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Applications

1. Mobile multi-vehicles coordination (rendezvous, 
formation, ciclic pursuit, coverage, ...).

2. Distributed estimation and control for sensor/
actuator networks.

3. Sensor calibration for sensor networks (e.g. clock 
synchronization).

4. Load balancing for distributed computing systems.
5. Distributed optimization algorithms.
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Flocking: collective animal behavior given by the 
motion of a large number of coordinated individuals

COOPERATION: Simple global behavior from local interactions

Scientific context
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Graph describing friendship relations in an high school

Scientific context
Social and economic networks: individual social and 
economic interactions produce global phenomena
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Scientific context
Google page rank: from the complex internet web pages 
link connections to a global absolute web pages relevance 
evaluation 
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Scientific context
Complex biological systems: need for new instruments 
that allow to deal with complex interaction structures 

Protein 
interaction 
network 
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Distributed estimation for sensor networks

ESTIMATOR

y(s)
x̂

s = space variable
y(s) = spatial data
x̂ = data based decision
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ESTIMATOR

Advantages: intrinsic robustness and adaptivity due to redundancy

y(s)
x̂

x̂i

x̂1

Distributed estimation for sensor networks
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ESTIMATOR

t = time
s = space variable
y(s, t) = time-varying spatial data
x̂(t) = time-varying data base decision

x̂(t)
y(s, t)

Distributed estimation for sensor networks
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Distributed control

y(s, t)u(t)

System

Controller

ESTIMATOR

Controller
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GOAL: each node has to obtain the average of the N values
y1, . . . , yN where yi is known only by the node i. This task has to
be performed in a distributed way.

ALGORITHM: Each sensor produces at time t an estimate xi(t)
of the average as follows

xi(t + 1) =
N�

j=1

Pijxj(t) xi(0) = yi

COMMUNICATION: xj(t) needs to be transmitted from the node
i to the node j iff

Pij �= 0

Consensus algorithm
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ij

If the graph associated with GP associated with P is strongly con-
nected, then all estimates converge to the same value (consensus)

xi(t) −→
N�

j=1

µjxj(0)

where the weights µj are nonnegative and sum to one.

Consensus algorithm
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Consensus algorithm

MARKOV CHAINS THEORY

1. The vector (µ1, . . . , µN ) is the invariant measure of the Markov
chain. Therefore µj = 1/N if and only if P is doubly stochastic.

2. The convergence is exponential with rate given by the sec-
ond largest eigenvalue ρ of P . The number 1 − ρ is called the
spectral gap of P .

PERFORMANCE INDICES

1. The difference between µj and 1/N .

2. Speed of convergence of xi(t) to xi(∞)
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Example: vehicles formation 

Assume we have N vehicles moving on the plane. Each vehicle
has coordinates zi(t) = (xi(t), yi(t))T . The goal is the rendezvous
of the vehicles in one point of the plane (can be generalized to
formation reaching).

Solution:

zi(t + 1) =
N�

i=1

Pijzj(t)

The vehicles will reach asymptotically the centroid on the initial
positions.
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Example: distributed estimation

Assume that N sensors have to estimate a quantity x ∈ R from
their noisy measurements. The result of the measure of the sensor
i is

yi = x + vi

where vi are independent noises of zero mean and variance r. The
best estimate of x from the measurements is

x̂ :=
1
N

�

i

yi



x

yAssume that each sensor i measures two variables xi, yi

and that the relation between these needs to be estimated.

The relation is modeled by a finite dimensional function

space

f(x) =

n�

i=1

θifi(x)

where the functions fi(x) form the basis of the function

space. We need to estimate the coefficients θi. We can

write

f(x) = FT
(x)Θ

where

FT
(x) = [f1(x) · · · fn(x)] Θ = [θ1 · · · θn]

T

PROBLEM: Determine

Θ̂ := argminΘ

N�

j=1

(yi − FT
(xi)Θ)

2

Example: distributed least square
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x
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consensus

average 
consensus

According the theory of least square optimization we

have that

Θ̂ =

�
1

N

N�

i=1

F (xi)F
T
(xi)

�−1 �
1

N

N�

i=1

F (xi)yi

�

SOLUTION

Mi(0) = F (xi)F
T
(xi) ∈ Rn×n Mi(∞) =

1

N

N�

i=1

F (xi)F
T
(xi)

vi(0) = F (xi)yi ∈ Rn vi(∞) =
1

N

N�

i=1

F (xi)yi
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Example: distributed decision making

x

0

1

ei

1− ei 0

1

We have a binary random variable x such with
prior

P (x = 0) = P (x = 1) = 1/2

N sensors can estimate x though a binary ran-
dom variable yi which are conditional indepen-
dent and with conditional probabilities

P (yi = 1|x = 0) = P (yi = 0|x = 1) = ei

P (yi = 0|x = 0) = P (yi = 1|x = 1) = 1− ei

It can be seen that the normalized log-likelihood
function is

L(y1, . . . , yN ) =
1
N

log
P (0|y1, · · · , yN )
P (1|y1, · · · , yN )

=
1
N

�

i

(1−2yi) log
1− ei

ei

x̂ = 0⇐⇒ L(y1, . . . , yN ) > 0



Let G be a group with N elements. A matrix P is called a Cayley
matrix with respect to G iff

Pi+l,j+l = Pi,j ∀i, j, l ∈ G

A grapf if a Cayley graph iff its adjacency matrix is Cayley.
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Communication graphs with symmetries
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Communication graphs with symmetries
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Communication graphs with symmetries
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Communication graphs with symmetries
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Communication graphs with symmetries
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Communication graphs with symmetries
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Time varying network topology
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Time varying network topology
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Time varying network topology
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Time varying network topology
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Time varying network topology

Grazie 
dell’attenzione


