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Abstract-- This paper presents a new two-step design approach 

of Time-Based Rate (TBR) programs for markets with a high 

penetration of variable energy sources such as wind power. First, 

an optimal market time horizon must be determined that 

balances between production generation forecast accuracy and 

customers' scheduling flexibility, in order to achieve a minimum 

system cost in forward and real-time reserve energy markets. 

The time horizon obtained is used as a known parameter in the 

subsequent design of TBR's pricing values. Customers' 

scheduling strategies modeled by price elasticity matrices along 

with current system conditions are considered in the price 

calculation process, during which system cost of the forward 

energy market is minimized. 

Index Terms- time-based rates, wind power prediction error, 

forward energy markets, real-time reserve markets, load shifting 

flexibility, price elasticity matrix, system cost minimization 

I. INTRODUCTION 

In the past several decades, with the development of smart 
metering and control technologies, Time-Based Rates 
(TBR) programs have been applied to modem power 

systems to increase competition, reduce market power, 
improve reliability, and in particular, to enable the use of 
cleaner renewable energy technologies [1]-[4]. FERC's 
reports [3] defines the TBR programs as one of the two major 
categories of demand response programs, which incentivize 
customers to schedule their loads by time-varying price 
signals and thus to promote more efficient markets. A range of 
TBR programs are currently offered directly to retail 
customers, for instance, real-time pricing, time-of-use and 
critical-peak pricing. 

Although the emergence of TBR brings about more 
flexibility and options for both the supply and demand side, it 
also increases the uncertainties in power system planning and 
operation. At the same time, factors such as change of system 
marginal cost and electricity demand, which can be caused the 
wind power prediction inaccuracies or temperature, makes it 
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difficult for TBR programs to induce their desired load profile 
and market efficiency [4]-[6]. 

Therefore, in order for TBR programs to result in increased 
market efficiency, and not simply create additional 
uncertainties, it is important to create a time-based rate design 
that provides customers with sufficient time and flexibility to 
schedule their load in advance while setting prices and 
dispatch schedules that accurately reflect the eventual system 
conditions at the time of the load [3]. 

Two critical factors of TBR programs' design are the 
pricing value and the time horizon over which prices are 
specified and customers can view in advance (e.g., 24 hours of 
the following day in a hourly day-ahead market). Many of the 
existing design approaches only qualitatively describe the 
process to set up a TBR program without specitying a 
quantitative method to optimize the two factors for a given 
power system [3], [7] and [8]. Some works propose a TBR 
pricing procedure based on the empirical data of system 
conditions. Other works calculate prices, requiring the 
knowledge of numerous system components' physical 
parameters (e.g. ramp-up and ramp-down limits, capacity, 
total energy generation/consumption within a certain time 
horizon). Limits are obvious for these approaches. Current 
system conditions and active demand response are not 
considered when setting the prices, and building physical 
models of every system component is an overwhelming task. 
In addition, the TBR time horizon, which influences the 
customers' scheduling flexibility and the system conditions' 
prediction accuracy in forward energy markets, is ignored in 
most of the revised works [4], [9]. 

To solve these problems, a new design approach of TBR 
programs is proposed in this paper. It first optimizes the TBR 
time horizon considering competing interests from the 
perspective of wind power prediction and customer scheduling 
flexibility in order to achieve a minimum system cost in 
forward and real-time reserve supplement energy market. The 
time horizon obtained is used as a known parameter in the 
subsequent design of TBR pricing values. Customers' 
scheduling strategies modeled by price elasticity matrices 
along with current system conditions are considered in the 
price-setting process, during which system cost of the forward 
energy market is minimized. 

The TBR time dimension discussed in this paper is one 
hour. Namely, the system cost functions are built considering 
generators and retailers bid their hourly energy production and 
consumption in forward energy markets. However, the 
application of the proposed TBR design approach is not 
limited to hourly pricing design. More extensive applications 
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can be obtained by using a different time dimension following 
the same approach. 

Section II describes the proposed TBR design approach in 
a general way. Section III develops the system cost function 
based on which the TBR's time horizon is optimized. Section 
IV presents the TBR's price setting process. Section V 
presents the conclusion of this study. 

II. DESIGN ApPROACH FOR TIME-BASED RATES 

For all Time-Based Rates (TBR) programs, two common 
critical factors are the time horizon and pricing. The time 
horizon of time-based rates decides how much information 
that customers are exposed to, and the pricing decides what 
market signals to release to customers, which in tum 
influences their consumption. Moreover, once the time 
horizon is decided for a certain TBR program, it should 
remain fixed. In other words, it is not practical for customers 
to see price updates every 12 hours today but every 4 hours 
tomorrow. In contrast, the price values in a TBR program are 
time-varying by definition, and should be set according to 
systems conditions and economics as discovered by the 
current forward energy markets [1], [3] and [10]. Therefore, 
we propose a two-step design approach to optimize the TBR 
program under given power system and market conditions: 

1. Optimize the time horizon of the time-based rates 
under a system cost function, which is modeled 
based on the empirical and future estimation of the 
power system's conditions and economics. 

2. Decide the TBR prices over the obtained optimal 
time horizon with the currently available system and 
market conditions. 

Therefore, for a given power system, the TBR program's 
time horizon is optimized and fixed for long-term operation, 
whereas prices are routinely optimized under the short-term 
conditions. 

Other factors may be also involved in the time-based rates 
design. Factors such as the time dimension of pricing variation 
(e.g. price changes every 5 minutes or every 15 minutes), 
which depend on the specific TBR programs and factors such 
as metering capabilities and customer tolerance for price 
variability, are out of the scope of this paper. 

III. DECIDING TIME HORIZON OF TIME-BASED RATES 

A. System Cost Function of the Wind Prediction Error 

The wind prediction time horizon influences the Wind 
Power (WP) prediction accuracy, which in tum affects the 
system cost. [11] proposes a model assessing the WP 
prediction error cost in an hour-ahead market. In this paper, 
we generalize the model in [11] by making it independent of 
specific WP prediction values and applicable to forward 
energy markets over a long time horizon. The system cost's 
dependency on the TBR program's time horizon is also shown 
in our proposed model. 

First, we model the PDF of wind prediction error, which 
depends on prediction time horizon. For any statistical model, 
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its PDF can be estimated given the mean (11) and standard 
deviation (CT), which in this context will be defined as: 

f.1 
= 

� �Nn (Pprd,n-Pms,n) _ 1 �N L... - -NL...n en N Pins (1) 

(2) 

where N is the number of measurements, Pprd,n is the 

predicted power for the time period n, Pms,n is the actual 
power value measured in the same period, Pins is the installed 
WP, and en is the normalized WP prediction error (for the 
same period). In this paper, the time period is one hour, and 
predicted and measured values correspond to WP energy 
production at that hour. Many of wind prediction models are 
built with the condition of 11 equals to 0 [12]-[14], and others 
state that the absolute value of 11 can be presented as a 
function of prediction time horizon [11], [15]. 

In general, the CT depends on the specific type of WP 
prediction model and parameters related to forecast conditions, 
wind turbines' physical variables and installations' local 
conditions. Previous works show that among all these factors, 
that a parameter that commonly affects the WP prediction CT 
and can be optimized during the TBR program design is the 
forecast time horizon. For instance, in [16] and [17], it was 
proved that, for forecasts up to 48 hours, CT was a function of 
the normalized prediction power, the forecasted horizon, and 
the size of the region where the wind farm installations are 
located. [12] uses a wind-power model to characterize the 
prediction uncertainty in WP generation. Error prediction CT 
increase with the prediction time horizon from 1 to 48 hours. 
In [18], an ARMA time-series prediction method is proposed 
to predict WP energy from 1 to 6 hours ahead. Prediction 
errors are compared for different seasonal periods and 
different prediction time horizons. Fig. 1 shows the 
dependency of CT on prediction time horizon, found in [16] and 
[17]. 
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Fig. I. Standard deviation of WP prediction error as an increasing function of 
prediction time horizon. 



[19] shows that independently of the prediction method 
used for WP prediction, errors practiced in previous WP 
forecasts for different time horizon (1 hour ahead, 2 hour 
ahead and so on) can be collected. With these values, an error 
distribution curve for each time horizon can be obtained. By a 
simplified approach in [19], from the error distribution curve 
and the predicted WP, (J for each time period can be estimated 
assuming a certain probability distribution and thus formulated 
as a function of prediction time horizon. Therefore, 
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For a symmetric distribution, the two expected values are 
equal, although in general, an asymmetric distribution could 
also be used whereby the two values would be different. [11], 
[20]-[22] show that the total prediction error cost of the power 
system can be calculated as the balancing cost in real-time 
supplemental reserve energy market. We revise the system 
cost assessment equation presented in [1 1] and make it as a 
function of the TBR program's time horizon T as: 

Yrsv,to (T) = 
(J = (J(t) (3) - L�::;{TPPEu(t) . EPdt + TPPEd(t) . EPut} (7) 

where t is the WP forecast time horizon. 
In the next step, based on the revised works [12]-[15] and 

[18], we assume a normal distribution function to represent the 
PDF of the prediction error. The PDF is function of the TBR 
program's time horizon with the standard deviation defined by 

(3), shown as: 

1 fCe t) - e , - .j2rra(t)2 (4) 

Equation (4) enables us to model the system cost in a 
general case regardless of the specific WP prediction values. 
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Fig. 2. PDF of WP prediction error with varying prediction time horizons. 
The PDF is described by (4), with (]' sampled in Fig. 1. and Jl set as O. 

For iIIustration purposes, in Fig. 2, different normal 
distribution functions have been represented corresponding to 
different values of prediction time horizons from Fig. 1. 

With the PDF of WP prediction error, the Total 
Probabilistic Prediction Error (TPPE) can be calculated as the 
expected value, upward (TPPEu) and downward (TPPEd) as 
the follows: 

e=+oo TPPEuCt) = fe=o e· fCe, t) . Pins' de (5) 

and 

(6) 

where to is the starting time of T, EPut is the supplemental-up 
reserve energy in hour t, and EPdt is the supplemental-down 
reserve energy price in hour t. 
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Fig. 3. System cost function of TBR's time horizon (top) and the energy 
market prices (bottom). The top figure presents, for installed wind power 
equals to I kWh, the total system cost calculated by (7) and the value 
averaged over the TBR's time horizon T. WP prediction deviation is modeled 
by PDF shown in Fig. 2. and the reserve market prices are collected from [11) 
shown in the bottom figure. 

In order to use (7) to estimate the system cost caused by WP 
prediction error, three assumptions are made here: 

1. The WP prediction errors are balanced by using 
supplemental reserve energy. In practice, spinning 
reserve energy would be used to correct real-time 



generation errors, and then, supplemental reserve 
energy would be dispatched [20]-[22]. 

2. The prices EPut and EPdt are decided separately 
and thus are independent of WP prediction time 
horizon t [11]. 

3. Wind generators bid into the forward energy markets 
with the WP forecasted obtained in the least time 
ahead. In other words, they bid at the hour right 
before the market is closed in order to get the 
predicted WP as accurate as possible. Therefore, the 
WP prediction time horizon in (7) starts from t = 1. 

For illustration purposes, Fig. 3 shows the system cost 
induced from WP prediction error based on (7), and energy 
prices in DA and supplemental reserve market presented in 
[11]. Fig. 3 shows that both the total system cost and its 
average value per hour are increasing functions of WP 
prediction time horizon. This indicates that WP prediction 
horizon increases system costs due to not only the cumulating 
effect but also deteriorating forecast accuracy over time. 

B. System Cost Function o/ Customers' Scheduling Flexibility 

Two factors decide how customers' response to TBR 
programs influences the system cost: (1) customers' 
scheduling strategies and (2) customers' scheduling flexibility 
[1]-[3] and [27]. While the first factor depends on the load 
controlling algorithms and technologies available to customers, 
the second factor depends on the time horizons of the time­
varying price that customers can view in advance. 

Previous works provide various models of load scheduling 
that can be used to calculate system cost under a given time­
based rate horizon. For instance, [23]-[25] propose sets of 
fuzzy logic rules based on which customers' loads can be 
scheduled. System costs are optimized together with 
customers' satisfaction, which is modeled by indoor lighting 
and temperature. [26] and [27] schedule loads with the 
knowledge of customers' inter-temporal shifting elasticities. 
Price elasticity matrices are modeled within a given TBR 
program's time horizon to find the price and load schedules 
for the minimum system cost. For industrial and commercial 
customers, [28]-[30] propose load scheduling algorithms that 
maximize the customers' profit under given energy prices 
within a given time horizon. Energy conservation conditions 
are held in these models. And the system costs induced can be 
estimated by the obtained load schedule and energy price with 
the known system conditions. 

To model the influence of customers' scheduling flexibility 
on the system, denote the generation cost in the hourly 
forward energy market of a time horizon T as: 

(8) 

s.t. q('J T) ::; 0 (9) 

where (9) is the customers' load profile with the system 
conditions known within T, to is the starting time of the time 

horizon period T , Yq,to (T) is the minimum system cost 

obtained by applying (9) with a starting time at to. Cj is the 

cost function of the generator at bus j, and Pj,t is the output 
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power of that generator at hour t. 
The system cost function (8) is predicted as an increasing or 

function of the time-based rates horizon T, but we cannot draw 
the same conclusion for its average value per hour. This is 
because T can be any period within any periodic electricity 
consumption time frame (e.g. 2 pm to 6 pm in 24 hours, or 6 
am to 12 pm in 72 hours), and hourly system marginal costs 
are usually different within those timeframes. However, in 
general, the longer the time horizon over which customers can 
view time-based rates in advance, the more flexibility 
customers get to schedule loads, which in tum induces greater 
potential to reduce the system cost. 

e. Optimizing the Time-Based Rates' Horizon 

Given the cost functions of WP prediction error and 
customers' shifting flexibility shown as (7) and (8), the system 
cost function of TBR program's time horizon T is proposed 
as: 

Ytotal(T) = Ir=O{YQ,(lXT+l)(T) + Yrsv,(lXT+l) (T)} (10) 

and 

L = lt�axJ 
(11) 

where tmax is the length of a given periodic electricity 
consumption timeframe (e.g. 24 hours as a daily load profile, 
48 hours and so on), and (11) implements the floor function on 

T's number within this timeframe. Within the sum operator, 
the first item presents the generation cost in forward market 
dispatch with demand response modeled by (9), and the 
second item represents the cost in real-time reserve 
supplement energy market caused by WP prediction errors. 
The sum of the two items estimates the total cost induced in 
the energy markets that starts from hour l x T + 1. However, 
T can be any period within any periodic electricity 
consumption time frame (e.g. 2 pm to 6 pm in 24 hours, or 6 
am to 12 pm in 72 hours), and hourly system marginal costs in 
energy markets are usually different for those time horizon. 
Therefore, the total costs of T are summed over tmax in order 
to make the normalized system marginal costs the same. For 
illustration purpose, Fig. 4 shows the development of (10) 
from (8) and (7). 

In addition, the time horizon of a TBR program is should 
not be changed frequently once has been decided, because it is 
not practical to expose customers to a different time horizon 
every time. Therefore, the chosen TBR time horizon should be 
applicable to general system operation conditions in the long 
term. For this reason, the parameters of the system cost 
function should be estimated from the system's empirical data. 

It is important to notice that (10) only reflects the partial 
system costs. In practice, the total system cost involves costs 
induced in multiple forward markets, real time markets of 
energy, ancillary services, transmission rights and so on [10]. 
[20] and [21]. The purpose of establishing (10) is to model the 
competing interests of minimizing WP prediction error and 



maxlmlzmg customers' scheduling flexibility from the 
perspective of an optimum TBR program time horizon. For 
this purpose, only costs in the short-term hourly forward and 
reserve supplement energy markets are involved in (10). This 
is justified by previous studies on WP prediction cost 
assessments and customers' scheduling models [11], [20]-[22]. 
Moreover, costs that are induced by other factors (such as 
solar power prediction) and are related to the setting of time­
based rates' horizon may be added to (10) if necessary. 

The optimal time horizon of time-based rates is found by 
optimizing (10) over T E (0, tmax). 
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Fig. 4. System cost function of TBR's time horizon. The function shown 
assumes all loads are fully responsive. The costs are calculated by (10) and 
normalized by the installed WP. The function is developed from WP cost 
function shown (with the same data in Fig. 3) and cost function with 
customers' shifting calculated by (8) with (9) defined in [30]. The optimal 
TBR's time horizon found in the shown function is T = 9. 

IV. DECIDING PRICING OF TIME-BASED RATES 

Time-based rates' pricing plays the role of transforming the 
currently available system conditions into an economic signal 
to customers and thus achieves the goal of creating an efficient 
market. However, uncertainties that reduce market efficiency 
emerge under TBR programs in market operations. For 
example, when a forecasted real-time price is provided to end 
users in advance of their consumption, the final load amount 
may deviate from the forecasted value, leading to a real-time 
price that is inappropriate for the needed generation. Thus, 
system operators may find it harder to predict the future 
demand and to commit or dispatch the correct amount of 
generation when there is an active demand response. 

Thus, it is critical to consider the current system conditions 
and demand response when deciding the TBR programs' price. 
[6] proposes a bidding mechanism that follows this statement. 
Higher market efficiency is shown to be achieved with the 
price setting. In addition, although the price is set for the 
wholesale electricity market in [6], time-based rates in retail 
markets can be set following a same process and readjusted 
due to the cost reflection of retail price from wholesale price 
in energy markets [5], [7] and [10]. 

Given the obtained optimal time horizon T, the time-based 
rates' pricing is set according to the following process: 
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The system operator starts a forward market energy auction 
of transaction periods T, in which all generators and retailers 
are required to submit their bids before a deadline. The bids of 
retailers take the form as: 

ref ref I B = < Pt ' Pt ,crxr t E T > (12) 

where ptet is the reference consumption active power of 

retailers at hour t (MW), and p;et reference selling price of 

the retailer at hour t ($/MW·h). The reference price p;et and 

demand ptet should be a point on the retailer's end-user 
demand curve. CTXT is a T x T  Price Elasticity Matrix (PEM) 
describing the customers' scheduling behaviors under the 
retailer. The concept is first proposed by [26] and [27]. Each 
entry of the PEM defines the change in electricity 
consumption at a scheduled hour t due to a change in the 
electricity price of that same hour t or any other hour T, and is 
expressed as 

(13) 

Bidding profile (12) allows retailers' bids to describe their 
customers' inter-temporal constraints in a compact and 
straightforward manner with PEM. 

Then the pricing is calculated by an iterative market 
clearing algorithm that is first proposed by [26] and [27], and 
improved by [6]. The algorithm is illustrated in Fig. 5. 

pret 

!J.p 

""'----6 
Fig. 5. The market interaction algorithm. In the figure, the UC and ED blocks 
refer to the unit commitment and economic dispatch. D and P are the demand 
and price. Dre! and Pre! are the reference points of demand and price. !,;D and 
!';P are the deviation of demand and price from their reference points. 

The algorithm's general idea can be described by its 
iterations: in the first iteration, the algorithm conducts 
demand-side-bundled unit commitment with the hourly 

demand as p?) 
(which is denoted in retailers' bids as their 

reference load, ptret). The unit commitment gives the initial 

market clearing price as p�O). The algorithm compares p�O) 
with the reference price p;et and calculates the difference, 

llp�O). With llpo = cTxTllpo, the algorithm determines the 

demand deviation llP?). The sum of ptret and LIP?) gives the 

end-user response to price p�, which updates p?) to p?). The 

iterations are repeated until the condition JP?) _ p?+l), < ( 



is satisfied. pf for all the t E T will be the optimal pricing for 
time-based rates. 

V. CONCLUSION 

The application of Time-Based Rates (TBR) in modem 
power systems during the past several decades brings about 
more flexibility and options for both the supply and demand 
side, while it also increases the uncertainties in power system 
planning and operation. Therefore, it is important to create a 
TBR design approach that captures the benefit of flexibility, 
gets little induced uncertainties and thus reduces the system 
costs. 

This paper presents a new two-step design approach of TBR 
programs. Conflicting interests from wind power prediction 
and customers' scheduling flexibility are considered in 
optimizing TBR's time horizon, in order to achieve a 
minimum system cost in forward and real-time reserve 
supplement energy market. The obtained time horizon is used 
as a known parameter in the subsequent design of TBR's 
pricing values. Customers' scheduling strategies modeled by 
price elasticity matrices along with current system conditions 
are considered in the price setting process, during which 
system cost of the forward energy market is minimized. 

Future work includes testing the developed approach on 
specific power systems. 
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