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Bayesian Filtering: From Kalman Filters to
Particle Filters, and Beyond

ZHE CHEN

Abstract— In this self-contained survey/review paper, we system-
atically investigate the roots of Bayesian filtering as well as its rich
leaves in the literature. Stochastic filtering theory is briefly reviewed
with emphasis on nonlinear and non-Gaussian filtering. Following
the Bayesian statistics, different Bayesian filtering techniques are de-
veloped given different scenarios. Under linear quadratic Gaussian
circumstance, the celebrated Kalman filter can be derived within the
Bayesian framework. Optimal/suboptimal nonlinear filtering tech-
niques are extensively investigated. In particular, we focus our at-
tention on the Bayesian filtering approach based on sequential Monte
Carlo sampling, the so-called particle filters. Many variants of the
particle filter as well as their features (strengths and weaknesses) are
discussed. Related theoretical and practical issues are addressed in
detail. In addition, some other (new) directions on Bayesian filtering
are also explored.

Index Terms— Stochastic filtering, Bayesian filtering,
Bayesian inference, particle filter, sequential Monte Carlo,
sequential state estimation, Monte Carlo methods.

“The probability of any event is the ratio between the
value at which an expectation depending on the happening
of the event ought to be computed, and the value of the
thing expected upon its happening.”

— Thomas Bayes (1702-1761), [29]

“Statistics is the art of never having to say you’re
wrong. Variance is what any two statisticians are at.”

— C. J. Bradfield
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I. Introduction

THE contents of this paper contain three major scien-
tific areas: stochastic filtering theory, Bayesian theory,

and Monte Carlo methods. All of them are closely discussed
around the subject of our interest: Bayesian filtering. In
the course of explaining this long story, some relevant the-
ories are briefly reviewed for the purpose of providing the
reader a complete picture. Mathematical preliminaries and
background materials are also provided in detail for the
self-containing purpose.

A. Stochastic Filtering Theory

Stochastic filtering theory was first established in the
early 1940s due to the pioneering work by Norbert Wiener
[487], [488] and Andrey N. Kolmogorov [264], [265], and it
culminated in 1960 for the publication of classic Kalman
filter (KF) [250] (and subsequent Kalman-Bucy filter in
1961 [249]), 1 though many credits should be also due to
some earlier work by Bode and Shannon [46], Zadeh and
Ragazzini [502], [503], Swerling [434], Levinson [297], and
others. Without any exaggeration, it seems fair to say
that the Kalman filter (and its numerous variants) have
dominated the adaptive filter theory for decades in signal
processing and control areas. Nowadays, Kalman filters
have been applied in the various engineering and scientific
areas, including communications, machine learning, neu-
roscience, economics, finance, political science, and many
others. Bearing in mind that Kalman filter is limited by its
assumptions, numerous nonlinear filtering methods along

1Another important event in 1960 is the publication of the cele-
brated least-mean-squares (LMS) algorithm [485]. However, the LMS
filter is not discussed in this paper, the reader can refer to [486], [205],
[207], [247] for more information.

its line have been proposed and developed to overcome its
limitation.

B. Bayesian Theory and Bayesian Filtering

Bayesian theory2 was originally discovered by the British
researcher Thomas Bayes in a posthumous publication in
1763 [29]. The well-known Bayes theorem describes the
fundamental probability law governing the process of log-
ical inference. However, Bayesian theory has not gained
its deserved attention in the early days until its modern
form was rediscovered by the French mathematician Pierre-
Simon de Laplace in Théorie analytique des probailités.3

Bayesian inference [38], [388], [375], devoted to applying
Bayesian statistics to statistical inference, has become one
of the important branches in statistics, and has been ap-
plied successfully in statistical decision, detection and es-
timation, pattern recognition, and machine learning. In
particular, the November 19 issue of 1999 Science mag-
azine has given the Bayesian research boom a four-page
special attention [320]. In many scenarios, the solutions
gained through Bayesian inference are viewed as “optimal”.
Not surprisingly, Bayesian theory was also studied in the
filtering literature. One of the first exploration of itera-
tive Bayesian estimation is found in Ho and Lee’ paper
[212], in which they specified the principle and procedure
of Bayesian filtering. Sprangins [426] discussed the itera-
tive application of Bayes rule to sequential parameter esti-
mation and called it as “Bayesian learning”. Lin and Yau
[301] and Chien an Fu [92] discussed Bayesian approach
to optimization of adaptive systems. Bucy [62] and Bucy
and Senne [63] also explored the point-mass approximation
method in the Bayesian filtering framework.

C. Monte Carlo Methods and Monte Carlo Filtering

The early idea of Monte Carlo4 can be traced back to
the problem of Buffon’s needle when Buffon attempted
in 1777 to estimate π (see e.g., [419]). But the modern
formulation of Monte Carlo methods started from 1940s
in physics [330], [329], [393] and later in 1950s to statis-
tics [198]. During the World War II, John von Neumann,
Stanislaw Ulam, Niick Metropolis, and others initialized
the Monte Carlo method in Los Alamos Laboratory. von
Neumann also used Monte Carlo method to calculate the
elements of an inverse matrix, in which they redefined the
“Russian roulette” and “splitting” methods [472]. In recent
decades, Monte Carlo techniques have been rediscovered in-
dependently in statistics, physics, and engineering. Many
new Monte Carlo methodologies (e.g. Bayesian bootstrap,
hybrid Monte Carlo, quasi Monte Carlo) have been reju-
venated and developed. Roughly speaking, Monte Carlo

2A generalized Bayesian theory is the so-called Quasi-Bayesian the-
ory (e.g. [100]) that is built on the convex set of probability distribu-
tions and a relaxed set of aximoms about preferences, which we don’t
discuss in this paper.

3An interesting history of Thomas Bayes and its famous essay is
found in [110].

4The method is named after the city in the Monaco principality,
because of a roulette, a simple random number generator. The name
was first suggested by Stanislaw Ulam.
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technique is a kind of stochastic sampling approach aim-
ing to tackle the complex systems which are analytically
intractable. The power of Monte Carlo methods is that
they can attack the difficult numerical integration prob-
lems. In recent years, sequential Monte Carlo approaches
have attracted more and more attention to the researchers
from different areas, with many successful applications in
statistics (see e.g. the March special issue of 2001 Annals

of the Institute of Statistical Mathematics), sig-
nal processing (see e.g., the February special issue of 2002
IEEE Transactions on Signal Processing), machine
learning, econometrics, automatic control, tracking, com-
munications, biology, and many others (e.g., see [141] and
the references therein). One of the attractive merits of se-
quential Monte Carlo approaches lies in the fact that they
allow on-line estimation by combining the powerful Monte
Carlo sampling methods with Bayesian inference, at an ex-
pense of reasonable computational cost. In particular, the
sequential Monte Carlo approach has been used in parame-
ter estimation and state estimation, for the latter of which
it is sometimes called particle filter.5 The basic idea of
particle filter is to use a number of independent random
variables called particles,6 sampled directly from the state
space, to represent the posterior probability, and update
the posterior by involving the new observations; the “par-
ticle system” is properly located, weighted, and propagated
recursively according to the Bayesian rule. In retrospect,
the earliest idea of Monte Carlo method used in statisti-
cal inference is found in [200], [201], and later in [5], [6],
[506], [433], [258], but the formal establishment of particle
filter seems fair to be due to Gordon, Salmond and Smith
[193], who introduced certain novel resampling technique
to the formulation. Almost in the meantime, a number
of statisticians also independently rediscovered and devel-
oped the sampling-importance-resampling (SIR) idea [414],
[266], [303], which was originally proposed by Rubin [395],
[397] in a non-dynamic framework.7 The rediscovery and
renaissance of particle filters in the mid-1990s (e.g. [259],
[222], [229], [304], [307], [143], [40]) after a long dominant
period, partially thanks to the ever increasing computing
power. Recently, a lot of work has been done to improve
the performance of particle filters [69], [189], [428], [345],
[456], [458], [357]. Also, many doctoral theses were devoted
to Monte Carlo filtering and inference from different per-
spectives [191], [142], [162], [118], [221], [228], [35], [97],
[365], [467], [86].

It is noted that particle filter is not the only leaf in the
Bayesian filtering tree, in the sense that Bayesian filtering
can be also tackled with other techniques, such as differen-

5Many other terminologies also exist in the literature, e.g., SIS fil-
ter, SIR filter, bootstrap filter, sequential imputation, or CONDEN-
SATION algorithm (see [224] for many others), though they are ad-
dressed differently in different areas. In this paper, we treat them as
different variants within the generic Monte Carlo filter family. Monte
Carlo filters are not all sequential Monte Carlo estimation.

6The particle filter is called normal if it produces i.i.d. samples;
sometimes it is deliberately to introduce negative correlations among
the particles for the sake of variance reduction.

7The earliest idea of multiple imputation due to Rubin was pub-
lished in 1978 [394].

tial geometry approach, variational method, or conjugate
method. Some potential future directions, will be consid-
ering combining these methods with Monte Carlo sampling
techniques, as we will discuss in the paper. The attention
of this paper, however, is still on the Monte Carlo methods
and particularly sequential Monte Carlo estimation.

D. Outline of Paper

In this paper, we present a comprehensive review of
stochastic filtering theory from Bayesian perspective. [It
happens to be almost three decades after the 1974 publica-
tion of Prof. Thomas Kailath’s illuminating review paper
“A view of three decades of linear filtering theory” [244],
we take this opportunity to dedicate this paper to him who
has greatly contributed to the literature in stochastic filter-
ing theory.] With the tool of Bayesian statistics, it turns
out that the celebrated Kalman filter is a special case of
Bayesian filtering under the LQG (linear, quadratic, Gaus-
sian) circumstance, a fact that was first observed by Ho
and Lee [212]; particle filters are also essentially rooted
in Bayesian statistics, in the spirit of recursive Bayesian
estimation. To our interest, the attention will be given to
the nonlinear, non-Gaussian and non-stationary situations
where we mostly encounter in the real world. Generally for
nonlinear filtering, no exact solution can be obtained, or the
solution is infinite-dimensional,8 hence various numerical
approximation methods come in to address the intractabil-
ity. In particular, we focus our attention on sequential
Monte Carlo method which allows on-line estimation in a
Bayesian perspective. The historic root and remarks of
Monte Carlo filtering are traced. Other Bayesian filtering
approaches other than Monte Carlo framework are also re-
viewed. Besides, we extend our discussion from Bayesian
filtering to Bayesian inference, in the latter of which the
well-known hidden Markov model (HMM) (a.k.a. HMM
filter), dynamic Bayesian networks (DBN) and Bayesian
kernel machines are also briefly discussed.

Nowadays Bayesian filtering has become such a broad
topic involving many scientific areas that a comprehen-
sive survey and detailed treatment seems crucial to cater
the ever growing demands of understanding this important
field for many novices, though it is noticed by the author
that in the literature there exist a number of excellent tuto-
rial papers on particle filters and Monte Carlo filters [143],
[144], [19], [438], [443], as well as relevant edited volumes
[141] and books [185], [173], [306], [82]. Unfortunately, as
observed in our comprehensive bibliographies, a lot of pa-
pers were written by statisticians or physicists with some
special terminologies, which might be unfamiliar to many
engineers. Besides, the papers were written with different
nomenclatures for different purposes (e.g. the convergence
and asymptotic results are rarely cared in engineering but
are important for the statisticians). The author, thus, felt
obligated to write a tutorial paper on this emerging and
promising area for the readership of engineers, and to in-
troduce the reader many techniques developed in statistics

8Or the sufficient statistics is infinite-dimensional.
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and physics. For this purpose again, for a variety of particle
filter algorithms, the basic ideas instead of mathematical
derivations are emphasized. The further details and exper-
imental results are indicated in the references. Due to the
dual tutorial/review nature of current paper, only few sim-
ple examples and simulation are presented to illustrate the
essential ideas, no comparative results are available at this
stage (see other paper [88]); however, it doesn’t prevent us
presenting the new thoughts. Moreover, many graphical
and tabular illustrations are presented. Since it is also a
survey paper, extensive bibliographies are included in the
references. But there is no claim that the bibliographies
are complete, which is due to the our knowledge limitation
as well as the space allowance.

The rest of this paper is organized as follows: In Section
II, some basic mathematical preliminaries of stochastic fil-
tering theory are given; the stochastic filtering problem is
also mathematically formulated. Section III presents the
essential Bayesian theory, particularly Bayesian statistics
and Bayesian inference. In Section IV, the Bayesian fil-
tering theory is systematically investigated. Following the
simplest LQG case, the celebrated Kalman filter is briefly
derived, followed by the discussion of optimal nonlinear
filtering. Section V discusses many popular numerical ap-
proximation techniques, with special emphasis on Monte
Carlo sampling methods, which result in various forms of
particle filters in Section VI. In Section VII, some other
new Bayesian filtering approaches other than Monte Carlo
sampling are also reviewed. Section VIII presents some se-
lected applications and one illustrative example of particle
filters. We give some discussions and critiques in Section
IX and conclude the paper in Section X.

II. Mathematical Preliminaries and Problem

Formulation

A. Preliminaries

Definition 1: Let S be a set and F be a family of subsets
of S. F is a σ-algebra if (i) ∅ ∈ F ; (ii) A ∈ F implies
Ac ∈ F ; (iii) A1, A2, · · · ∈ F implies ∪∞i=1Ai ∈ F .

A σ-algebra is closed under complement and union of
countably infinitely many sets.

Definition 2: A probability space is defined by the el-
ements {Ω,F , P} where F is a σ-algebra of Ω and P is
a complete, σ-additive probability measure on all F . In
other words, P is a set function whose arguments are ran-
dom events (element of F) such that axioms of probability
hold.

Definition 3: Let p(x) = dP (x)
dμ denote Radon-Nikodým

density of probability distribution P (x) w.r.t. a measure μ.
When x ∈ X is discrete and μ is a counting measure, p(x)
is a probability mass function (pmf); when x is continuous
and μ is a Lebesgue measure, p(x) is a probability density
function (pdf).

Intuitively, the true distribution P (x) can be replaced
by the empirical distribution given the simulated samples

0

1

x

P(x)

Fig. 1. Empirical probability distribution (density) function con-

structed from the discrete observations {x(i)}.

(see Fig. 1 for illustration)

P̂ (x) =
1
Np

Np∑
i=1

δ(x− x(i))

where δ(·) is a Radon-Nikodým density w.r.t. μ of the
point-mass distribution concentrated at the point x. When
x ∈ X is discrete, δ(x − x(i)) is 1 for x = x(i) and 0
elsewhere. When x ∈ X is continuous, δ(x − x(i)) is a
Dirac-delta function, δ(x − x(i)) = 0 for all x(i) �= x, and∫

X
dP̂ (x) =

∫
X
p̂(x)dx = 1.

B. Notations

Throughout this paper, the bold font is referred to vec-
tor or matrix; the subscript symbol t (t ∈ R

+) is referred
to the index in a continuous-time domain; and n (n ∈ N)
is referred to the index in a discrete-time domain. p(x) is
referred to the pdf in a Lebesque measure or the pmf in
a counting measure. E[·] and Var[·] (Cov[·]) are expecta-
tion and variance (covariance) operators, respectively. Un-
less specified elsewhere, the expectations are taken w.r.t.
the true pdf. Notations x0:n and y0:n

9 are referred to
the state and observation sets with elements collected from
time step 0 up to n. Gaussian (normal) distribution is de-
noted by N (μ,Σ). xn represents the true state in time
step n, whereas x̂n (or x̂n|n) and x̂n|n−1 represent the fil-
tered state and predicted state of xn, respectively. f and g
are used to represent vector-valued state function and mea-
surement function, respectively. f is denoted as a generic
(vector or scalar valued) nonlinear function. Additional
nomenclatures will be given wherever confusion is neces-
sary to clarify.

For the reader’s convenience, a complete list of notations
used in this paper is summarized in the Appendix G.

C. Stochastic Filtering Problem

Before we run into the mathematical formulation of
stochastic filtering problem, it is necessary to clarify some
basic concepts:

Filtering is an operation that involves the extraction of
information about a quantity of interest at time t by
using data measured up to and including t.

9Sometimes it is also denoted by y1:n, which differs in the assuming
order of state and measurement equations.
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Prediction is an a priori form of estimation. Its aim is to
derive information about what the quantity of interest
will be like at some time t + τ in the future (τ >
0) by using data measured up to and including time
t. Unless specified otherwise, prediction is referred to
one-step ahead prediction in this paper.

Smoothing is an a posteriori form of estimation in that
data measured after the time of interest are used for
the estimation. Specifically, the smoothed estimate at
time t′ is obtained by using data measured over the
interval [0, t], where t′ < t.

Now, let us consider the following generic stochastic fil-
tering problem in a dynamic state-space form [238], [422]:

ẋt = f(t,xt,ut,dt), (1a)
yt = g(t,xt,ut,vt), (1b)

where equations (1a) and (1b) are called state equation and
measurement equation, respectively; xt represents the state
vector, yt is the measurement vector, ut represents the sys-
tem input vector (as driving force) in a controlled environ-
ment; f : R

Nx �→ R
Nx and g : R

Nx �→ R
Ny are two vector-

valued functions, which are potentially time-varying; dt

and vt represent the process (dynamical) noise and mea-
surement noise respectively, with appropriate dimensions.
The above formulation is discussed in the continuous-time
domain, in practice however, we are more concerned about
the discrete-time filtering.10 In this context, the following
practical filtering problem is concerned:11

xn+1 = f(xn,dn), (2a)
yn = g(xn,vn), (2b)

where dn and vn can be viewed as white noise random
sequences with unknown statistics in the discrete-time do-
main. The state equation (2a) characterizes the state tran-
sition probability p(xn+1|xn), whereas the measurement
equation (2b) describes the probability p(yn|xn) which is
further related to the measurement noise model.

The equations (2a)(2b) reduce to the following special
case where a linear Gaussian dynamic system is consid-
ered:12

xn+1 = Fn+1,nxn + dn, (3a)
yn = Gnxn + vn, (3b)

for which the analytic filtering solution is given by the
Kalman filter [250], [253], in which the sufficient statistics13

10The continuous-time dynamic system can be always converted
into a discrete-time system by sampling the outputs and using “zero-
order holds” on the inputs. Hence the derivative will be replaced by
the difference, the operator will become a matrix.

11For discussion simplicity, no driving-force in the dynamic system
(which is often referred to the stochastic control problem) is consid-
ered in this paper. However, the extension to the driven system is
straightforward.

12An excellent and illuminating review of linear filtering theory is
found in [244] (see also [385], [435], [61]); for a complete treatment of
linear estimation theory, see the classic textbook [247].

13Sufficient statistics is referred to a collection of quantities which
uniquely determine a probability density in its entirety.

xt-1 xt+1

ut-1 ut ut+1

yt-1 yt yt+1

xt

input

state

measurement

ft-1 ( )

g t-1 ( ) g t( ) g t+1 ( )

ft( )

Fig. 2. A graphical model of generic state-space model.

of mean and state-error correlation matrix are calculated
and propagated. In equations (3a) and (3b), Fn+1,n, Gn

are called transition matrix and measurement matrix, re-
spectively.

Described as a generic state-space model, the stochastic
filtering problem can be illustrated by a graphical model
(Fig. 2). Given initial density p(x0), transition density
p(xn|xn−1), and likelihood p(yn|xn), the objective of the
filtering is to estimate the optimal current state at time n
given the observations up to time n, which is in essence
amount to estimating the posterior density p(xn|y0:n) or
p(x0:n|y0:n). Although the posterior density provides a
complete solution of the stochastic filtering problem, the
problem still remains intractable since the density is a func-
tion rather than a finite-dimensional point estimate. We
should also keep in mind that most of physical systems are
not finite dimensional, thus the infinite-dimensional system
can only be modeled approximately by a finite-dimensional
filter, in other words, the filter can only be suboptimal
in this sense. Nevertheless, in the context of nonlinear
filtering, it is still possible to formulate the exact finite-
dimensional filtering solution, as we will discuss in Section
IV.

In Table I, a brief and incomplete development history of
stochastic filtering theory (from linear to nonlinear, Gaus-
sian to non-Gaussian, stationary to non-stationary) is sum-
marized. Some detailed reviews are referred to [244], [423],
[247], [205].

D. Nonlinear Stochastic Filtering Is an Ill-posed Inverse
Problem

D.1 Inverse Problem

Stochastic filtering is an inverse problem: Given collected
yn at discrete time steps (hence y0:n), provided f and g are
known, one needs to find the optimal or suboptimal x̂n. In
another perspective, this problem can be interpreted as an
inverse mapping learning problem: Find the inputs sequen-
tially with a (composite) mapping function which yields the
output data. In contrast to the forward learning (given in-
puts find outputs) which is a many-to-one mapping prob-
lem, the inversion learning problem is one-to-many, in a
sense that the mapping from output to input space is gen-
erally non-unique.

A problem is said to be well-posed if it satisfies three con-
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TABLE I

A Development History of Stochastic Filtering Theory.

author(s) (year) method solution comment

Kolmogorov (1941) innovations exact linear, stationary

Wiener (1942) spectral factorization exact linear, stationary, infinite memory

Levinson (1947) lattice filter approximate linear, stationary, finite memory

Bode & Shannon (1950) innovations, whitening exact linear, stationary,

Zadeh & Ragazzini (1950) innovations, whitening exact linear, non-stationary

Kalman (1960) orthogonal projection exact LQG, non-stationary, discrete

Kalman & Bucy (1961) recursive Riccati equation exact LQG, non-stationary, continuous

Stratonovich (1960) conditional Markov process exact nonlinear, non-stationary

Kushner (1967) PDE exact nonlinear, non-stationary

Zakai (1969) PDE exact nonlinear, non-stationary

Handschin & Mayne (1969) Monte Carlo approximate nonlinear, non-Gaussian, non-stationary

Bucy & Senne (1971) point-mass, Bayes approximate nonlinear, non-Gaussian, non-stationary

Kailath (1971) innovations exact linear, non-Gaussian, non-stationary

Beneš (1981) Beneš exact solution of Zakai eqn. nonlinear, finite-dimensional

Daum (1986) Daum, virtual measurement exact solution of FPK eqn. nonlinear, finite-dimensional

Gordon, Salmond, & Smith (1993) bootstrap, sequential Monte Carlo approximate nonlinear, non-Gaussian, non-stationary

Julier & Uhlmann (1997) unscented transformation approximate nonlinear, (non)-Gaussian, derivative-free

ditions: existence, uniqueness and stability, otherwise it is
said to be ill posed [87]. In this context, stochastic filtering
problem is ill-posed in the following sense: (i) The ubiqui-
tous presence of the unknown noise corrupts the state and
measurement equations, given limited noisy observations,
the solution is non-unique; (ii) Supposing the state equa-
tion is a diffeomorphism (i.e. differentiable and regular),14

the measurement function is possibly a many-to-one map-
ping function (e.g. g(ξ) = ξ2 or g(ξ) = sin(ξ), see also the
illustrative example in Section VIII-G), which also violates
the uniqueness condition; (iii) The filtering problem is per
se a conditional posterior distribution (density) estimation
problem, which is known to be stochastically ill posed es-
pecially in high-dimensional space [463], let alone on-line
processing [412].

D.2 Differential Operator and Integral Equation

In what follows, we present a rigorous analysis of stochas-
tic filtering problem in the continuous-time domain. To
simplify the analysis, we first consider the simple irregular
stochastic differential equation (SDE):

dxt

dt
= f(t,xt) + dt, t ∈ T (4)

where xt is a second-order stochastic process, ωt =
∫ t

0
dsds

is a Wiener process (Brownian motion) and dt can be re-
garded as a white noise. f : T×L2(Ω,F , P )→ L2(Ω,F , P )
is a mapping to a (Lebesque square-integrable) Hilbert
space L2(Ω,F , P ) with finite second-order moments. The
solution of (4) is given by the stochastic integral

xt = x0 +
∫ t

0

f(s,xs)ds+
∫ t

0

dωs, (5)

14Diffeomorphism is referred to a smooth mapping with a smooth
inverse, one-to-one mapping.

where the second integral is Itô stochastic integral (named
after Japanese mathematician Kiyosi Ito [233]).15

Mathematically, the ill-posed nature of stochastic filter-
ing problem can be understood from the operator theory.

Definition 4: [274], [87] Let A : Y → X be an operator
from a normed space Y toX. The equation AY = X is said
to be well posed if A is bijective and the inverse operator
A−1 : X → Y is continuous. Otherwise the equation is
called ill posed.

Definition 5: [418] Suppose H is a Hilbert space and let
A = A(γ) be a stochastic operator mapping Ω × H in
H. Let X = X(γ) be a generalized random variable (or
function) in H, then

A(γ)Y = X(γ) (6)

is a generalized stochastic operator equation for the ele-
ment Y ∈ H.

Since γ is an element of a measurable space (Ω,F) on
which a complete probability measure P is defined, stochas-
tic operator equation is a family of equations. The family
of equations has a unique member when P is a Dirac mea-
sure. Suppose Y is a smooth functional with continuous
first n derivatives, then (6) can be written as

A(γ)Y (γ) =
N∑

k=0

ak(t, γ)
dkY

dtk
= X(γ), (7)

which can be represented in the form of stochastic integral
equations of Fredholm type or Voltera type [418], with an

15The Itô stochastic integral is defined as
∫ t

t0
σ(t)dω(t) =

lim
n→∞

[∑n
j=1 σ(tj−1)Δωj

]
. The Itô calculus satisfies dω2(t) = dt,

dω(t)dt = 0, dtN+1 = dωN+2(t) = 0 (N > 1). See [387], [360] for a
detailed background about Itô calculus and Itô SDE.
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appropriately defined kernel K:

Y (t, γ) = X(t, γ) +
∫
K(t, τ, γ)Y (τ, γ)dτ, (8)

which takes a similar form as the continuous-time Wiener-
Hopf equation (see e.g. [247]) when K is translation invari-
ant.

Definition 6: [418] Any mapping Y (γ) : Ω → H which
satisfies A(γ)Y (γ) = X(γ) for every γ ∈ Ω, is said to be a
wide-sense solution of (6).

The wide-sense solution is a stochastic solution if it is
measurable w.r.t. P and Pr{γ : A(γ)Y (γ) = X(γ)} = 1.
The existence and uniqueness conditions of the solution to
the stochastic operator equation (6) is given by the prob-
abilistic Fixed-Point Theorem [418]. The essential idea of
Fixed-Point Theorem is to prove that A(γ) is a stochas-
tic contractive operator, which unfortunately is not always
true for the stochastic filtering problem.

Let’s turn our attention to the measurement equation in
an integral form

yt =
∫ t

0

g(s,xs)ds+ vt, (9)

where g : R
Nx → R

Ny . For any φ(·) ∈ R
Nx , the optimal

(in mean-square sense) filter φ̂(xt) is the one that seeks an
minimum mean-square error, as given by

φ̂(xt) ≡ arg min{‖φ− φ̂‖2} =
∫
π(xt|y0:t)φ(x)dxt∫
π(xt|y0:t)dxt

, (10)

where π(·) is an unnormalized filtering density. A common
way to study the unnormalized filtering density is to treat
it as a solution of the Zakai equation, as will be detailed in
Section II-E.

D.3 Relations to Other Problems

It is conducive to better understanding the stochastic fil-
tering problem by comparing it with many other ill-posed
problems that share some commons in different perspec-
tives:

• System identification: System identification has
many commons with stochastic filtering. Both of them
belong to statistical inference problems. Sometimes,
identification is also meant as filtering in stochastic
control realm, especially with a driving-force as in-
put. However, the measurement equation can ad-
mit the feedback of previous output, i.e. yn =
g(xn,yn−1,vn). Besides, identification is often more
concerned about the parameter estimation problem in-
stead of state estimation. We will revisit this issue in
the Section IX.

• Regression: In some perspective, filtering can be
viewed as a sequential linear/nonlinear regression
problem if state equation reduces to a random walk.
But, regression differs from filtering in the following
sense: Regression is aimed to find a deterministic map-
ping between the input and output given a finite num-
ber of observation pairs {xi,yi}�i=1, which is usually

off-line; whereas filtering is aimed to sequentially infer
the signal or state process given some observations by
assuming the knowledge of the state and measurement
models.

• Missing data problem: Missing data problem is
well addressed in statistics, which is concerned about
probabilistic inference or model fitting given limited
data. Statistical approaches (e.g. EM algorithm, data
augmentation) are used to help this goal by assum-
ing auxiliary missing variables (unobserved data) with
tractable (on-line or off-line) inference.

• Density estimation: Density estimation shares some
commons with filtering in that both of them target at a
dependency estimation problem. Generally, filtering is
nothing but to learn the conditional probability distri-
bution. However, density estimation is more difficult
in the sense that it doesn’t have any prior knowledge
on the data (though sometimes people give some as-
sumption, e.g. mixture distribution) and it usually
works directly on the state (i.e. observation process
is tantamount to the state process). Most of density
estimation techniques are off-line.

• Nonlinear dynamic reconstruction: Nonlinear dy-
namic reconstruction arise from physical phenomena
(e.g. sea clutter) in the real world. Given some lim-
ited observations (possibly not continuously or evenly
recorded), it is concerned about inferring the physi-
cally meaningful state information. In this sense, it
is very similar to the filtering problem. However, it
is much more difficult than the filtering problem in
that the nonlinear dynamics involving f is totally un-
known (usually assuming a nonparametric model to
estimate) and potentially complex (e.g. chaotic), and
the prior knowledge of state equation is very limited,
and thereby severely ill-posed [87]. Likewise, dynamic
reconstruction allows off-line estimation.

E. Stochastic Differential Equations and Filtering

In the following, we will formulate the continuous-time
stochastic filtering problem by SDE theory. Suppose {xt}
is a Markov process with an infinitesimal generator, rewrit-
ing state-space equations (1a)(1b) in the following form of
Itô SDE [418], [360]:

dxt = f(t,xt)dt+ σ(t,xt)dωt, (11a)
dyt = g(t,xt)dt+ dvt, (11b)

where f(t,xt) is often called nonlinear drift and σ(t,xt)
called volatility or diffusion coefficient. Again, the noise
processes {ωt,vt, t ≥ 0} are two Wiener processes. xt ∈
R

Nx ,yt ∈ R
Ny . First, let’s look at the state equation

(a.k.a. diffusion equation). For all t ≥ 0, we define a
backward diffusion operator Lt as16

Lt =
Nx∑
i=1

f i
t

∂

∂xi
+

1
2

Nx∑
i,j=1

aij
t

∂2

∂xi∂xj
, (12)

16Lt is a partial differential operator.
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where aij
t = σi(t,xt)σj(t,xt). Operator L corresponds to

an infinitesimal generator of the diffusion process {xt, t ≥
0}. The goal now is to deduce conditions under which
one can find a recursive and finite-dimensional (close form)
scheme to compute the conditional probability distribution
p(xt|Yt), given the filtration Yt

17 produced by the observa-
tion process (1b).

Let’s define an innovations process18

et = yt −
∫ t

0

E[g(s,xs)|y0:s]ds, (13)

where E[g(s,xs)|Ys] is described as

ĝ(xt) = E[g(t,xt)|Yt]

=
∫ ∞

−∞
g(xt)p(xt|Ys)dx. (14)

For any test function φ ∈ R
Nx , the forward diffusion oper-

ator L̃ is defined as

L̃tφ = −
Nx∑
i=1

f i
t

∂φ

∂xi
+

1
2

Nx∑
i,j=1

aij
t

∂2φ

∂xi∂xj
, (15)

which essentially is the Fokker-Planck operator. Given ini-
tial condition p(x0) at t = 0 as boundary condition, it turns
out that the pdf of diffusion process satisfies the Fokker-
Planck-Kolmogorov equation (FPK; a.k.a. Kolmogorov
forward equation, [387]) 19

∂p(xt)
∂t

= L̃tp(xt). (16)

By involving the innovation process (13) and assuming
E[vt] = Σv,t, we have the following Kushner’s equation
(e.g., [284]):

dp(xt|Yt) = L̃tp(xt|Yt)dt+ p(xt|Yt)etΣ−1
v,tdt, (t ≥ 0) (17)

which reduces to the FPK equation (16) when there are no
observations or filtration Yt. Integrating (17), we have

p(xt|Yt) = p(x0) +
∫ t

0

p(xs|Ys)ds

+
∫ t

0

L̃sp(xs|Ys)esΣ−1
v,sds. (18)

17One can imagine filtration as sort of information coding the pre-
vious history of the state and measurement.

18Innovations process is defined as a white Gaussian noise process.
See [245], [247] for detailed treatment.

19The stochastic process is determined equivalently by the FPK
equation (16) or the SDE (11a). The FPK equation can be inter-
preted as follows: The first term is the equation of motion for a cloud
of particles whose distribution is p(xt), each point of which obeys the

equation of motion dx
dt

= f(xt, t). The second term describes the dis-

turbance due to Brownian motion. The solution of (16) can be solved
exactly by Fourier transform. By inverting the Fourier transform, we
can obtain

p(x, t + Δt|x0, t) =
1√

2πσ0Δt
exp

{
− (x − x0 − f(x0)Δt)2

2σ0Δt

}
,

which is a Guaussian distribution of a deterministic path.

Given conditional pdf (18), suppose we want to calculate
φ̂(xt) = E[φ(xt)|Yt] for any nonlinear function φ ∈ R

Nx .
By interchanging the order of integrations, we have

φ̂(xt) =
∫ ∞

−∞
φ(x)p(xt|Yt)dx

=
∫ ∞

−∞
φ(x)p(x0)dx

+
∫ t

0

∫ ∞

−∞
φ(x)L̃sp(xs|Ys)dxds

+
∫ t

0

∫ ∞

−∞
φ(x)p(xs|Ys)esΣ−1

v,sdxds

= E[φ(x0)] +
∫ t

0

∫ ∞

−∞
p(xs|Ys)Lsφ(x)dxds

+
∫ t

0

[ ∫ ∞

−∞
φ(x)g(s,x)p(xs|Ys)dx

−ĝ(xs)
∫ ∞

−∞
φ(x)p(xs|Ys)dx

]
Σ−1

v,sds.

The Kushner equation lends itself a recursive form of fil-
tering solution, but the conditional mean requests all of
higher-order conditional moments and thus leads to an
infinite-dimensional system.

On the other hand, under some mild conditions, the un-
normalized conditional density of xt given Ys, denoted as
π(xt|Yt), is the unique solution of the following stochas-
tic partial differential equation (PDE), the so-called Zakai
equation (see [505], [238], [285]):

dπ(xt|Yt) = L̃π(xt|Yt)dt+ g(t,xt)π(xt|Yt)dyt (19)

with the same L̃ defined in (15). Zakai equation and Kush-
ner equation have a one-to-one correspondence, but Zakai
equation is much simpler,20 hence we are usually turned
to solve the Zakai equation instead of Kushner equation.
In the early history of nonlinear filtering, the common way
is to discretize the Zakai equation to seek the numerical
solution. Numerous efforts were devoted along this line
[285], [286], e.g. separation of variables [114], adaptive lo-
cal grid [65], particle (quadrature) method [66]. However,
these methods are neither recursive nor computationally
efficient.

III. Bayesian Statistics and Bayesian Estimation

A. Bayesian Statistics

Bayesian theory (e.g., [38]) is a branch of mathemat-
ical probability theory that allows people to model the
uncertainty about the world and the outcomes of interest
by incorporating prior knowledge and observational evi-
dence.21 Bayesian analysis, interpreting the probability as

20This is true because (19) is linear w.r.t. π(xt|Yt) whereas (17)
involves certain nonlinearity. We don’t extend discussion here due to
space constraint.

21In the circle of statistics, there are slightly different treatments to
probability. The frequentists condition on a hypothesis of choice and
put the probability distribution on the data, either observed or not;
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a conditional measure of uncertainty, is one of the popu-
lar methods to solve the inverse problems. Before running
into Bayesian inference and Bayesian estimation, we first
introduce some fundamental Bayesian statistics.

Definition 7: (Bayesian Sufficient Statistics) Let p(x|Y)
denote the probability density of x conditioned on mea-
surements Y. A statistics, Ψ(x), is said to be “sufficient”
if the distribution of x conditionally on Ψ does not depend
on Y. In other words, p(x|Y) = p(x|Y′) for any two sets Y

and Y′ s.t. Ψ(Y) = Ψ(Y′).

The sufficient statistics Ψ(x) contains all of information
brought by x about Y. The Rao-Blackwell Theorem says
that when an estimator is evaluated under a convex loss,
the optimal procedure only depends on the sufficient statis-
tics. Sufficiency Principle and Likelihood Principle are two
axiomatic principles in the Bayesian inference [388].

There are three types of intractable problems inherently
related to the Bayesian statistics:

• Normalization: Given the prior p(x) and likelihood
p(y|x), the posterior p(x|y) is obtained by the product
of prior and likelihood divided by a normalizing factor
as

p(x|y) =
p(y|x)p(x)∫

X
p(y|x)p(x)dx

. (20)

• Marginalization: Given the joint posterior (x, z),
the marginal posterior is

p(x|y) =
∫

Z

p(x, z|y)dz, (21)

as shown later, marginalization and factorization plays
an important role in Bayesian inference.

• Expectation: Given the conditional pdf, some aver-
aged statistics of interest can be calculated

Ep(x|y)[f(x)] =
∫

X

f(x)p(x|y)dx. (22)

In Bayesian inference, all of uncertainties (including
states, parameters which are either time-varying or fixed
but unknown, priors) are treated as random variables.22

The inference is performed within the Bayesian framework
given all of available information. And the objective of
Bayesian inference is to use priors and causal knowledge,
quantitatively and qualitatively, to infer the conditional
probability, given finite observations. There are usually
three levels of probabilistic reasoning in Bayesian analysis
(so-called hierarchical Bayesian analysis): (i) starting with
model selection given the data and assumed priors; (ii) esti-
mating the parameters to fit the data given the model and

only one hypothesis is regarded as true; they regard the probability
as frequency. The Bayesians only condition on the observed data and
consider the probability distributions on the hypotheses; they put
probability distributions on the several hypotheses given some priors;
probability is not viewed equivalent to the frequency. See [388], [38],
[320] for more information.

22This is the true spirit of Bayesian estimation which is different
from other estimation schemes (e.g. least-squares) where the un-
known parameters are usually regarded as deterministic.

priors; (iii) updating the hyperparameters of the prior. Op-
timization and integration are two fundamental numerical
problems arising in statistical inference. Bayesian inference
can be illustrated by a directed graph, a Bayesian network
(or belief network) is a probabilistic graphical model with
a set of vertices and edges (or arcs), the probability depen-
dency is described by a directed arrow between two nodes
that represent two random variables. Graphical models
also allow the possibility of constructing more complex hi-
erarchical statistical models [239], [240].

B. Recursive Bayesian Estimation

In the following, we present a detailed derivation of re-
cursive Bayesian estimation, which underlies the principle
of sequential Bayesian filtering. Two assumptions are used
to derive the recursive Bayesian filter: (i) The states follow
a first-order Markov process p(xn|x0:n−1) = p(xn|xn−1);
(ii) the observations are independent of the given states.
For notation simplicity, we denote Yn as a set of observa-
tions y0:n := {y0, · · · ,yn}; let p(xn|Yn) denote the condi-
tional pdf of xn. From Bayes rule we have

p(xn|Yn) =
p(Yn|xn)p(xn)

p(Yn)

=
p(yn,Yn−1|xn)p(xn)

p(yn,Yn−1)

=
p(yn|Yn−1,xn)p(Yn−1|xn)p(xn)

p(yn|Yn−1)p(Yn−1)

=
p(yn|Yn−1,xn)p(xn|Yn−1)p(Yn−1)p(xn)

p(yn|Yn−1)p(Yn−1)p(xn)

=
p(yn|xn)p(xn|Yn−1)

p(yn|Yn−1)
. (23)

As shown in (23), the posterior density p(xn|Yn) is de-
scribed by three terms:

• Prior: The prior p(xn|Yn−1) defines the knowledge of
the model

p(xn|Yn−1) =
∫
p(xn|xn−1)p(xn−1|Yn−1)dxn−1, (24)

where p(xn|xn−1) is the transition density of the state.
• Likelihood: the likelihood p(yn|xn) essentially deter-

mines the measurement noise model in the equation
(2b).

• Evidence: The denominator involves an integral

p(yn|Yn−1) =
∫
p(yn|xn)p(xn|Yn−1)dxn. (25)

Calculation or approximation of these three terms are the
essences of the Bayesian filtering and inference.

IV. Bayesian Optimal Filtering

Bayesian filtering is aimed to apply the Bayesian statis-
tics and Bayes rule to probabilistic inference problems, and
specifically the stochastic filtering problem. To our knowl-
edge, Ho and Lee [212] were among the first authors to
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discuss iterative Bayesian filtering, in which they discussed
in principle the sequential state estimation problem and in-
cluded the Kalman filter as a special case. In the past few
decades, numerous authors have investigated the Bayesian
filtering in a dynamic state space framework [270], [271],
[421], [424], [372], [480]-[484].

A. Optimal Filtering

An optimal filter is said “optimal” only in some specific
sense [12]; in other other words, one should define a cri-
terion which measures the optimality. For example, some
potential criteria for measuring the optimality can be:

1. Minimum mean-squared error (MMSE): It can be de-
fined in terms of prediction or filtering error (or equiv-
alently the trace of state-error covariance)

E[‖xn − x̂n‖2|y0:n] =
∫
‖xn − x̂n‖2p(xn|y0:n)dxn,

which is aimed to find the conditional mean x̂n =
E[xn|y0:n] =

∫
xnp(xn|y0:n)dxn.

2. Maximum a posteriori (MAP): It is aimed to find the
mode of posterior probability p(xn|y0:n),23 which is
equal to minimize a loss function

E = E[1− Ixn:‖xn−x̂n‖≤ζ(xn)],

where I(·) is an indicator function and ζ is a small
scalar.

3. Maximum likelihood (ML): which reduces to a special
case of MAP where the prior is neglected.24

4. Minimax: which is to find the median of posterior
p(xn|y0:n). See Fig. 3 for an illustration of the differ-
ence between mode, mean and median.

5. Minimum conditional inaccuracy25: Namely,

Ep(x,y)[− log p̂(x|y)] =
∫
p(x,y) log

1
p̂(x|y)

dxdy.

6. Minimum conditional KL divergence [276]: The con-
ditional KL divergence is given by

KL =
∫
p(x,y) log

p(x,y)
p̂(x|y)p(x)

dxdy.

7. Minimum free energy26: It is a lower bound of maxi-
mum log-likelihood, which is aimed to minimize

F(Q;P ) ≡ EQ(x)[− logP (x|y)]

= EQ(x)

[
log

Q(x)
P (x|y)

]
− EQ(x)[logQ(x)],

23When the mode and the mean of distribution coincide, the MAP
estimation is correct; however, for multimodal distributions, the MAP
estimate can be arbitrarily bad. See Fig. 3.

24This can be viewed as a least-informative prior with uniform dis-
tribution.

25It is a generalization of Kerridge’s inaccuracy for the case of i.i.d.
data.

26Free energy is a variational approximation of ML in order to
minimize its upper bound. This criterion is usually used in off-line
Bayesian estimation.

p (x|y)

x

mode
mean

median

mode

mode
mean

Fig. 3. Left: An illustration of three optimal criteria that seek
different solutions for a skewed unimodal distribution, in which the
mean, mode and median do not coincide. Right: MAP is misleading
for the multimodal distribution where multiple modes (maxima) exist.

where Q(x) is an arbitrary distribution of x. The
first term is called Kullback-Leibler (KL) divergence
between distributions Q(x) and P (x|y), the second
term is the entropy w.r.t. Q(x). The minimization
of free energy can be implemented iteratively by the
expectation-maximization (EM) algorithm [130]:

Q(xn+1) ←− arg max
Q
{Q,xn},

xn+1 ←− arg max
x
{Q(xn},x).

Remarks:
• The above criteria are valid not only for state estima-

tion but also for parameter estimation (by viewing x
as unknown parameters).

• Both MMSE and MAP methods require the estima-
tion of the posterior distribution (density), but MAP
doesn’t require the calculation of the denominator (in-
tegration) and thereby more computational inexpen-
sive; whereas the former requires full knowledge of
the prior, likelihood and evidence. Note that how-
ever, MAP estimate has a drawback especially in a
high-dimensional space. High probability density does
not imply high probability mass. A narrow spike with
very small width (support) can have a very high den-
sity, but the actual probability of estimated state (or
parameter) belonging to it is small. Hence, the width
of the mode is more important than its height in the
high-dimensional case.

• The last three criteria are all ML oriented. By min-
imizing the negative log-likelihood − log p̂(x|y) and
taking the expectation w.r.t. a fixed or variational
pdf. Criterion 5 chooses the expectation w.r.t. joint
pdf p(x,y); when Q(x) = p(x,y), it is equivalent to
Criterion 7; Criterion 6 is a modified version of the
upper bound of Criterion 5.

The criterion of optimality used for Bayesian filtering is
the Bayes risk of MMSE.27 Bayesian filtering is optimal
in a sense that it seeks the posterior distribution which
integrates and uses all of available information expressed
by probabilities (assuming they are quantitatively correct).
However, as time proceeds, one needs infinite computing
power and unlimited memory to calculate the “optimal”

27For a discussion of difference between Bayesian risk and frequen-
tist risk, see [388].
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Time update:
One-step prediction
of the measurement

yn

Measurement
update: Correction
to the state estimate

xn

Fig. 4. Schematic illustration of Kalman filter’s update as a
predictor-corrector.

solution, except in some special cases (e.g. linear Gaussian
or conjugate family case). Hence in general, we can only
seek a suboptimal or locally optimal solution.

B. Kalman Filtering

Kalman filtering, in the spirit of Kalman filter [250],
[253] or Kalman-Bucy filter [249], consists of an iterative
prediction-correction process (see Fig. 4). In the predic-
tion step, the time update is taken where the one-step
ahead prediction of observation is calculated; in the cor-
rection step, the measurement update is taken where the
correction to the estimate of current state is calculated.
In a stationary situation, the matrices An,Bn,Cn,Dn in
(3a) and (3b) are constant, Kalman filter is precisely the
Wiener filter for stationary least-squares smoothing. In
other words, Kalman filter is a time-variant Wiener filter
[11], [12]. Under the LQG circumstance, Kalman filter was
originally derived with the orthogonal projection method.
In the late 1960s, Kailath [245] used the innovation ap-
proach developed by Wold and Kolmogorov to reformulate
the Kalman filter, with the tool of martingales theory.28

From innovations point of view, Kalman filter is a whiten-
ing filter.29 Kalman filter is also optimal in the sense that
it is unbiased E[x̂n] = E[xn] and is a minimum variance
estimate. A detailed history of Kalman filter and its many
variants can be found in [385], [244], [246], [247], [238], [12],
[423], [96], [195].

Kalman filter has a very nice Bayesian interpretation
[212], [497], [248], [366]. In the following, we will show
that the celebrated Kalman filter can be derived within a
Bayesian framework, or more specifically, it reduces to a
MAP solution. The derivation is somehow similar to the
ML solution given by [384]. For presentation simplicity,
we assume the dynamic and measurement noises are both
Gaussian distributed with zero mean and constant covari-
ance. The derivation of Kalman filter in the linear Gaussian
scenario is based on the following assumptions:

• E[dndT
m] = Σdδmn; E[vnvT

m] = Σvδmn.
• The state and process noise are mutually independent:

E[xndT
m] = 0 for n ≤ m; E[xnvT

m] = 0 for all n,m.

28The martingale process was first introduced by Doob and dis-
cussed in detail in [139].

29Innovations concept can be used straightforward in nonlinear fil-
tering [7]. From innovations point of view, one of criteria to justify the
optimality of the solution to a nonlinear filtering problem is to check
how white the pseudo-innovations are, the whiter the more optimal.

• The process noise and measurement noise are mutually
independent: E[dnvT

m] = 0 for all n,m.

Let x̂MAP
n denote the MAP estimate of xn that maxi-

mizes p(xn|Yn), or equivalently log p(xn|Yn). By using the
Bayes rule, we may express p(xn|Yn) by

p(xn|Yn) =
p(xn,Yn)
p(Yn)

=
p(xn,yn,Yn−1)
p(yn,Yn−1)

, (26)

where the expression of joint pdf in the numerator is further
expressed by

p(xn,yn,Yn−1) = p(yn|xn,Yn−1)p(xn,Yn−1)
= p(yn|xn,Yn−1)p(xn|Yn−1)p(Yn−1)
= p(yn|xn)p(xn|Yn−1)p(Yn−1). (27)

The third step is based on the fact that vn does not depend
on Yn−1. Substituting (27) into (26), we obtain

p(xn|Yn) =
p(yn|xn)p(xn|Yn−1)p(Yn−1)

p(yn,Yn−1)

=
p(yn|xn)p(xn|Yn−1)p(Yn−1)

p(yn|Yn−1)p(Yn−1)

=
p(yn|xn)p(xn|Yn−1)

p(yn|Yn−1)
, (28)

which shares the same form as (23). Under the Gaussian
assumption of process noise and measurement noise, the
mean and covariance of p(yn|xn) are calculated by

E[yn|xn] = E[Gnxn + vn] = Gnxn (29)

and

Cov[yn|xn] = Cov[vn|xn] = Σv, (30)

respectively. And the conditional pdf p(yn|xn) can be fur-
ther written as

p(yn|xn) = A1 exp
(
− 1

2
(yn −Gnxn)T Σ−1

v (yn −Gnxn)
)
,

(31)

where A1 = (2π)−Ny/2|Σv|−1/2.
Consider the conditional pdf p(xn|Yn−1), its mean and

covariance are calculated by

E[xn|Yn−1] = E[Fn,n−1x̂n + dn−1|Yn−1]
= Fn−1,nx̂n−1 = x̂n|n−1, (32)

and

Cov[xn|Yn−1] = Cov[xn − x̂n|n−1]
= Cov[en,n−1], (33)

respectively, where x̂n|n−1 ≡ x̂(n|Yn−1) represents the
state estimate at time n given the observations up to n−1,
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en,n−1 is the state-error vector. Denoting the covariance of
en,n−1 by Pn,n−1, by Gaussian assumption, we may obtain

p(xn|Yn−1) = A2 exp
(
− 1

2
(xn − x̂n|n−1)T

×P−1
n,n−1(xn − x̂n|n−1)

)
, (34)

where A2 = (2π)−Nx/2|Pn,n−1|−1/2. By substituting equa-
tions (31) and (34) to (26), it further follows

p(xn|Yn) ∝ A exp
(
− 1

2
(yn −Gnxn)T Σ−1

v (yn −Gnxn)

−1
2
(xn − x̂n|n−1)T P−1

n,n−1(xn − x̂n|n−1)
)
,

(35)

where A = A1A2 is a constant. Since the denominator is
a normalizing constant, (35) can be regarded as an unnor-
malized density, the fact doesn’t affect the following deriva-
tion.

Since the MAP estimate of the state is defined by the
condition

∂log p(xn|Yn)
∂xn

∣∣∣
xn=x̂MAP

= 0, (36)

substituting equation (35) into (36) yields

x̂MAP
n =

(
GT

nΣ−1
v Gn + P−1

n,n−1

)−1

×
(
P−1

n,n−1x̂n|n−1 + GT
nΣ−1

v yn

)
.

By using the lemma of inverse matrix,30 it is simplified as

x̂MAP
n = x̂n|n−1 + Kn(yn −Gnx̂n|n−1), (37)

where Kn is the Kalman gain as defined by

Kn = Fn+1,nPn,n−1GT
n (GnPn,n−1GT

n + Σv)−1. (38)

Observing

en,n−1 = xn − x̂n|n−1

= Fn,n−1xn−1 + dn − Fn,n−1x̂MAP
n−1

= Fn,n−1eMAP
n−1 + dn−1, (39)

and by virtue of Pn−1 = Cov[eMAP
n−1 ], we have

Pn,n−1 = Cov[en,n−1]
= Fn,n−1Pn−1FT

n,n−1 + Σd. (40)

Since

en = xn − x̂MAP
n

= xn − xn|n−1 −Kn(yn −Gnx̂n|n−1), (41)

30For A = B−1 + CD−1CT , it follows from the matrix inverse
lemma that A−1 = B − BC(D + CT BC)−1CT B.

noting that en,n−1 = xn − x̂n|n−1 and yn = Gnxn + vn,
we further have

en = en,n−1 −Kn(Gnen,n−1 + vn)
= (I−KnGn)en,n−1 −Knvn, (42)

and it further follows

Pn = Cov[eMAP
n ]

= (I−KnGn)Pn,n−1(I−KnGn)T + KnΣvKT
n .

Rearranging the above equation, it reduces to

Pn = Pn,n−1 − Fn,n+1KnGnPn,n−1. (43)

Thus far, the Kalman filter is completely derived from
MAP principle, the expression of xMAP

n is exactly the same
solution derived from the innovations framework (or oth-
ers).

The above procedure can be easily extended to ML case
without much effort [384]. Suppose we want to maximize
the marginal maximum likelihood of p(xn|Yn), which is
equivalent to maximizing the log-likelihood

log p(xn|Yn) = log p(xn,Yn)− log p(Yn), (44)

and the optimal estimate near the solution should satisfy

∂log p(xn|Yn)
∂xn

∣∣∣
xn=x̂ML

= 0. (45)

Substituting (35) to (45), we actually want to minimize the
the cost function of two combined Mahalanobis norms 31

E = ‖yn −Gnxn‖2Σ−1
v

+ ‖xn − x̂n‖2P−1
n,n−1

. (46)

Taking the derivative of E with respect to xn and setting
as zero, we also obtain the same solution as (37).

Remarks:
• The derivation of the Kalman-Bucy filter [249] was

rooted in the SDE theory [387], [360], it can be also
derived within the Bayesian framework [497], [248].

• The optimal filtering solution described by Wiener-
Hopf equation is achieved by spectral factorization
technique [487]. By admitting state-space formula-
tion, Kalman filter elegantly overcomes the station-
arity assumption and provides a fresh look at the
filtering problem. The signal process (i.e.“state”)
is regarded as a linear stochastic dynamical system
driven by white noise, the optimal filter thus has
a stochastic differential structure which makes the
recursive estimation possible. Spectral factorization
is replaced by the solution of an ordinary differen-
tial equation (ODE) with known initial conditions.
Wiener filter doesn’t treat the difference between the
white and colored noises, it also permits the infinite-
dimensional systems; whereas Kalman filter works for

31The Mahalanobis norm is defined as a weighted norm: ‖A‖2
B =

AT BA.
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finite-dimensional systems with white noise assump-
tion.

• Kalman filter is an unbiased minimum variance estima-
tor under LOG circumstance. When the Gaussian as-
sumption of noise is violated, Kalman filter is still opti-
mal in a mean square sense, but the estimate doesn’t
produce the condition mean (i.e. it is biased), and
neither the minimum variance. Kalman filter is not
robust because of the underlying assumption of noise
density model.

• Kalman filter provides an exact solution for linear
Gaussian prediction and filtering problem. Concerning
the smoothing problem, the off-line estimation version
of Kalman filter is given by the Rauch-Tung-Striebel
(RTS) smoother [384], which consists of a forward fil-
ter in a form of Kalman filter and a backward recursive
smoother. The RTS smoother is computationally effi-
cient than the optimal smoother [206].

• The conventional Kalman filter is a point-valued fil-
ter, it can be also extended to set-valued filtering [39],
[339], [80].

• In the literature, there exists many variants of Kalman
filter, e.g., covariance filter, information filter, square-
root Kalman filters. See [205], [247] for more details
and [403] for a unifying review.

C. Optimum Nonlinear Filtering

In practice, the use of Kalman filter is limited by the
ubiquitous nonlinearity and non-Gaussianity of physical
world. Hence since the publication of Kalman filter, numer-
ous efforts have been devoted to the generic filtering prob-
lem, mostly in the Kalman filtering framework. A number
of pioneers, including Zadeh [503], Bucy [61], [60], Won-
ham [496], Zakai [505], Kushner [282]-[285], Stratonovich
[430], [431], investigated the nonlinear filtering problem.
See also the papers seeking optimal nonlinear filters [420],
[289], [209]. In general, the nonlinear filtering problem per
sue consists in finding the conditional probability distribu-
tion (or density) of the state given the observations up to
current time [420]. In particular, the solution of nonlinear
filtering problem using the theory of conditional Markov
processes [430], [431] is very attractive from Bayesian per-
spective and has a number of advantages over the other
methods. The recursive transformations of the posterior
measures are characteristics of this theory. Strictly speak-
ing, the number of variables replacing the density function
is infinite, but not all of them are of equal importance.
Thus it is advisable to select the important ones and reject
the remainder.

The solutions of nonlinear filtering problem have two cat-
egories: global method and local method. In the global ap-
proach, one attempts to solve a PDE instead of an ODE
in linear case, e.g. Zakai equation, Kushner-Stratonovich
equation, which are mostly analytically intractable. Hence
the numerical approximation techniques are needed to solve
the equation. In special scenarios (e.g. exponential family)
with some assumptions, the nonlinear filtering can admit
the tractable solutions. In the local approach, finite sum

approximation (e.g. Gaussian sum filter) or linearization
techniques (i.e. EKF) are usually used. In the EKF, by
defining

F̂n+1,n =
df(x)
dx

∣∣∣
x=x̂n

, Ĝn =
dg(x)
dx

∣∣∣
x=x̂n|n−1

,

the equations (2a)(2b) can be linearized into (3a)(3b), and
the conventional Kalman filtering technique is further em-
ployed. The details of EKF can be found in many books,
e.g. [238], [12], [96], [80], [195], [205], [206]. Because EKF
always approximates the posterior p(xn|y0:n) as a Gaus-
sian, it works well for some types of nonlinear problems,
but it may provide a poor performance in some cases when
the true posterior is non-Gaussian (e.g. heavily skewed or
multimodal). Gelb [174] provided an early overview of the
uses of EKF. It is noted that the estimate given by EKF is
usually biased since in general E[f(x)] �= f(E[x]).

In summary, a number of methods have been developed
for nonlinear filtering problems:

• Linearization methods: first-order Taylor series expan-
sion (i.e. EKF), and higher-order filter [20], [437].

• Approximation by finite-dimensional nonlinear filters:
Beneš filter [33], [34], Daum filter [111]-[113], and pro-
jection filter [202], [55].

• Classic PDE methods, e.g. [282], [284], [285], [505],
[496], [497], [235].

• Spectral methods [312].
• Neural filter methods, e.g. [209].
• Numerical approximation methods, as to be discussed

in Section V.

C.1 Finite-dimensional Filters

The on-line solution of the FPK equation can be
avoided if the unnormalized filtered density admits a finite-
dimensional sufficient statistics. Beneš [33], [34] first ex-
plored the exact finite-dimensional filter32 in the nonlinear
filtering scenario. Daum [111] extended the framework to a
more general case and included Kalman filter and Beneš fil-
ter as special cases [113]. Some new development of Daum
filter with virtual measurement was summarized in [113].
The recently proposed projection filters [202], [53]-[57], also
belong to the finite-dimensional filter family.

In [111], starting with SDE filtering theory, Daum intro-
duced a gradient function

r(t,x) =
∂

∂x
lnψ(t,x)

where ψ(t,x) is the solution of the FPK equation of (11a)
with a form

∂ψ(t,x)
∂t

= −∂ψ(t,x)
∂x

f − ψtr
(∂f
∂x

)
+

1
2
tr
(
A
∂2ψ

∂xxT

)
,

with an appropriate initial condition (see [111]), and A =
σ(t,xt)σ(t,xt)T . When the measurement equation (11b) is

32Roughly speaking, a finite-dimensional filter is the one that can
be implemented by integrating a finite number of ODE, or the one
has the sufficient statistics with finite variables.
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linear with Gaussian noise (recalling the discrete-time ver-
sion (3b)), Daum filter admits a finite-dimensional solution

p(xt|Yt) = ψs(xt) exp
[1
2
(xt −mt)T P−1

t (xt −mt)
]
,

where s is real number in the interval 0 < s < 1 defined in
the initial condition, mt and P t are two sufficient statis-
tics that can be computed recursively.33 The calculation of
ψ(xt) can be done off line which does not rely on the mea-
surement, whereas mt and P t will be computed on line
using numerical methods. See [111]-[113] for more details.

The problem of the existence of a finite-dimensional fil-
ter is concerned with the necessary and sufficient condi-
tions. In [167], a necessary condition is that the obser-
vations and the filtering densities belong to the exponen-
tial class. In particular, we have the Generalized Fisher-
Darmois-Koopman-Pitman Theorem:

Theorem 1: e.g. [388], [112] For smooth nowhere vanish-
ing densities, a fixed finite-dimensional filter exists if and
only if the unnormalized conditional density is from an ex-
ponential family

π(xn|y0:n) = π(xn) exp[λT (xn)Ψ(y0:n)], (47)

where Ψ(·) is a sufficient statistics, λ(·) is a function in X
(which turns out to be the solution of specific PDE’s).

The nonlinear finite-dimensional filtering is usually per-
formed with the conjugate approach, where the prior and
posterior are assumed to come from some parametric prob-
ability function family in order to admit the exact and ana-
lytically tractable solution. We will come back to this topic
in Section VII. On the other hand, for general nonlinear
filtering problem, no exact solution can be obtained, vari-
ous numerical approximation are hence need. In the next
section, we briefly review some popular numerical approxi-
mation approaches in the literature and focus our attention
on the sequential Monte Carlo technique.

V. Numerical Approximation Methods

A. Gaussian/Laplace Approximation

Gaussian approximation is the simplest method to ap-
proximate the numerical integration problem because of its
analytic tractability. By assuming the posterior as Gaus-
sian, the nonlinear filtering can be taken with the EKF
method.

Laplace approximation method is to approximate the in-
tegral of a function

∫
f(x)dx by fitting a Gaussian at the

maximum x̂ of f(x), and further compute the volume un-
der the Gaussian [319]:∫

f(x)dx ≈ (2π)Nx/2f(x̂)
∣∣∣−∇∇ log f(x)

∣∣∣−1/2

(48)

The covariance of the fitted Gaussian is determined by the
Hessian matrix of log f(x) at x̂. It is also used to approxi-
mate the posterior distribution with a Gaussian centered at

33They degenerate into the mean and error covariance when (11a)
is linear Gaussian, and the filter reduces to the Kalman-Bucy filter.

the MAP estimate, which is partially justified by the fact
that under certain regularity conditions the posterior dis-
tribution asymptotically approaches Gaussian distribution
as the number of samples increases to infinity. Laplace ap-
proximation is useful in the MAP or ML framework, this
method usually works for the unimodal distribution but
produces a poor approximation result for the multimodal
distribution, especially in a high-dimensional space. Some
new development of Laplace approximation can be found
in MacKay’s paper [319].

B. Iterative Quadrature

Iterative quadrature is an important numerical approxi-
mation method, which was widely used in computer graph-
ics and physics in the early days. One of the popular
quadrature methods is Gaussian quadrature [117], [377]. In
particular, a finite integral is approximated by a weighted
sum of samples of the integrand based on some quadrature
formula ∫ b

a

f(x)p(x)dx ≈
m∑

k=1

ckf(xk), (49)

where p(x) is treated as a weighting function, and xk is
the quadrature point. For example, it can be the k-th zero
the m-th order orthogonal Hermite polynomial Hm(x),34

for which the weights are given by

ck =
2m−1m!

√
m

m2(Hm−1(xk))2
.

The approximation is good if f(x) is a polynomial of de-
gree not bigger than 2m−1. The values xk are determined
by the weighting function p(x) in the interval [a, b].35 This
method can produce a good approximation if the nonlinear
function is smooth. Quadrature methods, alone or com-
bined with other methods, were used in nonlinear filtering
(e.g. [475], [287]). The quadrature formulae will be used
after a centering about the current estimate of the condi-
tional mean and rescaling according to the current estimate
of the covariance.

C. Mulitgrid Method and Point-Mass Approximation

If the state is discrete and finite (or it can be discretized
and approximated as finite), grid-based methods can pro-
vide a good solution and optimal way to update the filtered
density p(zn|y0:n) (To discriminate from the continuous-
valued state x, we denote the discrete-valued state as z
from now on). Suppose the discrete state z ∈ N consists
of a finite number of distinct discrete states {1, 2, · · · , Nz}.
For the state space zn−1, let wi

n−1|n−1 denote the condi-
tional probability of each zi

n−1 given measurement up to

34Other orthogonal approximation techniques can be also consid-
ered.

35The Fundamental Theorem of Gaussian Quadrature states that:
the abscissas of the m-point Gaussian quadrature formula are pre-
cisely the roots of the orthogonal polynomial for the same interval
and weighting function.
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n − 1, i.e. p(zn−1 = zi|y0:n−1) = wi
n−1|n−1. Then the

posterior pdf at n− 1 can be represented as

p(zn−1|y0:n−1) =
Nz∑
i=1

wi
n−1|n−1δ(zn−1 − zi

n−1), (50)

and the prediction and filtering equations are further de-
rived as

p(zn|y0:n−1) =
Nz∑
i=1

wi
n|n−1δ(zn − zi

n), (51)

p(zn|y0:n) =
Nz∑
i=1

wi
n|nδ(zn − zi

n), (52)

where

wi
n|n−1 =

Nz∑
j=1

wj
n−1|n−1p(z

i
n|zj

n), (53)

wi
n|n =

wi
n|n−1p(yn|zi

n)∑Nz

j=1 w
j
n|n−1p(yn|zj

n)
. (54)

If the state space is continuous, the approximate-grid based
method can be similarly derived (e.g. [19]). Namely, we
can always discretize the state space into Nz discrete cell
states, then a grid-based method can be further used to
approximate the posterior density. The grid must be suf-
ficiently dense to obtain a good approximation, especially
when the dimensionality ofNx is high, however the increase
of Nz will increase the computational burden dramatically.
If the state space is not finite, then the accuracy of grid-
based methods is not guaranteed. As we will discuss in
Section VII, HMM filter is quite fitted to the grid-based
methods. The disadvantage of grid-based method is that
it requires the state space cannot be partitioned unevenly
to give a great resolution to the state with high density
[19]. Some adaptive grid-based methods were proposed to
overcome this drawback [65]. Given the predefined grid,
different methods were used to approximate the functions
and carry out the dynamic Bayesian estimation and fore-
casting [62], [258], [271], [424], [373], [372].

In studying the nonlinear filtering, Bucy [62] and Bucy
and Senne [63] introduced the point-mass method, which
is a global function approximation method. Such method
uses a simple rectangular grid, spline basis, step function,
the quadrature methods are used to determine the grid
points [64], [475], [271], the number of grid points is pre-
scribed to provide an adequate approximation. The density
is assumed to be represented by a set of point masses which
carry the information about the data; mesh grid and direc-
tions are given in terms of eignevalues and eigenvectors of
conditional error covariance; the floating grid is centered at
the current mean estimate and rotated from the state co-
ordinate frame into the principal axes of error ellipsoid (co-
variance); the grid along the axes is chosen to extend over
a sufficient distance to cover the true state. For the multi-
modal density, it is suggested to define a grid for each mode

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Illustration of non-Gaussian distribution approximation: (a)
true distribution; (b) Gaussian approximation; (c) Gaussian sum ap-
proximation; (d) histogram approximation; (e) Riemannian sum (step
function) approximation; (f) Monte Carlo sampling approximation.

rather than for the entire density. Even so, the computa-
tion of multigrid-based point-mass approximation method
is nontrivial and the complexity is high (see [271]).

Another sophisticated approximation method, based on
the piecewise constant approximation of density, was pro-
posed in [271], [258]. The method is similar but not iden-
tical to the point-mass approximation. It defines a sim-
ple grid based on tiling the state space with a number of
identical parallelepipeds, over each of them the density ap-
proximation is constant, and the integration is replaced by
a discrete linear convolution problem. The method also al-
lows error propagation analysis along the calculation [271].

D. Moment Approximation

Moment approximation is targeted at approximating the
moments of density, including mean, covariance, and higher
order moments. The approximation of the first two mo-
ments is widely used in filtering [367]. Generally, we can
empirically use the sample moment to approximate the true
moment, namely

mk = E[xk] =
∫

X

xkp(x)dx =
1
N

N∑
i=1

|x(i)|k

where mk denotes the m-th order moment and x(i) are
the samples from true distribution. Among many, Gram-
Charlier and Edgeworth expansion are two popular higher-
order moment approximation approaches. Due to space
constraint, we cannot run into the details here, and re-
fer the reader to [ ] for more information. The applica-
tions of higher-order moment approximation to nonlinear
filters are found in [427]. However, the computation cost of
these approaches are rather prohibitive, especially in high-
dimensional space.
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E. Gaussian Sum Approximation

Different from the linearized EKF or second-order ap-
proximation filter that only concentrate on the vicinity
of the mean estimate, Gaussian sum approximation uses
a weighted sum of Gaussian densities to approximate the
posterior density(the so-called Gaussian mixture model):

p(x) =
m∑

j=1

cjN (x̂j ,Σj) (55)

where the weighting coefficients cj > 0 and
∑m

j=1 cj = 1.
The approximation is motivated by the observation that
any non-Gaussian density can be approximated to some
accurate degree by a sufficiently large number of Gaussian
mixture densities, which admits tractable solution by cal-
culating individual first and second order moments. The
Gaussian sum filter [421], [8], essentially uses this idea and
runs a bank of EKFs in parallel to obtain the suboptimal
estimate. The following theorem reads the underlying prin-
ciple:

Theorem 2: [12] Suppose in equations (2a)(2b) the
noise vectors dn and vn are white Gaussian noises with
zero mean and covariances Σd and Σv, respectively.
If p(xn|y0:n) = N (xn;μn|n−1,Σn|n−1), then for fixed
g(·), μn|n−1 and Σv, the filtered density p(xn|y0:n) =
cnp(xn|y0:n−1)p(yn|xn) (where cn is a normalizing
constant) converges uniformly to N (xn;μn|n,Σn|n) as
Σn|n−1 → 0. If p(xn|y0:n) = N (xn;μn|n,Σn|n),
then for fixed f(·), μn|n and Σd, the predicted density
p(xn+1|y0:n) =

∫
p(xn+1|xn)p(xn|y0:n)dxn converges uni-

formly to N (xn+1;μn+1|n,Σn+1|n) as Σn|n → 0.
Some new development of Gaussian sum filter (as well

as Gaussian-quadrature filter) is referred to [235], [234],
where the recursive Bayesian estimation is performed, and
no Jacobian matrix evaluation is needed (similar to the
unscented transformation technique discussed below).

F. Deterministic Sampling Approximation

The deterministic sampling approximation we discussed
below is a kind of method called unscented transformation
(UT). 36 It can be viewed as a special numerical method
to approximate the sufficient statistics of mean and co-
variance. The intuition of UT is somewhat similar to the
point-mass approximation discussed above: it uses the so-
called sigma-points with additional skewed parameters to
cover and propagate the information of the data. Based on
UT, the so-called unscented Kalman filter (UKF) was de-
rived. The most mentionable advantage of UKF over EKF
is its derivative-nonlinear estimation (no need of calcula-
tion of Jacobians and Hessians), though its computational
complexity is little higher than the EKF’s. There are also
other derivative-free estimation techniques available. In
[355], a polynomial approximation using interpolation for-
mula was developed and subsequently applied to nonlinear

36The name is somehow ad hoc and the word “unscented” does not
imply its original meaning (private communication with S. Julier).

Kalman filtering, with a name of nprKF. The nprKF filter-
ing technique was also used to train the neural networks
[166].

The idea of derivative-free state estimation is following:
In order to estimate the state information (mean, covari-
ance, and higher-order moments) after a nonlinear trans-
formation, it is favorable to approximate the probability
distribution directly instead of approximating the nonlin-
ear function (by linear localization) and apply the Kalman
filter in the transformed domain. The derivative-free UKF
can overcome the drawback by using a deterministic sam-
pling approach to calculate the mean and covariance. In
particular, the (2Nx + 1) sigma-points are generated and
propagated through the true nonlinearity, and the weighted
mean and covariance are further calculated [242], [474].
Compared with the EKF’s first-order accuracy, the esti-
mation accuracy of UKF is improved to the third-order for
Gaussian data and at least second-order for non-Gaussian
data [242], [474].

However, UT and UKF often encounter the ill-
conditioned 37 problem of covariance matrix in practice
(though it is theoretically positive semi-definite), although
the regularization trick and square-root UKF [460] can al-
leviate this. For enhancing the numerical robustness, we
propose another derivative-free KF based on singular-value
decomposition (SVD).

The SVD-based KF is close in spirit to UKF, it only
differs in that the UT is replaced by SVD and the sigma-
point covariance becomes an eigen-covariance matrix, in
which the pairwise (±) eigenvectors are stored into the col-
umn vector of the new covariance matrix. The number
of eigen-points to store is the same as the sigma points in
UT. The idea behind SVD is simple: We assume the covari-
ance matrix be characterized by a set of eigenvectors which
correspond to a set of eigenvalues.38 For the symmetric co-
variance matrix C, ED and SVD are equivalent, and the
eigenvalues are identical to the singular values. We prefer
to calculate SVD instead of eigen-decomposition because
the former is more numerically robust. The geometrical
interpretation of SVD compared with UT is illustrated in
Fig. 6. By SVD of square-root of the covariance matrix C

C1/2 = U
[

S 0
0 0

]
VT (56)

where C1/2 = chol(C) and chol represents Cholesky fac-
torization; S is a diagonal matrix S = diag{s1, · · · , sk},
when C1/2 is symmetric, U = V. Thus the eigenvalues
are λk = s2k, and the eigenvectors of C is represented by
the column vectors of matrix UUT . A Monte Carlo sam-
pling of a two-dimensional Gaussian distribution passing
a Gaussian nonlinearity is shown in Fig. 6. As shown,
the sigma points and eigen-points can both approximately
characterize the structure of the transformed covariance

37Namely, the conditional number of the covariance matrix is very
large.

38By assuming that, we actually assume that the sufficient statistics
of underlying data is second-order, which is quite not true.
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Fig. 6. SVD against Choleksy factorization in UT. Left: 1,000 data points are generated from a two-dimensional Gaussian distribution.
The small red circles linked by two thin lines are sigma points using UT (parameters α = 1, β = 2, κ = 0; see the paper [ ] for notations); the
two black arrows are the eigenvector multiplied by ρ = 1.4; the ellipses from inside to outside correspond to the scaling factors σ = 1, 1.4, 2, 3;
Middle: After the samples pass a Gaussian nonlinearity, the sigma points and eigen-points are calculated again for the transformed covariance;
Right: SVD-based derivative-free estimation block diagram.

matrix. For state space equations (2a)(2b) with additive
noise, the SVD-based derivative-free KF algorithm for the
state estimation is summarized in Table X in Appendix E.

G. Monte Carlo Sampling Approximation

Monte Carlo methods use statistical sampling and esti-
mation techniques to evaluate the solutions to mathemati-
cal problems. Monte Carlo methods have three categories:
(i) Monte Carlo sampling, which is devoted to developing
efficient (variance-reduction oriented) sampling technique
for estimation; (ii) Monte Carlo calculation, which is aimed
to design various random or pseudo-random number gen-
erators; and (iii) Monte Carlo optimization, which is de-
voted to applying the Monte Carlo idea to optimize some
(nonconvex or non-differentiable) functions, to name a few,
simulated annealing [257], dynamic weighting [494], [309],
[298], and genetic algorithm. In recent decades, modern
Monte Carlo techniques have attracted more and more at-
tention and have been developed in different areas, as we
will briefly overview in this subsection. Only Monte Carlo
sampling methods are discussed. A detailed background of
Monte Carlo methods can refer to the books [168], [389],
[306], [386] and survey papers [197], [318].

The underlying mathematical concept of Monte Carlo
approximation is simple. Consider a statistical problem
estimating a Lebesque-Stieltjes integral:∫

X

f(x)dP (x),

where f(x) is an integrable function in a measurable space.
As a brute force technique, Monte Carlo sampling uses a
number of (independent) random variables in a probabil-
ity space (Ω,F , P ) to approximate the true integral. Pro-
vided one draws a sequence of Np i.i.d. random samples
{x(1), · · · ,x(Np)} from probability distribution P (x), then
the Monte Carlo estimate of f(x) is given by

f̂Np
=

1
Np

Np∑
i=1

f(x(i)), (57)

for which E[f̂Np
] = E[f ] and Var[f̂Np

] = 1
Np

Var[f ] = σ2

Np

(see Appendix A for a general proof). By the Kolmogorov

Strong Law of Large Numbers (under some mild regular-
ity conditions), f̂Np

(x) converges to E[f(x)] almost surely
(a.s.) and its convergence rate is assessed by the Central
Limit Theorem√

Np(f̂Np
− E[f ]) ∼ N (0, σ2),

where σ2 is the variance of f(x). Namely, the error rate is
of order O(N−1/2

p ), which is slower than the order O(N−1
p )

for deterministic quadrature in one-dimensional case. One
crucial property of Monte Carlo approximation is the es-
timation accuracy is independent of the dimensionality of
the state space, as opposed to most deterministic numerical
methods.39 The variance of estimate is inversely propor-
tional to the number of samples.

There are two fundamental problems arising in Monte
Carlo sampling methods: (i) How to draw random sam-
ples {x(i)} from a probability distribution P (x)?; and (ii)
How to estimate the expectation of a function w.r.t. the
distribution or density, i.e. E[f(x)] =

∫
f(x)dP (x)? The

first problem is a design problem, and the second one is
an inference problem invoking integration. Besides, several
central issues are concerned in the Monte Carlo sampling:

• Consistency: An estimator is consistent if the esti-
mator converges to the true value almost surely as the
number of observations approaches infinity.

• Unbiasedness: An estimator is unbiased if its ex-
pected value is equal to the true value.

• Efficiency: An estimator is efficient if it produces
the smallest error covariance matrix among all unbi-
ased estimators, it is also regarded optimally using the
information in the measurements. A well-known effi-
ciency criterion is the Cramér-Rao bound.

• Robustness: An estimator is robust if it is insensitive
to the gross measurement errors and the uncertainties
of the model.

• Minimal variance: Variance reduction is the central
issue of various Monte Carlo approximation methods,
most improvement techniques are variance-reduction
oriented.

39Note that, however, it doesn’t mean Monte Carlo methods can
beat the curse of dimensionality, an issue that will be discussed in
Section VI-P.
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In the rest of this subsection, we will provide a brief in-
troduction of many popular Monte Carlo method relevant
to our paper. No attempt is made here to present a com-
plete and rigorous theory. For more theoretical details or
applications, reader is referred to the books [199], [389],
[168], [306].

G.1 Importance Sampling

Importance sampling (IS) was first introduced by Mar-
shall [324] and received a well-founded treatment and dis-
cussion in the seminal book by Hammersley and Hanscomb
[199]. The objective of importance sampling is aimed to
sample the distribution in the region of “importance” in
order to achieve computational efficiency. This is impor-
tant especially for the high-dimensional space where the
data are usually sparse, and the region of interest where
the target lies in is relatively small in the whole data space.
The idea of importance sampling is to choose a proposal
distribution q(x) in place of the true probability distribu-
tion p(x), which is hard-to-sample. The support of q(x) is
assumed to cover that of p(x). Rewriting the integration
problem as

∫
f(x)p(x)dx =

∫
f(x)

p(x)
q(x)

q(x)dx, (58)

Monte Carlo importance sampling is to use a number of
(say Np) independent samples drawn from q(x) to obtain
a weighted sum to approximate (58):

f̂ =
1
Np

Np∑
i=1

W (x(i))f(x(i)), (59)

where W (x(i)) = p(x(i))/q(x(i)) are called the importance
weights (or importance ratios). If the normalizing factor
of p(x) is not known, the importance weights can be only
evaluated up to a normalizing constant, hence W (x(i)) ∝
p(x(i))/q(x(i)). To ensure that

∑Np

i=1W (x(i)) = 1, we nor-
malize the importance weights to obtain

f̂ =
1

Np

∑Np

i=1W (x(i))f(x(i))
1

Np

∑Np

j=1W (x(j))
≡

Np∑
i=1

W̃ (x(i))f(x(i)), (60)

where W̃ (x(i)) = W (x(i))∑Np
j=1 W (x(j))

are called the normalized

importance weights. The variance of importance sampler

estimate (59) is given by [59]

Varq[f̂ ] =
1
Np

Varq[f(x)W (x)]

=
1
Np

Varq[f(x)p(x)/q(x)]

=
1
Np

∫ [f(x)p(x)
q(x)

− Ep[f(x)]
]2
q(x)dx

=
1
Np

∫ [( (f(x)p(x))2

q(x)

)
− 2p(x)f(x)Ep[f(x)]

]
dx

+
(Ep[f(x)])2

Np

=
1
Np

∫ [( (f(x)p(x))2

q(x)

)]
dx− (Ep[f(x)])2

Np
. (61)

The variance can be reduced when an appropriate q(x) is
chosen to (i) match the shape of p(x) so as to approximate
the true variance; or (ii) match the shape of |f(x)|p(x) so as
to further reduce the true variance.40 Importance sampling
estimate given by (60) is biased (thus a.k.a. biased sam-
pling)41 but consistent, namely the bias vanishes rapidly
at a rate O(Np). Provided q is appropriately chosen, as
Np →∞, from the Weak Law of Large Numbers, we know

f̂ → Eq[W (x)f(x)]
Eq[W (x)]

.

It was also shown [180] that if E[W̃ (x)] < ∞ and
E[W̃ (x)f2(x)] < ∞, (60) converges to Ep[f ] a.s. and the
Lindeberg-Lévy Central Limit Theorem still holds:√

Np(f̂ − Ep[f ]) ∼ N (0,Σf ),

where

Σf = Varq

[
W̃ (x)(f(x)− Ep[f(x)])

]
. (62)

A measure of efficiency of importance sampler is given by
the normalized version of (62): Σf

Varp[f ] , which is related to
the effective sample size, as we will discuss later.

Remarks:
• Importance sampling is useful in two ways [86]: (i) it

provides an elegant way to reduce the variance of the
estimator (possibly even less than the true variance);
and (ii) it can be used when encountering the diffi-
culty to sample from the true probability distribution
directly.

• As shown in many empirical experiments [318], impor-
tance sampler (proposal distribution) should have a
heavy tail so as to be insensitive to the outliers. The
super-Gaussian distributions usually have long tails,
with kurtosis bigger than 3. Alternatively, we can
roughly verify the “robust” behavior from the acti-
vation function defined as ϕ(x) = −d log q(x)

dx : if ϕ(x)
is bounded, q(x) has a long tail, otherwise not.

40In an ideal case, q(x) ∝ |f(x)|p(x), the variance becomes zero.
41It is unbiased only when all of importance weights W̃ (i) = 1

(namely p(·) = q(·), and it reduces to the estimate f̂Np in (57)).



MANUSCRIPT 19

• Although theoretically the bias of importance sampler
vanishes at a rate O(Np), the accuracy of estimate is
not guaranteed even with a large Np. If q(·) is not
close to p(·), it can be imagined that the weights are
very uneven, thus many samples are almost useless
because of their negligible contributions. In a high-
dimensional space, the importance sampling estimate
is likely dominated by a few samples with large impor-
tance weights.

• Importance sampler can be mixed with Gibbs sampling
or Metropolis-Hastings algorithm to produce more ef-
ficient techniques [40], [315].

• Some advanced (off-line) importance sampling schemes,
such as adaptive importance sampling [358], annealed
importance sampling [348], [350], smoothed impor-
tance sampling [49], [322], dynamic importance sam-
pling [494], (regularized) greedy importance sampling,
Bayesian importance sampling [382] etc. are also avail-
able.

G.2 Rejection Sampling

Rejection sampling (e.g. [199]) is useful when we know
(pointwise) the upper bound of underlying distribution or
density. The basic assumption of rejection sampling is sim-
ilar to that of importance sampling. Assume there exists a
known constant C < ∞ such that p(x) < Cq(x) for every
x ∈ X, the sampling procedure reads as follows:

• Generate a uniform random variable u ∼ U(0, 1);
• Draw a sample x ∼ q(x);
• If u < p(x)

Cq(x) , return x, otherwise go to step 1.
The samples from rejection sampling are exact, and the

acceptance probability for a random variable is inversely
proportional to the constant C. In practice, the choice
of constant C is critical (which relies on the knowledge of
p(x)): if C is too small, the samples are not reliable be-
cause of low rejection rate; if C is too large, the algorithm
will be inefficient since the acceptance rate will be low. In
Bayesian perspective, rejection sampling naturally incor-
porates the normalizing denominator into the constant C.
If the prior p(x) is used as proposal distribution q(x), and
the likelihood p(y|x) ≤ C where C is assumed to be known,
the bound on the posterior is given by

p(x|y) =
p(y|x)p(x)

p(y)
≤ Cq(x)

p(y)
≡ C ′q(x),

and the acceptance rate for drawing a sample x ∈ X is

p(x|y)
C ′q(x)

=
p(y|x)
C

, (63)

which can be computed even the normalizing constant p(y)
is not known.

Remarks:
• The draws obtained from rejection sampling are exact

[414].
• The prerequisite of rejection sampling is the prior

knowledge of constant C, which is sometimes unavail-
able.

• It usually takes a long time to get the samples when
the ratio p(x)/Cq(x) is close to zero [441].

G.3 Sequential Importance Sampling

A good proposal distribution is essential to the efficiency
of importance sampling, hence how to choose an appropri-
ate proposal distribution q(x) is the key to apply a suc-
cessful importance sampling [200], [506], [266]. However,
it is usually difficult to find a good proposal distribution
especially in a high-dimensional space. A natural way to
alleviate this problem is to construct the proposal distri-
bution sequentially, which is the basic idea of sequential
importance sampling (SIS) [198], [393].

In particular, if the proposal distribution is chosen in a
factorized form [144]

q(x0:n|y0:n) = q(x0)
n∏

t=1

q(xt|x0:t−1,y0:t), (64)

then the importance sampling can be performed recur-
sively. We will give the derivation detail when discussing
the SIS particle filter in Section VI. At this moment, we
consider a simplified (unconditional pdf) case for the ease of
understanding. According to the “telescope” law of prob-
ability, we have the following:

p(x0:n) = p(x0)p(x1|x0) · · · p(xn|x0, · · · ,xn−1),
q(x0:n) = q0(x0)q1(x1|x0) · · · qn(xn|x0, · · · ,xn−1).

Hence the importance weights W (x0:n) can be written as

W (x0:n) =
p(x0)p(x1|x0) · · · p(xn|x0, · · · ,xn−1)
q0(x0)q1(x1|x0) · · · qn(xn|x0, · · · ,xn−1)

,

which be recursively calculated as

Wn(x0:n) = Wn−1(x0:n−1)
p(xn|x0:n−1)
qn(xn|x0:n−1)

.

Remarks:
• The advantage of SIS is that it doesn’t rely on the un-

derlying Markov chain. Instead, many i.i.d. replicates
are run to create an importance sampler, which con-
sequently improves the efficiency. The disadvantage
of SIS is that the importance weights may have large
variances, resulting in inaccurate estimate [315].

• SIS method can be also used in a non-Bayesian com-
putation, such as evaluation of the likelihood function
in the missing-data problem [266].

• It was shown in [266] that the unconditional variance
of the importance weights increases over time, which
is the so-called weight degeneracy problem: Namely,
after a few iterations of algorithm, only few or one
of W (x(i)) will be nonzero. This is disadvantageous
since a lot of computing effort is wasted to update
those trivial weight coefficients. In order to cope with
this situation, resampling step is suggested to be used
after weight normalization.
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Fig. 7. Illustration of importance sampling (left) and acceptance-rejection sampling (right). p(x) is the true pdf (solid line), q(x) is the

proposal distribution (dashed line). For rejection sampling, some random samples x(i) are generated below Cq(x), which are rejected if they
lie in the region between p(x) and Cq(x); if they also lie below p(x), they are accepted.

G.4 Sampling-Importance Resampling

The sampling-importance resampling (SIR) is motivated
from the Bootstrap and jackknife techniques. Bootstrap
technique is referred to a collection of computationally in-
tensive methods that are based on resampling from the ob-
served data [157], [408], [321]. The seminal idea originated
from [155] and was detailed in [156], [157]. The intuition
of bootstrapping is to evaluate the properties of an estima-
tor through the empirical cumulative distribution function
(cdf) of the samples instead of the true cdf.

In the statistics literature, Rubin [395], [396] first ap-
plied SIR technique to Monte Carlo inference, in which
the resampling is inserted between two importance sam-
pling steps. The resampling step42 is aimed to eliminate
the samples with small importance weights and duplicate
the samples with big weights. The generic principle of SIR
proceeds as follows:

• Draw Np random samples {x(i)}Np

i=1 from proposal dis-
tribution q(x);

• Calculate importance weights W (i) ∝ p(x)/q(x) for
each sample x(i);

• Normalize the importance weights to obtain W̃ (i);
• Resample with replacement N times from the discrete

set {x(i)}Np

i=1, where the probability of resampling from
each x(i) is proportional to W̃ (i).

Remarks (on features):
• Resampling usually (but not necessarily) occurs be-

tween two importance sampling steps. In resampling
step, the particles and associated importance weights
{x(i), W̃ (i)} are replaced by the new samples with
equal importance weights (i.e. W̃ (i) = 1/Np). Re-
sampling can be taken at every step or only taken if
regarded necessary.

• As justified in [303], resampling step plays an criti-
cal role in importance sampling since (i) if importance
weights are uneven distributed, propagating the “triv-
ial” weights through the dynamic system is a waste
of computing power; (ii) when the importance weights
are skewed, resampling can provide chances for select-
ing “important” samples and rejuvenate the sampler

42It is also called selection step.

for the future use, though resampling doesn’t neces-
sarily improve the current state estimate because it
also introduces extra Monte Carlo variation.

• Resampling schedule can be deterministic or dynamic
[304], [308]. In deterministic framework, resampling is
taken at every k time step (usually k = 1). In a dy-
namic schedule, a sequence of thresholds (that can be
constant or time-varying) are set up and the variance
of the importance weights are monitored; resampling
is taken only when the variance is over the threshold.

The validity of inserting a resampling step in SIS algo-
rithm has been justified by [395], [303], since resampling
step also brings extra variation, some special schemes are
needed. There are many types of resampling methods avail-
able in the literature:

1. Multinomial resampling [395], [414], [193]: the
procedure reads as follows (see also [19])

• Produce a uniform distribution u ∼ U(0, 1), construct
a cdf for importance weights (see Fig. 1), calculate
si =

∑i
j=1 W̃

(j);
• Find si s.t. si−1 ≤ u < si, the particle with index i
is chosen;

• Given {x(i), W̃ (i)}, for j = 1, · · · , Np, generate new
samples x(j) by duplicating x(i) according to the asso-
ciated W̃ (i);

• Reset W (i) = 1/Np.

Multinomial resampling uniformly generates Np new
independent particles from the old particle set. Each
particle is replicated Ni times (Ni can be zero),
namely each x(i) produces Ni children. Note that
here

∑Np

i=1Ni = Np, E[Ni] = NpW̃
(i), Var[Ni] =

NpW̃
(i)(1− W̃ (i)).

2. Residual resampling [211], [304]: Liu and Chen
[304] suggested a partially deterministic resampling
method. The two-step selection procedure is as fol-
lows [304]:

• For each i = 1, · · · , Np, retain ki = �NpW̃
(i)� copies

of x(i)
n ;

• Let Nr = Np − k1 − · · · − kNp
, obtain Nr i.i.d.

draws from {x(i)
n } with probabilities proportional to

NpW̃
(i) − ki (i = 1, · · · , Np);
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• Reset W (i) = 1/Np.

Residual resampling procedure is computationally
cheaper than the conventional SIR and achieves a
lower sampler variance, and it doesn’t introduce ad-
ditional bias. Every particle in residual resampling is
replicated.

3. Systematic resampling (or Minimum variance
sampling) [259], [69], [70]: the procedure proceeds as
follows:

• u ∼ U(0, 1)/Np; j = 1;� = 0;i = 0;
• do while u < 1
• if � > u then
• u = u+ 1/Np; output x(i)

• else
• pick k in {j, · · · , Np}
• i = x(k), � = �+W (i)

• switch (x(k),W (k)) with (x(j),W (j))
• j = j + 1
• end if
• end do

The systematic resampling treats the weights as con-
tinuous random variables in the interval (0, 1), which
are randomly ordered. The number of grid points
{u+k/Np} in each interval is counted [70]. Every par-
ticle is replicated and the new particle set is chosen to
minimize Var[Ni] = E[(Ni −E[Ni])2]. The complexity
of systematic resampling is O(Np).

4. Local Monte Carlo resampling [304]: The sam-
ples are redrawn using rejection method or Metropolis-
Hastings method. We will briefly describe this scheme
later in Section VI.

Remarks (on weakness):
• Different from the rejection sampling that achieves ex-

act draws from the posterior, SIR only achieves ap-
proximate draws from the posterior as Np →∞. Some
variations of combining rejection sampling and impor-
tance sampling are discussed in [307].

• Although resampling can alleviate the weight degener-
acy problem, it unfortunately introduces other prob-
lems [144]: after one resampling step, the simulated
trajectories are not statistically independent any more,
thus the convergence result due to the original central
limit theorem is invalid; resampling causes the samples
that have high importance weights to be statistically
selected many times, thus the algorithm suffers from
the loss of diversity.

• Resampling step also limits the opportunity to paral-
lelize since all of the particles need to be combined for
selection.

G.5 Stratified Sampling

The idea of stratified sampling is to distribute the sam-
ples evenly (or unevenly according to their respective vari-
ance) to the subregions dividing the whole space. Let f̂
(statistics of interest) denote the Monte Carlo sample av-
erage of a generic function f(x) ∈ R

Nx , which is attained

from importance sampling. Suppose the state space is de-
composed into two equal, disjoint strata (subvolumes), de-
noted as a and b, for stratified sampling, the total number
of Np samples are drawn from two strata separately and we
have the stratified mean f̂ ′ = 1

2 (f̂a + f̂b), and the stratified
variance

Var[f̂ ′] =
Vara[f̂ ] + Varb[f̂ ]

4

=
Vara[f ] + Varb[f ]

2Np
, (65)

where the second equality uses the facts that Vara[f̂ ] =
2

Np
Vara[f ] and Varb[f̂ ] = 2

Np
Varb[f ]. In addition, it can be

proved that43

NpVar[f̂ ] = Var[f ]

=
Vara[f ] + Varb[f ]

2
+

(Ea[f ]− Eb[f ])2

4

= NpVar[f̂ ′] +
(Ea[f ]− Eb[f ])2

4
≥ NpVar[f̂ ′], (66)

where the third line follows from (65). Hence, the vari-
ance of stratified sampling Var[f̂ ′] is never bigger than that
of conventional Monte Carlo sampling Var[f̂ ], whenever
Ea[f ] �= Eb[f ].

In general, provided the numbers of simulated samples
from strata a and b are Na and Nb ≡ Np−Na, respectively,
(65) becomes

Var[f̂ ′] =
1
4

[Vara[f ]
Na

+
Varb[f ]
Np −Na

]
, (67)

the variance is minimized when

Na

Np
=

σa

σa + σb
, (68)

and the achieved minimum variance is

Var[f̂ ′]min =
(σa + σb)2

4Na
. (69)

Remarks:
• In practice, it is suggested [376] that (67) be changed

to the generic form

Var[f̂ ′] =
1
4

[Vara[f ]
(Na)α

+
Varb[f ]

(Np −Na)α

]
,

with an empirical value α = 2.
• Stratified sampling works very well and is efficient in

a not-too-high dimension space (say Nx ≤ 4), when
Nx grows higher, the use of this technique is limited
because one needs to estimate the variance of each
stratum. In [376], an adaptive recursive stratified sam-
pling procedure was developed to overcome this weak-
ness (see [377] for implementation details).

43The inequality (66) is called the “parallel axis theorem” in
physics.
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G.6 Markov Chain Monte Carlo

Consider a state vector x ∈ R
Nx in a probability space

(Ω,F , P ), K(·, ·) is assumed to be a transition kernel in
the state space, which represents the probability of moving
from x to a point in a set S ∈ B (where B s a Borel σ-field
on R

Nx), a Markov chain is a sequence of random variable
{xn}n≥0 such that

Pr(xn ∈ B|x0, · · · ,xn−1) = Pr(xn ∈ B|xn−1),

and K(xn−1,xn) = p(xn|xn−1). A Markov chain is charac-
terized by the properties of its states, e.g. transiency, pe-
riodicity, irreducibility,44 and ergodicity. The foundation
of Markov chain theory is the Ergodicity Theorem, which
establishes under which a Markov chain can be analyzed
to determine its steady state behavior.

Theorem 3: If a Markov chain is ergodic, then there ex-
ists a unique steady state distribution π independent of the
initial state.

Markov chain theory is mainly concerned about finding
the conditions under which there exists an invariant dis-
tribution Q and conditions under which iterations of tran-
sition kernel converge to the invariant distribution [185],
[91]. The invariant distribution satisfies

Q(dx′) =
∫

X

K(x, dx′)π(x)dx,

π(x′) =
∫

X

K(x,x′)π(x)dx

where x′ ∈ S ⊂ R
Nx , and π is the density w.r.t. Lebesgue

measure of Q such that Q(dx′) = π(x′)dx′. The n-th it-
eration is thus given by

∫
X
K(n−1)(x, dx′)K(x′, S). When

n → ∞, the initial state x will converge to the invariant
distribution Q.

Markov chain Monte Carlo (MCMC) algorithms turn
around the Markov chain theory. The invariant distribu-
tion or density is assumed to be known which correspond
to the target density π(x), but the transition kernel is un-
known. In order to generate samples from π(·), the MCMC
methods attempt to find a K(x, dx′) whose n-th iteration
(for large n) converges to π(·) given an arbitrary starting
point.

One of important properties of Markov chain is the re-
versible condition (a.k.a. “detailed balance”)45

π(x)K(x,x′) = π(x′)K(x′,x), (70)

which states that the unconditional probability of moving
x to x′ is equal to the unconditional probability of moving
x′ to x, where x,x′ are both generated from π(·). The
distribution Q is thus the invariant distribution for K(·, ·).

In the MCMC sampling framework, unlike the impor-
tance or rejection sampling where the samples are drawn in-
dependently, the samples are generated by a homogeneous,

44A Markov chain is called irreducible if any state can be reached
from any other state in a finite number of iterations.

45Markov chains that satisfy the detailed balance are called re-
versible Markov chains.

reversible, ergodic Markov chain with invariant distribu-
tion Q.46 Generally, we don’t know how fast the Markov
chain will converge to an equilibrium,47 neither the rate
of convergence or error bounds. Markov chain can be also
used for importance sampling, in particular, we have the
following theorem:

Theorem 4: [315] Let K(x,x′) denote a transitional ker-
nel for a Markov chain on R

Nx with p(x) as the den-
sity of its invariant distribution, let q(x) denote the pro-
posal distribution with W (x) as importance weights, then∫
W (x)q(x)K(x,x′)dx = p(x′) for all x′ ∈ R

Nx .

Metropolis-Hastings Algorithm. Metropolis-Hastings
algorithm,48 initially studied by Metropolis [329], and later
redeveloped by Hastings [204], is a kind of MCMC al-
gorithm whose transition is associated with the accep-
tance probability. Assume q(x,x′) as the proposal dis-
tribution (candidate target) that doesn’t satisfy the re-
versibility condition, without loss of generality, suppose
π(x)q(x,x′) > π(x′)q(x′,x), which means the probability
moving from x to x′ is bigger (more frequent) than the
probability moving from x′ to x. Intuitively, we want to
change this situation to reduce the number of moves from
x to x′. By doing this, we introduce a probability of move,
0 < α(x,x′) < 1, if the move is not performed, the process
returns x as a value from the target distribution. Hence
the the transition from x to x′ now becomes:

pMH(x,x′) = q(x,x′)α(x,x′), (71)

where x �= x′. In order to make (71) satisfy reversibility
condition, α(x,x′) need to be set to [204]:

α(x,x′) =

{
min

[
π(x′)q(x′,x)
π(x)q(x,x′) , 1

]
, if π(x)q(x,x′) > 0,

1 otherwise
(72)

Hence the probability that Markov process stays at x is
given by

1−
∫

X

q(x,x′)α(x,x′)dx′, (73)

and the transition kernel is given by

KMH(x, dx′) = q(x,x′)α(x,x′)dx′

+
[
1−

∫
X

q(x,x′)α(x,x′)dx′
]
δx(dx′).(74)

In summary, a generic Metropolis-Hastings algorithm
proceeds as follows [91]:

• For i = 1, · · · , Np, at iteration n = 0, draw a starting
point x0 from a prior density;

46Note that the samples are independent only when the Markov
chain is reversible and uniformly ergodic, otherwise they are depen-
dent for which the Central Limit Theorem doesn’t hold for the con-
vergence.

47Only the samples that are drawn after the Markov chain ap-
proaches the equilibrium are regarded as the representative draws
from the posterior. The time for Markov chain converging to equilib-
rium is called the burn-in time.

48This algorithm appears as the first entry of a recent list of great
algorithms of 20th-century scientific computing.
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• generate a uniform random variable u ∼ U(0, 1), and
x′ ∼ q(xn, ·);

• If u < α(xn,x′), set xn+1 = x′, else xn+1 = xn;
• n = n + 1, repeat steps 2 and 3, until certain (say k)

steps (i.e. burn-in time), store x(i) = xk.
• i = i + 1, repeat the procedure until Np samples are

drawn, return the samples {x(1), · · · ,x(Np)}.
Remarks:
• If the candidate-generating density is symmetric (e.g.

random walk), i.e. q(x,x′) = q(x′,x), the probability
of move reduces to π(x′)/π(x), hence (72) will reduce
to: if π(x′) ≥ π(x) the chain moves to x′; and remains
the same otherwise. This is the original algorithm in
[329], it was also used in simulated annealing [257].

• The probability of move doesn’t need the knowledge
of normalizing constant of π(·).

• The draws are regarded as the samples from the target
density only after the chain has passed the transient
phase, the convergence to the invariant distribution
occurs under mild regularity conditions (irreducibility
and aperiodicity) [416].

• The efficiency of Metropolis algorithm is determined
by the ratio of the accepted samples to the total num-
ber of samples. Too large or too small variance of the
driving-force noise may result in inefficient sampling.

• It was suggested in [95] to use a Gaussian proposal dis-
tribution N (μ,Σ) for Metropolis-Hastings algorithm
(or in MCMC step of particle filter), where the mean
and covariance are determined by

μ =
∑Np

i=1W
(i)x(i)∑Np

i=1W
(i)

,

Σ =
∑Np

i=1W
(i)(x(i) − μ)(x(i) − μ)T∑Np

i=1W
(i)

.

Gibbs Sampling. Gibbs sampling, initially developed by
Geman and Geman in image restoration [178], is a special
form of MCMC [185], [173], or a special form of Metropolis-
Hastings algorithm [329], [204], [175], [176]. The Gibbs
sampler uses the concept of alternating (marginal) con-
ditional sampling. Given an Nx-dimensional state vector
x = [x1, x2, · · · , xNx ]T , we are interested in drawing the
samples from the marginal density in the case where joint
density is inaccessible or hard to sample. The generic pro-
cedure is as follows (e.g., [73]):

• At iteration n = 0, draw x0 from the prior density
p(x0);

• At iterations n = 1, 2, · · · , draw a sample x1,n from
p(x1|x2,n−1, x3,n−1, · · · , xNx,n−1);

• draw a sample x2,n from p(x2|x1,n, x3,n−1, · · · , xNx,n−1);
· · ·

• draw a sample xNx,n from p(xNx |x1,n, x2,n, · · · , xNx−1,n);
To illustrate the idea of Gibbs sampling, an example with
four-step iterations in a two-dimensional probability space
p(x1, x2) is presented in Fig. 8.

Remarks:

• Gibbs sampling is an alternating sampling scheme,
since the conditional density to be sampled is low-
dimensional, the Gibbs sampler is a nice solution to
estimation of hierarchical or structured probabilistic
model.

• Gibbs sampling can be viewed as a Metropolis method
in which the proposal distribution is defined in terms
of the conditional distributions of the joint distribution
and every proposal is always accepted [318].

• Gibbs sampling has been extensively used for dynamic
state space model [71] within the Bayesian framework.

• Adaptive rejection Gibbs sampling algorithm was also
developed in [187].

In addition to Metropolis-Hastings algorithm and Gibbs
sampling, MCMC methods are powerful and have a huge
literature. We cannot extend the discussions due to the
space constraint and refer the reader to [176], [182], [185]
for more discussions on MCMC methods, and the review
paper [416] for Bayesian estimation using MCMC methods.

In the context of sequential state estimation, Metropolis-
Hastings algorithm and Gibbs sampling are less attrac-
tive because of their computational inefficiency in a non-
iterative fashion. On the other hand, both of them use ran-
dom walk to explore the state space, the efficiency is low
when Nx is big. Another important issue about MCMC
methods is their convergence: How long it takes a MCMC
to converge to an equilibrium? How fast is the conver-
gence rate? Many papers were devoted to investigating
these questions [99], [140].49 One way to reduce the reduc-
ing the “blind” random-walk behavior in Gibbs sampling is
the methods of over-relaxation [2], [349], [318]; another way
is the so-called hybrid Monte Carlo method as we discuss
next.

G.7 Hybrid Monte Carlo

Hybrid Monte Carlo (HMC) algorithm [152] is a kind
of asymptotically unbiased MCMC algorithm for sampling
from complex distributions. In particular, it can be viewed
as a Metropolis method which uses gradient information
to reduce random walk behavior. Assume the probability
distribution is written as [346], [318]

P (x) =
exp(−E(x))

Z , (75)

where Z is a normalizing constant. The key idea of HMC
is not only use the energy E(x) but also its gradient (w.r.t.
to x), since the gradient direction might indicate the way
to find the state with a higher probability [318].

In the HMC,50 the state space x is augmented by a mo-
mentum variable η; and two proposals are alternately used.
The first proposal randomizes the momentum variable with
the state x unchanged; the second proposal changes both
x and η using the simulated Hamilton dynamics as follows
[318]

H(x,η) = E(x) +K(η), (76)
49See also the recent special MCMC issue in Statistical Science, vol.

16, no. 4, 2001.
50A pseudocode of HMC algorithm was given in [318].
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xn

xn+1

xn+2

xn+3

x1

x2 x2 x2

x1 x1

p(x1|x2)

p(x2|x1)

Fig. 8. An illustration of Gibbs sampling in a two-dimensional space (borrowed and changed from MacKay (1998) with permission). Left:
Starting from state xn, x1 is sampled from the conditional pdf p(x1|x2,n−1). Middle: A sample is drawn from the conditional pdf p(x2|x1,n).
Right: Four-step iterations in the probability space (contour).

where K(η) is a kinetic energy with the form K(η) = 1
2ηT η.

These two proposals are used to produce samples from the
joint distribution:

PH(x,η) =
1
ZH

exp[−H(x,η)]

=
1
ZH

exp[−E(x)] exp[−K(η)], (77)

where ZH = ZZK is a normalizing constant. The distribu-
tion PH(x,η) is separable and the marginal distribution of
x is the desired distribution exp[−E(x)]/Z. By discarding
the momentum variables, a sequence of random samples
x(i) can be generated that can be viewed as asymptotically
being drawn from P (x). The first proposal draws a new
momentum from the Gaussian density exp[−K(η)]/ZK . In
the second proposal, the momentum determines where the
state should go, and the gradient of E(x) determines how
the momentum η changes according to the following dif-
ferential equations

ẋ = η (78a)

η̇ = −∂E(x)
∂x

. (78b)

Since the motion of x is driven by the direction of momen-
tum η, intuitively the state converges faster than the con-
ventional MC methods. With perfect simulatio of Hamil-
ton dynamics, the total energy H(x,η) is a constant, thus
(72) is always 1 and the proposal is always accepted; with
imperfect simulation, we can obtain, asymptotically, the
samples from PH(x,η) [318].

Remarks:
• HMC method can be used for particle filter [94]: In-

stead of being weighted by the likelihood, each particle
produces a Markov chain that follows the gradient of
the posterior over large distances, which allows it to
rapidly explore the state space and produce samples
from the target distribution.

• Some improved HMC methods were developed in [347],
[346].

• The idea of using gradient information in HMC can
be extended to sequential framework, e.g. the HySIR
algorithm [120].

G.8 Quasi-Monte Carlo

Another important Monte Carlo method attempting to
accelerate the convergence is quasi-Monte Carlo (QMC)
(e.g., see [353], [425], [363]), which was extensively used in
computer graphics. The mathematical foundation of QMC
is the number theory instead of probability theory, hence it
is a deterministic method. The idea of QMC methods is to
substitute the pseudo-randomly generated sequence used
in the regular MC methods with a deterministic sequence
in order to minimize the divergence, and also to replace the
probabilistic error bounds of regular MC with determinis-
tic bounds. In the QMC, a popular class of deterministic
sequence called low-discrepancy sequence (LDS) is often
used to generate the samples points [353]. The LDS has
a minimum discrepancy51 O((logNp)Nx−1/Np) (for a large
Np), which is faster than the regular MC methods’ error
bound O(1/

√
Np) (from Central Limit Theorem). There

are many methods for constructing LDS, among them the
lattice rule (LR) is a popular one due to its simplicity and
potential variance redundancy advantage [295], [296]. By
using some lattice rule to generate a point set

S =
{ (i− 1)

Np
(1, a, · · · , aNx−1) mod 1, i = 1, · · · , Np

}
,

where Np is the number of lattice points in S and a is
an integer between 1 and Np − 1. For a square-integrable
function f over [0, 1)Nx , the estimator of QMC via a lattice
rule is given by

f̂LR =
1
Np

Np∑
i=1

f((xi + Δ) mod 1). (79)

It was shown in [295] that the estimate (79) is unbiased
and Var[f̂LR] � Var[f̂MC]; in particular when f is linear,
Var[f̂LR] = 1

Np
Var[f̂MC]; in some cases where f is nonlin-

ear, the convergence rate O(1/N2
p ) might be achieved.

Remarks:
• QMC can be viewed as a special quadrature tech-

nique with a different scheme choosing the quadrature

51It is a measure of the uniformity of distribution of finite point
sets.
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TABLE II

A List of Popular Monte Carlo Methods.

author(s) method inference references

Metropolis MCMC off line [330], [329]

Marshall importance sampling on/off line [324], [199], [180]

N/A rejection sampling off line [199], [197]

N/A stratified sampling on/off line [376], [377], [69]

Hastings MCMC off line [204]

Geman & Geman Gibbs sampling off line [178], [175]

Handschin & Mayne SIS off line [200], [506], [266]

Rubin multiple imputation off line [394], [395]

Rubin SIR on/off line [397], [176]

Gordon et al. bootstrap on line [191], [193]

Duane et al. HMC on/off line [152], [347], [346]

N/A QMC on/off line [353], [425], [354]

Chen & Schmeiser hit-and-run MC off line [81], [417]

N/A slice sampling off line [336], [351]

N/A perfect sampling off line [133], [490]

points, it can be used for marginal density estimation
[363].

• QMC method can be also applied to particle filters
[361].

To the end of this subsection, we summarize some popu-
lar Monte Carlo methods available in the literature in Table
II for the reader’s convenience.

VI. Sequential Monte Carlo Estimation:

Particle Filters

With the background knowledge of stochastic filtering,
Bayesian statistics, and Monte Carlo techniques, we are
now in a good position to discuss the theory and paradigms
of particle filters. In this section, we focus the attention on
the sequential Monte Carlo approach for sequential state
estimation. Sequential Monte Carlo technique is a kind of
recursive Bayesian filter based on Monte Carlo simulation,
it is also called bootstrap filter [193] and shares many com-
mon features with the so-called interacting particle system
approximation [104], [105], [122], [123], [125], CONDEN-
SATION [229], [230], Monte Carlo filter [259]-[261], [49],
sequential imputation [266], [303], survival of fittest [254],
and likelihood weighting algorithm [254].

The working mechanism of particle filters is following:
The state space is partitioned as many parts, in which the
particles are filled according to some probability measure.
The higher probability, the denser the particles are concen-
trated. The particle system evolves along the time accord-
ing to the state equation, with evolving pdf determined
by the FPK equation. Since the pdf can be approximated
by the point-mass histogram, by random sampling of the
state space, we get a number of particles representing the
evolving pdf. However, since the posterior density model
is unknown or hard to sample, we would rather choose an-
other distribution for the sake of efficient sampling.

To avoid intractable integration in the Bayesian statis-

tics, the posterior distribution or density is empirically rep-
resented by a weighted sum of Np samples drawn from the
posterior distribution

p(xn|Yn) ≈ 1
Np

Np∑
n=1

δ(xn − x(i)
n ) ≡ p̂(xn|Yn), (80)

where x(i)
n are assumed to be i.i.d. drawn from p(xn|Yn).

When Np is sufficiently large, p̂(xn|Yn) approximates the
true posterior p(xn|Yn). By this approximation, we can
estimate the mean of a nonlinear function

E[f(xn)] ≈
∫
f(xn)p̂(xn|Yn)dxn

=
1
Np

Np∑
i=1

∫
f(xn)δ(xn − x(i)

n )dxn

=
1
Np

Np∑
i=1

f(x(i)
n ) ≡ f̂Np

(x). (81)

Since it is usually impossible to sample from the true pos-
terior, it is common to sample from an easy-to-implement
distribution, the so-called proposal distribution 52 denoted
by q(xn|Yn), hence

E[f(xn)] =
∫
f(xn)

p(xn|Yn)
q(xn|Yn)

q(xn|Yn)dxn

=
∫
f(xn)

Wn(xn)
p(Yn)

q(xn|Yn)dxn

=
1

p(Yn)

∫
f(xn)Wn(xn)q(xn|Yn)dxn,(82)

where

Wn(xn) =
p(Yn|xn)p(xn)
q(xn|Yn)

. (83)

Equation (82) can be rewritten as

E[f(xn)] =
∫
f(xn)Wn(xn)q(xn|Yn)dxn∫

p(Yn|xn)p(xn)dxn

=
∫
f(xn)Wn(xn)q(xn|Yn)dxn∫
Wn(xn)q(xn|Yn)dxn

=
Eq(xn|Yn)[Wn(xn)f(xn)]

Eq(xn|Yn)[Wn(xn)]
. (84)

By drawing the i.i.d. samples {x(i)
n } from q(xn|Yn), we can

approximate (84) by

E[f(xn)] ≈
1

Np

∑Np

i=1Wn(x(i)
n )f(x(i)

n )
1

Np

∑Np

i=1Wn(x(i)
n )

=
Np∑
i=1

W̃n(x(i)
n )f(x(i)

n ) ≡ f̂(x), (85)

52It is also called importance density or important function. The
optimal proposal distribution is the one that minimizes the condi-
tional variance given the observations up to n.
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where

W̃n(x(i)
n ) =

Wn(x(i)
n )∑Np

j=1Wn(x(j)
n )

. (86)

Suppose the proposal distribution has the following fac-
torized form

q(x0:n|y0:n) = q(xn|x0:n−1,y0:n)q(x0:n−1|y0:n−1)

= q(x0)
n∏

t=1

q(xt|x0:t−1,y0:t).

Similar to the derivation steps in (23), the posterior
p(x0:n|y0:n) can be factorized as

p(x0:n|y0:n) = p(x0:n−1|y0:n−1)
p(yn|xn)p(xn|xn−1)

p(yn|y0:n−1)

Thus the importance weights W (i)
n can be updated recur-

sively

W (i)
n =

p(x(i)
0:n|y0:n)

q(x(i)
0:n|y0:n)

∝ p(yn|x(i)
n )p(x(i)

n |x(i)
n−1)p(x

(i)
0:n−1|y0:n−1)

q(x(i)
n |x(i)

0:n−1,y0:n)q(x(i)
0:n−1|y0:n−1)

= W
(i)
n−1

p(yn|x(i)
n )p(x(i)

n |x(i)
n−1)

q(x(i)
n |x(i)

0:n−1,y0:n)
. (87)

A. Sequential Importance Sampling (SIS) Filter

In practice, we are more interested in the current fil-
tered estimate p(xn|y0:n) instead of p(x0:n|y0:n). Pro-
vided q(x(i)

n |x(i)
0:n−1,y0:n) is assumed to be equivalent to

q(x(i)
n |x(i)

0:n−1,yn), (87) can be simplified as

W (i)
n = W

(i)
n−1

p(yn|x(i)
n )p(x(i)

n |x(i)
n−1)

q(x(i)
n |x(i)

0:n−1,yn)
. (88)

As discussed earlier, the problem of the SIS filter is that
the distribution of the importance weights becomes more
and more skewed as time increases. Hence, after some it-
erations, only very few particles have non-zero importance
weights. This phenomenon is often called weight degener-
acy or sample impoverishment [396], [193], [40], [304]. An
intuitive solution is to multiply the particles with high nor-
malized importance weights, and discard the particles with
low normalized importance weights, which can be be done
in the resampling step. To monitor how bad is the weight
degeneration, we need a measure. A suggested measure
for degeneracy, the so-called effective sample size, Neff ,
was introduced in [266] (see also [303], [305], [315], [144],
[350])53

Neff =
Np

1 + Varq(·|y0:n)[W̃ (x0:n)]

=
Np

Eq(·|y0:n)[(W̃ (x0:n))2]
≤ Np. (89)

53It was claimed that [70], [162] the estimate Neff is not robust,
see discussion in Section VI-P.3.

TABLE III

SIS Particle Filter with Resampling.

For time steps n = 0, 1, 2, · · ·
1: For i = 1, · · · , Np, draw the samples x

(i)
n ∼ q(xn|x(i)

0:n−1,y0:n)

and set x
(i)
0:n = {x(i)

0:n−1,x
(i)
n }.

2: For i = 1, · · · , Np, calculate the importance weights W
(i)
n ac-

cording to (88).

3: For i = 1, · · · , Np, normalize the importance weights W̃
(i)
n

according to (86).

4: Calculate N̂eff according to (90), return if N̂eff > NT ,

otherwise generate a new particle set {x(j)
n } by resampling

with replacement Np times from the previous set {x(i)
0:n} with

probabilities Pr(x
(j)
0:n = x

(i)
0:n) = W̃

(i)
0:n, reset the weights

W̃
(i)
n = 1/Np.

The second equality above follows from the facts that
Var[ξ] = E[ξ2] − (E[ξ])2 and Eq[W̃ ] = 1. In practice, the
true Neff is not available, thus its estimate, N̂eff , is alter-
natively given [305], [303]:

N̂eff =
1∑Np

i=1(W̃
(i)
n )2

. (90)

When N̂eff is below a predefined threshold NT (say Np/2
or Np/3), the resampling procedure is performed. The
above procedure was also used in the rejection control [304]
that combines the rejection method [472] and importance
sampling. The idea is following: when the N̂eff < NT

(whereNT can be either a predefined value or the median of
the weights), then each sample is accepted with probability
min{1,W (i)

n /NT }; all the accepted samples are given a new
weight W (j)

n = max{NT ,W
(i)
n }, and the rejected samples

are restarted and rechecked at the all previously violated
thresholds. It is obvious that this procedure is computa-
tional expensive as n increases. Some advanced scheme like
partial rejection control [308] was thus proposed to reduce
the computational burden, while preserving the dynamic
control of the resampling schedule. A generic algorithm of
SIS particle filter with resampling is summarized in Table
III.

B. Bootstrap/SIR filter

The Bayesian bootstrap filter due to Gordon, Salmond
and Smith [193], is very close in spirit to the sampling im-
portance resampling (SIR) filter developed independently
in statistics by different researchers [304], [307], [369], [370],
[69], with a slight difference on the resampling scheme.
Here we treat them as the same class for discussion. The
key idea of SIR filter is to introduce the resampling step as
we have discussed in Section V-G.4. The resampling step
is flexible and varies from problems as well as the selection
scheme and schedule. It should be noted that resampling
does not really prevent the weight degeneracy problem, it
just saves further calculation time by discarding the par-
ticles associated with insignificant weights. What it really
does is artificially concealing the impoverishment by re-
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Fig. 9. An illustration of generic particle filter with importance sampling and resampling.

TABLE IV

SIR Particle Filter Using Transition Prior as Proposal

Distribution.

For time steps n = 0, 1, 2, · · ·
1: Initialization: for i = 1, · · · , Np, sample x

(i)
0 ∼ p(x0), W

(i)
0 =

1
Np

.

2: Importance Sampling: for i = 1, · · · , Np, draw samples x̂
(i)
n ∼

p(xn|x(i)
n−1), set x̂

(i)
0:n = {x(i)

0:n−1, x̂
(i)
n }.

3: Weight update: Calculate the importance weights W
(i)
n =

p(yn|x̂(i)
n ).

4: Normalize the importance weights: W̃
(i)
n = W

(i)
n∑Np

j=1 W
(j)
n

.

5: Resampling: Generate Np new particles x
(i)
n from the set

{x̂(i)
n } according to the importance weights W̃

(i)
n .

6: Repeat Steps 2 to 5.

placing the high important weights with many replicates
of particles, thereby introducing high correlation between
particles.

A generic algorithm of Bayesian bootstrap/SIR filter us-
ing transition prior density as proposal distribution is sum-
marized in Table IV, where the resampling step is per-
formed at each iteration using any available resampling
method discussed earlier.

Remarks:
• Both SIS and SIR filters use importance sampling

scheme. The difference between them is that in SIR
filter, the resampling is always performed (usually be-
tween two importance sampling steps); whereas in SIS
filter, importance weights are calculated sequentially,
resampling is only taken whenever needed, thus SIS
filter is less computationally expensive.

• The choice of proposal distributions in SIS and SIR
filters plays an crucial role in their final performance.

• Resampling step is suggested to be done after the fil-
tering [75], [304], because resampling brings extra ran-
dom variation to the current samples. Normally (eps.

in off-line processing), the posterior estimate (and its
relevant statistics) should be calculated before resam-
pling.

• As suggested by some authors [259], [308], in the re-
sampling stage, the new importance weights of the sur-
viving particles are not necessarily reset to 1/Np, but
rather abide certain procedures.

• To alleviate the sample degeneracy in SIS filter, we can
change (88) as

Wn = Wα
n−1

p(yn|xn)p(xn|xn−1)
q(xn|x0:n−1,yn)

,

where the scalar 0 < α < 1 plays a role as annealing
factor that controls the impact of previous importance
weights.

C. Improved SIS/SIR Filters

In the past few years, many efforts have been devoted
to improving the particle filters’ performance [69], [189],
[428], [345], [456], [458], [357]. Here, due to space limita-
tion, we only focus on the improved schemes on (efficient)
sampling/resampling and variance reduction.

In order to alleviate the sample impoverishment prob-
lem, a simple improvement strategy is prior boosting [193].
Namely, in the sampling step, one can increase the number
of simulated samples drawn from the proposal, N ′

p > Np;
but in the resampling step, only Np particles are preserved.

Carpenter, Clifford, and Fearnhead [69] proposed using
a sophisticated stratified sampling (also found in [259]) for
particle filtering. In particular, the posterior density is
assumed to comprise of Np distinct mixture strata54

p(x) =
Np∑
i=1

cipi(x),
Np∑
i=1

ci = 1, (91)

According to [69], a population quantity can be estimated
efficiently by sampling a fixed number Mi from each stra-

54This is the so-called survey sampling technique [199], [162].
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tum, with
∑Np

i=1Mi = Np (Np � Mi). The efficiency is
attained with Neyman allocation Mi ∝ ciσi (where σi is
the variance of generic function f(x) in the i-th stratum),
or with proportional allocation Mi = ciNp for simplicity.
It was argued that in most of cases the proportional allo-
cation is more efficient than simple random sampling from
p(x). In the particle filtering context, the coefficients ci
and pi(x) are determined recursively [69]:

ci =

∫
p(xn|x(i)

n−1)p(yn|xn)dxn∑Np

i=1

∫
p(xn|x(i)

n−1)p(yn|xn)dxn

, (92)

pi(xn) =
p(xn|x(i)

n−1)p(yn|xn)∫
p(xn|x(i)

n−1)p(yn|xn)dxn

. (93)

For the i-th stratum, the importance weights associated
with the Mi particles are updated recursively by

W (j)
n = W

(i)
n−1

p(x(j)
n |x(i)

n−1)p(yn|x(j)
n )

cipi(x
(j)
n )

(94)

for
∑i−1

�=1M� < j ≤ ∑i
�=1M�. By stratified sampling in

the update stage, the variance reduction is achieved.55 In
the resampling stage, a sample set of size Np is selected
from the 10×Np predicted values to keep the size of par-
ticle set unchanged.56 By taking advantage of the method
of simulating order statistics [386], an improved SIR algo-
rithm with O(Np) complexity via stratified sampling was
developed [69], to which reader is referred for more details.

Many improved particle filters are devoted to the resam-
pling step. For instance, given the discrete particle set
{x(i)

n , W̃
(i)
n }Np

i=1, it was suggested [308] that in the resam-
pling stage, a new independent particle set {x(j)

n , W̃
(j)
n }Np

j=1

is generated as follows:

• For j = 1, · · · , Np, x(j)
n replaces x(i)

n with probability
proportional to a(i);

• The associated new weights W̃ (j)
n is updated as W̃ (j)

n =
W̃

(i)
n /a(i).

In the conventional multinomial resampling scheme (Sec-
tion V-G.4), a(i) = NpW

(i)
n ; however in general, the choices

of a(i) are flexible, e.g. a(i) =
√
W

(i)
n , or a(i) = |W (i)

n |α.
Liu, Chen and Logvinenko [308] also proposed to use a par-
tially deterministic reallocation scheme instead of resam-
pling to overcome the extra variation in resampling step.
The reallocation procedure proceeds as follows [308]:

• For i = 1, · · · , Np, if a(i) ≥ 1, retain ki = �a(i)� (or
ki = �a(i)� + 1) copies of the x(i)

n ; assign the weight
W

(j)
n = W

(i)
n /ki for each copy;

55Intuitively, they use the weighted measure before resampling
rather than resampling and then using the unweighted measure, be-
cause the weighted samples are expected to contain more information
than an equal number of unweighted points.

56The number 10 was suggested by Rubin [395] where Np � 10.
The number of particle set is assumed to be unchanged.

• if a(i) < 1, remove the sample with probability 1−a(i);
assign the weight W (j)

n = W
(i)
n /a(i) to the survived

sample.
• Return the new particle set {x(j),W

(j)
n }.

D. Auxiliary Particle Filter

A potential weakness of generic particle filters discussed
above is that the particle-based approximation of filtered
density is not sufficient to characterize the tail behavior of
true density, due to the use of finite mixture approxima-
tion; this is more severe when the outliers are existent. To
alleviate this problem, Pitt and Shephard [370], [371] in-
troduced the so-called auxiliary particle filter (APF). The
idea behind it is to augment the existing “good” particles
{x(i)} in a sense that the predictive likelihoods p(yn|x(i)

0:n−1)
are large for the “good” particles. When p(yn|x(i)

0:n−1) can-
not be computed analytically, it uses an analytic approx-
imation; when p(yn|x(i)

0:n−1) can be computed exactly, it
uses the optimal proposal distribution (which is thus called
“perfect adaptation” [370]). The APF differs from SIR in
that it reverses the order of sampling and resampling, which
is possible when the importance weights are dependent on
xn. By inserting the likelihood inside the empirical density
mixture, we may rewrite the filtered density as

p(xn|y0:n) ∝ p(yn|xn)
∫
p(xn|xn−1)p(xn−1|y0:n−1)dxn−1

∝
Np∑
i=1

W
(i)
n−1p(yn|xn)p(xn|x(i)

n−1), (95)

where p(xn−1|y0:n−1) =
Np∑
i=1

W
(i)
n−1δ(xn−1 − x(i)

n−1). Now

the product W (i)
n−1p(yn|xn) is treated as a combined prob-

ability contributing to the filtered density. By introducing
an auxiliary variable ξ (ξ ∈ {1, · · · , Np}) that plays a role
of index of the mixture component, the augmented joint
density p(xn, ξ|y0:n) is updated as

p(xn, ξ = i|y0:n) ∝ p(yn|xn)p(xn, ξ = i|y0:n−1)
= p(yn|xn)p(xn|ξ = i,y0:n−1)p(i|y0:n−1)

= p(yn|xn)p(xn|x(i)
n−1)W

(i)
n−1. (96)

Henceforth a sample can be drawn from joint density (96)
via simply neglecting the index ξ, by which a set of par-
ticles {x(i)

n }Np

i=1 are drawn from the marginalized density
p(xn|y0:n) and the indices ξ are simulated with probabili-
ties proportional to p(ξ|y0:n). Thus, (95) can be approxi-
mated by

p(xn|y0:n) ∝
Np∑
i=1

W
(i)
n−1p(yn|x(i)

n , ξi)p(xn|x(i)
n−1), (97)

where ξi denotes the index of the particle x(i)
n at time step

n−1, namely ξi ≡ {ξ = i}. The proposal distribution used
to draw {x(i)

n , ξi}Np

i=1 is chosen as a factorized form

q(xn, ξ|y0:n) ∝ q(ξ|y0:n)q(xn|ξ,y0:n), (98)
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where

q(ξi|y0:n) ∝ p(yn|μ(i)
n )W (i)

n−1 (99)

q(xn|ξi,y0:n) = p(xn|x(i)
n−1). (100)

where μ(i) is a value (e.g. mean, mode, or sample value)
associated with p(xn|x(i)

n−1) from which the i-th particle is
drawn. Thus the true posterior is further approximated by

p(xn|y0:n) ∝
Np∑
i=1

W
(i)
n−1p(yn|μ(ξ=i)

n )p(xn|x(ξ=i)
n−1 ). (101)

From (99) and (100), the important weights are recursively
updated as

W (i)
n = W

(ξ=i)
n−1

p(yn|x(i)
n )p(x(i)

n |x(ξ=i)
n−1 )

q(x(i)
n , ξi|y0:n)

∝ p(yn|x(i)
n )

p(yn|μ(ξ=i)
n )

. (102)

The APF is essentially a two-stage procedure: At the first
stage, simulate the particles with large predictive likeli-
hoods; at the second stage, reweigh the particles and draw
the augmented states. This is equivalent to making a
proposal that has a high conditional likelihood a priori,
thereby avoiding inefficient sampling [370]. The auxiliary
variable idea can be used for SIS or SIR filters. An auxil-
iary SIR filter algorithm is summarized in Table V.

It is worthwhile to take a comparison between APF and
SIR filter on the statistical efficiency in the context of the
random measure E[W̃ 2(x(i))]. Pitt and Shephard [370]
showed that when the likelihood does not vary over dif-
ferent ξ, then the variance of APF is smaller than that of
SIR filter. APF can be understood as a one-step ahead fil-
tering [369]-[371]: the particle x(i)

n−1 is propagated to ξ(i)n in
the next time step in order to assist the sampling from the
posterior. On the other hand, APF resamples p(xn−1|y0:n)
instead of p(xn|y0:n) used in SIR, hence it usually achieves
lower variance because the past estimate is more reliable.
Thus APF actually takes advantage of beforehand the in-
formation from likelihood model to avoid inefficient sam-
pling because the particles with low likelihood are deemed
less informative; in other words, the particles to be sam-
pled are intuitively pushed to the high likelihood region.
But when the conditional likelihood is not insensitive to
the state, the difference between APF and SIR filter is
insignificant. APF calculates twice the likelihood and im-
portance weights, in general it achieves better performance
than SIS and SIR filters.

Remarks:
• In conventional particle filters, estimation is usually

performed after the resampling step, which is less ef-
ficient because resampling introduces extra random
variation in the current state [75], [304]. APF basi-
cally overcomes this problem by doing one-step ahead
estimation based on the point estimate μ(i)

n that char-
acterizes p(xn|x(i)

n−1).

TABLE V

Auxiliary Particle Filter.

For time steps n = 1, 2, · · ·
1: For i = 1, · · · , Np, calculate μ

(i)
n (e.g. μ

(i)
n = E[p(xn|x(i)

n−1)].

2: For i = 1, · · · , Np, calculate the first-stage weights W
(i)
n =

W
(i)
n−1p(yn|μ(i)

n ) and normalize weights W̃
(i)
n = W

(i)
n∑Np

j=1 W
(j)
n

.

3: Use the resampling procedure in SIR filter algorithm to obtain

new {x(i)
n , ξi}Np

i=1.

4: For i = 1, · · · , Np, sample x
(i)
n ∼ p(x

(i)
n |x(i)

n−1, ξi), update the

second-stage weights W
(i)
n according to (102).

• When the process noise is small, the performance of
APF is usually better than that of SIR filter, how-
ever, when the process noise is large, the point esti-
mate μ(i)

n doesn’t provide sufficient information about
p(xn|x(i)

n−1), then the superiority of APF is not guar-
anteed [19].

• In the APF, the proposal distribution is proposed as a
mixture density that depends upon the past state and
the most recent observations.

• The idea of APF is also identical to that of local Monte
Carlo method proposed in [304], where the authors
proposed two methods for draw samples {x, ξ}, based
on either joint distribution or marginal distribution.

• The disadvantage of APF is that the sampling is drawn
in an augmented (thus higher) space, if the auxiliary
index varies a lot for a fixed prior, the gain is negligible
and the variance of importance weights will be higher.

• The APF is computationally slower since the proposal
is used twice. It was argued that [162] (chap. 5) the
resampling step of APF is unnecessary, which intro-
duces nothing but inaccuracy. This claim, however, is
not justified sufficiently.

• The idea of auxiliary variable can be also used for
MCMC methods [210], [328].

E. Rejection Particle Filter

It was suggested in [222], [441], [444], [49] that the re-
jection sampling method is more favorable than the impor-
tance sampling method for particle filters, because rejection
sampling achieves exact draws from the posterior. Usually
rejection sampling doesn’t admit a recursive update, hence
how to design a sequential procedure is the key issue for
the rejection particle filter.

Tanizaki [441]-[444] has developed a rejection sampling
framework for particle filtering. The samples are drawn
from the filtering density p(xn|y0:n) without evaluating any
integration. Recalling (20) and inserting equations (24)
and (25) to (23), the filtering density can be approximated
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TABLE VI

Rejection Particle Filter.

For time steps n = 1, 2, · · ·
1: For i = 1, draw x

(i)
n−1 with probability λ

(i)
n ;

2: Generate a random draw z ∼ q(xn);
3: Draw a uniform random variable u ∼ U(0, 1);

4: If u ≤ α(z), accept z as x
(i)
n ; otherwise go back to step 2;

5: i = i + 1, repeat the procedure until i = Np;

6: Calculate the sample average f̂Np , and calculate the posterior

according to (103).

as

p(xn|y0:n) =
1
Cn

∫
p(yn|xn)p(xn|xn−1)p(xn−1|y0:n−1)dxn−1

≈ 1
Np

Np∑
i=1

C
(i)
n

Cn

p(yn|xn)p(xn|x(i)
n−1)

C
(i)
n

=
Np∑
i=1

λ(i)
n

p(yn|xn)p(xn|x(i)
n−1)

C
(i)
n

, (103)

where λ(i)
n = C

(i)
n /NpCn. The normalizing constant Cn is

given as

Cn =
∫ ∫

p(yn|xn)p(xn|xn−1)p(xn−1|y0:n−1)dxn−1dxn

≈ 1
N2

p

Np∑
i=1

Np∑
j=1

p(yn|x(ji)
n|n−1) ≡ Ĉn, (104)

where x(ji)
n|n−1 is obtained from f(x(i)

n−1,d
(j)
n ). In addition,

C
(i)
n is given as

C(i)
n =

∫
p(yn|xn)p(xn|x(i)

n−1)dxn

≈ 1
Np

Np∑
j=1

p(yn|x(ji)
n|n−1) ≡ Ĉ(i)

n . (105)

Hence the filtering density is approximated as a mixture
distribution associated with the weights λ(i)

n , which are ap-
proximated by Ĉ(i)

n /NpĈn. The acceptance probability, de-
noted by α(·), is defined as

α(z) =
p(yn|z)p(z|x(i)

n−1)/q(z)

sup
z
{p(yn|z)p(z|x(i)

n−1)/q(z)}
, (106)

where q(·) is a proposal distribution. The estimation pro-
cedure of rejection particle filter is summarized in Table
VI.

The proposal distribution q(xn) can be chosen as tran-
sition density p(xn|xn−1) or a mixture distribution (e.g.
Gaussian mixture, see Section VI-M.4). But the variance
of proposal distribution should be bigger than the posterior
density’s, since it is supposed to have a broad support.

Remarks:

• Rejection particle filter usually produces better results
than SIR filter if the proposal distribution is appro-
priate and the supremum of the ratio p(·)/q(·) exists.
However, if the acceptance probability α(z) is small,
it takes a long time to produce a sufficient sample set.

• Another drawback of rejection particle filter is that
the computing time for every time step is fluctuating
because of the uncertainty of acceptance probability,
if the acceptance rate is too low, real-time processing
requirement is not satisfied.

• It was suggested by Liu [305] to use Var[f̂ ]/Np as a
measure to verify the efficiency for rejection sampling
and importance sampling. It was claimed based on
many experiments that, for a large Np, importance
sampling is more efficient in practice.

• Rejection sampling can be also used for APF. In fact,
the proposal of APF accounts for the most recent ob-
servations and thus is more close to true posterior,
thereby may increase the average acceptance rate.

F. Rao-Blackwellization

Rao-Blackwellization, motivated by the Rao-Blackwell
theorem, is a kind of marginalization technique. It was first
used in [175] to calculate the marginal density with Monte
Carlo sampling method. Casella and Robert [74] also de-
veloped Rao-Blackwellization methods for rejection sam-
pling and Metropolis algorithm with importance sampling
procedure. Because of its intrinsic property of variance re-
duction, it has been used in particle filters to improve the
performance [304], [14], [315], [145], [119]. There are couple
ways to use Rao-Blackwellization: (i) state decomposition;
(ii) model simplification; and (iii) data augmentation, all of
which are based on the underlying Rao-Blackwell theorem:

Theorem 5: [388] Let f̂(Y ) be an unbiased estimate of
f(x) and Ψ is a sufficient statistics for x. Define f̂(Ψ(y)) =
Ep(x)[f̂(Y )|Ψ(Y ) = Ψ(y)], then f̂ [Ψ(Y )] is also an unbiased
estimate of f(x). Furthermore,

Varp(x)[f̂(Ψ(Y ))] ≤ Varp(x)[f̂(Y )],

and equality if and and only if Pr(f̂(Y ) = f̂(Ψ(Y ))) = 1.

The proof of this theorem is based on Jensen’s Inequality
(see e.g., [462]). The importance of Rao-Blackwellization
theorem is that, with a sufficient statistics Ψ, we can im-
prove any unbiased estimator that is not a function of Ψ
by conditioning on Ψ; in addition, if Ψ is sufficient for x
and if there is a unique function of Ψ that is an unbiased
estimate of f(x), then such function is a minimum variance
unbiased estimate for f(x).

For dynamic state space model, the basic principle of
Rao-Blackwellization is to exploit the model structure in
order to improve the inference efficiency and consequently
to reduce the variance. For example, we can attempt to de-
compose the dynamic state space into two parts, one part
being calculated exactly using Kalman filter, the other part
being inferred approximately using particle filter. Since the
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first part is inferred exactly and quickly, the computing
power is saved and the variance is reduced. The follow-
ing observations were given in [143], [144]. Let the states
vector be partitioned into two parts xn = [x1

n x2
n], where

marginal density p(x2
n|x1

n) is assumed to be tractable ana-
lytically. The expectation of f(xn) w.r.t. the posterior can
be rewritten by:

E[f(xn)] =
∫
f(x1

n,x
2
n)p(x1

n,x
2
n|y0:n)dxn

=
∫
λ(x1

0:n)p(x1
0:n)dx1

0:n∫ ∫
p(y0:n|x1

0:n,x
2
0:n)p(x2

0:n|x1
0:n)dx2

0:np(x
1
0:n)dx1

0:n

=
∫
λ(x1

0:n)p(x1
0:n)dx1

0:n∫
p(y0:n|x1

0:n)p(x1
0:n)dx1

0:n

where

λ(x1
0:n) =

∫
f(x1

n,x
2
n)p(y0:n|x1

n,x
2
n)p(x2

0:n|x1
0:n)dx2

0:n.

And the weighted Monte Carlo estimate is given by

f̂RB =
∑Np

i=1 λ(x1,(i)
0:n )W (x1,(i)

0:n )∑Np

i=1W (x1,(i)
0:n )

. (107)

The lower variance of marginalized estimate is achieved
because of the Rao-Blackwellization theorem

Var[f(x)] = Var
[
E[f(x1,x2)|x1]

]
+ E

[
Var[f(x1,x2)|x1]

]
.

It has been proved that [143], [315], the variance of ratio
of two joint densities is not less than that of two marginal
densities

Varq

[p(x1,x2)
q(x1,x2)

]
= Varq

[∫ p(x1,x2)dx2∫
q(x1,x2)dx2

]
+Eq

[
Varq

[p(x1,x2)
q(x1,x2)

∣∣∣x1
]]

≥ Varq

[∫ p(x1,x2)dx2∫
q(x1,x2)dx2

]
, (108)

where ∫
p(x1,x2)dx2∫
q(x1,x2)dx2

= Eq

[p(x1,x2)
q(x1,x2)

∣∣∣x1
]
.

Hence by decomposing the variance, it is easy to see
that the variance of the importance weights via Rao-
Blackwellization is smaller than that obtained using direct
Monte Carlo method.

Rao-Blackwellization technique is somewhat similar to
the data augmentation method based on marginalization
[445] in that it introduces a latent variable with assumed
knowledge to ease the probabilistic inference. For instance,
consider the following state-space model

xn+1 = f(xn,dn), (109a)
zn = g(xn,vn), (109b)
yn ∼ p(yn|zn), (109c)

where the latent variable zn is related to the measurement
yn with an analytic (e.g. exponential family) conditional
pdf p(yn|zn). Hence, the state estimation problem can be
written by

p(x0:n|y0:n) =
∫
p(x0:n|z0:n)p(z0:n|y0:n)dz0:n. (110)

The probability distribution p(z0:n|y0:n) is approximated
by the Monte Carlo simulation:

p(z0:n|y0:n) ≈
Np∑
i=1

W (i)
n δ(z0:n − z(i)

0:n), (111)

thus the filtered density p(xn|y0:n) is obtained by

p(xn|y0:n) ≈
Np∑
i=1

W (i)
n p(xn|z(i)

0:n), (112)

which is a form of mixture model. When p(xn|z(i)
0:n) is

Gaussian, this can be done by conventional Kalman filter
technique, as exemplified in [83], [14], [325]; if f and g
are either/both nonlinear, p(xn|z(i)

0:n) can be inferred by
running a bank of EKFs. For any nonlinear function f(x),
Rao-Blackwellization achieves a lower variance estimate

Var[f(xn)|y0:n] ≥ Var
[
E[f(xn)|z0:n,y0:n]

∣∣∣y0:n

]
.

Remarks:
• In practice, appropriate model transformation (e.g.

from Cartesian coordinate to polar coordinate)
may simplify the model structure and admit Rao-
Blackwellization.57

• Two examples of marginalized Rao-Blackwellization
in particle filtering are Conditionally Gaussian State-
Space Model, Partially Observed Gaussian State-
Space Model and Finite State HMM Model. Rao-
Blackwellization can be also used for MCMC [74].

• Similar to the idea of APF, Rao-Blackwellization can
be also done one-step ahead [338], in which the sam-
pling and resampling steps are switched when the im-
portant weights are independent on the measurements
and the important proposal distribution can be ana-
lytically computed.

G. Kernel Smoothing and Regularization

In their seminal paper [193], Gordon, Salmond and
Smith used an ad hoc approach called jittering to alleviate
the sample impoverishment problem. In each time step, a
small amount of Gaussian noise is added to each resampled
particle, which is equivalent to using a Gaussian kernel to
smooth the posterior. Another byproduct of jittering is to
prevent the filter from divergence, as similarly done in the
EKF literature.

Motivated by the kernel smoothing techniques in statis-
tics, we can use a kernel to smooth the posterior estimate

57The same idea was often used in the EKF for improving the lin-
earization accuracy.
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by replacing the Dirac-delta function with a kernel func-
tion58

p(xn|y0:n) ≈
Np∑
i=1

W (i)
n Kh(xn,x(i)

n ), (113)

where Kh(x) = h−NxK(x
h ) with K being a symmetric, uni-

modal and smooth kernel and h > 0 being the bandwidth
of the kernel. Some candidate kernels can be Gaussian or
Epanechnikov kernel [345]

K(x) =
{ Nx+2

2VNx
(1− ‖x‖2), if ‖x‖ < 1

0, otherwise
(114)

where VNx denotes the volume of the unit hypersphere
in R

Nx . The advantage of variance reduction of kernel
smoothing is at a cost of increase of bias, but this problem
can be alleviated by gradually decreasing the kernel width
h as time progresses, an approach being employed in [481].

Kernel smoothing is de facto a regularization technique
[87]. Some regularized particle filters were also developed
in the past few years [222], [364], [365], [345]. Within par-
ticle filtering update, regularization can be taken before
or after the correction step, resulting in the so-called pre-
regularized particle filter (pre-RPF) and post-regularized
particle filter (post-RPF) [345]. The pre-PRF is also close
to the kernel particle filter [222] where the kernel smoothing
is performed in the resampling step. The implementation
of RPF is similar to the regular particle filter, except in
the resampling stage. For the post-RPF, the resampling
procedure reads as follows [345]:

• Generate ξ ∈ {1, · · · , Np}, with Pr(ξ = i) = W
(i)
n ;

• Draw a sample from a selected kernel s ∼ K(x);
• Generate the particles x(i)

n = x(ξ)
n + hAns, where h is

the the optimal bandwidth of the kernel, An is cho-
sen to be the square root of the empirical covariance
matrix if whitening is used, otherwise An = ξ.

The resampling of pre-PRF is similar to the that of post-
RPF except an additional rejection step is performed,
reader is referred to [222], [345] for details. It was proved
that the RPF converge to the optimal filter in the weak
sense, with a rate O(h2 + 1/

√
Np), when h = 0, it reduces

to the rate of regular particle filter O(1/
√
Np).

In [364], [345], an algorithm called “progressive correc-
tion” was proposed for particle filters, in which the correc-
tion step is split into several subcorrection steps associated
with a decreasing sequence of (fictitious) variance matrices
for the observation noise (similar to the idea of annealing).
The intuition of progressive correction is to decompose the
likelihood function into multiple stages since the error in-
duced in the correction step is usually unbounded (e.g. the
measurement noise is small) and thus more attention is de-
served. Though theoretically attractive, the implementa-
tion of partitioned sampling is quite complicated, the de-

58It was also called the localization sampling or local multiple im-
putation [3].

tails are left for the interested reader and not discussed
here.

H. Data Augmentation

The data augmentation idea arises from the missing data
problem, it is referred to a scheme of augmenting the ob-
served data, thereby making the probabilistic inference eas-
ier. Data augmentation was first proposed by Dempster et
al. [130] in a deterministic framework for the EM algo-
rithm, and later generalized by Tanner and Wong [445] for
posterior distribution estimation in a stochastic framework,
which can be viewed as a Rao-Blackwell approximation of
the marginal density.

H.1 Data Augmentation is an Iterative Kernel Smoothing
Process

Data augmentation is an iterative procedure for solv-
ing a fixed operator equation (the following content follows
closely [445], [446]). Simply suppose

p(x|y) =
∫

Z

p(x|y, z)p(z|y)dz, (115)

p(z|y) =
∫

X

p(z|x′,y)p(x′|y)dx′. (116)

Substituting (116) to (115), it follows that the posterior
satisfies

π(x) =
∫
K(x,x′)π(x′)dx′, (117)

K(x,x′) =
∫
p(x|y, z)p(z|x′,y)dz, (118)

where (118) is a Fredholm integral equation of the first kind,
which can be written in the following operator form

T f(x) =
∫
K(x,x′)f(x′)dx′, (119)

where f is an arbitrary integrable function, T is an integral
operator, and (119) is an operator fixed point equation.
Noticing the mutual dependence of p(x|y) and p(z|y), by
applying successive substitution we can obtain an iterative
method

πn+1(x) = (Tπn)(x) = (T n+1π0)(x). (120)

It was shown in [445] that under some regularity condition,
‖πn+1(x) − p‖ ≤ ‖πn(x) − p‖, thus πn(x) → p(x|y) when
n→∞.

If (Tπn)(x) cannot be calculated analytically, then
πn+1(x) can be approximated by the Monte Carlo sam-
pling

πn+1(x) =
1
Np

Np∑
i=1

p(x|y, z(i)). (121)

The quantities z(i) are called multiple imputations by Ru-
bin [395], [397]. The data augmentation algorithm consists
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of iterating the Imputation (I) step and the Posterior (P)
step.

1. I-Step: Draw the samples {z(i)}Np

i=1 from current
approximation πn(x) to the predictive distribution
p(z|y), which comprises of two substeps

• Generate x(i) from πn(x);
• Generate z(i) from p(z|y,x(i)).

2. P-Step: Update the current approximation to p(x|y)
to be the mixture of conditional densities via (121),
where p(x|y, z) is supposed to be analytically calcu-
lated or sampled easily.

H.2 Data Augmentation as a Bayesian Sampling Method

Data augmentation can be used as a Bayesian sampling
technique in MCMC [388]. In order to generate a sam-
ple from a distribution π(x|y), the procedure proceeds as
follows:

• Start with an arbitrary z(0).
• For 1 ≤ k ≤ N , generate
• x(k) according to marginal distribution π(x|y, z(k−1));
• z(k) according to marginal distribution π(z|y,x(k)).

WhenN is large and the chain x(k) is ergodic with invariant
distribution π(x|y), the final sample x(N) can be regarded
a sample x(i) ∼ π(x|y).

The sample set {x(i)}Np

i=1 obtained in this way has a con-
ditional structure [175], [388]. It is interestingly found that
one can take advantage of the dual samples {z(i)}Np

i=1. In-
deed, if the quantity of interest is Eπ[f(x)|y], one can cal-
culate the average of conditional expectation whenever it
is analytically computable

ρ̂2 =
1
Np

Np∑
i=1

Eπ[f(x)|y, z(i)] (122)

instead of the unconditional Monte Carlo average

ρ̂1 =
1
Np

Np∑
i=1

f(x(i)). (123)

The justification of substituting (123) with (122) is the
Rao-Blackwell Theorem, since

Eπ

[
(ρ̂1 − Eπ[f(x)|y])

∣∣∣y] =
1
Np

Varπ[f(x)|y]

≥ 1
Np

Varπ

[
Eπ[f(x)|y, z]

∣∣∣y]
= Eπ

[
(ρ̂2 − Eπ[f(x)|y, z])

∣∣∣y].
Generally, under a quadratic loss (or any other strictly con-
vex loss), it is favorable to work with conditional expecta-
tions. Hence, data augmentation provides a way to approx-
imate the posterior p(x|y) by the average of the conditional
densities [388]

p(x|y) =
1
Np

Np∑
i=1

p(x|y, z(i)), (124)

which is identical to (121).
Remarks:
• Data augmentation can be viewed as a two-step Gibbs

sampling, where the augmented data z and true state
x are alternatingly marginalized.

• In the APF, the auxiliary variable can be viewed as a
sort of data augmentation technique.

• Similar to the EM algorithm [130], data augmentation
algorithm exploits the simplicity of the posterior dis-
tribution of the parameter given the augmented data.
A detailed discussion on state-of-the-art data augmen-
tation techniques was found in [461], [328].

• A comparative discussion between data augmentation
and SIR methods is referred to [445].

I. MCMC Particle Filter

When the state space is very high (say Nx > 10), the
performance of particle filters depends to a large extent
on the choices of proposal distribution. In order to tackle
more general and more complex probability distribution,
MCMC methods are needed. In particle filtering frame-
work, MCMC is used for drawing the samples from an in-
variance distribution, either in sampling step or resampling
step.

Many authors have tried to integrate the MCMC tech-
nique to particle filtering, e.g., [40], [304], [162], [315],
[370], [164]. Berzuini et al. [40] used the Metropolis-
Hastings importance sampling for filtering problem. Re-
calling the Metropolis-Hastings algorithm in Section V-
G.6, within the Bayesian estimation framework, π(x) =
p(x|y) ∝ p(x)p(y|x), the proposal q(x′,x) is rewritten as
q(x|x′), the acceptance probability (moving from x to x′)
(72) can be rewritten by

α(x,x′) = min
[p(y|x′)p(x′)q(x|x′)
p(y|x)p(x)q(x′|x)

, 1
]
. (125)

Provided we use the prior as proposal (i.e. q(x|x′) = p(x)),
(125) will reduce to

α(x,x′) = min
[p(y|x′)
p(y|x)

, 1
]
, (126)

which says that the acceptance rate only depends on the
likelihood. Equivalently, we can define the transition func-
tion K(x,x′) = p(x′|x) as

K(x,x′) =

{
q(x′)min

[
1, W (x′)

W (x)

]
, if x′ �= x

1− ∫
z�=x

q(z)min[1, W (z)
W (x) ]dz, if x′ = x

where W (x) = p(x)/q(x) represents the importance
weight. The samples are drawn from Metropolis-Hastings
algorithm only after the “burn-in” time of Markov chain,
namely the samples during the burn-in time are discarded,
and the next Np samples are stored.59 However, there are
some disadvantages of this algorithm. When the dynamic

59It was also suggested by some authors to discard the burn-in
period for particle filters for the purpose of on-line processing.
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Fig. 10. Sampling-importance-resampling (SIR) followed by a re-
versible jump MCMC step. The particles are moved w.r.t. an invari-
ant transitional kernel without changing the distribution.

noise (Σd) is small,60 the Markov chain usually takes a long
time to converge, and the burn-in time is varied.

It was also suggested to perform a reversible jump
MCMC step, after the resampling, to each particle in or-
der to increase the diversity of simulated samples without
affecting the estimated posterior distribution (see Fig. 10).
The advantages are twofold [41]: (i) If particles are al-
ready distributed according to the posterior, then applying
a Markov-chain transition kernel with the same invariant
distribution to particles will not change the new particles’
distribution, in addition, it also reduces the correlations be-
tween the particles; (ii) on the other hand, if particles are
not in the region of interest, the MCMC step may have
possibility to move them to the interesting state space.
Nevertheless, adding MCMC move step also increase the
computation burden of the particle filter, thus the merit of
such step should be only justified by specific application.

One special MCMC particle filter is the resample-move
algorithm [186], [41], which combines SIR and MCMC sam-
pling; it was shown experimentally that this methodology
can somehow alleviate the progressive degeneration prob-
lem. The basic idea is as follows [186]: The particles are
grouped into a set Sn = {x(i)

n }Np

i=1 at time step n, and they
are propagated through the state-space equations by using
SIR and MCMC sampling, at time n + 1, the resampled
particles are moved according to a Markov chain transi-
tion kernel to form a new set Sn+1; in the rejuvenation
stage, two steps are performed: (i) in the resample step,
draw the samples {x(i)

n } from Sn such that they are se-
lected with probability proportional to {W (x(i)

n )}; (ii) in
the move step, the selected particles are moved to a new
position by sampling from a Markov chain transitional ker-
nel. The resample-move algorithm essentially includes SIS
[200], [506], [266] as special case, where the rejuvenation
step is neglected, as well as the previous work by West

60Σd is directly related to the variation of samples drawn from tran-
sition prior, and consequently related to the sample impoverishment
problem.

[481] and Liu and Chen [304], in the latter of which a Gibbs
sampling form of the move step was performed.

Lately, Fearnhead [164] has proposed an efficient method
to implement the MCMC step for particle filter based on
the sufficient statistics. Usually, the whole trajectories of
particles need to be stored [186], Fearnhead instead used
the summary of trajectories as sufficient statistics on which
the MCMC move is applied. Let Ψ = Ψ(x0:n−1, z0:n) de-
note the sufficient statistics for xn, according to the Fac-
torization theorem (e.g. [388]), the unnormalized joint dis-
tribution can be factorized by two functions’ product

π(xn,x0:n−1, z0:n) = λ1(xn,Ψ)λ2(x0:n−1, z0:n).

The implementation idea is to assume the invariant distri-
bution is p(xn|Ψ) conditioning on the sufficient statistics
instead of the whole state and measurement trajectories.
The sufficient statistics are also allowed to be updated re-
cursively, see [164] for some examples.

J. Mixture Kalman Filters

Mixture Kalman filters (MKF) is essentially a stochastic
bank of (extended) Kalman filters, each Kalman filter is
run with Monte Carlo sampling approach. The idea was
first explored in [6], and further explored by Chen and Liu
[83] (also implicitly in [144]) with resampling and rejection
control schemes. This also follows West’s idea that the
posterior can be approximated by a mixture model [481].
In fact, MKF can viewed as a special case of particle filter
with marginalization and Rao-Blackwellization on condi-
tionally Gaussian linear dynamic model. The advantage of
MKF is its obvious computational efficiency, it also found
many successful applications in tracking and communica-
tions [83], [84], [476].

K. Mixture Particle Filters

It is necessary to discriminate two kinds of mixture par-
ticle filters in the literature: (i) mixture posterior (arising
from mixture transitional density or mixture measurement
density), and (ii) mixture proposal distribution. The exam-
ple of the first kind is the Gaussian sum particle filter [268],
where the posterior is approximated by a Gaussian sum,
which can be further used a sampling-based particle filter
for inference. The examples of the second kind were pro-
posed by many authors from different perspectives [162],
[69], [370], [144], [459]. The mixture proposal is especially
useful and efficient for the situations where the posterior is
multimodal. We give more general discussion as follows.

The idea is to assume the underlying posterior is a mix-
ture distribution such that we can decompose the proposal
distribution in a similar way. For instance, to calculate a
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expected function of interest, we have

E[f(x)] =
∫
f(x)

m∑
j=1

cjpj(x)dx,

=
m∑

j=1

cj

∫
f(x)pj(x)dx,

=
m∑

j=1

cj

∫
f(x)

pj(x)
qj(x)

qj(x)dx

=
m∑

j=1

W ′
j

∫
f(x)qj(x)dx (127)

where W ′
j = cj

pj(x)
qj(x) . Namely, for m mixtures of qi(x) with

total number of Np particles, each mixture has Np/m par-
ticles if allocated evenly (but not necessarily). However,
the form of qi(x) can differ and the number of particles
associated to qi(x) can be also different according to the
prior knowledge (e.g. their variances). In this context, we
have the mixture particle filters (MPF). Each particle fil-
ter has individual proposal. The idea of MPF is similar
to the stratified sampling and partitioned sampling idea,
and includes the idea using EKF/UKF as Gaussian pro-
posal approximation as special cases, as to be discussed
sooner. Also note that MPF allow the parallel implemen-
tation, and each proposal distribution allows different form
and sampling scheme.

The estimate given by MPF is represented as

E[f(xn)] =
m∑

j=1

W ′
n,j

∫
f(xn)qj(xn|Yn)dxn

=
m∑

j=1

Eqj(xn|Yn)[W ′
n,j(xn)f(xn)]

Eqj(xn|Yn)[W ′
n,j(xn)]

≈
m∑

j=1

Np/m∑
i=1

W̃ ′
j,n(x(i)

j,n)f(x(i)
j,n), (128)

where W̃ ′
j,n(x(i)

j,n) is the normalized importance weights
from the j-th mixture associated with the i-th particle.

L. Other Monte Carlo Filters

There are also some other Monte Carlo filters that has
not been covered in our paper, which are either not updated
sequentially (but still with recursive nature), or based on
HMC or QMC methods. Due to space constraint, we do
not extend the discussion and only refer the reader to the
specific references.

• Gibbs sampling for dynamic state space model [71],
[72]. Those Monte Carlo filters are useful when the
real-time processing is not too demanding.

• Quasi Monte Carlo filters or smoothers, which use
Metropolis-Hastings algorithm [440], [443].

• Non-recursive Monte Carlo filters [439], [438], [443].
• Particle filters based on HMC technique [94].
• Particle filters based on QMC and lattice technique

[361].

• Annealed particle filter [131].
• The branching and interacting particle filters discussed

in continuous-time domain [122], [123], [125], [104],
[105].

• Genetic particle filter via evolutionary computation
[455].

M. Choices of Proposal Distribution

The potential criteria of choosing a good proposal distri-
bution should include:

• The support of proposal distribution should cover that
of posterior distribution, in other words, the proposal
should have a broader distribution.

• The proposal distribution has a long-tailed behavior
to account for outliers.

• Ease of sampling implementation, preferably with lin-
ear complexity.

• Taking into account of transition prior and likelihood,
as well as most recent observation data.

• Achieving minimum variance.
• Being close (in shape) to the true posterior.

However, achieving either of these goals is not easy
and we don’t know what the posterior suppose to look
like. Theoretically, it was shown [506], [6], [266] that
the choice of proposal distribution q(xn|x(i)

0:n−1,y0:n) =
p(xn|x(i)

n−1,yn) minimizes the variance of importance
weights W (i)

n conditional upon x(i)
0:n−1 and y0:n (see [144]

for a simple proof). By this, the importance weights
can be recursively calculated as W (i)

n = W
(i)
n−1p(yn|x(i)

n−1).
However, this optimal proposal distribution suffers from
certain drawbacks [144]: It requires sampling from
p(xn|x(i)

n−1,yn) and evaluating the integral p(yn|x(i)
n−1) =∫

p(yn|xn)p(xn|x(i)
n−1)dxn.61 On the other hand, it should

be also pointed out that there is no universal choice for
proposal distribution, which is usually problem dependent.
Choosing an appropriate proposal distribution requires a
good understanding of the underlying problem. In the fol-
lowing, we present some rules of thumb available in the
literature and discuss their features.

M.1 Prior Distribution

Prior distribution was first used for proposal distribu-
tion [200], [201] because of its intuitive simplicity. If
q(xn|x0:n−1,y0:n) = p(xn|xn−1), the importance weights
are updated by

W (i)
n = W

(i)
n−1p(yn|x(i)

n ), (129)

which essentially neglects the effect of the most recent
observation yn. In the CONDENSATION (CONditional
DENSity propagATION) algorithm [229], [230], a transi-
tion prior was used as the proposal distribution for visual

61Generally the integral has no analytic form and thus requires ap-
proximation; however, it is possible to obtain the analytic evaluation
in some cases, e.g. the Gaussian state-space model with nonlinear
state equation.
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tracking. This kind of proposal distribution is easy to im-
plement, but usually results in a high variance because
the most recent observation yn is neglected in p(xn|xn−1).
The problem becomes more serious when the likelihood is
peaked and the predicted state is near the likelihood’s tail
(see Fig. 11 for illustration), in other words, the measure-
ment noise model is sensitive to the outliers.

From (129), we know that importance weights are pro-
portional to the likelihood model. It is obvious that W (x)
will be very uneven if the likelihood model is not flat. In
the Gaussian measurement noise situation, the flatness will
be determined by the variance. If Σv is small, the distribu-
tion of the measurement noise is peaked, hence W (x) will
be peaked as well, which makes the the sample impoverish-
ment problem more severe. Hence we can see that, choosing
transition prior as proposal is really a brute force approach
whose result can be arbitrarily bad, though it was widely
used in the literature and sometimes produced reasonably
good results (really depending on the noise statistics!). Our
caution is: Do not run into this proposal model unless you
know something about your problem; do not use something
just because of its simplicity!

For some applications, state equations are modeled as
an autoregressive (AR) model xn+1 = Anxn + dn, where
time-varying An can be determined sequentially or block-
by-block way (by solving Yule-Walker equation). In the
on-line estimation, it can be augmented into a pseudo-state
vector. However, it should be cautioned that for time-
varying AR model, the use of transitional prior proposal
is not recommended. Many experimental results have con-
firmed this [189], [467]. This is due to the special stability
condition of AR process.62 When the Monte Carlo samples
of AR coefficients are generated violating the stability con-
dition, the AR-driven signal will oscillate and the filtered
states will deviate from the true ones. The solution to this
problem is Rao-Blackwellization [466] or careful choice of
proposal distribution [189].

M.2 Annealed Prior Distribution

The motivation of using transition prior as proposal is
its simplicity. However, it doesn’t take account of the noise
statistics Σd and Σv. Without too much difficulty, one can
imagine that if the samples drawn from prior doesn’t cover
the likelihood region, the performance of the particle filter
will be very poor since the contributions of most particles
are insignificant. This fact further motivates us to use an-
nealed prior as proposal to alleviate this situation.

Recall the update equation of importance weights (88),

62A sufficient condition for stability of AR model is that the poles
are strictly within the unit circle.

if we let q(xn|xn−1,yn) = p(xn|xn−1)β , 63 then

Wn = Wn−1
p(yn|xn)p(xn|xn−1)
q(xn|xn−1,yn)

= Wn−1
p(yn|xn)p(xn|xn−1)

p(xn|xn−1)β

= Wn−1p(yn|xn)p(xn|xn−1)α

where α = 1 − β, and 0 ≤ α ≤ 1. When α = 1, it re-
duces to the normal SIR filter (129); when α = 0, it is
equivalent to taking a uniform distribution (infinitely flat)
as proposal. The choice of annealing parameter α depends
on the knowledge of the noise statistics:

• When Σd < Σv, the support of prior distribution is
largely outside the flat likelihood (see the first illustra-
tion of Fig. 11). In this case, we let 0 < α < 1, which
thus makes the shape of the prior more flat. This is
also tantamount to the effect of “jitter”: adding some
artificial noise makes the drawn samples broadly lo-
cated.64

• When Σd ≈ Σv, the most support of prior overlap
that of the likelihood (see the second illustration of
Fig. 11). In this case, prior proposal is fine and we let
α = 1.

• When Σd > Σv, the prior is flat compared to the
peaked likelihood (see the third illustration of Fig. 11).
In this case, we cannot do much about it by changing
α.65 And we will discuss this problem in detail in sub-
sections M.3 and M.5.

Another perspective to understand the parameter β
is following: by taking the logarithm of the posterior,
p(xn|y0:n), we have

log p(xn|y0:n) ∝ log p(yn|xn) + β log p(xn|xn−1),

which essentially states that the log-posterior can be inter-
preted as a penalized log-likelihood, with log p(xn|xn−1) as
a smoothing prior, β is a tuning parameter controlling the
trade-off between likelihood and prior.

M.3 Likelihood

When the transition prior is used as proposal, the cur-
rent observation yn is neglected. However, the particles
that have larger importance weights at previous time step
n − 1 don’t necessarily have large weights at current step
n. In some cases, the likelihood is far tighter than the
prior and is comparably closer (in shape) to the posterior.
Hence we can employ the likelihood as proposal distribu-
tion,66 which results in the likelihood particle filter. The
idea behind that is instead of drawing samples from the
state transition density and then weighting them according
to their likelihood, samples are drawn from the likelihood

63β can be viewed as a variational parameter.
64The pdf of the sum of two random variables is the convolution of

the two pdf’s of respective random variables.
65Note that letting α > 1 doesn’t improve the situation.
66Here likelihood can be viewed as an “observation density” in

terms of the states.
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p (xn|xn-1)

p (yn|xn) p (xn|xn-1) p (yn|xn)
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p (xn|xn-1)

p (yn|xn)
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Fig. 11. Left: Σd < Σv, transition prior p(xn|xn−1) is peaked compared to the flat likelihood p(yn|xn), and their overlapping region is
indicated by the thick line; Middle: Σd ≈ Σv, the support of prior and likelihood largely overlap, where the prior proposal works well;
Right: an illustration of poor approximation of transition prior as proposal distribution when the likelihood is peaked Σd > Σv. Sampling
from the prior doesn’t generate sufficient particles in the overlapping region.

and then assigned weights proportional to the state transi-
tion density.67 In some special cases where the likelihood
model can be inverted easily xn = g−1(yn,vn), one can al-
teratively use likelihood as proposal distribution. To give
an example [19], assume the likelihood model is quadratic,
say yn = Gnx2

n + vn, without loss of generality. Denote
sn = |xn|2, then we can sample sn from the equation
sn = G−1

n (yn − vn). From the Bayes rule, the proposal
can be chosen to be [19]

p(sn|yn) ∝
{
p(yn|sn), if sn ≥ 0
0, otherwise , (130)

then p(xn|s(i)
n ) is chosen to be a pair of Dirac delta func-

tions

p(xn|s(i)
n ) =

δ
(
xn −

√
s(i)
n

)
+ δ

(
xn +

√
s(i)
n

)
2

. (131)

By letting the proposal q(xn|x(i)
n−1,y0:n) ∝ p(xn|sn)p(sn|yn),

The importance weights W (i)
n are updated as [19]

W (i)
n ∝W (i)

n−1p(x
(i)
n |x(i)

n−1)
p(x(i)

n |yn)

p(s(i)
n |yn)

, (132)

where the ratio p(x(i)
n |yn)

p(s
(i)
n |yn)

is the determinant of the Jacobian

of the transformation from sn to xn [19]

p(x(i)
n |yn)

p(s(i)
n |yn)

∝
∣∣∣ dsn

dxn

∣∣∣ = 2|xn|. (133)

Hence (132) is rewritten as

W (i)
n ∝W (i)

n−1p(x
(i)
n |x(i)

n−1)|x(i)
n |. (134)

Taking the likelihood as proposal amounts to pushing the
particles to the high likelihood region, this is efficient when
the transition prior is broad (Σd is large) compared to the
peaked likelihood (Σv is small). In above quadratic likeli-
hood example, the procedure of likelihood particle filter is
given in Table VII.

Remarks:
67The likelihood particle filter is similar but not identical to the

APF in that neither the auxiliary variable is introduced, nor is the
mixture density proposal involved.

TABLE VII

Likelihood Particle Filter (an example in the text).

For time steps n = 0, 1, 2, · · ·
1: Draw i.i.d. samples s

(i)
n ∼ p̂(sn|yn) ∝ p(yn|sn);

2: u = U(0, 1), x
(i)
n = sgn(u − 1

2
)

√
s
(i)
n ;

3: Importance weight update: W
(i)
n = W

(i)
n−1p(x

(i)
n |x(i)

n−1)|x(i)
n |;

4: Weight normalization to get W̃
(i)
n ;

5: Resampling to get new {x(i)
n , W

(i)
n }Np

i=1 using SIS procedure.

• Note that it is not always possible to sample from like-
lihood because the mapping yn = g(xn,vn) is usu-
ally many-to-one. Above example is only a two-to-one
mapping whose distribution p(xn|yn) is bimodal.

• It is cautioned that using likelihood as proposal dis-
tribution will increase the variance of the simulated
samples. For instance, from the measurement equa-
tion yn = xn + vn (vn ∼ N (0,Σv)), we can draw
samples from x(i)

n = yn − v(i)
n , thus E[xn] = E[yn],

Var[xn] = Var[yn] + Σv. This is a disadvantage for
the Monte Carlo estimate. Hence it is often not rec-
ommended especially when Σv is large.

M.4 Bridging Density and Partitioned Sampling

Bridging density [189], was proposed for proposal distri-
bution as an intermediate distribution between the prior
and likelihood. The particles are reweighed according to
the intermediate distribution and resampled.

Partitioned sampling [313], was also proposed for a pro-
posal distribution candidate, especially when the distribu-
tions are the functions of part of the states and the peaked
likelihood can be factorized into several broader distribu-
tions. The basic procedure is as follows [313], [314]:

• Partition the state space into two or more parts;
• Draw the samples in the partitioned space, and pass

the samples into the factorized dynamics respectively;
• Generate new particle sets via resampling.

Since the particles are drawn independently from different
partitioned spaces, which are little or not correlated, par-
titioned sampling leads to a considerable improvement in
sampling efficiency and reduction of the need of the sam-
ples. This scheme is very useful especially when the mea-
surement components are independent and have different
individual likelihood models, e.g. [313], [464].
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M.5 Gradient-Based Transition Density

Bearing in mind the second and third proposal crite-
ria in the beginning of this subsection, we also proposed
another proposal distribution by using the gradient infor-
mation [88]. Before sampling from the transition density
x(i)

n ∼ p(xn|xn−1), we attempt to use the information ig-
nored in the current observation yn. To do that, we plug
in an intermediate step (MOVE-step) to move the particles
in previous step towards the gradient descent direction, 68

by using first-order information. The idea behind that is
to push the particles into the high likelihood region, where
the likelihood is evaluated by current observation yn and
previous state xn−1. For instance, the MOVE-step can be
implemented through

• Gradient descent

x̂n|n−1 = x̂n−1|n−1 − η ∂(yn − g(x))2

∂x

∣∣∣
x=x̂n−1|n−1

,

where the scalar 0 < η < 1 is the learning rate param-
eter.

• Natural gradient

x̂n|n−1 = x̂n−1|n−1 − ηΣ−1
d

∂(yn − g(x))2

∂x

∣∣∣
x=x̂n−1|n−1

,

• EKF updates [120]

Pn|n−1 = Pn−1|n−1 + Σd

Kn = Pn|n−1ĜT
n (ĜnPn|n−1ĜT

n + Σv)−1

x̂n|n−1 = x̂n−1|n−1 + Kn(yn − g(x̂n−1|n−1))

Pn|n = Pn|n−1 −KnĜnPn|n−1,

where Ĝn = ∂g(x)
∂x |x=x̂n|n−1 .

The MOVE-step is followed by the normal sampling
from transition density, this new proposal distribution can
be understood as a one-step-ahead transition density in a
sense that it uses the likelihood model (gradient informa-
tion) a priori to help choose samples. In this sense, it is
similar to the APF and likelihood particle filter. For more
discussions and experimental results of this gradient-based
SIR filter, see [88].

M.6 EKF as Proposal Distribution

The proposal distribution q(xn|xn−1,yn) can be as-
sumed to be a parameterized mixture distribution (e.g.
Gaussian mixture), with finite-dimensional parameters de-
termined by xn−1 and yn. If the optimal proposal distri-
bution is nonlinear, it can be approximated by an EKF,
as shown in [144], [83]. In this case, the state-space model
reduces to a nonlinear additive Gaussian model:

xn+1 = f(xn) + dn, (135a)
yn = g(xn) + vn, (135b)

68Similar idea was also used in [120] for training neural networks.

where dn and vn are assumed to be Gaussian distributed.
Following [143], [144], we denote the log-likelihood of
p(xn|xn−1,yn) as l(x) = log p(xn|xn−1,yn), and

l′(x) =
∂l(x)
∂x

∣∣∣
x=xn

, l′′(x) =
∂l2(x)
∂x∂xT

∣∣∣
x=xn

,

thus l(xn) can be approximated by the second-order Taylor
series:

l(xn) ≈ l(x) + l′(x)(xn − x) +
1
2
(xn − x)T l′′(x)(xn − x).

Under the assumption that l(xn) being concave, the pro-
posal distribution can be shown to have a Gaussian distri-
bution

q(xn|xn−1,yn) ∼ N (μ(x) + x,Σ(x)), (136)

where the covariance and mean are given by Σ(x) =
−l′′(x)−1 and μ(x) = Σ(x)l′(x), respectively; when
p(xn|xn−1,yn) is unimodal, it reduces to the zero mean
μ(x) = 0.

M.7 Unscented Particle Filter

In [459], [474], the unscented Kalman filter (UKF) was
used to approximate the proposal distribution of the par-
ticle filter, which results in the so-called unscented particle
filter (UPF). The advantage of UKF over EKF to approx-
imate the proposal distribution lies in the fact that UKF
can better handle the heavy-tailed distributions thus more
tailored for non-Gaussian scenarios. In fact, UPF has been
successfully applied in object tracking [398], financial time
series modeling, robot navigation. Detailed implementa-
tion of UPF is referred to [459], [474]. EKF proposal and
UPF both use Gaussian approximation of proposal, but
UKF produces more accurate estimate than EKF and it is
derivative-free.

N. Bayesian Smoothing

As discussed in the beginning, filtering technique can
be extended to the smoothing problem,69 where the fu-
ture observations are allowed to estimate current state. In
the Bayesian/particle filtering framework, the task is to es-
timate the posterior density p(xn|y0:n+τ ). In particular,
three kinds of smoothing are discussed in the below.

N.1 Fixed-point smoothing

Fixed-point smoothing is concerned with achieving
smoothed estimate of state xn at a fixed point n, i.e. with
obtaining x̂n|n+τ for fixed n and all τ ≥ 1. In linear case,
the fixed-point smoothing problem is a Kalman filtering
problem in disguise and therefore able to be solved by di-
rect use of Kalman filter techniques [12]. Suppose the index
of the fixed point is m at time step n (m ≤ n), we want
to estimate the posterior p(xm|y0:n). By forward filtering

69The multiple-step ahead prediction was discussed in [144], [443].
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forward sampling, at time n we know the posterior distri-
bution P (x0:n|y0:n), by marginalization, we can obtain

P (xm|y0:n) ≈
Np∑
i=1

W̃ (i)
n δ(xm − x(i)

m ),

namely, we use current important weights to replace the
previous values.

In the simplest case where only one-step backward
smoothing (i.e. τ = 1) is considered, it reduces to

P (xn−1|y0:n) ≈
Np∑
i=1

W̃ (i)
n δ(xn−1 − x(i)

n−1),

the justification for this approximation is to assume the
important weights W̃ (i)

n are more accurate than W̃ (i)
m (and

W̃
(i)
n−1), since they are calculated based on more informa-

tion.
If the fixed point is the current time step (i.e. τ = 0),

we can also smooth the estimate by sampling the state tra-
jectory history [162]: x(i)

n ∼ p(xn|X(i)
n−1) where X

(i)
n−1 =

{x(n−τ)
n , · · · ,x(i)

n−1} (1 ≤ τ ≤ n). Namely, the current
particles are sampled from a τ -length state history, and
consequently the memory requirement is τNp. The new
state history X

(i)
n is generated by simply augmenting the

f(x(i)
n−1,dn−1) to X

(i)
n−1 and discard the least recent one.

This procedure certainly is more computationally demand-
ing.

N.2 Fixed-lag smoothing

Fixed-lag smoothing is concerned with on-line smoothing
of data where there is a fixed delay τ between state recep-
tion and the availability of its estimate, i.e. with obtaining
x̂n|n+τ for all n and fixed τ .

Similar to the fixed-point smoothing, at the step n +
τ , the particle filter yields the approximated distribution
P̂ (x0:n+τ |y0:n+τ )

P̂ (x0:n+τ |y0:n+τ ) =
Np∑
i=1

W̃
(i)
n+τδ(x0:n+τ − x(i)

0:n+τ ). (137)

By marginalization, we can obtain the approximated fixed-
lag smoothing distribution

P̂ (xn|y0:n+τ ) ≈
Np∑
i=1

W̃
(i)
n+τδ(xn − x(i)

n ). (138)

Hence in order to get the smoothing density, we need to re-
store the trajectories of states and draw the samples from
respective distribution. Ideally this will give a better re-
sult, in practice however, this is not true. First, when τ
is big, the approximations (137) and (138) are poor [144];
second, resampling brings inaccuracy to the approximation
especially in SIR where resampling is performed in every
iteration. To overcome these problems, Clapp and Godsill

[98] proposed an alternative way. Using Bayes rule, the
fixed-lag smoothing density is factorized by

p(x0:n|y0:n+τ ) =
p(yn+τ |y0:n+τ−1,x0:n)p(x0:n|y0:n+τ−1)

p(yn+τ |y0:n+τ−1)

=
p(yn+τ |y0:n+τ−1,xn)
p(yn+τ |y0:n+τ−1)

×
p(xn|yn:n+τ−1,x0:n−1)p(x0:n−1|y0:n+τ−1).

Using a factorized proposal distribution

q(x0:n|y0:n+τ ) = q(x0|y0:τ )
n∏

t=1

q(xt|x0:t−1,y0:t+τ )

= q(xn|x0:n−1,y0:n+τ )q(x0:n−1|y0:n+τ−1),

the unnormalized importance weights can be updated by

W (x0:n+τ ) = W (x0:n+τ−1)×
p(yn+τ |yn−1:n+τ−1,x0:n)p(xn|yn:n+τ−1,x0:n−1)

q(xn|x0:n−1,y0:n+τ )p(yn+τ |y0:n+τ−1)
.

Generally, p(yn+τ |yn−1:n+τ−1,x0:n) is not evaluated, but
for sufficiently large τ , it can be approximately viewed as a
constant for all x0:n [98]. The fixed-lag smoothing is a for-
ward sampling backward chaining procedure. However, the
smoothing density p(xn|yn+τ ) can be also obtained using
the filtered density instead of fixed-lag smoothing technique
by using the forward filtering backward sampling technique
[71], [143], [98], [466]. Besides, the joint estimation problem
(with state and uncertain parameter) can be also tackled
using fixed-lag smoothing technique, reader is referred to
[98] for details.

N.3 Fixed-interval smoothing

Fixed-interval smoothing is concerned with the smooth-
ing of a finite set of data, i.e. with obtaining x̂n|M for
fixed M and all n in the interval 0 ≤ n ≤ M . Fixed-
interval smoothing is usually discussed in an off-line esti-
mation framework. But for short interval, the sequential
estimation is still possible with the increasing computer
power nowadays.

Firstly in the forward step, we run a particle filter to
obtain p(xn|y0:n) for all 0 < n < M . Secondly in the back-
ward step, the smoothing process is recursively updated
by

p(xn:M |y0:M ) = p(xn+1:M |y0:M )p(xn|xn+1:M ,y0:M )
= p(xn+1:M |y1:M )p(xn|xn+1,y0:n)

= p(xn+1:M |y1:M )
p(xn+1|xn,y0:n)p(xn|y0:n)

p(xn+1|y0:n)
(139)

where the second step uses the assumption of first-order
Markov dynamics. In (139), p(xn:M |y0:M ) denotes cur-
rent smoothed estimate, p(xn+1:M |y0:M ) denotes future
smoothed estimate, p(xn|y0:n) is the current filtered es-
timate, p(xn+1|xn,y0:n)

p(xn+1|y0:n) is the incremental ratio of modified
dynamics.
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Similar to the fixed-lag smoothing, at time step n, we
can have the following distribution

P̂ (x0:M |y0:M ) =
Np∑
i=1

W̃
(i)
M δ(x0:M − x(i)

0:M ).

By marginalizing the above distribution, we can further
obtain p̂(xn|y0:M ) for any 0 ≤ n ≤ M . In practice, this is
infeasible because of the weight degeneracy problem [144]:
At time M , the state trajectories {x(i)

0:M}Np

i=1 have been pos-
sibly resampled many times (M−1 times in the worst case),
hence there are only a few distinct trajectories at times n
for n�M . Doucet, Godsill and Andrieu proposed [144] a
new fixed-interval smoothing algorithm as follows. Rewrit-
ing p(xn|y0:M ) via [258]

p(xn|y0:M ) = p(xn|y0:n)
∫
p(xn+1|y0:M )p(xn+1|xn)

p(xn+1|y0:n)
dxn+1,

the smoothing density p(xn|y0:M ) is approximated by

p̂(xn|y0:M ) =
Np∑
i=1

W̃
(i)
n|Mδ(xn − x(i)

n ), (140)

where p̂(xn|y0:M ) is assumed to have the same support (de-
scribed by the particles) as the filtering density p̂(xn|y0:n)
but with different important weights. The normalized im-
portance weights W̃ (i)

n|M are calculated as follows:

• Initialization: At time n = M , set W̃ (i)
n|M = W̃

(i)
M .

• Evaluation: For n = M − 1, · · · , 0,

W̃
(i)
n|M =

Np∑
j=1

W̃
(i)
n+1|M

W̃
(i)
n p(x(j)

n+1|x(i)
n )∑Np

i=1 W̃
(i)
n p(x(j)

n+1|x(i)
n )

(141)

The derivation of (141) is referred to [144]. The algo-
rithmic complexity is O(MN2

p ) with memory requirement
O(MNp). Some other work on fixed-interval smoothing us-
ing rejection particle filters are found in [259], [438], [222].

O. Likelihood Estimate

Particle filters can be also used to estimate the likeli-
hood [259], [144], [223], wherever the maximum-likelihood
estimation principle can be applied.70

Suppose we want to estimate the likelihood of the data

p(y0:n) =
∫
W (x0:n)q(x0:n|y0:n)dx0:n, (142)

as discussed earlier, if the proposal distribution is transition
prior, the conditional likelihood (observation density) will
be given by

p̂(yn|xn) =
1
Np

Np∑
i=1

W (i)
n (xn),

70In fact, the Monte Carlo EM (MCEM), or quasi Monte Carlo EM
algorithms can be developed within this framework [389], however,
further discussion is beyond the scope of current paper.

which can be used to approximate (142) to get P̂ (yn) =
1

Np

∑Np

i=1W
(i)
n . However, this is an a priori likelihood

P̂n|n−1(yn) which uses the predicted estimate x̂n|n−1 in-
stead of the filtered estimate x̂n|n; on the other hand, the
resampling step makes the a posteriori likelihood estimate
impossible. Alternatively, we can use another method for
estimating likelihood [144]. By factorization of (142), we
obtain

p(y0:n) = p(y0)
n∏

t=1

p(yt|y0:t−1), (143)

where

p(yn|y0:n−1) =
∫
p(yn|xn)p(xn|y0:n−1)dxn

=
∫
p(yn|xn−1)p(xn−1|y0:n−1)dxn−1.

where the first equality uses the predicted estimate (at time
step n) based on p(xn−1|y0:n−1), and second equality uses
the filtered estimate at time step n − 1. The likelihood
based these estimates are given respectively by

P̂ (yn|y0:n−1) =
Np∑
i=1

W̃
(i)
n−1p(yn|x(i)

n ), (144a)

P̂ (yn|y0:n−1) =
Np∑
i=1

W̃
(i)
n−1p(yn|x(i)

n−1). (144b)

A detailed discussion on the likelihood estimate using
different particle filters and different sampling schemes is
referred to [443].

P. Theoretical and Practical Issues

P.1 Convergence and Asymptotic Results

As discussed earlier, although the convergence71 of
Monte Carlo approximation is quite clear (e.g. [180]), the
convergence behavior of sequential Monte Carlo method
or particle filter is different and deserves special attention.
Many authors have explored this issue from different per-
spectives, but most results are available in the probability
literature. In particular, it has been theoretically shown
that under some mild conditions the particle methods con-
verge to the solution of the Zakai equation [103], [107]
and Kushner-Stratonovich equation [104]. Crisan [106] pre-
sented a rigorous mathematical treatment of convergence
of particle filters and gave the sufficient and necessary con-
ditions for the a.s. convergence of particle filter to the true
posterior. A review of convergence results on particle filter-
ing methods has been recently given by Crisan and Doucet
from practical point of view [106], [102]. We summarize
the main results from their survey paper.

Almost Sure Convergence: If the the transition ker-
nel K(xt|xt−1) is Feller,72, importance weights are up-
per bounded, and the likelihood function is continuous,

71A brief introduction of different concepts of convergence is given
in Appendix B.

72A kernel is Feller means that for any continuous bounded function
φ, Kφ is also a continuous bounded function.
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bounded, and strictly positive, then with Np → ∞ the
filtered density given by particle filter converges asymptot-
ically to the true posterior.

Mean Square Convergence: If likelihood function is
bounded, for any bounded function φ ∈ R

Nx , then for t ≥
0, there exists a Ct|t independent of Np s.t.

E

[(
(P̂t|t, φ)− (Pt|t, φ)

)2
]
≤ Ct|t

‖φ‖2
Np

, (145)

where (P̂t|t, φ) =
∫
φ(x0:t)P (dx0:t|y0:t), ‖φ‖ = sup

x0:t

|φ(x0:t)|.
It should be cautioned that, it seems at the first sight that
particle filtering method beats the curse of dimensional-
ity,73 as the rate of convergence, 1/Np, is independent on
the state dimension Nx. This is nevertheless not true be-
cause in order to assure (145) holds, the number of par-
ticles Np needs to increase over the time since it depends
on Ct|t, a term that further relies on Nx. As discussed in
[102], in order to assure the uniform convergence, both Ct|t
and the approximation error accumulates over the time.74

This phenomenon was actually observed in practice and ex-
emplified in [359], [116], [361]. Daum and Huang particu-
larly gave a critical comment on this problem and presented
some empirical formula for complexity estimate. Besides,
the uniform convergence and stability issues were also dis-
cussed in [294].

In a high-dimensional space (order of tens or higher),
particle filters still suffer the problem of curse of dimen-
sionality. Empirically, we can estimate the requirement of
the number of particles, although this bound in practice is
loose and usually data/problem dependent. Suppose the
minimum number is determined by the effective volume
(variance) of the search space (proposal) against the tar-
get space (posterior). If the proposal and posterior are
uniform in two Nx-dimensional hyperspheres with radii r
and R (R > r) respectively,75 the effective particle number
Neff is approximately measured by the the volume ratio
in the proposal space against posterior space, namely

Neff ≈ Np × (r/R)Nx

when the ratio is low (r � R), the effective number de-
creases exponentially as Nx increases; on the other hand,
if we want to keep the effective number as a constant, we
need to increase Np exponentially as Nx increases.

An important asymptotic result is the error bound of the
filter. According to the Cramér-Rao theorem, the expected
square error of an estimate is generally given by

E(x) = E[(x− x̂)2]

≥
[
1 + dE[x̂−x]

dx

]2
J(x)

+ (E[x̂− x])2, (146)

73This term was first used by Bellman in 1961, which refers to the
exponential growth of hypervolume as a function of dimensionality.

74Unfortunately, most convergence results did not specify very
clearly and might produce confusion for the reader. We must caution
that any claim of an established theoretical result should not violate
the underlying assumption, e.g. smoothness, regularity, exponential
forgetting; any unsatisfied condition will invalidate the claim.

75More generalized discussion for hyperellipses is given in [94].

where J(x) is the Fisher information matrix defined by

J(x) = E

[( ∂

∂x
log p(x,y)

)( ∂

∂x
log p(x,y)

)T
]
.

If the estimate is unbiased (namely E[x̂ − x] = 0), then
E(x) is equal to the variance, and (146) reduces to

E(x) ≥ J−1(x) (147)

and the estimate satisfying (147) is called Fisher efficient.
Kalman filter is Fisher-efficient under LQG circumstance in
which the state-error covariance matrix plays a similar role
as the inverse Fisher information matrix.76 Many efforts
were also devoted to studying the error bounds of non-
linear filtering [504], [45], [138], [188], [407], [451] (see also
[410] for a review and unified treatment, and the references
therein). Naturally, the issue is also interesting within the
particle filtering framework. Recently, it has been estab-
lished in [36] that under some regularity conditions, the
particle filters also satisfy the Cramér-Rao bound77

E[x̃nx̃T
n ] ≥ Pn (148)

E[‖x̃n‖2] ≥ tr(Pn) (149)

where x̃n = xn − x̂n|n is the one-step ahead prediction
error, and

Pn+1 = Fn(P−1
n + R−1

n )−1FT
n + GnQnG−1

n ,

P−1
0 = E

[
− ∂

∂x0x0
log p(x0)

]
,

Fn = E

[ ∂

∂xn
f(xn,dn)

]
,

R−1
n = E

[
− ∂

∂xnxn
log p(yn|xn)

]
,

GT
n = E

[ ∂

∂dn
f(xn,dn)

]
,

Q−1
n = E

[
− ∂

∂dndn
log p(dn)

]
.

The upper bound is time-varying and can be recursively
updated by replacing the expectation with Monte Carlo
average. For derivation details and discussions, see [35],
[36]; for more general unified treatment (filtering, predic-
tion, smoothing) and extended situations, see [410]. A spe-
cific Cramér-Rao bound in multi-target tracking scenario
was also given in [218].

P.2 Bias-Variance

Let’s first consider the exact Monte Carlo sampling. The
true and Monte Carlo state-error covariance matrices are
defined by

Σ = Ep[(x− μ)(x− μ)T ],
Σμ̂ = Ep[(x− μ̂)(x− μ̂)T ],

76For the information filter, the information matrix is equivalent to
the J(x).

77In contrast to the conventional Cramér-Rao bound for determin-
istic parameters, it is not required that the estimated state x̂ be
unbiased, as many authors have suggested [462], [410].
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TABLE VIII

A List of Statistics Notations.

notation definition comment

f(x) N/A nonlinear function in R
Nx

f̂Np
(x) (58) exact MC estimate

f̂(x) (60) weighted estimate of IS

Ep[f]
∫

p(x)f(x)dx true mean

Σf ≡ Varp[f] Ep[(f − Ep[f])2] true variance

Σ̂
f̂

(151) sample variance

Eq [f]
∫

q(x)f(x)dx mean w.r.t. proposal distribution q

Ep[f̂Np
]

∫
p(x)f̂Np

(x)dx mean of f̂Np
, equal to Ep[f]

Varp[f̂Np
] Ep[(f̂Np

− Ep[f̂Np
])2] variance of exact MC estimate

Eq [f̂]
∫

q(x)f̂(x)dx mean of f̂ w.r.t. q, equal to Eq [f]

Varq [f̂] Eq [(f̂ − Eq [f̂])2] variance of weighted sampler w.r.t q

VarMC[f̂Np
] EMC[(f − Ep[f̂Np

])2] w.r.t. Monte Carlo runs

VarMC[f̂] EMC[(f̂ − Eq [f̂])2] w.r.t. Monte Carlo runs

where μ = Ep[x], μ̂ = 1
Np

Np∑
i=1

x(i) where {x(i)} are i.i.d.

samples drawn from true pdf p(x). It can be proved that
[49]

Σμ̂ = (1 +
1
Np

)Σ

= Σ + Varp[μ̂], (150)

where the second line follows the fact that Ep[(μ− μ̂)(μ−
μ̂)T ] = 1

Np
Σ (see Appendix A). Hence, the uncertainty

from the exact Monte Carlo sampling part is the order of
N−1

p , for example, Np = 20 adds an extra 5% to the true
variance. In practice, we usually calculate the sample vari-
ance in place of true variance, for Monte Carlo simulation,
we have

Σ̂μ̂ =
1

Np − 1

Np∑
i=1

(μ̂− x(i))(μ̂− x(i))T . (151)

It should be cautioned that Σ̂μ̂ is an unbiased estimate of
Σ instead of Σμ̂, the unbiased estimate of Σμ̂ is given by
(1 +N−1

p )Σ̂μ̂.
Second, we particularly consider the importance sam-

pling where the i.i.d. samples are drawn from the pro-
posal distribution. Recalling some notations defined ear-
lier (for the reader’s convenience, they are summarized in
Table VIII, a geometrical interpretation of Monte Carlo es-
timates is shown in Fig. 12), it must be cautioned again
that although f̂Np

is unbiased (i.e. Ep[f(x)] = Ep[f̂Np
(x)]),

however, f̂ is biased (i.e. Ep[f(x)] �= Eq[f̂(x)]). In prac-
tice, with moderate sample size, it was shown in [256] that
the bias is not negligible.78 The bias accounts for the fol-
lowing sources: limited simulated samples, limited com-
puting power and limited memory (calculation of posterior

78An improved Bayesian bootstrap method was proposed for re-
ducing the bias of the variance estimator, which is asymptotically
equivalent to the Bayesian bootstrap method but has better finite
sample properties [256].
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min {KL( q||p )}

Fig. 12. A geometrical interpretation of Monte Carlo estimate statis-

tics. The points A, B, C, D represent Ep[f ], Eq [f̂ ], f̂ , f̂Np , respec-

tively. |AB| = |Ep[f ]−Eq [f̂ ]| represents the bias, |AC| = |Ep[f ]− f̂ |,
p, q represent two probability densities in the convex set, p is target
density, q is the proposal distribution. Left: when q 	= p, the es-
timate is biased, the variance Eq [‖AC‖2] varies. Right: when q is
close to p, or KL(q‖p) is small, bias vanishes (A approaches B) and
C approaches D, the variance decrease with increasing Np; when A
overlaps B, ‖AC‖2 represents the total error.

p(x0:n|y0:n) needs storing the data up to n), not to mention
the sampling inaccuracy as well as the existence of noise.

In the Monte Carlo filtering context, suppose x̂n is an
estimate given by the particle filter, by writing

xn − x̂n = (xn − Eq[x̂n|y0:n]) + (Eq[x̂n|y0:n]− x̂n),

we may calculate the expected gross error

E = Eq

[
tr
(
(xn − x̂n)(xn − x̂n)T

)∣∣∣y0:n

]
= tr

(
Eq

[
(xn − x̂n)(xn − x̂n)T

∣∣∣y0:n

])
= tr

(
Eq

[
(x̂n − Eq[x̂n|y0:n])(x̂n − Eq[x̂n|y0:n])T

∣∣∣y0:n

]
︸ ︷︷ ︸

Covariance

+ (Eq[x̂n|y0:n]− xn)(Eq[x̂n|y0:n]− xn)T︸ ︷︷ ︸
Bias2

)
(152)

where

Eq[xn|y0:n] =
∫

xnW (xn)q(xn|y0:n)dxn,

and W (xn) = p(xn|y0:n)/q(xn|y0:n). If p = q, the bias
vanishes to zero at a rate O(Np), then E only accounts for
variance, and the state-error covariance is the true covari-
ance. If p �= q, E generally consists of both bias and vari-
ance where the bias is a nonzero constant. Hence, equation
(152) represents the bias-(co)variance dilemma.79 When
the loss E is fixed, the bias and variance is a trade-off.80

As suggested in [322], generally, we can define the bias and
variance of importance sampling or MCMC estimate as:

Bias = Eq[f̂(x)]− Ep[f(x)],

Var = Eq

[(
f̂(x)− Eq[f̂(x)]

)2]
,

79It is also called the trade-off between approximation error and
estimation error.

80In a very loose sense, Kalman filter can be imagined as a special
particle filter with only one “perfect” particle propagation, in which
the unique sample characterizes the sufficient information of the pro-
totype data from the distribution. The variance estimate of Kalman
filter or EKF is small, whereas its bias (innovation error) is relatively
larger than that of particle filter.
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where f̂(x) is given by the weighted importance sampling.
The quality of approximation is measured by a loss function
E , as decomposed by

E = Eq

[(
f̂(x)− Ep[f(x)]

)2]
= Bias2 + Var.

Example 1: Consider two bounded functions

f1(x) =
{
Cx, if 0 ≤ x ≤ 1
0, otherwise ,

f2(x) =
{
Cx3, if 0 ≤ x ≤ 1
0, otherwise ,

where the constant C = 1. The true pdf p(x) is a Cauchy
density and the proposal distribution q(x) is a Gaussian
pdf (see the illustration in Fig. 14), as follows

p(x) =
1

πσ(1 + x2/σ2)
,

q(x) =
1√
2πσ

exp(−x2/2σ2),

both with variance σ2 = 1. Hence the means of f1(x) and
f2(x) w.r.t. two distributions are calculated as

Ep[f1(x)] =
∫ 1

0

x

π(1 + x2)
dx =

ln 2
2π

,

Ep[f2(x)] =
∫ 1

0

x3

π(1 + x2)
dx =

(1− ln 2)
2π

,

Eq[f1(x)] =
∫ 1

0

1√
2π
x exp(−x2/2)dx =

1√
8π
− 1√

8πe
,

Eq[f2(x)] =
∫ 1

0

1√
2π
x3 exp(−x2/2)dx =

√
2
π
−
√

9
2πe

.

We draw Monte Carlo samples from two distributions (see
Appendix C for implementation) with Np varying from 100
to 10,000. The analytic calculation results are compared
with the ensemble average over 100 independent runs of
Monte Carlo simulation with different initial random seeds.
The experimental results are partially summarized in Table
IX and shown in Fig. 13.

Remarks (on experimental results):
• As observed in Fig. 13, as Np increases, the estimates

of both f̂Np
and f̂ become more accurate; and the

variances decrease at a rate O(N−1
p ).

• As seen from Table IX, f̂ is equal to f̂Np
(mean value

based on 100 Monte Carlo runs), but their variances
are different (see right plot of Fig. 13).

• Noting in experiments we use C = 1, but it can be
expected that when C > 1 (C < 1), the variance in-
creases (decreases) by a ratio C2.

To the end of the discussion of bias-variance, we summa-
rize the popular variance reduction techniques as follows:

• Data augmentation [445], [446].

TABLE IX

Monte Carlo Experimental Results of Example 1. (The

results are averaged on 100 independent runs using 10,000

samples with different random seeds. The bold font

indicates the statistics are experimentally measured,

whereas the others are analytically calculated.)

statistics f1(x) f2(x)

Ep[f] 0.1103 0.0488

Ep[f̂Np
] 0.1103 0.0488

Eq [f] 0.1570 0.0720

f̂Np
(x) 0.1103 0.0489

f̂(x) 0.1103 0.0489

Σf ≡ Varp[f] 0.0561 0.0235

Σ̂
f̂Np

0.0562 0.0236

Σ̂
f̂

0.0646 0.0329

Varp[f̂Np
] 0.0561 × 10−4 0.0235 × 10−4

Varq [f] 0.0748 0.0336

VarMC[f̂Np
] (0.0012)2 (0.0009)2

VarMC[f̂] (0.0014)2 (0.0012)2

N̂′
eff 3755 6124

Neff /Np 2208/10000 (22.8%)

N̂eff /Np 6742/10000 (67.4%)

NKL 4.0431

Var[NKL] 0.0161

• Rao-Blackwellization [74], [304], [315], [144], [145],
[119], [458], [338], [23].

• Stratified sampling [376], [69].
• Importance sampling [199], slicing sampling [351].
• Survey sampling [199], [162].
• Partition sampling [313].
• Antithetic variate [200], [201], [442] and control variate

[5], [201] (see Appendix D).
• Group averaging [267].
• Moment matching method [52].
• jitter and prior boosting [193].
• Kernel smoothing [222], [345].
• QMC and lattice method [413], [299], [368], [361],

[295], [296].

P.3 Robustness

Robustness (both algorithmic robustness and numerical
robustness) issue is important for the discrete-time filter-
ing. In many practical scenarios, the filter might encounter
the possibility of divergence where the algorithmic assump-
tion is violated or the numerical problem is encountered
(e.g., ill-conditioned matrix factorization). In retrospect,
many authors have explored this issue from different per-
spectives, e.g. robust KF [80], robust EKF [80], [158], min-
imax filter [273], or hybrid Kalman/minimax filter. Many
useful rules of thumb for improving robustness were dis-
cussed in [80]. Here we focus our attention on the particle
filters.

There are two fundamental problems concerning the ro-
bustness in particle filters. First, when there is an outlier,
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Fig. 13. Monte Carlo experimental results of Example 1. The first row shows the results of f1(x) and the second row for f2(x). Top Left:

Monte Carlo Mean of f̂ compared to the true mean Ep[f ] (solid line). Top Right: Monte Carlo varianceof f̂ within 100 independent runs.

Bottom Left: Error bar of the sample variance of Σ̂f̂ (solid line) compared to the sample variance Σ̂f̂Np
(dotted line). The dots are given

by the means of 100 trial results of sample variance, the bars denote their standard deviations. Bottom Right: Ordered − log10 W̃ (x(i))

(left ordinate) and W (x(i)) (right ordinate; both in ascending order of abscissa) and effective sample size estimates (in one trial).

the importance weights will be very unevenly distributed
and it usually requires a large number of Np to assure the
accuracy of empirical density approximation. Hence the
measurement density p(yn|xn) is supposed to insensitive
to the xn. Second, the empirical distribution from the
samples often approximates poorly for the long-tailed dis-
tribution, either for proposal distribution or for posterior.
This is imaginable because the probability sampling from
the tail part of distribution is very low, and resampling
somehow makes this problem more severe. Many results
have shown that even the mixture distribution can not well
describe the tail behavior of the target distribution. Hence,
outliers will possibly cause the divergence of filter or pro-
duce a very bad performance.

Recently, it has been shown in [162], [70] that the sample
size estimate given by (89) is not robust, the approximated
expression might be infinitely wrong for certain f(x), p(x)
and q(x). It can be derived that

Varq[f̂ ] =
1
Np

Varq[f(x)W (x)]

=
1
Np

Eq

[(
f(x)− Ep[f(x)]

)2

W 2(x)
]

+O(N−2
p ),

where W (x) = p(x)/q(x). For a large Np, the true effective
sample size is given as [162], [70]

N ′
eff =

Varp[f ]

Varq[f̂ ]

≈ NpEp[(f(x)− Ep[f(x)])2]

Eq

[
(f(x)− Ep[f(x)])2W 2(x)

] . (153)
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Fig. 14. The ratio curve of important ratio function W (x) of Example

1. Solid line: true W (x) =
√

2/π
exp(x2/2)

1+x2 ; dotted line: bounded

curve specified by C.

Fearnhead gave a simple example and illustrated that, the
estimate expression (89) of Neff (derived by using first
two moments of W (x) and f(x)) can be very poor (for two
simple cases, one leads to N ′

eff/Neff → 0 and the other
N ′

eff/Neff → ∞). In [70], a more robust effective sample
size estimate was proposed

N̂ ′
eff =

Np

Np∑
i=1

(f(x(i))− f̂(x))2W (x(i))

Np∑
i=1

(f(x(i))− f̂(x))2W 2(x(i))

. (154)

Another critical issue is the estimate of the important
weights within the IS, SIS, SIR framework. Note that
W (x) = p(x)/q(x) is a function81 instead of a point esti-

81More precisely, W (x) is a ratio function between two pdf’s. Es-
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mate. Being a function usually implies certain prior knowl-
edge, e.g. smoothness, non-negativeness, finite support.
However, when we use a finite number of random (uneven)
samples to represent this function, the inaccuracy (both
bias and variance) is significant. This problem becomes
more severe if the outliers come in. Experimentally, we
found that in a simple problem (Example 1), the distri-
bution of important weights are very peaked, even with a
very large Np (e.g. 10,000 to 100,000). Most importantly,
as we can see in Fig. 14, the ratio curve (for Example 1)
W (x) =

√
2/π exp(x2/2)

1+x2 is unbounded.82 When x is bigger
than 3 (namely 3σ2 where σ2 = 1; for Gaussian it accounts
for 99% support of the distribution), the ratio becomes
very large.83 Imaginably, this phenomenon is the intrin-
sic reason of weight unevenness when outliers come in, no
matter in sequential or non-sequential framework. To alle-
viate this problem, a natural solution is simply to bound
the important ratio function:

W (ξ) =
{
p(ξ)/q(ξ) 0 ≤ ξ < C
p(C)/q(C) ξ ≥ C ,

or

W (ξ) = ϕ(p(ξ)/q(ξ)),

where ϕ(·) is a bounded function, e.g. piecewise linear
function or scaled sigmoid function. The constant C here
plays a similar role of C in the rejection sampling discussed
in Section V-G.2, both of which determine the acceptance
rate of the samples. The choices of the bound C or scal-
ing parameters also requires strong prior knowledge of the
problem (e.g. the support of target density). The use of
bounded important weights essentially implies that we only
use the reliable samples, ignoring the samples with very big
weights. The reason is intuitively justified by the following:
Since W (x) is an ratio function between two pdf’s, in prac-
tice, the support of these pdf’s are often limited or com-
pact, which means the distributions are sparse (esp. when
Nx is high). In order to handle the outliers and improve
the robustness, we only use the samples from the reliable
support based on prior knowledge and discard the others
as outliers, though we also encounter the risk of neglecting
the tail behavior of target density. This is tantamount to
specifying a upper bound for the important ratio function
W (x).

Another improved strategy is use kernel smoothing tech-
nique (Section VI-G) to smooth the importance ratio func-
tion, namely K(W (ξ)), where K(·) can be a Gaussian ker-
nel. The disadvantage of this strategy is the increase of
computational cost, which brings inefficiency in on-line pro-
cessing.

timating the ratio of two pdf’s given limited observations is stochas-
tically ill-posed [463] (chap. 7). This amounts to solve the inte-
gral equation

∫ x
−∞ W (x)dQ(x) = P (x). Given Np simulated sam-

ples {x(i)}, it turns out to solve an approximated operator equation:
ANpW =

∫ x
0 W (x)dQNp(x).

82That is the reason we are recommended to choose a proposal with
heavy tail.

83This can be arbitrary bad if W (x) is not upper bounded.
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Fig. 15. An illustration of some heavy tailed densities and robust den-
sity model. (a) Cauchy density p(ξ) = 1

πσ(1+ξ2/σ2)
; (b) Laplace den-

sity p(ξ) = 1
2σ

exp(−|ξ|/σ); (c) Hyperbolic cosine p(ξ) = 1
π cosh(ξ)

;

(d) Huber’s robust density with ε = 0.2 and c = 0.8616. The dashed
line is zero-mean Gaussian density for comparison, all of densities
have unity variances σ2 = 1.

Robust issues can be addressed in the robust statis-
tics framework [214], [255]. Here we are particularly in-
terested in the robust proposal or likelihood model. As
discussed earlier, proposal distribution used in importance
sampler is preferred to be a heavy-tailed density. In the
Bayesian perspective, we know that the proposal distribu-
tion q(x|y) is assumed to approximate the posterior p(x|y)
and q(x|y) ∝ p(y|x)p(x). If the likelihood p(y|x) is upper-
bounded, say p(y|x) ≤ C, then the prior can be a good
candidate for proposal distribution since q(x|y) ∝ Cp(x)
and it is also easy to implement. This fact motivates us
to come up with a robust loss function or robust likeli-
hood density p(y|x),84 which assumes an ε-contaminated
mixture density. In spirit of robustness, the following like-
lihood model is used

p(ξ) =

⎧⎨
⎩

1−ε√
2πσ

exp
{
− ξ2

2σ2

}
|ξ| < cσ

1−ε√
2πσ

exp
{

c2

2σ2 − c|ξ|
σ

}
|ξ| > cσ

(155)

where 0 < ε < 1, and c is determined from the normaliza-
tion condition [463]

1 =
1− ε√
2πσ

(∫ cσ

−cσ

exp(−ξ2/2)dξ +
2
c

exp(−c2/2)
)
.

The idea here is to bound the error and discard the in-
fluence of outliers;85 it was also suggested by West [480],
in which he developed a robust sequential approximate
Bayesian estimation for some special non-Gaussian distri-
bution families. In Fig. 15, some heavy-tailed densities

84The relationship between loss function and likelihood is estab-
lished by E = − log p(y|x).

85The idea of “local search” in prediction [456] is close in spirit to
this.
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and Huber’s robust density are illustrated. Those den-
sity models are more insensitive to the outliers because
of their bounded activation function. In addition, there is
a large amount of literature on robust Bayesian analysis
(e.g. [226]) in terms of robust priors, robust likelihoods,
and robust (minimax) risks, however, extended discussion
is beyond the scope of current paper.

P.4 Adaptive Procedure

Another way to enhance robustness is the adaptive par-
ticle methods [262], [447], which allow to adjust the num-
ber of particles through the filtering process. The common
criterion is based on the likelihoods (which are equal to im-
portance weights if the proposal is transition prior) [262].
The intuition behind that is if the samples are well suited
to the real posterior, each individual importance weight is
large, and the variance of the importance weights is large,
which means the mismatch between proposal distribution
and true posterior is large, and we keep Np small. An-
other method proposed in [171] is based on the stochastic
bounds on the sample-based approximation quality. The
idea is to bound the error induced by the samples and se-
quentially approximate the upper bound with additional
computational overhead.

To monitor the efficiency of sampling in each step, we
propose another adaptive procedure as follows. Besides
effective sample number Neff or N ′

eff , another useful effi-
ciency measure will be W (x) = p(x)/q(x) itself. Since pro-
posal q(·) is supposed to be close to posterior p(·), the close-
ness of two probability distribution (density) is naturally
the Kullback-Leibler (KL) divergence KL(q‖p),86 which is
approximated by

KL(q‖p) = Eq

[
log

q(x)
p(x)

]
≈ 1
Np

Np∑
i=1

log
q(x(i))
p(x(i))

= − 1
Np

Np∑
i=1

log(W (x(i))) (156)

when q(·) = p(·) and W (x(i)) = 1 for all i, KL(q‖p) = 0.
From (156), we can also see that if the proposal is chosen as
transition prior, KL(q‖p) will only depend on the likelihood∑Np

i=1 log p(y|x(i)), thus the KL divergence reduces to a log-
likelihood measure; in a sequential framework, (88) can be
rewritten as

−
Np∑
i=1

logW (x(i)
n ) = −

Np∑
i=1

logW (x(i)
n−1)−

Np∑
i=1

log p(yn|x(i)
n ).

Generally, KL(q‖p) �= 0, thus (156) can be used as a mea-
sure to monitor the efficiency of proposal. Intuitively, if
KL(q‖p) is small or decreases, we can remain or decrease
the particle number Np; if KL(q‖p) is big or increases, we
can increase the Np. In order to let − log(W (x(i))) be non-
negative (since KL(q‖p) ≥ 0), we calculate the normalized

86KL divergence can be viewed as the expected log-likelihood,
where the likelihood is defined by q(·)/p(·).

weights and obtain

KL(q‖p) ≈ − 1
Np

Np∑
i=1

log(W̃ (x(i))) ≡ NKL, (157)

which achieves the minimum value Nmin
KL = log(Np) when

all W̃ (x(i)) = 1/Np. Equation (157) can be also used as a
measure of effective samples (for reampling), which leads
the following adaptive procedure:

• If NKL(n) > κ log(Np)
• resample and increase Np (i.e. prior boosting) via
• Np(n+ 1) = κNp

• Else
• Np(n+ 1) = Np, and resample if N̂eff < NT

• End
where κ > 1 is a threshold defined a priori. We can also
calculate the variance approximately by

Var[− log(W̃ )] ≈ 1
Np

Np∑
i=1

(log(W̃ (x(i))))2 − (NKL)2.

Although above adaptive procedure is sort of hindsight in a
sense that it can only boost the samples in next step based
on current NKL, while NKL(n + 1) may not be less than
κ log(Np). Our empirical results show that it is still a useful
measure for monitoring the sample efficiency. This proce-
dure is particularly useful for APF when the importance
weights are evaluated after the first stage.

P.5 Evaluation and Implementation

We should keep in mind that designing particular parti-
cle filter is problem dependent. In other words, there is no
general rule or universal good particle filter. For instance,
in certain case like robot global localization [332], we pre-
fer to keep the spread of particles wide (to prevent missing
hypothesis), but in another case like target tracking [357],
we instead prefer to keep the support of particles bounded
(to improve the accuracy). To give another example, in
many cases we want the particle filter robust to the outliers,
thereby an insensitive likelihood model is preferred, how-
ever in some case where the cost is unaffordable even the
likelihood is low, a risk-sensitive model is needed [448]. On
the other hand, one particle filter Algorithm A works well
(better than another particle filter Algorithm B) doesn’t
necessarily mean that it has the gain over Algorithm B
on the other problems - this is the spirit of no-free-lunch
(NFL) theorem! (see Appendix F) Hence it is not fair to
conclude that Algorithm A is superior to Algorithm B for
only one particular problem being tested. Justification of
the superiority of certain algorithm over the others even
on a specific problem is also unfair without Monte Carlo
simulations.

One of the merits about particle filter is the implementa-
tion complexity is O(Np), independent of the state dimen-
sion Nx. As to the evaluation criteria of Monte Carlo or
particle filters, a straightforward indicator of performance
of different algorithms can be seen from the MSE between
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Fig. 16. A Parallel particle filters structure.

the estimate and true value. Due to the Monte Carlo na-
ture, variance is an important criterion, e.g. (co)variance
of estimate and variance of importance weights, both of
which are calculated based on Monte Carlo averaging re-
sults (say 100 ∼ 1000 independent runs). This requirement
is deemed necessary when comparing different particle fil-
ters’ performance, otherwise it is unfair to say one is better
than the others or the opposite. Other evaluation issues in-
clude sampling and resampling efficiency, trade-off between
performance and computational complexity, parallel archi-
tecture, ease of implementation, etc.

The implementation issue of particle filters also deserves
special attention, though it is not formally discussed before
in the literature. As discussed earlier, for certain particle
filter, e.g. SIS filter, does allow the parallel implementation
since the simulated particles are independent, but the re-
sampling step usually makes the parallelization unfriendly
because it requests all of the information of importance
weights. Nevertheless, we do can consider parallel imple-
mentation in another perspective. Let’s consider a parallel
particle filter structure (see Fig. 16) that comprises of a
bunch of (say m) particle filters, each particle filter is run
independently with different initial conditions (e.g., differ-
ent seeds for the same random generator, different dynamic
noises), different simulated samples for the same proposal
distribution, different proposal distributions, or different
resampling schemes. The estimated result is based on the
average of the estimates from m particle filters, namely

x̂n =
m∑

k=1

ckx̂n(k)

where
m∑

k=1

ck = 1, ck can be a same constant 1/m or be dif-

ferent, which allows on-line estimation (for instance, ck can
be associated to the filtered error of the k-th particle filter).
The complexity is proportional to the number of particle
filters, but different particle filters can be implemented in
different processors or computers. The structure of par-
allel particle filters is somewhat similar to the interacting
multiple models (to be discussed in Section VII).

Finally, we would like to point out couple research re-
sources about Kalman filter, particle filters, and Monte
Carlo methods available in the Internet, an increasingly
growing database and resource open for researchers. We
deem it very important for multidisciplinary research in-
tersection, quick access of research results, open discussion,

as well as result comparison and justification.

• Kalman filters and particle filters: We particularly
refer the reader to a Kalman/particle filter Mat-
lab87 toolbox “ReBEL” (Recursive Bayesian Esti-
mation Library), developed by Rudolph van der
Merwe, which is available on line for academic purpose
http://varsha.ece.ogi.edu/rebel/index.html. The tool-
box cover many state-of-the-art Kalman/particle fil-
tering methods, including joint/dual estimation, UKF,
UPF and their extensions. Demos and data sets are
also available.

• Monte Carlo methods: A website dedicated to the
sequential Monte Carlo approaches (including soft-
wares), maintained by Nando de Freitas, is available on
line http://www.cs.ubc.ca/∼nando/smc/index.html.
A shareware package called BUGS (Bayesian infer-
ence Using Gibbs Sampling) is available on line
http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml. A
website dedicated to MCMC methods is available on
line http://www.statslab.cam.ac.uk/∼mcmc.

VII. Other Forms of Bayesian Filtering and

Inference

A. Conjugate Analysis Approach

One of important Bayesian filtering techniques is the
conjugate method, which admits the nonlinear filter-
ing/inference in a close finite-dimensional form. In par-
ticular, when prior information about the model is limited,
the prior distribution is often chosen from a parametric
family P. The families P that are closely under sampling
(that is for every prior p ∈ P, the posterior distribution
also belongs to P) are of particular interest. These fam-
ilies are called conjugate families and the associated pri-
ors are called conjugate priors, which can only belong to
the exponential family according to the Pitman-Koopman
Lemma. The main motivation for using conjugate priors is
their analytical tractability and ease of interpretation.

In [469], Vidoni introduced a finite-dimensional nonlin-
ear and non-Gaussian filtering method for exponential fam-
ily of state space models. Specifically, he defined a conju-
gate latent process, in which the likelihood belongs to an
exponentially family, initial state density is conjugate to
the likelihood, and the transition prior also remains con-
jugate in the prediction step. The update and inference
in each step follows a Bayes rule. Examples of exponen-
tial families include Gaussian, Gamma, Poisson, binomial,
inverse Gaussian, Laplace, etc.

B. Differential Geometrical Approach

Statistical inference has an intrinsic link with differential
geometry [9], [10]. A family of probability distributions
corresponds to a geometric structure as a certain manifold
with a Riemannian metric. By transforming the statistical
models to the geometric manifold, information geometry

87Matlab c© is the trade mark of MathWorks, Inc.

http://www.cs.ubc.ca/~nando/smc/index.html
http://www.statslab.cam.ac.uk/~mcmc
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provides many new insights to Bayesian filtering and infer-
ence.

In a series of papers [276]-[281], Kulhavý explored the
idea of recursive Bayesian parameter estimation using dif-
ferential geometry method. The basic idea is to approxi-
mate the true point by orthogonal projection onto a tan-
gent surface. He suggested to use an invariant metric called
conditional inaccuracy as error criterion, and formulated
the inverse problem to an approximation problem; the true
density is assumed to come from a parameterized known
family, and the filtered density is approximated by the em-
pirical density given the observations. This methodology
was also further extended to state estimation problem [279],
[225]. In particular, Iltis [225] used the disjoint basis func-
tion (similar to the Haar basis) to represent the posterior
density, the filtering density is an affine transformation of
the state vector; and the filtering problem is reduced to fit
the model density in each step to the true posterior. In-
stead of using L2 norm, the KL divergence (cross-entropy)
criterion is used to measure the approximation accuracy
with the reduced statistics.88 The algorithm works under
several assumptions [225]: (i) the transition density is ap-
proximated by a piecewise constant function; (ii) the arith-
metic mean of posterior is close to the geometric mean; and
(iii) the bias in the affine approximation is constant.

Brigo [55]-[57], and Brigo et al. [53], [54] also applied the
differential geometry approach to the finite-dimensional fil-
tering. By using the notion of projection filter [202], they
projected the infinite-dimensional Kushner-Stratonovich
equation onto a tangent space of a finite-dimensional mani-
fold of square root of probability density (from exponential
family) according to the Fisher information metric, where
the optimal filter is further sought in the tangent space.
More details can be found in the thesis of Brigo [55].

C. Interacting Multiple Models

One of important Bayesian filtering methods in literature
is the multiple models, e.g., generalized pseudo-Bayesian
(GPB) [1], interacting multiple models (IMM) [27], which
are widely used in the data association and target track-
ing [501], [28]. The intuition of using multiple models is to
tackle the multiple hypotheses problem. For instance, in
target tracking, the dynamic system can switch under dif-
ferent modes (so-called switching dynamics). A single lin-
ear/nonlinear filter thus is not sufficient to characterize the
underlying dynamics, once the filter loses the target, the
risk might be unaffordable. In order to tackle this situation,
multiple filters are run in parallel to track the target, each
one responsible to match a different target motion. The
final estimate is calculated based on the weighted results
from the multiple filters, with the weighting probability
determined by the posterior probability of each hypothe-
sis. Usually it is assumed the target switch from one mode
to another with a known transition probability (via prior
knowledge or estimatation from data), all of decisions are

88Opposed to the sufficient statistics for original posterior estima-
tion problem, reduced statistics is used for seeking an equivalent class
of posterior, thereby making the inference more flexible.

soft and fit a perfect niche for Bayesian filtering.
In the conventional IMM, the assumption is limited by

the linearity and Gaussianity which allows to use Kalman
filter or EKF for each potential hypothesis. However,
this is not realistic in the real world. For the nonlinear
non-Gaussian multiple-model problem, the estimate from
EKF’s are not accurate. Naturally, particle filtering can
be used straightforward in IMM for target tracking [326].
Applications of particle filters in multiple models were also
found in computer vision and visual tracking [43], [356].

D. Bayesian Kernel Approaches

Recently, kernel methods have attracted much attention
in machine learning [405]. We will briefly discuss some
popular Bayesian kernel methods, the reader is strongly
referred to [405] for more details. The discussions here are
applicable to parameter as well as state estimation.

From Bayesian point of view, instead of defining a prior
on the parameter space, kernel methods directly define a
prior on the functional space, choosing a kernelK is equiva-
lent to assuming a Gaussian prior on the functional, with a
normalized covariance kernel being K. On the other hand,
instead of working on raw data space, kernel learning works
in the high-dimensional feature space by a “kernel trick”.

• Gaussian Process, as a well-studied stochastic pro-
cess, is one of the popular kernel machines for regres-
sion [489]. The covariance of the random variables
{f(x1), · · · , f(x�)} are defined by a symmetric posi-
tive definite kernel K ≈ Cov{f(x1), · · · , f(x�)} with
Kij = Cov[f(xi), f(xj)], (i, j = 1, · · · , �). An on-line
algorithm for Gaussian processes for sequential regres-
sion has been developed [508], [109].

• Laplacian Process, which uses the Laplacian prior as
regularization functional, admits a sparse approxima-
tion for regression. The kernel is a Laplacian radial
basis function.

• Relevance vector machine (RVM) [454], is a kind of
kernel method to obtain sparse solutions while main-
taining the Bayesian interpretability. The basic idea
is the use the hyperparameters to determine the pri-
ors on the individual expansion coefficients. RVM also
allows on-line estimation.

E. Dynamic Bayesian Networks

In the Bayesian perspective, many dynamic state-space
models can be formalized into the so-called belief networks
or dynamic Bayesian networks (DBN) (e.g., [183], [184]),
which covers the following HMM and switching state-space
model as special cases.89 Bayesian statistics has provided a
principled approach for probabilistic inference, with incor-
poration of prior, causal, or domain knowledge. Recently,
particle filtering has been applied in DBN [262], [263], [145],
[344], a detailed treatment was also given in [162].

89A Matlab toolbox of DBN is available on line
http://www.cs.berkeley.edu/∼murphyk/Bayes/bnt.html.

http://www.cs.ubc.ca/~murphyk/Software/BNT/bnt.html
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HMM Filters. Hidden Markov models (HMM), or HMM
filters [380], [379], 90 can be viewed as a finite discrete-
valued state space model.91 Given continuous-valued ob-
servations y0:n, the HMM filters are anticipated to esti-
mate the discrete state zn (z ∈ N

Nz = {1, 2, · · · , Nz})
given the model parameters (transition probability matrix
p(zn|zn−1), emission probability matrix p(yn|zn), and ini-
tial state distribution p(z0)).92 In contrast to the Kalman
filtering, there are two popular algorithms used to train
HMM filters93

• Viterbi algorithm [470], [170]: It is used to calculate
the MAP estimate of the path through the trellis, that
is, the sequence of discrete states that maximize the
probability of the state sequence given the observa-
tions.

• Baum-Welch algorithm [379], [381]: It is used to to
calculate the probability of each discrete state at each
epoch given the entire data sequence.

Recently, many algorithms have been developed for non-
stationary HMM in Monte Carlo framework [?], [390],
[136]. Specific particle filtering algorithms were also de-
veloped for HMM [142], [162].

Switching State-Space Models. Switching state-space
model share the same form as the general state-space model
(1a)(1b) but with a jump Markov dynamics (either in
state model or measurement model), which can be lin-
ear/nonlinear and Gaussian/non-Gaussian. It might also
have mixed states consisting of both continuous and dis-
crete components. Many exact or approximate inference
methods were proposed:

• Exact inference: e.g. switching Kalman filter and
switching AR model [343] via EM algorithm.

• Monte Carlo simulation: e.g., random sampling ap-
proach [6], state estimation of jump Markov linear
systems (JMLS) using [146], [147], multi-class mixed-
state dynamics [43], [356] via EM combined with par-
ticle filtering.

• Variational approximation [236], [241], [237] and
mean-field approximation [241], [401]: variational
Kalman filter [30], variational switching state space
models [213], variational DBN [183], [184], variational
Bayesian inference [22], variational Rao-Blackwellized
particle filter [23], variational MCMC [121].

With no doubt, there is still much research space for
further exploration along these lines.

VIII. Selected Applications

Bayesian filtering and Bayesian inference have found nu-
merous applications in different areas. Due to space con-

90Kalman filter is also a HMM filter, except that the state space is
continuous-valued.

91An excellent review paper on hidden Markov processes was given
in [160].

92Note that particle filter is more computationally efficient than the
HMM. Suppose we discretize the continuous state-space for formulate
the HMM filter with Nz discrete states, the complexity of HMM filter
is O(N2

z ), as opposed to O(Nz) for particle filter.
93Some on-line algorithms were also developed for HMM [26], [429].

straint, here we can only shortly describe several represen-
tative and well-studied problems in Bayesian learning com-
munity. However, the idea rooted in these applications can
be extended to many scientific and engineering problems.

A. Target Tracking

Target tracking is one of the most important applica-
tions of sequential state estimation, which naturally admits
Kalman filters and particle filters as the main tools. Many
papers have been published with particle filtering applica-
tions in this field [193], [192], [24], [35], [48]. Bearings-only
tracking and multiple-target tracking [313], [216], [217],
[302], [362] are both well addressed. Some performance
bounds for multiple-target tracking were also given [218].
In addition, particle filters were extensively used for visual-
based human motion tracking or audio-based speaker local-
ization/tracking. In [88], we give some quantitative com-
parisons of different particle filters on several tracking prob-
lems.

B. Computer Vision and Robotics

The pioneering work applying particle filtering in com-
puter vision is due to Isard and Blake [229], [230], [228],
where they called CONDENSATION for their algorithm.
Since then, many papers have been published along this
line [231], [232], [313], [44], [43], [131], [457], [458], [94].
The motion and sensor models correspond to the state and
measurement equations, respectively.

Another important application area of particle filter in
artificial intelligence is robot navigation and localization
[447], [448], [171], [332], [288], which refers to the ability of
a robot to predict and maintain its position and orientation
within its environment.

C. Digital Communications

Particle filter and Monte Carlo methods have also found
numerous applications in digital communications, includ-
ing blind deconvolution [303], [83], demodulation [378],
channel equalization [97], estimation and coding [84], [507],
and wireless channel tracking [215], [88]. Some reviews of
Monte Carlo methods in wireless communication are also
found in [415] and [477], [85].

• In [98], a fixed-lag particle smoothing algorithm was
used for blind deconvolution and equalization.

• In [476], the delayed-pilot sampling (which uses future
observations for generating samples) was used in MKF
for detection and decoding in fading channels.

• In [499], particle filter was used as blind receiver for
orthogonal frequency-division multiplexing (OFDM)
system in frequency-selective fading channels.

• The time-varying AR(p) process was used for Rayleigh
fast-fading wireless channel tracking, where particle
filtering was applied for improving symbol detector
[269]. In [93], APF was used for semi-blind MIMO
channel tracking.

• Jump Markov linear systems (JMLR) 94 has many

94Jump Markov system is referred to the system whose parameters
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implications in communications, where particle filters
can be applied [147].

D. Speech Enhancement and Speech Recognition

The speech signal is well known for its non-Gaussianity
and non-stationarity, by accounting for the existence of
non-Gaussian noise in real life, particle filter seems a
perfect candidate tool for speech/audio enhancement and
noise cancellation. Lately, many research results have been
reported within this framework [467], [466], [169], [500]. It
was also proposed for solving the audio source separation or
(restricted and simplified version of ) cocktail party prob-
lem [4].

It would be remiss of us to overlook the important ap-
plication of HMM filters in automatic speech recognition
(ASR). Within the Bayesian framework, HMM filters have
been extensively used in speech recognition (see e.g. [380],
[379], [381], [219], [220]) and speech enhancement [159], in
which the latent states are discrete and finite, which corre-
spond to the letters in the alphabet.

E. Machine Learning

The Kalman filtering methodology has been extensively
used in neural networks training (see [206] and the ref-
erences therein), especially in the area of real-time sig-
nal processing and control. On the other hand, in recent
decade, Bayesian inference methods have been widely ap-
plied to machine learning, probabilistic inference, and neu-
ral networks. Many papers can be found in the literature
[58], [317], [120], [323], including a number of Ph.D. theses
[316], [346], [118], [333]. Applying Monte Carlo methods es-
pecially sequential Monte Carlo techniques also attracted
many researchers’ attention [120], [145], [262], [263]. In
particular in [120], a novel hybrid SIR (HySIR) algorithm
was developed for training neural networks, which used a
EKF update to move the particles towards the gradient
descent direction and consequently speech up the conver-
gence. To generalize the generic state-space model, a more
powerful learning framework will be the dynamic Bayesian
networks that admit more complex probabilistic graphical
models and include Fig. 2 as a special case. Another in-
teresting branch is the Bayesian kernel machines that are
rooted in the kernel method [405], which can tackle the
high-dimensional data and don’t suffer the curse of dimen-
sionality. How to explore the (sequential) Monte Carlo
methods to this area is still an open topic.

F. Others

It is impossible to include all of applications of Bayesian
filtering and sequential Monte Carlo estimation, the litera-
ture of them is growing exponentially nowadays. We only
list some of them available within our reach:

• fault diagnosis [119], [338]
• tempo tracking [76], speaker tracking [464], direction

of arrival (DOA) tracking [290]

evolve with time according to a finite-state Markov chain. It is also
called switching Markov dynamics or switching state space model.

• spectral estimation [148]
• positioning and navigation [35], [196]
• time series analysis [484], financial analysis [310]
• economics and econometrics [436], [437], [443]
• biology sequence alignment [306]
• beamforming [478]
• source separation [23]
• automatic control [200], [5], [6]

G. An Illustrative Example: Robot-Arm Problem

At the end of this section, we present a simple example
to illustrate the practical use of the particle filter discussed
thus far. Consider the kinematics of a two-link robot arm,
as shown in Fig. 17(a). For given the values of pair an-
gles (α1, α2), the end effector position of the robot arm is
described by the Cartesian coordinates as follows:

y1 = r1 cos(α1)− r2 cos(α1 + α2), (158a)
y2 = r1 sin(α1)− r2 sin(α1 + α2), (158b)

where r1 = 0.8, r2 = 0.2 are the lengths of the two links
of the robot arm; α1 ∈ [0.3, 1.2] and α2 ∈ [π/2, 3π/2] are
the joint angles restricted in specific region. The solid and
dashed lines in Fig. 17(a) show the “elbow up” and “el-
bow down” situation, respectively. Finding the mapping
from (α1, α2) to (y1, y2) is called as forward kinematics,
whereas the inverse kinematics is referred to the mapping
from (y1, y2) to (α1, α2). The inverse kinematics is not a
one-to-one mapping, namely the solution is not unique (e.g.
the “elbow up” and “elbow down” in Fig. 17(a) both give
the same position). Now we want to formulate the prob-
lem as a state space model and solve the inverse kinematics
problem. Let α1 and α2 are augmented into a state vec-
tor, denoted as x ≡ [α1, α2]T , the measurement vector is
given by y = [y1, y2]T . Equations (158a) and (158b) are
rewritten in the following form of state space model

xn+1 = xn + dn,

yn =
[

cos(α1,n) − cos(α1,n + α2,n)
sin(α1,n) − sin(α1,n + α2,n)

] [
r1
r2

]
+ vn.

The state equation is essentially a random-walk with as-
sumed white Gaussian noise d ∼ N (0,diag{0.0082, 0.082}),
the measurement equation is nonlinear with measurement
noise v ∼ N (0, 0.005 × I). As observed in Fig. 17(b),
the state trajectories of α1 and α2 are independent, thus
p(α1, α2|y) = p(α1|y)p(α2|y). α1 is a a slowly increasing
process with periodic random walk, α2 is a periodic fast
linearly-increasing/decreasing process. The SIR filter are
used in our experiment.95 Considering the fast monotoni-
cally increasing behavior of α2, random walk model is not
efficient. To be more accurate, we can roughly model the
states as a time-varying first or second-order (or higher-
order if necessary) AR process with unknown parameter
An, namely αn+1 = Anαn + dn. The uncertainty of

95The Matlab code for generating robot-arm prob-
lem data and a SIR filter demo are available on line
http://soma.crl.mcmaster.ca/∼zhechen/demo robot.m.

http://soma.crl.mcmaster.ca/~zhechen/demo_robot.m
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Fig. 17. Schematic illustration of a two-link robot arm in two dimensions. (a) Left: for given joint angles (α1, α2), the position of the end
effector (circle symbol), described by the Cartesian coordinates (y1, y2), is uniquely determined. (b) Middle: the state trajectories (solid)
of (α1, α2) in experiment. The dotted lines are the estimates given by SIR filter (multinomial resampling) using a random-walk model with
Np = 200. (c) Right: the pdf evolution of α2 in the first 200 steps.

An = [a1,n, b1,n, a2,n, b2,n]T is augmented into the state
for joint estimation (to be discussed in next section). In
this context, the new augmented state equation becomes

xa
n+1 = Fn+1,nxa

n + dn

where

xa
n+1 = [α1,n+1, α1,n, α2,n+1, α2,n, a1,n+1, b1,n+1, a2,n+1, b2,n+1]

T ,

and

Fn+1,n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1,n b1,n 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 a2,n b2,n 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Since An doesn’t enter the likelihood, by condition-
ing on α, A is a linear Gaussian model, therefore it
can be estimated separately by other methods, such as
gradient descent, recursive least-squares (RLS), or Rao-
Blackwellization.96 Namely, the joint estimation problem
is changed to a dual estimation problem (see next section).
It can be also solved with the EM algorithm, in which E-
step uses Bayesian filtering/smoothing for state estimation,
and M-step estimates the AR parameters via ML principle.
The marginalization approach allows particle filter to work
in a lower-dimensional space, thereby reducing the variance
and increasing the robustness. Hence, the Kalman filter up-
date is embedded in every iteration for every particle. The
detailed derivation and comparative experimental results
will be given elsewhere.

IX. Discussion and Critique

A. Parameter Estimation

The parameter estimation problem arises from the fact
that we want to construct a parametric or nonparametric

96This arises from the fact that p(An|α0:n,y0:n) is Gaussian dis-
tributed which can be estimated a Kalman filter, and p(An, αn|y0:n)
can be obtained from p(α0:n|y0:n).

model to fit the observed data, and the Bayesian proce-
dure is used for model selection (not discussed here), hy-
perparameter selection (specifying priors or regularization
coefficient, not discussed here), and probabilistic inference
(of the unknown parameters). Parameter estimation has
been extensively used in off-line Bayesian estimation [272],
Bayesian learning (e.g. for neural networks) [58], [316],
[346], [118], or Bayesian identification [366], [367], [280]. It
is also related to Bayesian modeling and time series analy-
sis [480], [483], [484], [372], [373].

Parameter estimation can be also treated in an on-line
estimation context. Formulated in a state space model,
the transition density of the parameters is a random-walk
(or random-field) model, the likelihood is often described
by a parametric model (e.g. a neural network). It is
also possible to use the gradient information to change the
random-walk behavior to accelerate the convergence in a
dynamic environment, as illustrated in [?]. Recently, many
authors have applied particle filters or sequential Monte
Carlo methods for parameter estimation or static model
[310], [13], [95]. In many cases, particle filters are also com-
bined with other inference techniques such as data augmen-
tation [13], EM [43], or gradient-based methods. However,
there are two intrinsic open problems arising from param-
eter estimation using particle filtering technique. (i) The
pseudo state is neither “causal” nor “ergodic”, the con-
vergence property is lost; (ii) The state space can be very
large (order of hundreds), where the curse of dimensional-
ity problem might be very severe. These two problems can
somehow be solved with MCMC techniques, some papers
are devoted to this direction [13], [16].

B. Joint Estimation and Dual Estimation

If one encounters some parameter uncertainty in state
estimation, the problem of state estimation and parameter
(either fixed parameter or time-varying parameter) estima-
tion simultaneously arises. Generally, there is no unique
optimal solution for this problem. Hence we are turn into
finding a suboptimal solution. One way is to treat the un-
known parameters θ as part of the states, by this trick
one can use conventional filtering technique to infer the
parameter and state simultaneously. This is usually called
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Fig. 18. A suboptimal solution of dual estimation problem.

joint estimation [473]. The problem of joint estimation is
to find out the joint probability distribution (density) of
the unknown parameters and states, p(xn,θ|y0:n), which
usually has no analytic form. Another problem of joint
estimation using particle filtering is that, when the param-
eter is part of the state, the augmented state space model
is not ergodic, and the uniform convergence result doesn’t
hold any longer [102]. An alternative solution is dual esti-
mation, which uses an iterative procedure to estimate the
state and parameters alternatingly. Dual estimation was
first suggested in [12], and was lately studied in detail in
[473], [352], with some new development. The idea of dual
estimation is illustrated in Fig. 18, where a suboptimal se-
quential estimation solution is sought. Dual estimation can
be understood as a generalized EM algorithm: E-step uses
Kalman or particle filter for state estimation; whereas M-
step performs model parameter estimation. The iterative
optimization process guarantees the algorithm to converge
to the suboptimal solution.

C. Prior

In the Bayesian estimation (filtering or inference) con-
text, choosing an appropriate prior (quantitatively and
qualitatively) is a central issue.97 In the case where no
preferred prior is available, it is common to choose a non-
informative prior. It was called because the prior can
be merely determined from the data distribution which
is the only available information. The purpose of non-
informative priors is to attain an “objective” inference
within the Bayesian framework.98

Laplace was among the first who used noninformative
methods ([388], chap. 3). In 1961, Jeffrey first proposed a
kind of noninformative prior based on Fisher information,
which is the so-called Jeffrey’s prior [388], [38]

π(θ) ∝ |H(θ)|1/2, (159)

where

|H(θ)|ij = −
∫
p(x|θ)

∂2

∂θi∂θj
log p(x|θ)dx (160)

is a Fisher information matrix. The logarithmic divergence
locally behaves like the square of a distance, determined

97When a flat prior is chosen, the Bayesian result reduces to the
frequentist approach.

98Maximum-likelihood based methods essentially ignore the priors,
or regard the priors as uniform.

by a Riemannian metric with a natural length element
|H(θ)|1/2, the natural length elements of Riemannian met-
ric are invariant to reparameterization. The Jeffrey’s prior
has a nice geometrical interpretation: the natural volume
elements generate “uniform” measures on the manifolds,
in the sense that equal mass is assigned to regions of equal
volume, which makes Lebesque measure intuitively appeal-
ing. Another approach to construct a noninformative prior
is the so-called “reference priors” [38], [389], which maxi-
mize asymptotically the expected KL divergence.

In order to use conjugate approach in Bayesian filtering
or inference, conjugate priors are often chosen [388], [38],
which can be of a single or a mixture form. the mixture
conjugate priors allows us to have much freedom in model-
ing the prior distribution. Within the conjugate approach-
based filtering, the inference can be tackled analytically.
Dirichlet prior is an important conjugate prior in the ex-
ponential family and widely used in Bayesian inference. In
addition, priors can be designed in the robust priors frame-
work [226], e.g. the ε-contaminated robust priors.

D. Localization Methods

The intuition of localization idea is that, realizing the
fact that it is infeasible to store the whole state trajectories
or data due to limited storage resource in practice, instead
of ambitiously finding an optimal estimate in a global sense,
we are turn to find a locally optimal estimate by taking ac-
count of most important observations or simulated data.
Mathematically, we attempt to find a locally unbiased but
with minimum variance estimator. This idea is not new
and has been widely used in machine learning [50], [463],
control [337], signal processing (e.g. forgetting factor), and
statistics (e.g. kernel smoothing). Localization can be ei-
ther time localization or space localization. By time local-
ization, it is meant that in the time scale, a local model
is sought to characterize the most recent observation data,
or the data are introduced with an exponential discount-
ing/forgetting factor. By space localization, it is referred
to in any time instant, the sparse data are locally repre-
sented, or the data are smoothed in a predefined neigh-
borhood around the current observation, among the whole
data space.

The localization idea has been used for Monte Carlo sam-
pling [304], [3]. In the context of filtering, the forgetting
factor has been introduced for particle filter [137]. Bear-
ing in mind that we encounter the risk that the particle
filters might accumulate the estimate inaccuracy along the
time, it is advisable to take the localization approach w.r.t.
the trajectory. Namely, in order to estimate x̂n at time
n, we only use partial observations, i.e. the posterior re-
duces to p(xn|yn−τ :n) (1 ≤ τ ≤ n) instead of p(xn|y0:n).
Kernel-based smoothing is one of the popular localization
methods, and it is straightforward to apply it to particle
filters. The candidate kernel can be Gaussian or Epanech-
nikov. In addition to the disadvantage of introducing bias
(see Section VI-G), another shortcoming of kernel smooth-
ing is the curse of dimensionality, and it cannot be updated
sequentially.
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E. Dimensionality Reduction and Projection

Many state space models usually satisfyNy ≤ Nx. When
Ny > Nx (e.g., the observation is an image), some di-
mensionality reduction or feature extraction techniques are
necessary. In this case, the observation data are usually
sparely distributed, we can thus project the original high-
dimensional data to a low-dimensional subspace. Such
techniques include principal component analysis (PCA),
SVD, factor analysis, nearest-neighborhood model. For
example, in visual tracking, people attempted to perform
the sampling in a subspace, namely to find a 2D image
space for the 3D object motion. Likewise in robot local-
ization, the sensor information is usually high-dimensional
with an unknown measurement model, in on-line process-
ing the sensor information arrives much faster than the
update of the filter, not to mention the audio-visual data
association problem. In order to handle such situation, di-
mensionality reduction becomes a must-be,99 either for a
fixed measurement model or a nonparametric model [471].

Projection idea is to project the object (data, distribu-
tion, or function) to a subspace which is “well-posed”, this
geometrical insight has been widely used in filtering, learn-
ing, and inference. The idea of projection can be also con-
sidered for the proposal distribution. The basic intuition is
to assume that the the current posterior p(xn|y0:n) is close
to the previous posterior p(xn−1|y0:n−1), the only update
arises from the new observation yn. In order to draw sam-
ples from proposal q(xn|x0:n−1,y0:n), we project the pre-
vious posterior to the subspace (called proposal space) by
marginalization (see Fig. 19). In the subspace we draw the
samples {x(i)

n } and use Bayes rule to update the posterior.
Usually the update will deviate again from the subspace
(but not too far away), hence it is hoped that in the next
step we can project it back to the proposal space. The rea-
son behind it is that the subspace is usually simpler than
the true posterior space and it is also easy to sample. To
do this, we can use data augmentation technique discussed
earlier in Section VI-H. Suppose at time step n we have the
approximate posterior p̂(xn−1|y0:n−1), given new observa-
tion yn, we use the marginalization approach to alternat-
ingly generate the augmented z(i) (they are thus called the
“imputations” of the observations). First we assume

q(xn|x0:n−1,y0:n) = q(xn|x0:n−1,y0:n−1,yn)
≈ p̂(xn−1|y0:n−1,yn).

By viewing the new observation as an augmented data z,
we can draw the samples from the proposal through the
marginalized density

q(xn|x0:n−1,y0:n) ≈
∫
p̂(xn−1|y0:n−1, z)p(z|y0:n−1)dz,

p(z|y0:n−1) =
∫
p(z|xn−1,y0:n−1)p̂(xn−1|y0:n−1)dxn−1.

Since z is supposed to be independent of the previous obser-
vations, hence p(z|y0:n−1) reduces to p(z) and we further

99Another novel method called real-time particle filter [288] has
been lately proposed to address the same problem in a different way.

p(x n-1|y0: n-1)

Bayes rule

p(x n|y0: n)

q(x n|x 0: n-1, y0: n) q(x n+ 1|x 0: n, y0: n+ 1)

p(yn|x n) p(x n|x n-1)
yn yn+ 1

Fig. 19. A geometrical illustration of projection/marginalization of
Bayesian filtering.

have

q(xn|x0:n−1,y0:n) ≈
∫
p̂(xn−1|y0:n−1, z)p(z)dz,

p(z) =
∫
p(z|xn−1)p̂(xn−1|y0:n−1)dxn−1

=
1
Np

Np∑
i=1

p(z|x(i)
n−1),

where p̂(xn−1|y0:n−1) is the previous posterior estimate
represented by a discrete set {x(i)

n−1}Np

i=1. Let z(0) = yn,
we can use the similar sampling procedure discussed in
Section VI-H.2. The details of the methodology will be
presented elsewhere [?]. Our idea of projection filtering100

is similar but not identical to the one in [51], in which they
used marginalization idea for the belief update in the DBN,
but their method involved neither data augmentation nor
Bayesian sampling.

F. Unanswered Questions

Having discussed many features of particle filters, at this
position, a question naturally occurring to us is:

Does particle filtering have free lunch?
In particular, we feel that the following issues have not
been satisfactorily addressed in the literature.

First, how to choose effective particles still lacks rigor-
ous theoretical justification. How many independent sam-
ples (or antithetic variables) are needed in the sequential
Monte Carlo methods? Is it possible to get some upper and
lower bounds of necessity of number of particles (see an at-
tempted effort in [171]), though they are usually quite loose
and are problem-dependent? Of course, we can blindly
increase the number of particles to improve the approxi-
mation accuracy, however, it will also inevitably increase
the variance (due to the bias-variance dilemma, we can-
not make bias and variance simultaneously small according
to the Uncertainty Principle), not to mention the increas-
ing computational effort and sampling inefficiency (No free
lunch!). Albeit many techniques were used to improve the
degenerate problem, it seems to the authors that none of
them are totally satisfactory. On the other hand, how to

100Note that the term “projection filter” has been abused in the
literature with different meanings.
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seek an adaptive procedure of choosing/adding informa-
tive particles (or “support particles”), still remains an open
problem.101 This issue becomes crucial when we encounter
the scaling problem: the algorithm remains computation-
ally feasible when dimensionality ofNx is order of hundreds
or thousands. In addition, the number of sufficient parti-
cles depends largely on the chosen proposal distribution,
with a good choice, the error might vanish at a linear rate
of the increasing Np; with a bad choice, the error might
increase exponentially with increasing Nx no matter how
large Np is.

Second, the cumulative error due to the inaccuracy of
the simulated samples at each iteration may grow exponen-
tially. For SIR or SIS filters, bias and variance will both
increases along the time; for rejection particle filter, the
variance also increases given a moderate number of par-
ticles. In addition, as recalled in the discussion of conver-
gence behavior, the uniform convergence cannot be assured
unless Np increases over the time or the particle filter has
the capability to forget the error exponentially. A good
example is given in [361]:

Suppose the transition density p(xn|xn−1) is
uniform and independent of xn−1, the likelihood
is binary with p(yn = 1|xn) if xn < 0.2 and
p(yn = 0|xn) otherwise. If the true states hap-
pen to stay in [0, 0.2) so that yn = 1 for all n.
However, the probability of having no particles
(which are binomially distributed) within [0, 0.2)
in any one of n time steps is 1 − (1 − 0.8Np)n,
which converges to 1 exponentially with increas-
ing n; in other words, the particle filter almost
loses the true trajectory completely.

Although this is an extreme example which might never
happen in the real life, it does convince us that the inaccu-
racy will bring a “catastrophic” effect as time evolves such
that the filter either diverges or deviates far away from
the true states. In this sense, “Bayesian statistics without
tears” will be probably rephrased as “particle filtering with
tears”. Although the above example is a special toy prob-
lem, it does make us realize the importance of the robust-
ness issue posed earlier. On the other hand, it is noted that
convergence behavior is a transient phenomenon, nothing
is said about the error accumulation in a long run. Does
error approach a steady state? How to characterize the
steady-state behavior of particle filter? To our best knowl-
edge, theoretical results are still missing.

Third, Bayesian principle is not the only induction prin-
ciple for statistical inference. There might also exist
other principles, e.g. minimax (worst case analysis), SRM
(structural risk minimization), MDL (minimum description
length), or Occam’s razor. Is Bayesian solution always opti-
mal in any sense? The answer is no. The Bayesian method
makes sense only when the quantitative prior is correct
[463]. In other words, in the situation lack of a priori knowl-
edge, Bayesian solution is possibly misleading. In fact, the
conflict between SRM and Bayesianism has been noticed

101This issue was partially addressed in the paper [88].

in the machine learning literature (e.g. [463]). In the con-
text of Bayesian filtering, the quantitative prior will be the
chosen proposal distribution, initial state density p(x0) and
noise statistics. Unfortunately, none of them of is assured
in practice. To our best knowledge, this question has not
been addressed appropriately in the literature. Neverthe-
less, it is suspected that we might benefit from the rigorous
theoretical results established in the dependency estima-
tion and statistical/computational learning literature [463],
many notions such as metric entropy, VC dimension, infor-
mation complexity, are potentially useful for establishing
strong mathematical results for Monte Carlo filtering. For
example, since the integrand is known, how do we incorpo-
rate the prior knowledge into Monte Carlo sampling?102 Is
it possible to introduce structural hypothesis class for pro-
posal distribution? Is it possible to establish a upper bound
or lower bound for particular Monte Carlo integration (i.e.
a problem-dependent bound that is possibly much tighter
than the generic Cramér-Rao bound)?

Particle filters certainly enjoy some free lunches in cer-
tain special circumstances, e.g. partially observable Gaus-
sian model, decoupled weakly Gaussian model. However,
answering the all of concerns of a general problem, un-
fortunately, have no free lunch. It was felt that the cur-
rent status of particle filter research is very similar to the
situation encountered in the early 1990s of neural net-
works and machine learning. Such examples include the
bootstrap technique, asymptotic convergence result, bias-
variance dilemma, curse of dimensionality, and NFL theo-
rem. In no doubt, there are still a lot of space left for the-
oretical work on particle filters. As firstly addressed in the
theoretic exposition [128], the theories of interacting parti-
cle systems [300], large deviation theory [59], [126], Feller
semigroups, limit theorem, etc. are the heart of Monte
Carlo or particle filtering theory. But they are certainly
not the whole story.

One of theoretical issue, for example, is about the abuse
the information in Monte Carlo simulation, since it is usu-
ally hard to verify quantitatively the information we use
and ignore. Recently, Kong et al. [267] have partially
approached this question, in which they formulated the
problem of Monte Carlo integration as a statistical model
with simulation draws as data, and they further proposed
a semi-parametric model with the baseline measure as a
parameter, which makes explicit what information is ig-
nored and what information is retained in the Monte Carlo
methods; the parameter space can be estimated by the ML
approach.

It is also noteworthy to keep in mind that the classic
Monte Carlo methods belong to the frequentist procedure,
a question naturally arising is: Can one seek a Bayesian
version of Monte Carlo method? [318]. Lately, this ques-
tion has been partially tackled by Rasmussen and Ghahra-
mani [382], in which they proposed a Bayesian Monte
Carlo (BMC) method to incorporate prior knowledge (e.g.

102As matter of fact, as we discussed earlier in importance sampling,
the proposal distribution can be chosen in a smart way to even lower
down the true variance.
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smoothness) of the integrand to the Monte Carlo inte-
gration: Given a large number of samples, the integrand
{f(x(i))}Np

i=1 is assumed to be a Gaussian process (i.e. the
prior is defined in the functional space instead of data
space) [489], their empirical experimental results showed
that the BMC is much superior to the regular Monte Carlo
methods. It would be beneficial to introduce this tech-
nique to the on-line filtering context. Besides, in real-life
applications, the noise statistics of dynamical systems are
unknown, which are also needed to be estimated within
Bayesian framework via introducing hyperparameters; thus
the hierarchical Bayesian inference are necessary. To sum-
marize, there can be several levels of Bayesian analysis for
different objects: data space, parameter/hyperparameter
space, and functional space.

Currently, we are investigating the average/worst case
of Monte Carlo filtering/inference. The objective is to at-
tempt to find the upper/lower bounds using variational
methods [241], [237], [236]. The potential applications
combining deterministic variational Bayesian approxima-
tion and stochastic Monte Carlo approximation are very
promising, which are also under investigation.

X. Summary and Concluding Remarks

In this paper, we have attempted to present a tutorial
exposition of Bayesian filtering, which covers such top-
ics as stochastic filtering theory, Bayesian estimation, and
Monte Carlo methods. Within the sequential state esti-
mation framework, Kalman filter reduces to be a special
case of Bayesian filtering in the LQG scenario; particle fil-
ter, rooted deeply in Bayesian statistics and Monte Carlo
technique, comes up as a powerful solution candidate for
tackling the real-life problems in the physical world where
the nonlinearity and non-Gaussianity abound.

It is our purpose to provide the reader a complete pic-
ture of particle filters originated from stochastic filtering
theory. Besides Monte Carlo filtering, other Bayesian fil-
tering or Bayesian inference procedures are also addressed.
It is obvious that the theory of Bayesian filtering presented
here has a lot of potentials in variety of scientific and engi-
neering areas, thus suitable for a wide circle of readers.
Certain applications in artificial intelligence, signal pro-
cessing, communications, statistics, and machine learning,
have been already mentioned in Section VIII. In addition to
the sequential Monte Carlo nature of estimation, another
attractive property of particle filter is that it allows flex-
ibility design and parallel implementation. On the other
hand, it should be cautioned that particle filters are not
the panacea, designing special particle filter in practice is
problem dependent and requires a good understanding of
the problem at hand. We should also be borne in mind
that this area is far from mature and has left a lot of space
for theoretical work.

In summary, most of research issues of particle filters
focused on (and will still concentrate on) the following:

• Choices of proposal distribution;
• Choices of resampling scheme and schedule;

• Efficient use of simulated samples and monitoring the
sample efficiency;

• Exploration of smoothing, regularization, data aug-
mentation, Rao-Blackwellization, and MCMC varia-
tions.

• Exploration of of different (or new) Monte Carlo inte-
gration rules for efficient sampling.

Another promising future direction seems to be combin-
ing particle filtering with other inference methods to pro-
duce a fruitful outcome. The geometrical and conjugate
approaches provide many insights for application of Rao-
Blackwellization and data augmentation.

In no doubt, modern Monte Carlo methods have opened
the door to more realistic and complex probabilistic mod-
els. For many complex stochastic processes or dynamics
where the posterior distributions are intractable, various
approximate inference methods other than Monte Carlo ap-
proximation come in (e.g., mean-field approximation, vari-
ational approximation), or they can be combined to use
together (e.g. [121]). Alternatively, one can also simplify
the complex stochastic processes by the ways of decompo-
sition, factorization, and modulation for the sake of infer-
ence tractability. For the higher-order Markov dynamics,
mixture or hierarchical structure seems necessary and ef-
ficient approximation inference are deemed necessary. To
conclude, from the algorithm to practice, it is a rocky road,
but there is no reason to disbelieve that we can pave the
way forward.

Appendix A: A Proof

Assuming that x(i) (i = 1, · · · , Np) are Np i.i.d. samples,
μ = E[x] and μ̂ = 1

Np

∑Np

i=1 x(i) are the expected mean
and sample mean, respectively. The covariance of sample
estimate μ̂ is calculated as

Cov[μ̂] = E[(μ̂− μ)(μ̂− μ)T ]

= E[μ̂μ̂T]− μμT

= E

[
(

1
Np

Np∑
i=1

x(i))(
1
Np

Np∑
j=1

x(j))T

]
− μμT

=
1
N2

p

Np∑
i=1

Np∑
j=1

E[xxT ]− μμT

=
NpE[xxT ] + (N2

p −Np)μμT

N2
p

− μμT

=
E[xxT ]− μμT

Np
=

1
Np

Cov[x]

where Cov[x] is the covariance of random vector x, the
fourth step in above equation uses the independence as-
sumption of x

E

[
(x(i))(x(j))

T
]

=
{

E[xxT ] i = j
E[x(i)]E[x(j)]T = μμT i �= j

Appendix B: Convergence of Random Variables

Definition 8: Almost Convergence (or Convergence with
Probability 1): A sequence of {Xn} is said to converge to
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a random variable X with probability 1 if for any ζ > 0,
ε > 0

Pr{ω : |Xn(ω)−X(ω)| < ε} > 1− ζ
is satisfied for all n > N where N may depend on both ζ
and ε. Or equivalently,

Pr{ω : | lim
n→∞Xn(ω) = X(ω)} = 1.

Definition 9: Mean Square Convergence: A sequence of
{Xn} of random variables is said to converge to a random
variable X in the mean-square sense if

E[(Xn(ω)−X(ω))2]→ 0 (n→∞)

or lim
n→∞ E[(Xn(ω)−X(ω))2] = 0.

Definition 10: Convergence in Probability: A sequence
of {Xn} of random variables converges in probability to
the random variable X if for every ε > 0

lim
n→∞Pr{|Xn(ω)−X(ω)| ≥ ε} = 0.

Definition 11: Convergence in Distribution: A sequence
of {Xn} of random variables is said to converge to a ran-
dom variable X in distribution if the distribution functions
Fn(x) of Xn converge to the distribution function F (x) of
X at all points of continuity of F , namely,

lim
n→∞Fn(x) = F (x)

for all x at which F (x) is continuous.

Appendix C: Random Number Generator

In what follows, we briefly discuss some popular random
number generators. Strictly speaking, we can only con-
struct the pseudo-random or quasi-random number gener-
ators, which are deterministic in nature but the samples
they generated exhibit the same or similar statistical prop-
erties as the true random samples. For standard distribu-
tions such as uniform, Gaussian, exponential, some exact
random sampling algorithms exist. Other standard dis-
tributions are generally obtained by passing an inverse of
the cumulative distribution function (cdf) with a pseudo-
random sequence, the resulting distributions are mostly ap-
proximate rather than exact.

Theorem 6: [168] Let {F (z), a ≤ z ≤ b} denote a distri-
bution function with an inverse distribution function as

F−1(z) = inf{z ∈ [a, b] : F (z) ≥ u, 0 ≤ u ≤ 1}.
Let u denote a random variable from U(0, 1), then z =
F−1(u) has the distribution function F (z).

Reader is referred to [168], [389], [386], [132] for more
information. For simulation purpose, the Matlab user can
find many random number generators for various distribu-
tions in the Statistics Toolbox (MathWorks Inc.).

Uniform distribution

The uniform random variable is the basis on which the
other random number generators (other than uniform dis-
tribution) are constructed. There are many uniform ran-
dom number generators available [386]. The following rou-
tine is a one based on the congruencial method

• Start with an arbitrary seed x0;
• xn = (69069xn−1 + 1) mod 232,
• un = 2−32xn.

where the sequence un can be regarded as the i.i.d. uni-
form random variables drawn from U(0, 1). Some uniform
distribution random number generator functions in Matlab
are rand, unifrnd, and unidrnd.

Normal (Gaussian) distribution

Suppose u1 and u2 are two random variables uniformly
distributed in U(0, 1), by taking

x1 = μ+ σ
√
−2 log(u1) cos(2πu2),

x2 = μ+ σ
√
−2 log(u1) sin(2πu2),

then x1 and x2 can be regarded as two independent draws
from N (μ, σ2); this algorithm is exact [389].

It can be also generated by the transformation method
by calculating the cdf

F (x) =
∫ x

0

1√
2πσ2

exp(− (ξ − μ)2

σ2
)dξ

=
1
2

[
1 + erf

(x− μ√
2σ2

)]
,

then the random number can be generated by the inverse
function

x = F−1(u) = μ+
√

2σ2erf−1(2u− 1).

Some normal distribution random number generator func-
tions in Matlab include mvnrnd or normrnd or randn (for
N (0, I)).

Exponential and Logistic distribution

Let u be one random variable uniformly distributed in
U(0, 1), by taking x = − log(u)/λ, then x can be regarded
as a draw from exponential distribution Exponential(λ);
by calculating x = log u

1−u , then x can be regarded as a
draw from logistic distribution Logistic(0, 1) [389]. An
exponential distribution random number generator func-
tion in Matlab is exprnd.

Cauchy distribution

To generate the Cauchy distribution, we can use the
transformation method. The pdf of zero-mean Cauchy dis-
tribution is given by

p(x) =
σ

π

1
σ2 + x2

where σ2 is the variance. The cdf of Cauchy distribution is

F (x) =
∫ x

−∞

σ

π

1
σ2 + ξ2

dξ =
1
π

arctan(
x

σ
) +

1
2
.

The transformation is then given by the inverse transform
x = F−1(u):

F−1(u) = σ tan(π(u− 1
2
)) = −σ cot(πu).
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Hence given some uniform random numbers u ∈ U(0, 1), we
can use above relationship to produce the Cauchy random
numbers by x = −σ cot(πu). The acceptance-rejection
sampling approach to generate Cauchy distribution pro-
ceeds as follows [168]:

• repeat
• generate u1 and u2 from U(−1/2, 1/2)
• until u2

1 + u2 ≤ 1/4
• return u1/u2.

Laplace distribution

Laplace distribution is also called double exponential dis-
tribution. It is the distribution of differences between two
independent variates with identical exponential distribu-
tions. The pdf of Laplace distribution is given by

p(x) =
1
2σ

exp
(
− |x|

σ

)
where σ is a positive constant. The distribution function
of Laplace distribution is

F (x) =
{

1
2 exp( x

σ ) x < 0
1− 1

2 exp(−x
σ ) x ≥ 0 ,

and the inverse transform x = F−1(u) is given by

F−1(u) =
{
σ ln(2u) 0 < u < 1/2
−σ ln(2− 2u) 1/2 ≤ u < 1 .

Given some uniform random numbers u ∈ U(0, 1), we can
use above relationship to produce the Laplace distributed
random variables x = F−1(u).

Appendix D: Control Variate and Antithetic

Variate

Control variate and antithetic variate are two useful
variance-reduction techniques by exploring the knowledge
of integrand. To illustrate the idea, only one-dimensional
variable is considered here.

Suppose we want to estimate an integral of interest

θ =
∫
φ(x)p(x)dx ≡

∫
f(x)dx.

To achieve this, we use another known statistics

μ =
∫
φ(x)q(x)dx ≡

∫
h(x)dx

to further construct an equivalent integral

θ = μ+
∫

(f(x)− h(x))dx,

where μ is a known constant, h(x) is called as a “control
variate”, which is usually chosen to be close to f(x).

In order to reduce the variance (i.e. the right-hand
side is no more than the left-hand side), we need to

show Var[f(x)] ≥ Var[f(x) − h(x)], which is equivalent to
Var[h(x)] < 2Cov[f(x), h(x)], where

Cov[f(x), h(x)] =
∫

(f(x)− θ)(h(x)− μ)dx.

Suppose θ̂ is an unbiased Monte Carlo estimate obtained
from exact draws, namely E[θ̂] = θ. We can find another
unbiased estimator μ̂ (E[μ̂] = μ), as a control variate, to
construct a new estimator

θ′ = θ̂ + μ− μ̂.
It is obvious that θ′ is also an unbiased estimate of θ. The
variance of this new estimator is given by

Var[θ′] = Var[θ̂ − μ̂]

= Var[θ̂] + Var[μ̂]− 2Cov[θ̂, μ̂],

hence Var[θ′] < Var[θ̂] if Var[μ̂] < 2Cov[θ̂, μ̂]. In some
sense, controlled variate can be understood as a kind of
variational method.

Antithetic variate is a variance-reduction method ex-
ploiting the negative correlation. Suppose θ̂ and θ′ are two
unbiased estimates of θ, we construct another unbiased es-
timate as

μ̂ =
θ̂ + θ′

2
,

whose variance is given by

Var[μ̂] =
1
4
Var[θ̂] +

1
4
Var[θ′] +

1
2
Cov[θ̂, θ′].

Suppose θ̂ and θ′ are two Monte Carlo estimates obtained
from exact draws, if θ′ is chosen s.t. Cov[θ̂, θ′] < 0 (i.e. the
Monte Carlo samples are negatively correlated instead of
independent; a.k.a. correlated sampling), variance reduc-
tion is achieved.

For example, if the integrand is a symmetric function
w.r.t. a+b

2 over the region [a, b], we can write f(x) =
f(x)+f(a+b−x)

2 (when −a = b, it reduces to an even func-
tion). Thus we can introduce negative correlation since
generally Cov[f(x), f(a + b − x)] < 0; if a = 0, b = 1 and
f(x) ∼ U(0, 1), then Cov[f(x), f(1− x)] = −1.

More generally, if f(·) is a monotonically increas-
ing/decreasing function, then f(x) and f(1 − x) are neg-
atively correlated. Hence in order to reduce the variance,
one may construct a Monte Carlo estimate

1
2Np

Np∑
i=1

(f(x(i)) + f(1− x(i))),

instead of using the naive estimates 1
Np

∑Np

i=1 f(x(i) or
1

Np

∑Np

i=1 f(1− x(i).
Example 2: To give a more specific example, consider

drawing the samples from a zero mean Cauchy distribu-
tion discussed in Appendix C. Given uniform random vari-
ables u ∼ U(0, 1), we can produce the Cauchy random
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numbers by x1 = −σ cot(πu). On the other hand, not-
ing that 1 − u are also uniformly distributed that is neg-
atively correlated with u. Utilizing this symmetry prop-
erty, we can generate another set of Cauchy random num-
bers x2 = −σ cot(π(1 − u)) = σ tan(πu). Obviously, x1

and x2 are slightly negatively correlated, their covariance
is also usually negative. By drawing Np/2 samples of
x1 and Np/2 samples of x2, we obtain some negatively
correlated samples from Cauchy distribution. Alterna-
tively, by constructing Np samples x = (x1 + x2)/2, we
have Var[x] < max{Var[x1],Var[x2]}, and Var[x] is ex-
pected to reduce, compared to the two independent runs
for x1 and x2. The sample estimate of x is unbiased, i.e.,
E[x] = E[x1] = E[x2]. Also note that when x1 and x2 are
negatively correlated, f(x1) and f(x2) are usually nega-
tively correlated when f(·) is a monotonic function.

This approach can be utilized in any transformation-
based random number generation technique (Appendix C)
whenever applicable (i.e., using uniform random variable,
and F−1 being a monotonic function). Such examples in-
clude exponential distribution, logistic distribution, and
Laplace distribution.

Appendix E: Unscented Transformation Based on

SVD

There are many types of matrix factorization techniques
[42], e.g. Cholesky factorization, U-D factorization, LDUT

factorization.103 Hence we can use different factorization
methods to implement the unscented transformation (UT).
The basic idea here is to use singular value decomposition
(SVD) instead of Cholesky factorization in the UT. In Ta-
ble X, the state estimation procedure is given, the extension
to parameter estimation is straightforward and is omitted
here. As to the notations, P denotes the state-error corre-
lation matrix, K denotes the Kalman gain, ρ is a scaling
parameter (a good choice is 1 ≤ ρ ≤ √2) for controlling the
extent of covariance,104 κ is a small tuning parameter. The
computational complexity of SVD-KF is the same order of
O(N3

x) as UKF.

Appendix F: No Free Lunch Theorem

The no-free lunch (NFL) 105 theorems basically claim
that no learning algorithms can be universally good; in
other words, an algorithm that performs exceptionally well
in certain situations will perform comparably poorly in
other situations. For example, NFL for optimization [493],
for cross-validation, for noise prediction, for early stopping,
for bootstrapping, to name a few (see also [87] for some
discussions on NFL in the context of regularization the-
ory). The implication of NFL theorem is that, given two
random based algorithms Algorithm A and Algorithm B,
suppose Algorithm A is superior to Algorithm B averaged

103The factorization is not unique but the factorization techniques
are related, they can be used to develope various forms of square-root
Kalman filters [42], [247].

104In one-dimensional Gaussian distribution, variance σ2 accounts
for 95% covering region of data (2σ2 for 98%, 3σ2 for 99%).

105The term was first used by David Haussler.

TABLE X

The SVD-based Derivative-free Kalman Filtering for State

Estimation.

Initialization

x̂0 = E[x0], P̂0 = E[(x0 − x̂0)(x0 − x̂0)T ].

Compute the SVD and eigen-point covariance matrix

Pn = UnSnV
T
n

χ0,n−1 = x̂n−1

χi,n−1 = x̂n−1 + ρUi,n
√

si,n, i = 1, · · · , Nx

χi,n−1 = x̂n−1 − ρUi,n
√

si,n, i = Nx + 1, · · · , 2Nx

Time updates

χi,n|n−1 = f(χi,n−1, un), i = 0, 1, · · · , 2Nx

x̂n|n−1 = χ0,n|n−1 +
2Nx∑
i=1

W(m)
i

(χi,n|n−1 − χ0,n|n−1)

Pn|n−1 =
2Nx∑
i=0

W(c)
i

(χi,n|n−1 − x̂n|n−1)(χi,n|n−1 − x̂n|n−1)T + Σd

Yi,n|n−1 = g(χi,n|n−1, un), i = 0, 1, · · · , 2Nx

ŷn|n−1 = Y0,n|n−1 +
2Nx∑
i=1

W(m)
i

(Yi,n|n−1 − Y0,n|n−1)

Measurement updates

Pŷnŷn
=

2Nx∑
i=0

W(c)
i

(Yi,n|n−1 − ŷn|n−1)(Yi,n|n−1 − ŷn|n−1)T + Σv

Px̂nŷn
=

2Nx∑
i=0

W(c)
i

(χi,n|n−1 − x̂n|n−1)(Yi,n|n−1 − ŷn|n−1)T

Kn = Px̂nŷn
P

−1
ŷnŷn

x̂n = x̂n|n−1 + Kn(yn − ŷn|n−1)

Pn = Pn|n−1 − KnPŷnŷn
KT

n

Weights : W(m)
i

=
1

2Nx
, W(c)

0 =
κ

Nx + κ
, W(c)

i
=

1

2Nx + 2κ

on some set of target S, then Algorithm B must be supe-
rior to Algorithm A if averaging over all target not in S.
Such examples also include sampling theory and Bayesian
analysis [491].

For the particle filters (which certainly belong to random
based algorithm class), the importance of prior knowledge
is very crucial. Wolpert [491], [492] has given a detailed
mathematical treatment of the issues of existence and lack
of prior knowledge in machine learning framework. But
the discussions can be certainly borrowed to stochastic fil-
tering context. In Monte Carlo filtering methods, the most
valuable and important prior knowledge is the proposal dis-
tribution. No matter what kind of particle filter is used, an
appropriately chosen proposal is directly related to the fi-
nal performance. The choice of proposal is further related
to the functions f and g, the likelihood model or mea-
surement noise density. Another crucial prior knowledge
is the noise statistics, especially the dynamical noise. If
the Σd is small, the weight degeneracy problem is severe,
which requires us to either add “jitter” or choose regular-
ization/smoothing technique. Also, the prior knowledge of
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the model structure is helpful for using data augmentation
and Rao-Blackwellization techniques.

Appendix G: Notations

Symbol Description

N integer number set
R(R+) (positive) real-valued number set
u input vector as driving force
x continuous-valued state vector
z discrete-valued state vector
y measurement vector
z augmented (latent) variable vector
e state-error error (innovations)
ω Wiener process
d dynamical noise vector
v measurement noise vector
Σd, Σv covariance matrices of noises
P correlation matrix of state-error
I identity matrix
J Fisher information matrix
K Kalman gain
f(·) nonlinear state function
g(·) nonlinear measurement function
F state transition matrix
G measurement matrix
H Hessian matrix
l(x) logarithm of optimal proposal distribution
μ true mean E[x]
μ̂ sample mean from exact sampling
Σ true covariance

Σ̂ sample covariance

f̂Np Monte Carlo estimate from exact sampling

f̂ Monte Carlo estimate from importance sampling

x(i) the i-th simulated sample (particle)
x̃n prediction error xn − x̂n(Yn)
∅ empty set
S set
f, g, φ generic nonlinear functions
F distribution function
sgn(·) signum function
erf(·) error function
�·� floor function
δ(·) Dirac delta function
I(·) indicator function
K(·, ·) kernel function
α(·, ·) probability of move
Pr(·) probability
P parametric probability function family
P, Q probability distribution
p probability density (mass) function
q proposal distribution, importance density
π (unnormalized) density/distribution
E energy
K kinetic energy
Nx the dimension of state
Ny the dimension of measurement
Np the number of particles
Nz the number of discrete states
Neff , N ′

eff the number of effective particles

NT the threshold of effective particles
NKL KL(q‖p) estimate from important weights
m the number of mixtures
c mixture coefficient
C constant
W importance weight

W̃ normalized importance weight
ξ auxiliary variable
t continuous-time index
n discrete-time index
τ time delay (continuous or discrete)
X, Y, Z sample space

Xn equivalent to x0:n ≡ {x0, · · · ,xn}
Yn equivalent to y0:n ≡ {y0, · · · ,yn}
X sigma points of x in unscented transformation
Y sigma points of y in unscented transformation
W sigma weights in unscented transformation
E[·] mathematical expectation
Var[·], Cov[·] variance, covariance
tr(·) trace of matrix
diag diagonal matrix
AT transpose of vector or matrix A
| · | determinant of matrix
‖ · ‖ norm operator
‖ · ‖A weighted norm operator
E loss function
Ψ(·) sufficient statistics
N (μ, Σ) Normal distribution with mean μ and covariance Σ
U(0, 1) uniform distribution in the region (0, 1)
(Ω,F , P ) probability space
O(·) order of
∼ sampled from
A operator

Ã adjoint operator
L differential operator
T integral operator
a.k.a. also known as
a.s. almost sure
e.g. exempli gratia
i.e. id est
i.i.d. identically and independently distributed
s.t. such that
w.r.t. with respect to
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