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Why do Trajectory Optimization?

Well known:
o Optimal control may be used to provide stabilization, tracking, etc.,

for nonlinear systems

o Model predictive/receding horizon  strategies have been used
successful for a number of nonlinear systems with constraints
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Why do Trajectory Optimization?

Well known:

Also:

Optimal control may be used to provide stabilization, tracking, etc.,
for nonlinear systems

Model predictive/receding horizon  strategies have been used
successful for a number of nonlinear systems with constraints

Trajectory exploration : What cool stuff can this system do?

[0 capabilities

O limitations

Trajectory modeling : Can the trajectories of this (complex) system
be modeled by those of a simpler system? [e.g., reduced order, flat, ...]

Objective function design : needed to exploit system capabilities

Systems analysis : investigate system structure, e.g., controllability

Quadratic approximation
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Minimization of Trajectory Functionals

Consider the problem of minimizing a functional

T
b)) i= [ (), u(r).7) dr -+ m(a(T))
over the set 7 of bounded trajectories of the nonlinear system

z(t) = f(x(t),u(t))
with (0) = zo (... without additional constraints).

We write this constrained problem as

min h(¢)

where

¢ = (a(-), u(+)) is a bounded curve with () continuous and «(0) = xo.

Quadratic approximation
of the cost function
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Minimization of Trajectory Functionals

Consider the problem of minimizing a functional

h(z(:), u(-)) 32/0 [(z(7),u(r), 7) dr +m(z(T))

over the set 7 of bounded trajectories of the nonlinear system

z(t) = fla(t), u(t))

with (0) = zo (... without additional constraints).

We write this constrained problem as

min h(¢)

where

3

(a(-), u(+)) is a bounded curve with «(-) continuous and «(0) = zo.

How can we approach this problem?

Quadratic approximation
of the cost function
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Unconstrained (?) Optimal Control

Introduction . . .

1 Why do Trajectory e In the usual case, the choice of a control trajectory u(-) determines
O mi 1 ’) . . .
R the state trajectory z(-) (recall that zo has been specified). With
UrEEeios) FUsHees such a trajectory parametrization , one obtains so-called

aou trained (? . .
unconstrained optimal control problem

0 Projection Operator
Approach : .
O Projection Operator qul(lgl h(fC(, L0, ’LL()) ) ’LL())

0 Projection Operator
Properties

0 Trajectory Manifold e Why not just search over control trajectories u(-)? If the system

O Equivalent

Optimization Problems described by f is sufficiently stable, then such a shooting method
O Projection operator may be effeCtive.

Newton method
O Derivatives

0 Computation of D2 P e Unfortunately, the modulus of continuity of the map
- u(-) — (x(-),u(-)) is often so large that such shooting is
Mathematical

computationally useless

Preliminaries

Control systems on Lie

groups small changes in u(-) may give LARGE changes in z(-)
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Projection Operator Approach

Key ldea: a trajectory tracking controller  may be used to minimize the
effects of system instabilities, providing a numerically effective, redundant
trajectory parametrization

Let £(t) = (a(t), u(t)), t > 0, be a bounded curve and
let n(t) = (x(t),u(t)), t > 0, be the trajectory of f determined by
the nonlinear feedback system

f(a,u), 2(0) = o,
u(t) + K(t)(alt) — ) .

T =
U pr—

The map

P &= (al),u(-) = n=(z()ul(-))
IS a continuous, Nonlinear Projection Operator
For each £ € dom P, the curve n = P(§) is a trajectory.

Note: the trajectory contains both state and control curves.

Quadratic approximation
of the cost function
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Projection Operator Properties

Suppose that f is C" and that K is bounded and
exponentially stabilizes &, € 7. Then [1]

e Pis well defined on an L., neighborhood of &
e Pis C" (Fréchet diff wrt L., norm)

e (T ifandonlyif & ="P(&)

e P =P oP (projection )

On the finite interval [0, T'|, choose K (-) to obtain stability-like properties
so that the modulus of continuity  of P is relatively small .

On the infinite horizon, instabilities must be stabilized in order to obtain

a projection operator; consider & = x + w.

[1] J. Hauser and D. Meyer,

"The trajectory manifold of a nonlinear control system”,
Proceedings of the 37th IEEE Conference of

Decision and Control (CDC), vol. 1, pp.1034-1039, 1998

Quadratic approximation
of the cost function
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Trajectory Manifold

n = PE+()

Theorem: 7 is a Banach manifold : Every n € 7 near £ € T can be
uniquely represented as

n="PE+ (), CeTeT

Key: the projection operator DP(£) provides the required subspace
splitting . Note: ¢ € T¢ T ifand only if (= DP(§) - ¢

Quadratic approximation
of the cost function
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Equivalent Optimization Problems

Using the projection operator , we see that

min h(¢) = 5gg{l&)h(f)

where

Furthermore, defining .
h(§) := h(P(¢))

for ¢ € U with P(U) C U C dom P, we see that

in h d in h
min 4(§) and - min A(¢)
N—— N——

constrained unconstrained

are equivalent in the sense that

o If&" € T NU s aconstrained local minimum of A,
then it is an unconstrained local minimum of A;

o if €T € U is an unconstrained local minimum of 4 in U,
then £* = P(¢7) is a constrained local minimum of A.

Quadratic approximation
of the cost function
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Projection operator Newton method

given initial trajectory &, € T

for

end

1=0,1,2,...

redesign feedback K(-) if desired/needed

G = arg _min_Dh(&)-C + 1 D*h(&)-(¢,¢) (LQ)

descent direction

line search

update

EET%i7-

v = arg min h(P(& + vGi))

~v€(0,1]

§iv1 = P(& + i)

Quadratic approximation
of the cost function
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Projection operator Newton method

given initial trajectory &, € T
for ¢=0,1,2,...
redesign feedback K(-) if desired/needed

(i = arg min_Dh(&)-¢+ 3 D°h(&)-((,¢) (LQ)

descent direction

CE?T%i7-

line search v; = arg min h(P(& + 7))
~v€(0,1]

update Eiv1 = P& +7iG)

end

This direct method generates a descending trajectory sequence in
Banach space ! Also, quadratic convergence rate.

Note that
h(€)+e Dh(8)-¢ + 3 & D*h(£)(¢, )
is the second order approximation — of k(¢ + ¢) = h(P(& + <))

when ¢ € 7T and { € T T.

Quadratic approximation
of the cost function
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(0 Unconstrained (?)

First and second derivative of h(¢) = h(P(€)) are given by

Optimal Control 27
0 Projection Operator D h’(g) ) (Cl ) CQ) —
Approach

O Projection Operator DQh( ( )) P( ) Cl; DP(f) : CQ)
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(D
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Derivatives

First and second derivative of h(¢) = h(P(€)) are given by
Dh(€) - ¢ = Dh(P(£)) - DP(€) - ¢

D?h(&) - (C1,¢2) =
D*h(P(€)) - (DP(€) - ¢1, DP(E) - ¢2)
+ Dh(P(&)) - D*P(&) - (¢1,¢2)

When & € T and (; € T¢T, they specialize into
Dh(€) - ¢ = Dh(£) ¢
D?h(¢) - (¢1,¢2) = D*A(E) - (G, G2) + Dh() - D*P(€) - (¢, Ca)

Quadratic approximation
of the cost function

12740
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Derivatives

First and second derivative of h(¢) = h(P(€)) are given by
Dh(€) - ¢ = Dh(P(£)) - DP(€) - ¢

D?h(&) - (C1,¢2) =
D?*h(P(€)) - (DP(E) - ¢1, DP(E) - (2)
+ Dh(P(£)) - D*P(&) - (¢1,¢2)

When & € T and (; € T¢T, they specialize into
Dh(€) - ¢ = Dh(£) ¢
D?h(¢) - (¢1,¢2) = D*A(E) - (G, G2) + Dh() - D*P(€) - (¢, Ca)

How to compute D*P(€) - (¢1,¢2) ?

Quadratic approximation
of the cost function
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Computation of D?P

We may use ODEs to calculate D*P(¢) - ({1, (2):

w = (y,w) = D*P(E)-(C1:¢2)
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e The derivatives are about the trajectory n = P(§)

e The feedback K(-) stabilizes the state at each level

Quadratic approximation
of the cost function

P(a, 1)

) + B(n(t)w(t) + D f(n(t) - (71 (t),72(t))
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This was the introduction...

What if the system evolves on a Lie group?
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Smooth manifolds

A smooth manifold M is a set which “locally looks like R™”.
Think about, e.g., the 2-sphere S? in R>.

o Manifolds with be indicated with capital letters, usually M or N.
e A point on the manifold will be denoted simply by x.

e T.M and T M denote, respectively, the tangent and cotangent
spaces of M at x.

e A generic tangent vector is usually written as v, or w,.

e The tangent and cotangent bundles of M are denoted by T'M and
T M, respectively.

16/ 40



Introduction

Mathematical
Preliminaries

00 Smooth manifolds

O Vector fields on a
manifold

O Lie groups

O Lie groups (cont'd)
O Lie Algebras

O Triviality and
exponential map

Control systems on Lie
groups

The Projection Operator
approach on Lie groups

Left-trivialized
linearization around a
trajectory

Projection Operator

Quadratic approximation
of the cost function

Vector fields on a manifold

o The natural bundle projection

I

e A vector field on a manifold M is a mapping

from T'M to M is the mapping

™ — M
Ve +H X

X: M — TM

r — X(z)
which is a section of the tangent bundle T'M, that is, it satisfies

X (x) ==

177140



Introduction

Mathematical
Preliminaries

00 Smooth manifolds

O Vector fields on a
manifold

O Lie groups (cont'd)
O Lie Algebras

O Triviality and
exponential map

Control systems on Lie
groups

The Projection Operator
approach on Lie groups

Left-trivialized
linearization around a
trajectory

Projection Operator

Quadratic approximation
of the cost function

Lie groups

e A Lie group is a smooth manifold endowed with a group structure.
The group operation must be smooth .

e A generic Lie group is denoted by G.
o Typical examples are the groups SO(3), SE(2), SE(3), and U(n)...

e ..butalso T'SO(3), TSE(2), TSE(3) are Lie groups!

These are called the tangent groups
Our theory apply to mechanical systems.
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Introduction

Vathermatical e Left and right translations of x € G (a group element) by the group
Preliminaries element g € G are denoted by

00 Smooth manifolds
O Vector fields on a

manifold LgCC and Rgx,
O Lie groups

respectively.

O Lie Algebras
O Triviality and

exponential map o When convenient, we will adopt also the shorthand notation
Control systems on Lie

groups qr, xg, (gVg, Vz(g

The Projection Operator

approach on Lie groups for, in the same order

Left-trivialized
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trajectory Lgxa Rgxa TCBLQ (V$)7 TfB RQ (Vx)
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Lie Algebras

e A left-invariant vector field on G is a vector field X that satisfies

X(Lgz) = (TuLg) X ().

e Given p € T.G, the symbol X, is the associated left-invariant vector

field

The Lie algebra g is identified with the tangent space T.G
endowed with the Lie bracket operation
[lraxg—g,
defined by
[0, ¢] = [ X, X((e),

where the later bracket is the Jacobi-Lie bracket evaluated at the
group identity.
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Triviality and exponential map

e The tangent bundle T'G of Lie groups G is trivial. That is,
TG~ G X g.

e The exponential map exp: g — G is a diffeomorphism between a
neighborhood of the origin of the Lie Algebra g and a neighborhood
of the identity of the Lie group G.

e The exponential map exp : g — G can be used to parameterize the
neighborhood of any point g € G.

Using left translation, we parameterize a neighborhood of g € GG as

gexp(§), €€y
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Triviality and exponential map

The tangent bundle T'G of Lie groups G is trivial. That is,
TG~ G X g.

The exponential map exp: g — G is a diffeomorphism between a
neighborhood of the origin of the Lie Algebra g and a neighborhood
of the identity of the Lie group G.

The exponential map exp : g — G can be used to parameterize the
neighborhood of any point g € G.

Using left translation, we parameterize a neighborhood of g € GG as

€Y

Key idea: On a Lie group, the expansion of a function f : G1 — G2
IS written as

gexp(§),

f(gexpg, (tv)) = f(g) expe, (N (1)).

This generalized on a vector space

flx +1tv) = f(g) +nu(t)

21/40
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Control systems on a Lie group

e A control system on a Lie group G is a mapping

f: GXxR"xR — TG
(g,u,t) —  f(g,u,t),

such that 7 f (g, u,t) = g for each (g, u,t) € G x R™ x R

A state trajectory g¢(t),t > 0, of f is an absolutely continuous curve
in G that satisfies (a.e.), for an assigned input u(t),

We will assume f is sufficiently smooth, Lipschitz, ... to guarantee
existence and uniqgueness of solutions.

We can rewrite ¢(t) = f(g(t),u(t),t) as
9(t) = g(t)A(g(t), u(t), 1),

where A : G x R™ x R — g, Mg, u,t) := g~ " f(g,u,t) is
the left trivialization of the control vector field f.
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The Projection Operator approach on Lie groups
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Minimization of Trajectory Functionals

Consider the problem of minimizing a functional

T
o0 () i= [ (), u(r).7) dr -+ m(o(T))
over the set 7 of (bounded) trajectories of the nonlinear system

g9(t) = f(z(t),u(t)) = gA(g(t), u(?))
with g(0) = go.

As in the vector case, we write this constrained problem as

min h(¢)

where £ = («a(-), u(+)) is in general a (bounded) curve with a(-) continuous
and a(0) = go.
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Minimization of Trajectory Functionals

Consider the problem of minimizing a functional

T
o0 () i= [ (), u(r).7) dr -+ m(o(T))
over the set 7 of (bounded) trajectories of the nonlinear system

g9(t) = f(z(t),u(t)) = gA(g(t), u(?))
with g(0) = go.

As in the vector case, we write this constrained problem as

min h(¢)

where £ = («a(-), u(+)) is in general a (bounded) curve with a(-) continuous
and a(0) = go.

How can we generalize the Projection Operator approach
to Lie groups?
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Projection operator Newton method

The Newton algorithm is structurally the same:

Introduction

Mathematical given |n|t|a| trajeCtOry 50 € T

Preliminaries

Control systems on Lie for ’L — O 1 2
groups oo mr e

The Projection Operator

e T redesign feedback K(-) if desired/needed
O Minimization of

Trajectory Functionals desce Nt direCtion

G =arg min _Dh(&)-&C + L D?R(&)-(6¢,&C) (LQ)

fiC€1%i7~

Left-trivialized
linearization around a
trajectory

line search vi = arg min h(P(& exp(v¢i)))

Projection Operator v€(0,1]

Quadratic approximation

of the cost function Update gi—l—l — P(fz eXp(/leZ))

end
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Mathematical given |n|t|a| trajeCtOry 50 € T
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groups oo mr e

The Projection Operator

e T redesign feedback K(-) if desired/needed
O Minimization of

Trajectory Functionals desce Nt direCtion

G =arg min _Dh(&)-&C + L D?R(&)-(6¢,&C) (LQ)

& QE?T% T

Left-trivialized
linearization around a
trajectory

line search vi = arg min h(P(& exp(v¢i)))

Projection Operator v€(0,1]

Quadratic approximation

of the cost function Update gi—l—l — P(fz eXp(/leZ))

end

o What is the linearization of a system evolving of a Lie group ?
&6 € Te, T

o What does it mean to compute a second derivative on a Lie groups ?

Dh(&)-£i¢ + 3 D*h(&)- (8¢, &)
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Left-trivialized linearization
around a trajectory

o Let
n(t) = (g(t),u(t)), tel0,00)
be a the state-input trajectory of f.

o Consider the linear perturbation of the input defined as

us(t) := u(t) + ev(t)

o Indicate with g. the perturbed state trajectory associated with ..

o The state trajectory g. satisfies

ge(t) = ge (DA (ge (1), ue(t), 1),
9:(0) = go -
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Left-trivialized perturbed trajectory

Introduction

o Define the left-trivialized perturbed trajectory

Mathematical
Preliminaries

Control systems on Lie Ze (t), t S [07 T(€) )7

groups

The Projection Operator SO that
approach on Lie groups

ge(t) = g(t) eXp(Zs (t))a t e [07 T(g))

Left-trivialized
linearization around a
trajectory

O Left-trivialized
linearization

around a trajectory o Define Le (t) = exp ze (t) .

BT —— o The left trivialized perturbed trajectory satisfies
O Left-trivialized
linearization around a

trajectory 2. =d l()gz‘E (Adxa )\(9335, Ue, t) —A(ga u, t))

Projection Operator

Quadratic approximation Ze (O) = O .
of the cost function

where

dlog,s = Dlog(exp(p)) - exp(e)s  (trivialized tangent )
and

Ad is the adjoint action of G on g.
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Left-trivialized linearization around a trajectory

The left-trivialized perturbed trajectory z-(t), t > 0,
can be expanded to first order as z.(t) = €z(t) + o(e),
where z(t) is given by the left-trivialized linearization

z(t) = A(n(t),t) z(t) + B(n(t),t) v(t),

2(0) = zo,
with
A(n,t) == DiA(g,u,t) o T Ly — adx(g,u.t)
B(n,t) := D2A(g,u,t),
where

ad is the adjoint action of g on itself.
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Projection Operator on a Lie Group

e \ector space R"
The Projection Operator n = (x,u) = P(a, u) = P(§) is given by

T = f([lf,k(x,f,t))
u=k(z,{t)=a+ K(t)(p—x)

e Lie group G
The Projection Operator n = (x,u) = P(a, ) = P(€) is given by

g = f(g,k(g,§,1)) = gA(g,k(g,&,1))
u=k(g,&,t) = a+ K(t)[log(g™ " p)]
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Projection Operator on a Lie Group

Introduction

Mathematical ° VeCtor Space Rn
Preliminaries The Projection Operator n = (x,u) = P(a, u) = P(§) is given by
Control systems on Lie

groups T = f(a:,k(x,ﬁ,t))

The Projection Operator

approach on Lie groups U = k(x, S, t) = o+ K(t) (,LL _ CC)

Left-trivialized
linearization around a
trajectory

Projection Operator

aLie Group The Projection Operator n = (z,u) = P(a, 1) = P(&) is given by

el .
g=f(g9,k(g,&,1t)) = gA(g,k(g,&,1))
u=k(g,&,t) = a+ K(t)[log(g™ " p)]

Quadratic approximation
of the cost function

e Note that (R", +) is an abelian Lie group!
Given z1, 2 € R", :1:2_1:1:1 =1 — Ty = —2T2 + 1.
Also, exp(v) = v, Ad = id, and ad = id.

The theory on R™ is a special case of the general theory!
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Linearization of the Projection Operator

Curve £
Perturbation ¢
Trajectory n
Traj. perturbation ~

o \ector space R"

Vector Space

(o, ) R™ x R™
(B,v) R™ x R™
(g,u) R™ x R™
(z,v) R™ x R™

P& +eC) =n+ ey + o(e). We obtain

z=An(t))z+ B(n(t))v,
v=v+K(@)(5 - 2)

e Lie group G

P(Eexp(eC)) = P(§) exp(ey + o(e)). We obtain, recall P(§) = n,

z=AMn))z+ Bnt) v,
v=v+ K(t)d1og),ey-14)(Ad;-1,8 — 2)

Lie Group
G xR™

2(0) =0

2(0) =
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Curve £
Perturbation ¢
Trajectory n
Traj. perturbation ~

o \ector space R"

Vector Space

(o, ) R™ x R™
(B,v) R™ x R™
(g,u) R™ x R™
(z,v) R™ x R™

P& +eC) =n+ ey + o(e). We obtain

z=An(t))z+ B(n(t))v,
v=v+K(@)(5 - 2)

e Lie group G

P(Eexp(eC)) = P(§) exp(ey + o(e)). We obtain, recall P(§) = n,

z=AMn))z+ Bnt) v,
v=v+ K(t)d1og),ey-14)(Ad;-1,8 — 2)

Lie Group
G xR™

2(0) =0

2(0) =

When & = P(¢) = 1, d10g;oy(y-10) = idand Ad, 1, = id!
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Derivatives

We can expand h(€ exp(eC)) := h(P(£ exp(e)) as

h(€exp(eC)) = h(P(€)) + e Dh(€) - &
+1/2e* D?h(E) - (£¢,€C) + o(?)
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Derivatives

We can expand h(€ exp(eC)) := h(P(£ exp(e)) as

h(€exp(eC)) = h(P(€)) + e Dh(€) - &
+1/2e* D?h(E) - (£¢,€C) + o(?)

First and second derivative of h(£) = h(P(£)) are given by

Dh(€) - &€ = Dh(P(€)) - DP(€) - &€

D?h(E) - (€61, €C) =
D*h(P(£)) - (DP(E) - €1, DP(E) - €C2)
+ Dh(P(E)) - D*P(E) - (£¢1,£¢2)
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We can expand h(€ exp(eC)) := h(P(£ exp(e)) as

h(€exp(e)) = h(P(§)) + e Dh(E) - &
+1/2° D*R(E) - (£¢,€C) + o(e?)

First and second derivative of h(£) = h(P(£)) are given by

Dh(€) - &€ = Dh(P(€)) - DP(€) - &€

D?h(E) - (€1, €¢2) =
D?h(P(€)) - (DP(E) - €1, DP(E) - £C2)
+ Dh(P(E)) - D*P(E) - (£¢1,£¢2)

When £ € T and £(¢; € T¢ T, they specialize into

Dh(€) - £¢ = Dh(€) - &

D2R(E) - (£C1,£C2) = D?h(E) - (£¢1, £C2) + DR(E) - D*P(€) - (£C1, €Ca)
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We can expand h(€ exp(eC)) := h(P(£ exp(e)) as

h(€exp(e)) = h(P(§)) + e Dh(E) - &
+1/2° D*R(E) - (£¢,€C) + o(e?)

First and second derivative of h(£) = h(P(£)) are given by

Dh(€) - &€ = Dh(P(€)) - DP(€) - &€

D?h(E) - (€1, €¢2) =
D?h(P(€)) - (DP(E) - €1, DP(E) - £C2)
+ Dh(P(E)) - D*P(E) - (£¢1,£¢2)

When £ € T and £(¢; € T¢ T, they specialize into

Dh(€) - £¢ = Dh(€) - &

D2R(E) - (£C1,£C2) = D?h(E) - (£¢1, £C2) + DR(E) - D*P(€) - (£C1, €Ca)

How to compute D*P (&) - ({1, ¢2) ?
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Second order approximation
of the Projection Operator

Introduction e \ector SpaCe Rn
Mathematical w = D’]D2 (g) . (Cla CQ)

Preliminaries with £ € T and ~; = DP(S) - Cis

Control systems on Lie
groups

The Proj:ctioE_Operator y = A(n)y + B(n)w + D2>\(77) ’ (’717 fy2) ) y(O) =0 ,
approach on Lie groups
w=—-K(t)y,

Left-trivialized
linearization around a

trajectory e Lie group G.

Projection Operator P(f’)w = DPQ (5) ’ (€C1; gCZ)

Quadratic approximation

of the cost function with S e T and P(S)’Y@ — Dp(g) . SCM

O Derivatives
00 Second order

el y = Ay + Bn)w y(0) =0,
er geometric —-1/2 [(adzl ad., +ad.,ad:, )A(n)

ge;iﬁg\r/]z geometric —ad;, (A(U)ZZ + B(U)UQ)

R —ad., (A(n)z1 + B(n)v)]

’ +DA(n) - (1, m72) 4

w=—K(t)[y+1/2 ([z1, B2) + [22, 51])]

Recall v; = (zi,v:), ¢ = (Bi, vi).
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Second geometric derivative

Let M, and M, be two smooth manifolds
endowed with affine connections 'V and 2V, respectively.
Let f : M1 — Ms be a smooth mapping.

The second geometric derivative is a tool to extend the classical (Leibniz’s)
product rule to the covariant derivative of the “product” D f(~1(t)) - Vi(t),
for a curve v, and a vector field V; along ~1 in M.

Chosen x € M; and two tangent vectors v, and wy € T, M.
Let~, : I — M; be a smooth curve in M; such that

’Yl(to) = and "}/1 (to) = W, .
Let V1 a smooth vector field along ~; such that
\%i (to) = Vg,

and
Va(t) :=Df(yi(t)) - Vi(t) € Tr(qy (1)) M2

a smooth vector field along the curve ~»(t) := f(71(t)) in Moa.
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Second geometric derivative (cont'd)

The second geometric derivative ofthemap f: My — My atxz € M; in

the directions v, and w, € T, M is the bilinear mapping
D?f(x) : To My x Tu M1 — Ty M2 defined as

D f(z) - (Va, Wa) :=D:Va(to) =D f (71 (t0)) -De Vi (to) ,

where D, V; and D, V> denote the covariant differentiation with respect to
'V and ?V, respectively.

(1)
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Second geometric derivative (cont'd)

The second geometric derivative ofthemap f: My — My atxz € M; in
the directions v, and w, € T, M is the bilinear mapping
D?f(x) : To My x Tu M1 — Ty M2 defined as

D f(z) - (Va, Wa) :=D:Va(to) =D f (71 (t0)) -De Vi (to) , (1)

where D, V; and D, V> denote the covariant differentiation with respect to
'V and ?V, respectively.

Denote by 'P and P the parallel displacements associated to 'V and *V,
respectively. Then, equation (1) is equal (for ¢t = ty) to

lim 1 (2P t—t+e Df(yi(t +¢)) - 5 theet x (71(1))

~Df () Xi(n (1)), @)
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Second geometric derivative (cont'd)

The second geometric derivative ofthemap f: My — My atxz € M; in
the directions v, and w, € T, M is the bilinear mapping
D?f(x) : To My x Tu M1 — Ty M2 defined as

D f(z) - (Va, Wa) :=D:Va(to) =D f (71 (t0)) -De Vi (to) , (1)

where D, V; and D, V> denote the covariant differentiation with respect to
'V and ?V, respectively.

Denote by 'P and P the parallel displacements associated to 'V and *V,
respectively. Then, equation (1) is equal (for ¢t = ty) to

lim 1 (2P t—t+e Df(yi(t +¢)) - 5 theet x (71(1))

~Df () Xi(n (1)), @)

Those concepts need to be specialized for Lie groups.
We used the symmetric (0)-Cartan-Shouten connection...
no time for the details, unfortunately!
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O

Conclusions

we have extended the projection operator based trajectory
optimization approach to the class of nonlinear systems that
evolve on non-compact Lie groups [2].

This required the introduction of a geometric derivative notion for
the repeated differentiation of a mapping between two Lie groups,
endowed with affine connections.

(Not explained for time constraints...)

With this tool, chain rule like formulas where used to develop
expressions for the basic objects needed for trajectory optimization.

Coding of the algorithm and numerical tests are under
development!

[2] A. Saccon, J. Hauser and A. P. Aguiar,
"Optimal Control on Non-Compact Lie Groups:

A Projection Operator Approach”,

Submitted to the IEEE Conference of Decision and Control (CDC), 2010
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Obrigado pela vossa ateng ao!
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