathbb{D}^{2} \tilde{h}(\xi) \cdot\left(\xi \zeta_{1}, \xi \zeta_{2}\right)=\mathbb{D}^{2} h(\xi) \cdot\left(\xi \zeta_{1}, \xi \zeta_{2}\right)+D h(\xi) \cdot \mathbb{D}^{2} \mathcal{P}(\xi) \cdot\left(\xi \zeta_{1}, \xi \zeta_{2}\right)
\end{aligned}
\]

How to compute \(\mathbb{D}^{2} \mathcal{P}(\xi) \cdot\left(\zeta_{1}, \zeta_{2}\right)\) ?

\section*{Second order approximation of the Projection Operator}

The Projection Operator approach on Lie groups

Left-trivialized linearization around a trajectory
Projection Operator
Quadratic approximation of the cost function

\section*{* Derivatives}

\section*{\& Second order} approximation of the Projection Operator
* Second geometric derivative
* Second geometric derivative (cont'd) * Conclusions
- Vector space \(\mathbb{R}^{n}\).
\[
\omega=\mathbf{D} \mathcal{P}^{2}(\xi) \cdot\left(\zeta_{1}, \zeta_{2}\right)
\]
with \(\xi \in \mathcal{T}\) and \(\gamma_{i}=\mathbf{D} \mathcal{P}(\xi) \cdot \zeta_{i}\),
\[
\begin{aligned}
\dot{y} & =A(\eta) y+B(\eta) w+\mathbf{D}^{2} \lambda(\eta) \cdot\left(\gamma_{1}, \gamma_{2}\right), \quad y(0)=0 \\
w & =-K(t) y
\end{aligned}
\]
- Lie group \(G\).
with \(\xi \in \mathcal{T}\) and \(\mathcal{P}(\xi) \gamma_{i}=\mathbf{D} \mathcal{P}(\xi) \cdot \xi \zeta_{i}\),
\[
\begin{array}{rl}
\dot{y}=A(\eta) y+B(\eta) w & y(0)=0 \\
-1 / 2 & {\left[\left(\operatorname{ad}_{z_{1}} \operatorname{ad}_{z_{2}}+\operatorname{ad}_{z_{2}} \operatorname{ad}_{z_{1}}\right) \lambda(\eta)\right.} \\
& -\operatorname{ad}_{z_{1}}\left(A(\eta) z_{2}+B(\eta) v_{2}\right) \\
& \left.-\operatorname{ad}_{z_{2}}\left(A(\eta) z_{1}+B(\eta) v_{1}\right)\right] \\
+ & \mathbb{D}^{2} \lambda(\eta) \cdot\left(\eta \gamma_{1}, \eta \gamma_{2}\right), \\
w & =-K(t)\left[y+1 / 2\left(\left[z_{1}, \beta_{2}\right]+\left[z_{2}, \beta_{1}\right]\right)\right]
\end{array}
\]

Recall \(\gamma_{i}=\left(z_{i}, v_{i}\right), \zeta_{i}=\left(\beta_{i}, \nu_{i}\right)\).

\section*{Second geometric derivative}

Let \(M_{1}\) and \(M_{2}\) be two smooth manifolds endowed with affine connections \({ }^{1} \nabla\) and \({ }^{2} \nabla\), respectively. Let \(f: M_{1} \rightarrow M_{2}\) be a smooth mapping.

The second geometric derivative is a tool to extend the classical (Leibniz's) product rule to the covariant derivative of the "product" \(D f\left(\gamma_{1}(t)\right) \cdot V_{1}(t)\), for a curve \(\gamma_{1}\) and a vector field \(V_{1}\) along \(\gamma_{1}\) in \(M_{1}\).

Chosen \(x \in M_{1}\) and two tangent vectors \(\mathrm{v}_{x}\) and \(\mathrm{w}_{\mathrm{x}} \in T_{x} M_{1}\). Let \(\gamma_{1}: I \rightarrow M_{1}\) be a smooth curve in \(M_{1}\) such that
\[
\gamma_{1}\left(t_{0}\right)=x \quad \text { and } \quad \dot{\gamma}_{1}\left(t_{0}\right)=\mathrm{w}_{x} .
\]

Let \(V_{1}\) a smooth vector field along \(\gamma_{1}\) such that
\[
V_{1}\left(t_{0}\right)=\mathrm{v}_{x}
\]
and
\[
V_{2}(t):=\mathbf{D} f\left(\gamma_{1}(t)\right) \cdot V_{1}(t) \in T_{f\left(\gamma_{1}(t)\right)} M_{2}
\]
a smooth vector field along the curve \(\gamma_{2}(t):=f\left(\gamma_{1}(t)\right)\) in \(M_{2}\).

\section*{Second geometric derivative (cont'd)}

The second geometric derivative of the map \(f: M_{1} \rightarrow M_{2}\) at \(x \in M_{1}\) in the directions \(\mathrm{v}_{x}\) and \(\mathrm{w}_{x} \in T_{x} M_{1}\) is the bilinear mapping
\(\mathbb{D}^{2} f(x): T_{x} M_{1} \times T_{x} M_{1} \rightarrow T_{f(x)} M_{2}\) defined as
\[
\begin{equation*}
\mathbb{D}^{2} f(x) \cdot\left(\mathrm{v}_{x}, \mathrm{w}_{x}\right):=D_{t} V_{2}\left(t_{0}\right)-\mathbf{D} f\left(\gamma_{1}\left(t_{0}\right)\right) \cdot D_{t} V_{1}\left(t_{0}\right), \tag{1}
\end{equation*}
\]
where \(D_{t} V_{1}\) and \(D_{t} V_{2}\) denote the covariant differentiation with respect to \({ }^{1} \nabla\) and \({ }^{2} \nabla\), respectively.

\section*{Second geometric derivative (cont'd)}

The second geometric derivative of the map \(f: M_{1} \rightarrow M_{2}\) at \(x \in M_{1}\) in the directions \(\mathrm{v}_{x}\) and \(\mathrm{w}_{x} \in T_{x} M_{1}\) is the bilinear mapping
\(\mathbb{D}^{2} f(x): T_{x} M_{1} \times T_{x} M_{1} \rightarrow T_{f(x)} M_{2}\) defined as
\[
\begin{equation*}
\mathbb{D}^{2} f(x) \cdot\left(\mathrm{v}_{x}, \mathrm{w}_{x}\right):=D_{t} V_{2}\left(t_{0}\right)-\mathbf{D} f\left(\gamma_{1}\left(t_{0}\right)\right) \cdot D_{t} V_{1}\left(t_{0}\right), \tag{1}
\end{equation*}
\]
where \(D_{t} V_{1}\) and \(D_{t} V_{2}\) denote the covariant differentiation with respect to \({ }^{1} \nabla\) and \({ }^{2} \nabla\), respectively.

Denote by \({ }^{1} P\) and \({ }^{2} P\) the parallel displacements associated to \({ }^{1} \nabla\) and \({ }^{2} \nabla\), respectively. Then, equation (1) is equal (for \(t=t_{0}\) ) to
\[
\begin{align*}
& \lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\left({ }^{2} P_{\gamma_{2}}^{t \leftarrow t+\varepsilon} \mathbf{D} f\left(\gamma_{1}(t+\varepsilon)\right) \cdot{ }^{1} P_{\gamma_{1}}^{t+\varepsilon \leftarrow t} X_{1}\left(\gamma_{1}(t)\right)\right. \\
& \left.-\mathbf{D} f\left(\gamma_{1}(t)\right) \cdot X_{1}\left(\gamma_{1}(t)\right)\right), \tag{2}
\end{align*}
\]

\section*{Second geometric derivative (cont'd)}

The second geometric derivative of the map \(f: M_{1} \rightarrow M_{2}\) at \(x \in M_{1}\) in the directions \(\mathrm{v}_{x}\) and \(\mathrm{w}_{x} \in T_{x} M_{1}\) is the bilinear mapping
\(\mathbb{D}^{2} f(x): T_{x} M_{1} \times T_{x} M_{1} \rightarrow T_{f(x)} M_{2}\) defined as
\[
\begin{equation*}
\mathbb{D}^{2} f(x) \cdot\left(\mathrm{v}_{x}, \mathrm{w}_{x}\right):=D_{t} V_{2}\left(t_{0}\right)-\mathbf{D} f\left(\gamma_{1}\left(t_{0}\right)\right) \cdot D_{t} V_{1}\left(t_{0}\right), \tag{1}
\end{equation*}
\]
where \(D_{t} V_{1}\) and \(D_{t} V_{2}\) denote the covariant differentiation with respect to \({ }^{1} \nabla\) and \({ }^{2} \nabla\), respectively.

Denote by \({ }^{1} P\) and \({ }^{2} P\) the parallel displacements associated to \({ }^{1} \nabla\) and \({ }^{2} \nabla\), respectively. Then, equation (1) is equal (for \(t=t_{0}\) ) to
\[
\begin{align*}
\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\left({ }^{2} P_{\gamma_{2}}^{t \leftarrow t+\varepsilon} \mathbf{D} f\left(\gamma_{1}(t+\varepsilon)\right) \cdot{ }^{1} P_{\gamma_{1}}^{t+\varepsilon \leftarrow t}\right. & X_{1}\left(\gamma_{1}(t)\right) \\
& \left.-\mathbf{D} f\left(\gamma_{1}(t)\right) \cdot X_{1}\left(\gamma_{1}(t)\right)\right), \tag{2}
\end{align*}
\]

Those concepts need to be specialized for Lie groups.
We used the symmetric (0)-Cartan-Shouten connection... no time for the details, unfortunately!

\section*{Conclusions}
- we have extended the projection operator based trajectory optimization approach to the class of nonlinear systems that evolve on non-compact Lie groups [2].
- This required the introduction of a geometric derivative notion for the repeated differentiation of a mapping between two Lie groups, endowed with affine connections. (Not explained for time constraints...)
- With this tool, chain rule like formulas where used to develop expressions for the basic objects needed for trajectory optimization.
- Coding of the algorithm and numerical tests are under development!
[2] A. Saccon, J. Hauser and A. P. Aguiar, "Optimal Control on Non-Compact Lie Groups:

A Projection Operator Approach",
Submitted to the IEEE Conference of Decision and Control (CDC), 2010

Introduction
Mathematical
Preliminaries
Control systems on Lie groups

The Projection Operator approach on Lie groups

Left-trivialized linearization around a trajectory

Projection Operator
Quadratic approximation of the cost function
* Derivatives
* Second order approximation of the Projection Operator
* Second geometric derivative
* Second geometric derivative (cont'd)
* Conclusions

\section*{Obrigado pela vossa atenção!}
```

