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On the Stability of Wholesale Electricity Markets under

Real-Time Pricing

Mardavij Roozbehani t

Abstract—The paper proposes a mathematical model for
describing the dynamic evolution of supply, demand, and
market clearing prices under real-time pricing mechanisms
that pass on—either directly or a (static) function of-the real-
time wholesale electricity market prices to the end consumers.
The effects that such mechanisms could pose on the stability
and efficiency of the entire system is investigated and sev-
eral stability criteria are presented. It is shown, under some
reasonable assumptions, that relaying the real-time wholesale
market prices to the end consumers could create an unstable
closed loop feedback system. Finally, a result is presented which
characterizes the efficiency losses incurred when, in order to
achieve stability, the wholesale market prices are modified
through a (static) pricing function before they are passed on to
the end consumers.

[. INTRODUCTION AND MOTIVATION

The increasing demand for energy and growing environ-
mental concerns have created a need for a more efficient
and modern power grid that will incorporate a large number
of renewable resources and better storage and real-time
demand response technologies. This paper focuses on the
analysis, and to a lesser extent, the design of dynamic pricing
mechanisms that are expected to be one of the characteristic
features of modern power grids.

The rationale for using demand response and real-time
pricing in electricity networks is manyfold, of which we
mention two. First, is to reduce the annual demand peak.
This helps the system designers and system operators reduce
the maximum required capacity, and minimize or eliminate
the need for expensive high-carbon emission mega power
plants that are brought online only a couple of hours per
year to meet the peak demand, and delay or suppress ca-
pacity expansion that is driven by peak demand. The second
rationale is to minimize the amount of daily reserve capacity
required to meet the demand in the face of contingencies. As
the contribution of renewable resources to the supply of elec-
tricity grows in magnitude and extent, increased stochastic
uncertainty challenges the system operators. A contingency
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may no longer be considered a discrete 0-1 event correspond-
ing to the tripping of a generator or loss of a transmission
line, rather, it would be characterized by a continuum of
probabilistically quantified scenarios ranging from maximum
to zero production. System reliability constraints would then
require the system operator to hold more reserve capacity to
deal with the increased uncertainty. Dynamic pricing can be
used as a mechanism for stochastic matching of supply and
demand and hence, minimize the required reserve capacity by
exploiting the production capacity of renewable resources to
a greater extent. In this paper we are not concerned with the
stochastic matching or other promises of dynamic pricing,
but with system stability and efficiency questions that arise.

The idea of using time-varying pricing mechanisms over
a network to achieve certain objectives—similar in nature to
the abovementioned in the sense of regulating the behavior of
agents that compete for a resource—has been discussed in the
economics, operations research, and engineering literature.
The literature covering the topic of time-varying prices to
control the flow rates in communication networks or in
transportation networks is extensive. See for instance [6] and
[5] for communication networks and [1] for transportation
networks. However, the specific characteristics of power
grids arising from physics, the safety-critical nature of the
system, and market operation and economics pose new and
unique challenges that need to be addressed.

Borenstein et. al. [2] study both the theoretical and the
practical implications of various forms of dynamic pricing
such at Critical Peak Pricing, Time-of-Use Pricing, and
Real-Time Pricing. They argue in favor of real-time pricing,
characterized by passing on a price that reflects the wholesale
market prices to the end consumers, and conclude that it
delivers the most benefits in the sense of reducing the peak
and flattening the load curve. A similar conclusion is reached
in a study conducted by Energy Futures Australia as part
of a larger scope research conducted by the International
Energy Agency Demand Side Management Programme [3].
In California, the state’s Public Utility Commission (CPUC)
enacted a series of new regulations in July 2008, with the ob-
jective of enhancing California’s energy efficiency standards
and renewable energy production [11]. In particular, CPUC
set a deadline of 2011 for the state utility PG&E to propose a
new dynamic pricing rate structure. CPUC defines dynamic
pricing as electric rates that reflect actual wholesale market
conditions, such as critical peak pricing, or real-time pricing.
It regards the real-time price a rate linked to actual hourly
wholesale energy prices [11]. In this paper we show that
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directly linking the consumer prices to the wholesale market
prices may create an unstable close-loop feedback system in
which the prices oscillate or diverge to unacceptable limits.
We are not arguing against the idea of real-time pricing in
power grids in its entirety, nor are we suggesting that it
cannot fulfill its purposes. The message that we intend to
deliver is that the design of a real-time pricing mechanism
must take system stability issues into consideration, and that
successful design and implementation of such a mechanism
entails careful analysis of consumer behavior in response
to price signals. Whether or not directly linking consumer
prices to the wholesale market prices will cause instability
depends on the utility functions of consumers and producers.

We propose a simple model for the consumers’ response
to price signals based on the maximization of a utility
function. We assume that at each instant of time, supply
and demand match exactly. Moreover, supply always follows
the demand in the sense that at each instant of time any
amount of the resource requested by the consumers must
be matched by the producers and the price per unit for
this exchange is the marginal cost of production. This is
consistent with the current practice in electricity markets
in most of the United States where Locational Marginal
Pricing [8] (LMP) is implemented by an Independent System
Operator (ISO). Though the actual pricing algorithms may
be more detailed, incorporate some heuristics, and exhibit
slight variations across different ISOs, the simple model used
in this paper serves well as a good first order approximation
of reality. We assume that the Locational Marginal Prices
of the wholesale market, or a function of these prices, are
passed to the consumers and the consumers adjust their
consumption according to a curve which maximizes their
utility function. Their adjusted demand is then a feedback
signal to the wholesale market and affects the prices for the
next time step. We analyze the properties of the closed loop
system arising from this setup.

II. PRELIMINARIES
A. Notation

The set of nonnegative real numbers is denoted by R,
positive real numbers by R, ., and natural numbers by N.
The class of real-valued functions with a continuous n-th
derivative on X C R is denoted by C"X. The identity
function is denoted by I. For a function f € C!X, when
convenient, we use f to denote the derivative of f with
respect to its argument: f (z) = df (z) /dz. Throughout the
paper, ¢; € C2[0,00) (or just ¢) denotes the cost function
of producer i, and v; € C?[0,00) (or just v) the value
function of consumer j. Finally for a measurable set X C R,
wur, ({X?}) is the Lebesgue measure of X.

B. Market Participants

We start with developing a simple electricity market model
with three participants: 1. The suppliers, 2. The consumers,

and 3. An independent system operator (ISO). The objective
of the participating suppliers and consumers is to maximize
the net benefit —to be defined precisely in the sequel— that
they can draw from their engagement in the market. The ISO
is an independent non-for-profit player in charge of clearing
the market, that is, matching supply and demand subject to
the network constraints with the objective of maximizing
the social welfare (the aggregate surplus of consumers and
producers). Below we describe the characteristics of the
market participants in detail.

1) The Consumers and the Producers: Given ng € N and
ng € N, let S:={1,..,ns} and D := {1,...,nq} denote
the index sets of suppliers and consumers respectively. We
associate a value function v; (x) to each consumer j € D,
where v; (z) can be thought of as the dollar value that
consumer j derives from consuming z units of a particular
resource, electricity in this case. Similarly, to each producer
i € S, we associate a cost function ¢; (z) representing the
dollar cost of producing = units of the resource.

Assumption I: For all i € S, the cost functions ¢; () are
in C2[0, 00), strictly increasing, and strictly convex. For all
j € D, the value functions v; (+) are in C2[0, 00), strictly
increasing, and strictly concave.

It is assumed that the utility functions are quasi-linear.
Hence, given a clearing price A, the utility function of
supplier ¢ € S is given by uy; (z) := Az — ¢; (z) . Similarly,
the utility function of consumer j € D is given by uy; (z) :=
vj (z) — Az. The utility function represents the net benefit
that an agent derives from consuming or producing x units of
electricity when the market clearing price (or the settlement
price) is A per unit. Let d; : Ry — Ry, j € D, and
si: Ry — Ry, i€ S denote C! functions mapping price to
consumption and production respectively. In the framework
of utility maximizing agents, each agent maximizes the net
benefit that they can derive from the market, therefore,

d;(\) = arg max  vj () — Az, jeD (1)
zERL

si(A\) = argmax Az —¢;(x), 1eS (2
TC€Ry

Remark 1: Under Assumption I, when A € [0,00), the
maximization problems defined in (1) and (2) have a unique
solution in Ry and the functions d; (-) and s; (-) are well-
defined. Furthermore,

d;(A) = max{0,arg {0 (z) = A\}} = max{0,0;" (\)}
si(A) = max{0,arg{¢; (z) = A\}} = max {0,¢; ' (\)}

In the interest of simplicity and to avoid distracting details,
for the rest of this paper, we assume that d; () = 0~ (\)
and s; (\) = ¢~ 1 (\). This can be mathematically justified
by adding the assumptions v (0) = oo, and ¢(0) = 0 to
Assumption I (in which case an adjustment must be made
that v € C! (0, 00)), or by assuming that A € [¢(0), v (0)].

Remark 2: The demand of consumer j € D is inelastic
when d; (A\) is constant for all A € R,. In order to treat
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inelastic demand within the same framework, we allow one
exception to Assumption I. We allow the following value

function: B
( ) —00 dj 7é dj
v; (d;) = 3)
7 \&j 0 4,
and define o; ' (A) = dj, VA € [0,00).
Definition 1: The social welfare is defined as the aggre-
gate benefit of the producers and the consumers:

S =2 jepuni (dj) =D ;cuxi (i)

When the system is at the equilibrium in the sense that the
total supply equals the total demand and there is a unique
clearing price A for the entire system, then:

S =2 iepi(dj) =X icsci(s:)

2) The Independent System Operator: The system oper-
ator is an independent non-for-profit entity responsible for
optimal matching of supply and demand subject to network
constraints. The objective function in the ISO optimization
problem is the value function of the demand less the pro-
duction cost !, adjusted for reserve requirements. The net-
work constraints include power flow constraints (Kirchhoff’s
Current Law and Kirchhoff’s Voltage Law), transmission
line constraints, generator capacity constraints, and local and
system wide-reserve capacity requirements and potentially
some other ISO-specific constraints. We refer the interested
reader to [9], [7], [10], [12] for more details on the specificity
of the constraints and the objective function in the ISO
optimization problem. We note in passing that for real-time
system and market operation, the constraints are linearized
near the steady state operating point and the ISO optimization
problem is reduced to a linear program, usually referred
to as the Economic Dispatch Problem. A set of Locational
Marginal Prices emerge as the dual variables corresponding
to the nodal power balance constraints of this optimization
problem. These prices vary from location to location and
they represent the marginal cost of supplying electricity at
a particular location. Again we refer the reader to [8], [9],
[12] for more details. However, we would like to mention
an important and intuitive property of the LMP algorithm.
The spatial variation in the LMPs is a consequence of
congestion in the transmission lines. When there is sufficient
capacity in the network so that no transmission line is
congested, one uniform price will materialize for the entire
network. With this observation in sight, in order to develop
simple mathematical models around which we can build a
framework and improve our intuition, we make the following
simplifying assumptions:

1) Resistive losses in transmission/distribution lines are

negligible.

2) The line capacities are high enough, so as no conges-

tion will occur.

"When the demand is fixed, the objective becomes to minimize the total
production cost.

3) There are no capacity constraints on the generators.
4) There are no reserve capacity requirements.

Under the first two assumptions the network parameters
become irrelevant in the supply-demand optimal matching
problem. The 3rd and 4th assumptions are made in the
interest of keeping the development in this paper focused.
They could, otherwise, be relaxed at the expense of a rather
involved technical analysis.

The following problem then characterizes the ISO’s opti-
mization problem:

max Z Uj(dj) - Z Ci(Si)
jeD €S
“)
s.t. Yodi=3 s
JED i€S

The following lemma is adopted from [6].

Lemma I: Let d* = [di,---,d; ], and s* =
[s1,---,sp.] where dj, j € D and s}, i€ S, solve (4).
There exists a price A™ € (0,00), such that (d*, s*) solves
(1) and (2). Furthermore, A\* is the Lagrangian multiplier
corresponding to the balance constraint.

Proof: The proof is based on Lagrangian duality and is
omitted here for brevity. The proof in [6] would be applicable
here with some minor adjustments. [ ]

The implication of Lemma 1 is that by setting the market
price to A", the Lagrangian multiplier corresponding to (4),
the system operator creates an environment in which, the
collective selfish behavior of the participating agents results
in a system-wide optimal condition. In other words, the
aggregate surplus is maximized while each agent maximizes
his own net benefit.

The uniform clearing price A\* in Lemma 1, is the would-
be Locational Marginal Price in the wholesale market. Since
(4) does not include network constraints, the price is uniform
for all agents. Consider the special case of inelastic demand
with value function defined in (3). Letd := Y jeD d; denote
the aggregate inelastic demand. Problem (4) is then equiva-
lent to minimization of ), 5 ¢;(s;) subjectto ), g 8; = d.
Therefore, the ISO has to find the minimum cost solution
to production of d units of electricity and dispatch each
generator ¢ € S accordingly. As usual, the corresponding
wholesale market price would be the marginal cost of that
production.

3) Representative Agent Model: In this section, we de-
velop an abstraction of the model in (4) with only one
producer agent and one consumer agent, representing the
entire group of producers and consumers respectively. The
rationale is that from a wholesale market stability point of
view, it is the aggregate demand or supply that influences
the system. In particular, when there is one uniform system
price, the system operator would not be interested in how
an individual consumer/producer reacts to real-time prices,
rather, the aggregate response is the quantity of interest. In
multi-agent systems, especially in the context of economics,
a representative agent is a fictitious agent whose decisions
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and responses to signals and events is mathematically equiva-
lent to the aggregate decision of a group of agents. Whether
it is possible/realistic or not, to abstract the decision of a
group of agents by a representative agent is a well-studied
subject in economics [4]. For the purpose of this paper, such
construction is always possible, though explicit formulae for
the representative agent may sometimes be very complicated
or impossible to find.

Lemma 2: Let functions v;, j € D, and ¢;, ¢ € 5,
satisfying Assumption I, and 0; (0) = oo, Vj, and ¢; (0) = 0,
Vi. Suppose that there exists functions ¥ and ¢ satisfying
assumption I, such that

A=0 (M 07 (V) VAER, (5)
and

A=E(X 6T (N), YAe Ry (6)
Then:

1) If (d*,s*) solves (4), then d* := Y dj and 5* :=

* _. .
> 5; satisfy:
=5 =z*

where x* solves:

max (x) — é(x)

z @)

2) If \* and \" are the optimal clearing prices corre-
sponding to (4) and (7) respectively, then \* = \* =
v(z*) =¢é(z%).

Lemma 2 presents a construction for the representative

agent model applicable to the development in this paper.

Example 1: Consider the case where all agents are iden-

tical: v;, = vy, Vi1, 42. Then © (z) := nqv1 (ny'z) satisfies
(5). As another example, consider v; (z) = a;log (1 + z),
and define v (z) := alog (ng + x), where @ = ) ;. Then
o satisfies (5). However, since v; (0) = «o; < 00, the response
to a price \ of the representative agent with value function
alog (ng+ x) is equal the sum of the responses of the
individual agents only when A < min; a;.

C. Dynamic Supply-Demand Model

In this section we develop a dynamical system model
for the interaction of wholesale supply and retail demand
in electricity markets. The model is based on the current
practice in real-time balancing markets in the United States,
except that it assumes that the consumers adjust their usage
based on the real-time wholesale market prices. We will use
representative agent models with cost and value functions
¢(+) and v () to represent supply and demand respectively.
Studying the stability properties and some mechanisms by
which a stable equilibrium can be reached is the subject of
Section II1.

In a power grid, the aggregate supply has to exactly match
the aggregate demand at each instant of time. Therefore,
in real-time, the supply always follows the demand. The

Fig. 1. Exanté Priced Supply/Demand Feedback

real-time market is cleared at discrete time intervals and
the prices are calculated and announced for each interval?.
When the price announced at time ¢ = k corresponds to the
time interval [k — 1, k], it is called expost pricing. In expost
pricing the demand is subject to some price uncertainty as
the actual price will be revealed after the consumption has
materialized. When the announced price corresponds to the
next time interval ahead (based on predicted demand), it is
called exanté pricing. In exanté pricing the ISO faces price
uncertainty as it will have to pay the generators based on the
actual marginal cost of production (that is, the expost price),
while it can charge the demand only based on the exanté
price, which is only a prediction of the actual price.

1) Price Dynamic under Exanté Pricing: Let \; denote
the exanté price announced by the ISO corresponding to
consumption of one unit of electricity in the time interval
[t,t 4+ 1]. Let d; be the actual consumption that will occur
during this time interval, then: d; = argmax,cr, v (z) —
Atx. (Since v (+) is known only to the consumer, at time ¢,
the ISO has only an estimate of d;, based on which it has
calculated and announced the price A;). At time ¢ + 1, the
ISO needs to announce A:y1, which will be the marginal
cost of predicted production during the next time interval.
We assume that the ISO’s predicted production for each time
interval is equal to the demand at the previous time interval:
s¢+1 = di. The following equations describe the dynamics
of the market:

At+1 ¢(st4+1)
St41 = di
dy = arg arglé%}f v(z) — Mz

Combining the above equations the price dynamics is ex-
pressed in the following way:

Aepr = ¢ (071 (M) ®)

Remark 3: ISO’s Risk: The system operator commits to a
price of Ay = ¢(d;—1) for the consumers, while he has to pay

2In most regions of the United States, such as New England, California,
or PJM, the real-time market is operated in five-minutes intervals.
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Fig. 2. Expost Priced Supply/Demand Feedback

the generators A;11 = ¢ (d¢) . The ISO’s revenue differential
(either excess or shortfall) is therefore, given by:

At = [C (dt) — é(dt_l)] dt ~ ¢ (dt) dt (dt—‘rl — dt)

2) Price Dynamic under Expost Pricing: Under expost
pricing, the price charged for consumption of one unit of
electricity during the interval [t,t+ 1] is calculated and
declared only at the end of the interval, when the total
consumption has materialized. In this case, the ISO bears no
risk and the price uncertainty and the associated risks are all
bore by the consumer. In order to decide on his consumption
during the time interval [¢, ¢ + 1] the consumer needs to make
a prediction about the price for the next interval. We assume
that the consumer’s predicted price for the next time interval
is equal to the price at the previous interval: 5\t+1 = A
Therefore,

Aty1 ¢(diy)
A1 = N
diy1 = argmaxv(z) — 5\t+1x

It can be easily seen that the price dynamics is the same as
the case with exanté pricing: A1 = ¢ (97! (\¢)) . The only
difference is that the price uncertainty affects the consumer.
The consumer’s risk is:

Ay = [¢(dey1) — ¢ (dp)] dy 2= E(dy) di (degr — di)

Note that in this case, the consumer has an incentive to make
his/her usage curve flat to minimize his/her risk.

III. THEORETICAL STATEMENTS

A. Stability Analysis

In this section we present several stability analysis Propo-
sitions based on Lyapunov techniques, and examine the prop-
erties of the market price dynamics (8) within the framework.
The following Theorem provides an analysis tool based on
a specific system decomposition which can be conveniently
applied to ().

Theorem 1: Consider a nonnegative sequence {zy} satis-
fying
o € XO C R+
¥ (k) &)

for some function ¢ : Ry — R,. Then, there exists a
function * : Xo— Ry, satisfying 2* = 1 o z*, such that

Tk4+1 =

lim Tk = z* (xo)
k—o0
if either of the following conditions hold:
D ¢ (z) <z VxeR,.
2) 3 € CY0,00), and the following two conditions hold:

W@t ({eld@=1})=0

(i) limg oo {0 (z) — 2} < 0

3) ¥ € C'0,00), and there exist functions f and g
mapping R, to R, satisfying:

9 (Trt1) = f (1) (10)

and
W |f@)| <1a @], wllz | f@)=g@=0
(i) limz— oo {f(x) —g(z)} <O

(iii) either g (z) >0, or g(z) <0, Vz € Ry
an
Proof: To prove 1, define V () = ¢ (), then V is
a Lyapunov function for (9) in the sense that V (zp41) <
V (xr) . Consider the iteration given in (9) and define

k= inf {k v (q/;’f“ (xo)) v (q/;k (xo))}
If £ < oo, then define z* (zg) := limg_yo0 T = 1/# (z9) .
If £ = oo, then {V (x1)} is a strictly decreasing bounded
sequence and must converge to a limit ™. Then take
x* (z9) = limg_0o T = ™. Only 3 needs to be proven
as 2 is a special case of 3 with ¢ = I, and f = 9. Let
V(z) =|f (z) — g (x)|. Then

Ve,y € Ry, z#y:
F@) - ) < / £ ()] r
<[ amia] =19@ - g1 02

(The last equality holds under the assumption of sign-
invariance property of g, though the inequality is still valid
in the absence of this property). Then

Vi(he1) =V (zk)

|f (@k41) — 9 @k41)| = |f (@x) — g (2)]

|f (zre1) = f (@r)| = |9 (Trt1) — g (@)

< 0 (13)
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Therefore, {V (zx)} is a strictly decreasing bounded se-
quence and converges to a limit ¢ > 0. We show that ¢ > 0
is not possible. Note that the sequence x; is bounded from
below since 1 is nonnegative. It can be shown, using an
argument similar to that of proof of statement 1, that the
condition lim,_, o {f () — g (z)} < 0 implies that xj is
bounded from above too, and resides in a compact subset
D c Ry. Therefore, {x}} has a subsequence {xy,} which

converges to a limit z*. Then

lim V(w) = lim V(o) = | lim {f (@) ~ g (@x,)}
= |f (") —g ()]

Ifg(z®) =g (z | (@) =0

*)) then ¢ = [f (z*) — g (¢
(due to (10)). If g (z*) # g (¥ (z*)) then

¥ (z
,e>0, st [g(¢ () —g ()] =

Consider the function 6 : B (z*, ) — R, where
b @) - @)
lg (¥ (2)) — g ()]

Then 0 (z) < 1, Vo € B(z*,0) (cf. 13). Furthermore, the
function is continuous over the compact set 5 (z*,d) and
achieves its supremum 6, where § < 1. Since x, converges
to z* there exists k € N, such that z; € B (z*,4). Then

V (zh1) — OV (23) =
If (xrs1) = f(2x)] — 09 (Try1)

Since # < 1, this proves that ¢ = 0. Finally,
") =f(2")

Lo f(xp) = lim xp
k—o0

e, Yz € B(z",0)

—g(xp)] <0, vk >k

lim f(z) = lim g(zx) =g (z

k—o0 k—o0

Ylim f(z)) = lim g~
k—o0 k—o0

This completes the proof. ]

Remark 4: 1f the assumption ¢ (x) # 0 is relaxed, then
the core of the proof of the theorem remains correct. Only
the final step needs to change and the conclusion would be
that {g (zx)} is convergent. Also, if condition (i) of 3 is
changed to the more conservative condition:

t =g~

30 € (0,1):Vz € R, ’f(x)‘ <01 ()|
then condition (ii) is not needed, and if it is changed to:

(14

then (iii) is automatically satisfied. In order to present our
results is a more concise form and with less technical details,
we will use (14) to replace conditions (i)—(iii) of 3 in
Theorem 1.

There exist situations in which, a natural decomposition
of system (9) via functions f and ¢ satisfying (10) is readily
available. This is for instance the case for the price dynamics
defined in (8), where ¢ = ¢ o 9!, and the decomposition
is obtained with ¢ = ¢!, and f = v~!. However, f and g
obtained in this way may not readily satisfy (11). We present
the following corollaries.

30 € (—1,1): Yz € R, : ’f(m)‘ < 0§ ()

Corollary 1: Consider the dynamical system (9) and sup-
pose that functions f and g satisfying (10) are given. Then,
there exists a function z* : R, — R, such that

lim z = z* (z0)

k—o0
if there exists § € (—1,1), and a continuous function p :
R, — Ry satisfying

o (f (@) f@)] <00 (g (@) g (2), Vo € R,

Proof: If f and g satisfy (10) then so do ro f and rog
for any r € C1[0, 00). The result then follows from Theorem
1 and Remark 4 and defining p = r. [ ]

Corollary 2: The market price dynamics (8) is convergent
if there exists # € (—1,1) and a function p : Ry — Ry
satisfying
15)

where
2 (16)

Furthermore, if
|é| < 09

then (8) converges.

Proof: The first statement follows immediately from
Corollary 1. The second statement is proven by taking p = ¢
and using the inverse derivative formulae

d . -1
—h7 (@) = [ (7 (@)]
|
Example 2: Consider (8) with c¢(z) = 2, and v (z) =
z'/ where o, 3 > 1. Then

Aty1 = 5(0/\0%
() =5 () = (@)TF = p(\) = %
-
() =1 _ (g-1y\\FT 5 () = (675‘) o
W=t )= (0T > ) =

It can be verified that there does not exists a constant 8 € R

for which |0 (A)] < 605 (M), YA € R. However, with p (v) =

v~1, we have:

, X! , At
W)W =225, ple (M) = 5
Therefore, (15) is satisfied with
p-2B=D gt
a—1

Hence the system is convergent for 3 < 2 — a~1. It can be
verified that the condition is also necessary and the system
diverges for 8> 2 —a~L.

The following result uses Corollary 2 and can be proven
by inspection.
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Corollary 3: Suppose that (15) holds for a monotonically
increasing function p. Then (8) is stable for all value func-
tions v, and cost functions ¢, whenever:

(4) © and v, are convex

(i) b >0

(i) ¢ and ¢, are concave

or
(i) éo < ¢

Similarly, if p is monotonically decreasing, then (8) is stable
for all value functions v, and cost functions ¢, whenever:

YA .
(¢)" v and v, are concave

(1) g <

(i) ¢ and ¢, are convex

(ii) ¢q > ¢

or

The qualitative interpretation of the above Corollary is that
when the marginal cost is a convex function, higher costs
have a stabilizing effect, while when it is concave, higher
costs have a destabilizing effect. Similar statements can be
made about the value functions.

B. Periodic Demand with Adjustment

The model that we have used so far in this paper assumes
that the entire demand makes adjustments in response to
price signals and that the response is completely character-
ized by the value function of the consumer. In this section
we study a more generic model in which the demand is
comprised of two components, one component is a periodic
function of time which is insensitive to price variations, and
the other is a price-sensitive component which is, as before,
determined by a concave value function. More specifically,

di = (1—p)pe+po~ "t (\) (17)
A1 = ¢(dy)

where p; : Z — R, is a periodic function representing the
natural fluctuation of demand and p € [0,1] is a parameter.
An interpretation of (17) is as follows: p; represents the
total population’s demand in the absence of dynamic pricing
and v~! (-) represents the demand response when the entire
population is responsive. The parameter g in this case
represents the percentage of population subscribing to a real-
time pricing program and (1 — ) p;+pu0~" (A¢) is the entire
demand.

Definition 2: Given a periodic function p; : Zy — R4
satisfying p;+7 = p¢, a periodic orbit of (17) is a function
At : Zy — R, satisfying

(A1) = A=+ pot (N),
j\t = S\t—i-Ta Vit € Z+.
Corollary 4: Consider system (17) and assume that the
function p; : Z, — R, satisfies pyr = p;. If there exists
6 € (—1,1) and a function p : Ry — R, satisfying

YVt e Zy

(18)

where © and ¢ are defined as in (16), then (17) has a periodic
orbit \; with period T'. Furthermore, all solutions converge

lp(v) 0] < 0p(0) &

to the periodic orbit in the sense that
lim [Ay — M\ =0
t—o0

for all functions \; satisfying (17) for some A\ € R,.
Proof: The proof uses the same machinery of Theorem
1 and it omitted for brevity. [ |
It is an immediate consequence of the above Corollary
that participation of a small portion of the population in
dynamic pricing programs will not destabilize the system
as the left hand side of (18) goes to zero as u goes to zero.
System stability concerns should arise when a large portions
of the population are exposed to real-time pricing. Consider
for instance Example 2 with & = 2 and 3 = 2. The system
(17) would be unstable if ¢ = 1 and would converge to a
periodic orbit when p < 0.5.

C. Pricing for Stabilization and Loss of Efficiency

In this section we examine a pricing mechanism in which,
the retail price is a static function of the wholesale market
price. It is obvious that if we allow the retail market prices to
be different than the wholesale market prices then achieving
stability is not difficult, for instance, a constant retail market
price is always stabilizing. We are interested in examining
the effects of this type of pricing on the efficiency of the
system. Suppose that the system has reached an equilibrium
state with A" and A" as the retail and wholesale market
prices respectively. Then:

S = v(x)—s(x)
= v(@ (V) —e(e (W)
where S is the aggregate surplus. Let us denote by Sy
the surplus function corresponding to the case where A} =
@ (N\) for some function ¢ : Ry — R,. We present the

following Theorem.

Theorem 2: Suppose that at any given time ¢, the whole-

sale price ), and the consumer price A satisfy A\’ =

#(\;), where ¢ : Ry — R, is a C1[0,00) function. Then
the wholesale market price dynamics is give by
Ay = e (0 (@ (W) (19)

and converges to an equilibrium price XY satisfying
¢ (X”) = X" provided that there exists a function p : Ry —
R, satisfying:

p(w(@)0(6) 9| <bp(0)s

where ¢ = ¢!, and v = 9~ L. Furthermore, if for functions
¢, and ¢,, either

0< =AY +¢1 (A) <=3 + ¢ (A7)

or
0> =7 +¢1 (A) > =X + 61 (A2)

Then
S¢, <S¢,
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Fig. 3. The aggregate surplus as a function of the difference between the
wholesale and the retail price.

Proof: The first statement is a corollary of Theorem 1.
We present a proof for the second statement. Let 5« denote
the equilibrated supply and demand. Then:

e = (1) =07 (0 (1))

S(AY) == (zse)—c(zxe) =v (e (X)) =c (et (X))
BEL = o e () -3 ()

(¢ (A7) =A%) 6 (A7)

Since by assumption ¢ (-) is convex, ¢! () is increasing and

& (A”) > 0. Therefore, dS (A\”) /dX” is zero only when

A = ¢ (X\"), which immediately implies that there is a

loss of efficiency when the wholesale price and the consumer
price at the equilibrium are not identical. Furthermore,

d(s(\")) d (S (X)) /ax"”
d(¢(A") = AY) d(A"=X) /ax"”

(6 (A") =) 5 (A")
d\"/d\" —1

(¢ (A") =A") 5 (A")

i (0 (X))o (X)) -1

where the last equality follows from A" = @ (¢71 ("))

and taking the derivative. The above derivation shows that
S (X" is in increasing function of ¢ (A") — X" as long as
¢ (A”) = X¥ < 0 (since ¥ (0 (A")) 5 (A") =1 < 0 and
& (X”) > 0), and a decreasing function of ¢ (\") — X" as
long as ¢ (A\”) —X" > 0. This proves the second statement.
|

The above Theorem indicates that when the consumer
price is a (non-identity) function of the wholesale market
price there is generally a loss of efficiency, and furthermore,
the greater the discrepancy between the consumer price and
the wholesale price, the greater the efficiency loss. Since the

system is at the optimum if and only if ¢ (\") = A", any
function ¢ that results in an equilibrium with this property
necessarily satisfies:

M= (e(\"))) =c (@ (\"))

Hence, any such \* should necessarily be the equilibrium
of the original system under direct pricing.

IV. CONCLUSIONS AND FUTURE WORK

We investigated the effects of dynamic pricing mecha-
nisms on the stability and efficiency of electricity networks
and showed that exposing the consumers to the real-time
wholesale market prices could create an unstable closed
loop feedback system, causing the prices to oscillate or
diverge. We presented several stability criteria characterizing
convergence based on the relation between the cost functions
of the producers and the value functions of the consumers.
The criteria extended very naturally to the case where the
demand is combination of a periodic function and a price
sensitive utility-maximizing component. It was shown that
when the system operator uses a pricing strategy in which
the consumer prices are a static function of the wholesale
market prices, there is generally a loss of efficiency. The
larger the difference between the wholesale market price and
the consumer price, the farther is the system from an optimal
equilibrium. Future works include extension of the results to
the network case with power flow equations and transmission
constraints in effect. Other directions for extension include
analysis of non-static pricing mechanisms, that is, when the
pricing function has memory. Analysis of the case of time-
varying or stochastically fluctuating cost functions is also an
important direction for future research.
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