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Abstract—The paper proposes a mechanism for real-time retail
pricing of electricity in smart power grids, with price stability as
the primary concern. In previous articles, the authors argwed
that relaying the real-time wholesale market prices to the ad
consumers creates a closed loop feedback system which coblel
unstable or lack robustness, leading to extreme price voldity. In
this paper, a mathematical model is developed for charactézation
of the dynamic evolution of supply, (elastic) demand, and m&et
clearing (locational marginal) prices under real-time pricing. It is
assumed that the real-time prices for retail consumers are erived
from the Locational Marginal Prices (LMPs) of the wholesale
balancing markets. The main contribution of the paper is in
presenting a stabilizing pricing algorithm and characterization
of its effects on system efficiency. Numerical simulationsonform
with our analysis and show the stabilizing effect of the mechnism
and its robustness to disturbances.

|. INTRODUCTION AND MOTIVATION

concerns system stability (both price and supply/demaatalst
ity) as we will explore in the sequel. Investigating the gaaffs
between the endogenous uncertainties induced by consumer
behavior and mitigation of exogenous system uncertaiigies
outside the scope of this paper. Herein, we will focus elytire
on system stability and efficiency questions that arise vthen
retail prices are tied to the spot prices of the wholesaleatar
The literature on dynamic pricing in communication or
transportation networksso that certain system objectives are
met—is extensive, see for instance [8], [7], [4], [3] and
the references therein. However, the specific charadtarist
of power grids arising from the distinctively close inteapl
between physics, market operation, and economics, alothg wi
the safety-critical nature of the system pose new and unique
challenges to be addressed. The implications and conseggien
of various forms of dynamic pricing such &Gritical Peak

Demand response and dynamic retail pricing in electricitpricing, Time-of-Use Pricing and Real-Time Pricing,have
transmission and distribution (T&D) networks have beerglonpeen investigated by many economists and regulatory aggnci
advocated for improving system efficiency, mitigating wétol They mostly argue in favor of real-time pricing, characted
sale price volatility, reducing system peak load, and thedne by passing on a price, that best reflects the wholesale market
to hold excessive reserve capacity. Reducing the annu@rsys prices, to the end consumers. See for instance the papers by
peak load lowers the required system-wide maximum capaciBbrenstein et. al. [2], Hogan [6], technical report by the\iE
and lessens the need for expensive mega power plants (spake/ISMP [5] and the report on California’s 2011 deadline for
that are brought online for only a couple of hours per yeae Thmandatory real-time pricing [14]. In [10], the authors agdu
impact on the required level of near real-time reserve dgpacthat simply relaying the wholesale market spot prices to the
margins could be even greater. As the contribution of rebéva end consumers may create system instabilities. In paaticul
resources to the supply of electricity grows in magnitud@ appears that real-time pricing as defined above, in the

and extent, increased supply-side stochasticity chadigrige

absence of well-designed financial instruments for hedging

system operators. System reliability constraints then pim could potentially aggravate price volatility in wholesater-

the system operators to maintain additional reserve cgp@ci kets. Whether real-time pricing will mitigate, or aggravat
deal with the increased uncertainty. Dynamic pricing is ohe wholesale price volatility depends on many factors inagdi

the mechanisms that could be used for mitigating the Eﬁeﬁ‘hmementaﬂon details, contract types, and most impdigtan

of these uncertainties by allowing the consumers to re&tt the mathematical relations between the cost functions ef th
their own monetary or environmental interegb the wholesale producers and the value functions of consumers.

market prices, which reflect the real-time fluctuations ie th  The framework developed in this paper considers the con-
system’s capacity. While this real-time price-based cogpl sumer as an autonomous agent myopically adjusting her usage
between supply and demand, should, at least in principlgy response to price signals, based on maximization of a
mitigate the effects of stochastic fluctuations on the supigle,  quasi-linear smooth concave utility function. It is assdrtieat

it challenges system operators in new ways. The first chgdlensupply follows demand precisely, in the following sense: at
concerns the endogenous uncertainty introduced by thertttmaach instant of time, any amount of electricity demanded by
side due to uncertainty in consumer behavior, prefereraces, the consumers must be matched by the producers and the per
reactions to real-time price variations. The second chgle unit price associated with this exchange is the exantéepric
corresponding to the marginal cost of supplying the predict
demand. The consumers then (myopically) adjust their usage
by maximizing their utility functions for the next time ped
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based on the new given price. This adjusted demand is in tuffor real-time system and market operation, the constraims

a feedback signal to the wholesale market and affects tkesri linearized near the steady state operating point and thé&1SO
for the next time step. This framework favors the consumergoblem is reduced to a convex optimization probleosually

in that it isolates them from the risk of large discrepanciea linear program-often referred to as thEconomic Dispatch
betweenexané and ex-postprices. We analyze stability and Problem (EDP) A set of Locational Marginal Prices (LMPSs)
efficiency properties of the closed loop system arising ftbim emerge as the dual variables corresponding to the nodalrpowe
setup and provide a subgradient-based [1] stabilizingriifgo  balance constraints of this optimization problem. When the

for pricing. transmission lines are congested, the prices may vary from
location to location as they represent the marginal cost of
Il. PRELIMINARIES supplying electricity at each particular node [11], [12].
A. Market Participants In this paper, we work with a simplified DC version of the

EDP and make the following assumptions: 1. Resistive losses

We develop a market model with three part|C|pant YPESY the T&D lines are negligible. 2. \oltages are fixed and all
1. The consumers, 2. The producers, a_nd 3. An mde.per.]d erators and loads are ideal current sources/sinks.e€eTh
system operator_(ISO)._BeIow, we describe the charadteist are no reserve capacity requirements. These assumptiens ar
of these agents in detalil. made in the interest of keeping the technical development in

1) The Consumers and the Producetet D = {1,---,n} g paper focused and manageable within the limited space.
and$ = {1,---,m} denote the index sets of consumers an hey could be relaxed at the expense of heavier notation and
producers respectively. We associate a value funatjqa) to a somewhat more involved technical analysis. The following

each consumef € D, wherevj (I) can be though_t of as the DCOPF problem is the EDP problem considered in this paper:
dollar value that consumeir derives from consuming units

of electricity. Similarly, to each producére S, we associate min W (s,d) 3
a cost functiory; (x) representing the dollar cost of producing 8,d, 1 3)
x units of the resource. K E s d

Assumption I:For all ¢ € S, the cost functiong; (-) are in { 0 R ] { I } = [ 0 ]
C2[0, o0), strictly increasing, and strictly convex. For alE D,
the value functions); (-) are inC?[0, c0), strictly increasing, St —Tax < I < Iax
and strictly concave.

Given a clearing price\, the utility function of supplier Smin < 8 < Smax
i € Sis given byu;(\,z) € Az — ci(2). Similarly, the \where d — [dy,- .d,]” is the demand vectors —
utility function of consumerj € D is given byu; (A, z) def [s1,- - 7Sm]T is the supply vectorf € {—1,0,1}"*" is the

vj(z) — Az. Letd; : Ryy — Ry, j € D,ands; : Ry —  graph incidence matrix(is the number of nodes (buses) and
Ry, i € S, denoteC' functions mapping price to consumption; the number of branches (transmission lineg)e RP*" is
and production respectively. Then the loop-impedance matrixR/ = 0 accounts for the KVL),
K € {0,1}"*™ is a matrix aggregating the output of several
generators connected to one nddéks + EI = d accounts
for the KCL), andW (s, d) is the social welfare function:

d; (A\) = argmax v;(x) — Az @ -1 AN, jeD (1)

zeR J

si(/\):argmﬁx )\x—ci(x)(:b)éi_l AN, eS8 (2
reR W (s,d) =3 epvj(dj) = Xiesti(si)

where the rightmost equalities ((a) and (b)) in (1) and (2 ar. - .
valid if we extend the inverse functions to def'r'm;el (\) =0, The decision parameters of (3) ared, and line current flows

WA > (0), andé; L (A) = 0, VA < ¢ (0). I. When the demand is fixed; = d;, Vj the EDP reduces to

2) The Independent System OperatBhe independent sys- jvaetlif;/:/rég a given fixed demand at minimum cost. In this case
tem operator (ISO) is a non-for-profit organization resjilaes =

for operating the wholesale markets and the transmissiioh gr Wis, d) = =3 e sci (51)

The ISO's primary function is to optimally match supply andand the decision variables of (3) aseand 1.

demand (adjusted for reserve requirements) subject toomketw
constraints. In particular, operation of the real-timeabaing
markets involves solving a constrained optimization peabl
with the objective of maximizing the aggregate benefits ef th In this sub-section we develop a model for the dynamic
consumers and producers. The constraints include power fi@&yolution of spot prices in electricity provisioning netiks
constraints (Kirchhoff’s current and voltage laws (KCL andVith price sensitive consumers. In order to prevent a large
KVL)), transmission line constraints, generation capacian-  deviation from the nominal value in the system frequency, th

straints, and local and system-wide reserve capacit ui
Y P y req 1The demand is assumed homogeneous, hence, the effect tedbads

ments, and possibly a few other ISO-specific constrai_nts. WBnnected to one node is treated as one flow, Therefore, dogaohthe K
refer the interested readers to [12], [9], [13] for more deta matrix for demand is not included in the formulation.

B. Dynamic Supply-Demand Model



optimal solution

ea ep| ,ea ep
ﬂ’r 7'[, ﬂ’t ﬂ’H 1 7[[ + ﬂ’H 1
{ | | A" = argmax D (A|¢,d) (5)
d d A
t 1 t+1 1+1 1+2

need not be unique. This, however, is not a major issue as: 1.
the degenerate cases are rare (in a measure-theoretig,sense
Fig. 1. X528 (\P) is the exanté (ex-post) LMP fdt, ¢ + 1], m is the retail 2. one can remove the degeneracies by reformulating (4) in
price for ¢, ¢t + 1] and it is announced at the beginning of the interdal,is a reduced dimension possibly as smallras- p, i.e., the
consumption duringdt, ¢t 4+ 1], and will be known at timet + 1. . . ’ . L o .
dimension of subspace defined By Within the scope of this
paper, we will assume that the dual optimal solutivgh is

aggregate supply needs to match the aggregate demand at e%%griérk 2:1f (s*,1*) is an optimal solution ofD (Alc, d)
instant of time. Therefore, in real-time, supply must fallthe en—Ks* — EI* —7# d is a subgradient oD (Alc, d) at)\.’
demand in the sense that the amount of power requestedtlg1 he following sequence of actions taken b’y the 1SO. the
the cansumers has to be supplied by the producers. The mogg sumers, and the producers define the dynamics (')f the
developed here is based on this assumption and is consistg)pétem_ '

with the current practice in real-time balancing marketshie )
United States. The differences are: 1. The consumers adjusl1
their usage based on the real-time price (which is assumed
to reflect the real-time wholesale market price). 2. Theee ar
no ex-post adjustments to the (exanté) price passed tonthe e
consumers. Since this model represents the price dynamics i mo=TL (N, 7_1)
smart grids with real-time retail pricing, it is reasonalie
assume that the ISO (or the retail pricing entity) does nowkn
the utility functions of the consumers, hence, a model of how  \here A is the (exante) LMP at location € N

) At time ¢, the ISO announces the (exanté) wholesale
LMP vector\; = [A14, -+, )T and the retail (loca-
tional) price vectorr, = [m1¢,- -+ ,mn )7 corresponding
to the time intervalt, ¢t + 1] :

:\t = [/\t,"' ,/\th], M1 = [7Tt71,"' 77Tt717T]

the consumers will respond to price signals is not available corresponding tdt, ¢ + 1], and I, : R27+2 — R is
Before we proceed, we clarify our notation. L&f = the pricing function andl’ € Z, is its memory. The

{1,--- ,n} denote the set of all nodes (equivalently buses) in LMP price \;, is calculated by solving(c;, d;) based

the network and; thel-th standard unit vector iR™. We use on forecast demand for the time interval and computing

& (c,d) to refer to the EDP problem (3) with fixed demand the corresponding dual variables. Alternatively:

vector d. The inputs of€ (¢,d) are the cost functions; (-), .

i € S, and the fixed demand The decision variables (and the A = argmax D (W|Ct, dt) (6)

outputs) of€ (¢, d) are the vectors of generatiarand the line
current flowsI. All other parameter®, K, Iax, Smaxs Smin
are also assumed fixed &é(c, d). Thepartial dual problem to dit =Dy (digv,- dis_1-7)
& (c,d) is defined as: ’ ’ ’

We assume that the forecast function is of the form

for some functionD; : R7+1 — R.

D (Ae,d) = miln >rei(si) — A(Ks+ EI—d) () 2) The consumers adjust their usage for this time period
5 ies according to (1):
RI=0 d. = arg max v (z) — ML = i)l_l (71,t)
s.t. _Imax S I S Imax et
Sunin < 5 < Spax However, the quantityd;; = o, ' (}) will not be
T realized and revealed until time + 1, that is, the
Remark 1:In general, even when the cost functiong:) , beginning of the next pric_ing inte.rval. Total payments
i € S are strictly convex, the optimal solutiofs*, I*) of by the consumers for this time period, ¢ ym,¢dic =
D (Ale,d) need not be unique, though, when(-) are strictly Zle_Nﬂ-l-,ti}f (m1,¢) -
convex,s* will be unique for\ > 0. It can be verified that ~ 3) During[t,t + 1], the producers supply the total demand
(4) is separable into two independent optimization prolslem (2 1endit), for this time period and they get paid
a convex optimization problem in terms ef and an linear according to their actual marginal cost of production.
optimization problem (LP) inf. For a generic loop impedance The total payment to the generators for this time period
matrix R, the feasible set of the LR{ | RI = 0,|I| < Lnax}) is® ZleNZjeS(l)/\l,gsjsl»t’ where /\1,2 is calculated by

may have degenerate basic feasible solutions. Hence, tide du
3This is a specific and simplified ex-post pricing rule for rbimsement of
the generators and is mentioned here only to point out toisske. In reality,
2|n this paper we merge the role of the ISO and that of an eniityhiarge  the ex-post pricing rules are more complicated and varysact8Os. They
of real-time retail pricing. Whether in reality this will avill not be the case, are designed to encourage generators to follow dispatdhuati®ns while
does not change the message and the results that we interdivier.d minimizing the ISO’s exposure.



) @.di) and
= arg max w, ~ N
LT ELE Tt Dy(diy,-++ ydr1) =D (dy—1) =di 1
Syp1 = arg Hii’n ; f(w) l Then we obtain the following price dynamics
we(dey1 »-1
Tt+1 = t+1, Tt
l I (A ) 8
. . A1 = argmax D (w, ¢ip1,d 9
diy1 = Dy(dy, .., di—1) m = (A, m-1) H—l 8 “’X (@ ere1, ) ®)
A. Stabilization
dy = arg max v(z) — mw Theorem 1:Suppose that there exigf,.. > 0 and strictly
— 51(my) convex functionse; : Ry — R4, j € S, such thatd, €

[0, dmax] @andVj € S : ¢;; = ¢;, Vt. Let the pricing functions
I andIIY be defined as
Fig. 2. Closed Loop System under Dynamic Pricing. Tae! block

represents the unit delay element. m AT =1=y)7+7A (10)

119 (r) = 7 +7G () (11)

solving £(c;, d;), and computing the dual variabi@he Wherey >0, andg () is a subgradient direction given by
ISO’s risk or revenue differential is: G(r)=—Ki— Eit+d=—-Ki— Ef+ o1 (7)

Ar =Y en(mdie = Y c oM aSiie) ands, I, d together withm solve D (, ¢, d). Then for suffi-

. . _ciently smallvy, bothII* andII¢ stabilize the price dynamics
It can be verified that in the absence of congestion i ): y 7 P y

transmission lines, iiiu =d; andm; = A\ ¢, VI, then

Ay =0. T = 11 (A1, 7e) = T + 7 (Aeg1 — me) (12)
4) The ISO re-solves the dispatch problem for the next time Tos1 =109 (1) = m +~G () (13)
period:
5 . in the sense thatr,, d;, s;) converges to a small neighborhood
€ (Ct“’ dt“) —mm D of (7*, s*,d*) where

and dispatches the generation units accordingly. The 7% = argmax D (\c, d*)
process iterates as in Step 1. A

Remark 3:Under a different pricing model, that is, ex-and(s",d") solves (3).
post pricing, the retail price charged for consumption o on . Proof: The proof is based on standard Lyapunov tech-
unit of electricity during the intervalt, + 1] is calculated NiGUes in convergence analysis of subgradient methodsisand
and declared only at the end of the interval, when the totQMmitted for brevity. o _ "
consumption has materialized. In this case, the price uncer Rémark 4:There are two stabilizing mechanisms proposed
tainty and the associated risks are all bore by the consum&t, Theorem 1. The first, (12), is based on the LMPs which
who must estimate the prices for the next time interval. A&re already available at the_tlme when a new retail price must
price prediction function?; will take the role of the demand P& computed and communicated. The second, (13), however,
prediction functionD,. Assuming that the consumer's price®duires solving optimization problem (4) for computing th
prediction function has the same form as the demand predictjSuPgradient. There are various trade-offs in choosing one
function, i.e., si1 = pt (Tt o me—) , it is not difficult to mechanism over another. In (10), the coupling between the

see that the emerging price dynamics is essentially the sai¥Ps and the retail prices is relatively tighter. This ingsli

as the case with exanté pricing, and hence, with some minthiat wholesale market disturbances would reflect more guick

changes our framework would still be applicable. HowevefNd more aggressively in the retail market. Our simulations
if this assumption is not satisfied, or if the functidp is (not shown in this paper due to lack of space) conform with

very complicated, the system’s dynamics could become veriS analysis and it was observed that for the_same _speed of
complex and unpredictable form the ISO’s perspective. convergence, (12) typically leads to more volatile retaitgs
than (13). In contrast, in the presence of external disnoba

in demand and supply cost, (13) leads to larger discrepsincie
ll. MAIN RESULTS between average wholesale and retail prices. These discrep

In this section we present the main result of the paper whici'Cies (which exist for both (12) and (13)) lead to excess
is a subgradient-based stabilizing pricing algorithm. €der ©OF shortage of the pricing entity’s revenue, which possibly

the dynamic model developed in the previous section arfePuld be adjusted through billing and accounting at slowee t
suppose for simplicity, that scales. Another trade-off is in that (13) can be implemeiried

) a semi-distributed manner, whereas (10) requires knowledg
I (Mg, 1) = T (A, 1) of the LMPs which are computed centrally by the ISO. If



The interpretation is that regardless of the price, consume
always consumes an amount which makes the total payment
for one time period equal ta;. While this might appear as
an over-simplification of consumer behavior, it is consiste
with the casual observation that many consumers prefer to
allocate a fixed budget to their utility bills, and while they
might welcome some savings, their total willingness to my i
more or or less constant. To make the simulation more realist

a small perturbations noisgs; wheree;, ~ N (0,03) is added

to ay/m ¢, and lower and upper boundd,(i, anddy.x) are
imposed on the consumption:

dl,t = / Tt Sit = /\?Z / 26,

dyy = max (dmin, Min (dmax, ar/m, (1 + 1)) -

Fig. 3. The three bus system studied in the Numerical SinoulstSection. (We could instead. or as well impose price caps and roors)

It is assumed that there are several generators connected to

each bus and that their aggregate cost is a piecewise linear

approximation of the cost function of a single generatohwit
uadratic cost; () = B;z2. The following set of parameters

the network parameterB, E, and I, are known to all the
agents, the subgradient direction can be computed at eateh n
(by the producers) and real—t|m.e ret_all pricing can be do chieve this piecewise linear approximation with unifgrml
independently at each node. While this distributed featuag sized pieces of length:
seem unnecessary at the transmission system operatidniteve

Sjimin =0, Sjimax = ¢, dcj; (z) /dx = qBi(25 — 1), VL.

is an attractive option for pricing and management of resesir
in the electricity distribution grid. Similar subgradiemased . . ) . .
algorithms have in the past been reported for system decoiff® could instead work with a single generator with quadratic
position and obtaining distributed algorithms for congest COSt and solve the economic dispatch problem as a consraine
control and scheduling in communication networks [4]. Thduadratic optimization problem. In fact, that would magnif
specific differences and challenges in electricity netedie  nd aggravate possible system instabilities when thelretai
mostly in the coupling and interaction between wholesaks arPfices are the same as the LMPs. However, we chose the
retail markets, and exposure of the market participantsi¢o ¢ piecewise linear approximation model for two reasons.tFirs
risk of monetary loss (or benefit) from dynamic pricing to be consistent with the current practice of most ISOs who
Remark 5:With a properly defined notion of stochasticformulate the EDP as a linear program. Second, to demon-

convergence, the result can be extended to cover cases wi F?te_\_"ﬁ s.|mula.t|ons—that system |n|stab|I|t|eso can oceur:
time-varying costs whefic; } is an i.i.d. or Markovian process. et:/en wit ﬁ)le.ceW|se cogztagt margllra COSES' Jnce agan, kl1n
For arbitrary time varying costs, the result does not hold. these simulations, we added a small perturbation noisedo t

marginal costs:
dejie () /dx = qB1(25 — 1)(1 4 6¢),

In this section we present numerical simulations that confir  The fjetV\{OFk parameters Corrgspohding to (3) are both dis-
and complement the results presented in the previous ssctioplayed in Figure 3 and summarized in Table I.
Consider the three bus system shown in Figure 3, where

IV. NUMERICAL SIMULATION or~ N (0,05) .

we have elected to aggregate all the consumers connected Generators | Consumers | Network | Network
to one bus-which are assumed to be homogeneeus a B, =05 a1 = 1500 | zo=1 |12_=4
representative agent model. Hence, for our purposes thikeimo By =2 az = 1000 | 205 =2 | 12 =45
has one consumer connected to each bus. We further assum By =1 a3 = 500 s=1 |13 =3
that the consumers’ value functions are logarithmic: 7 —— —
Sinlax_q_5 dmiﬂ =1

v (z) =aqloga, 1 =1,2,3. 87 min =0 dmax = 100

This implies that given a price; ;, we haved; ; = 1‘;[1 (M) = Table |

oy /m . Different parametersy; represent different consumer

types based on income level, geographical, and demographige results of the simulations are shown in Figures 4 and 5.
characteristics. Note that under this model, the total gaym The simulation in Figure 4 corresponds to the case where the
by the consumers over any time period of fixed lengjtre.g., | MPs are directly passed on to the consumers. In this case bot
one month, is constant: price and consumption at all three buses are very oscijlator
and unstable. If the supply costs grew faster than quadiatic

1 k+T dr s = . . ; . el
th:k Tt = with strictly convex marginal costs) the instabilities vidie
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Fig. 4. Stochastic evolution of prices (left column) and dewh (right column)
when the LMPs are directly relayed to consumers(= ;). Both prices
and consumption are extremely volatile. (simulation patems: noise SD:
oq = os = 0.01).
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Fig. 5. Evolution of prices (left column) and demand (rigbtuznn) under
pricing model (11) with stepsizeg = 0.05. At time ¢ = 100 the cost of

production at node3 is doubled to simulate a disturbance causing tighter

supply. The demand responds by lowering consumption anslyitem reaches
a new equilibrium. (simulation parameters: noise $:= o5 = 0.001).

a pricing algorithm that stabilizes the system. Adaptatifn
the proposed framework to more realistic models suitabie fo
practical implementation is an important direction of fitu
research. These include AC power flow models, market clear-
ing models with reserve capacity constraints, and consumer
behavior models. The algorithm presented in this paper does
not require knowledge of the utility functions of the con®rs)

it instead, uses the consumers’ response to price signfitgdito

a subgradient direction. It would be however, both inténgst
and important to create more realistic models of consumer
behavior. For instance, an energy management softwaret migh
be in charge of optimization, decision-making, and schedul
ing of loads for large consumers. Such software might then
use historical price patterns and predictions along witido
shifting and (possibly) storage to optimize usage and migem
energy costs. Several interesting questions arise herst, Fi
how does presence of storage, load shifting, price-aratiicig
consumers, and dynamic optimization affect system stabili
and in particular, the algorithm presented in this paperi? Is
possible that in aggregate, such complex demand response ca
still be modeled as a concave utility-maximization probfem
Lastly, several fairness and efficiency questions arise.firat

is the effects of price-anticipating consumers in the dvera
system efficiency. The second concerns fairness. If only a
portion of the consumer base is subject to dynamic pricing,
the nonparticipating population could conveniently cansu
energy at a time when supply is tight and subject the other
consumers to excessive risk or inconvenience.
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