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Abstract 

Multivariate statistical procedures for monitoring the progress of batch processes are developed. Multi-way partial least 
squares (MPLS) is used to extract the information from the process measurement variable trajectories that is more relevant to 
the final quality variables of the product. The only information needed is a historical database of past successful batches. 
New batches can be monitored through simple monitoring charts which are consistent with the philosophy of statistical pro- 
cess control. These charts monitor the batch operation and provide on-line predictions of the final product qualities. Approxi- 
mate confidence intervals for the predictions from PLS models are developed. The approach is illustrated using a simulation 
study of a styrene-butadiene batch reactor. 
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1. Introduction 

Batch and semi-batch processes play an important 
role in the chemical industry due to their low vol- 
ume-high value products. Examples include reac- 
tors, crystallization, distillation, and injection mold- 
ing processes; the manufacturing of polymers, herbi- 
cides, insecticides, pharmaceuticals, and biochemi- 
cals. Batch processes are characterized by a pre- 
scribed processing of materials for a finite duration. 
Successful batch operation means tracking this pre- 
scribed recipe with high degree of reproducibility. 
Feedrates, temperature and pressure profiles are im- 
plemented with servo-controllers, and precise se- 
quencing operations are produced with tools such as 
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programmable logic controllers. Monitoring these 
batch processes is very important to ensure their safe 
operation and to assure that they produce consis- 
tently high quality products. 

Batch processes suffer a lack of reproducibility 
from batch to batch variations due to disturbances and 
the absence of on-line quality measurements. These 
variations may be difficult for an operator to discern, 
but could have an adverse effect on the final product 
quality. Often, a disturbance or an operational prob- 
lem can be undetected and the poor product quality 
may remain undetected until significant expense has 
been incurred. A system that monitors the time evo- 
lution of a batch and can detect variations from nor- 
mal operation in the familiar manner of a statistical 
process control @PC) chart might allow for correc- 
tive action early in the batch, the quick disposition of 
batches not salvaged, and the diagnosis of assignable 
causes that can be eliminated from future batches. 
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The main characteristics of batch processes, flexi- 
bility, finite duration, nonlinear behavior, and un- 
steady state, are related both to their success and their 
incompatibility with the conventional mathematical 
or empirical modeling for monitoring and controlling 
continuous processes. For on-line monitoring of batch 
processes there are two general methodologies. One 
is based on fundamental mathematical models (Kal- 
man filters; e.g. [l]), and the second on knowledge 
based models (expert systems, artificial intelligence 
methods; e.g. [2]). These methods are reviewed by 
Nomikos and MacGregor [3] and contrasted with sta- 
tistical approaches based on multi-way principal 
component analysis (MPCA). 

SPC methods in batch processes usually are lim- 
ited only to end product quality measurements [4,5], 
or to a single variable measured throughout the batch 
[6]. The use of statistical methods such as principal 
component analysis (PCA) and partial least squares 
(PLS) to the analysis of multivariate continuous 
chemical process data has been well documented [7- 
91. Nomikos and MacGregor [3,10] extended these 
ideas to the nonlinear and finite duration batch pro- 
cesses. They proposed SPC schemes for batch pro- 
cesses based on MPCA, which utilize directly the in- 
formation of the on-line measurements and systemat- 
ically and scientifically recognize significant devia- 
tions from the normal operating behavior of the pro- 
cess through simple SPC charts. The behavior of the 
process is characterized using an empirical model 
based on the MPCA analysis of data obtained when 
the process is operating well and is in a state of sta- 
tistical control. Subsequently, future unusual events 
are detected by referencing the measured process be- 
havior against this ‘in-control’ model and its statisti- 
cal properties. 

Most batch and semi-batch processes operate in 
open loop with respect to product quality variables, 
simply because few, if any, on-line sensors exist for 
tracking these variables. Upon completion of the 
batch a range of quality measurements are usually 
made on a sample of the product in the quality con- 
trol laboratory. The MPCA in the proposed SPC 
schemes [3,10] only makes use of the process vari- 
able trajectory measurements (X> taken throughout 
the duration of the batch. Measyrements on product 
quality variables (Y) taken at the end of each batch 

were used only to help classify a batch as ‘good’ or 
‘bad’. However, such product quality data can be 
used in a much more direct fashion. Multi-way par- 
tial least squares (MPLS) can be performed using 
both the process data (X) and the product quality data 
(Y). Rather than focus%g only on the variance of X, 

MPLS focuses more on the variance of X that is mofe 
- predictive for the product quality Y. 

The same multivariate SPC monitoring ideas that 
were developed using MPCA can be extended di- 
rectly using MPLS when product quality data (Y) are 
available. The additional information that one can get 
from MPLS is an on-line inference of the final qual- 
ity of the product. This paper describes the monitor- 
ing scheme for batch processes based on MPLS, 
which is analogous to that based on MPCA, and fo- 
cuses on some statistical properties of PLS for pre- 
dictions and on the development of control charts for 
on-line predictions of the final product qualities. A 
simulation of a styrene-butadiene batch reactor is 
used to illustrate the ideas of the proposed SPC 
method. 

2. MPLS analysis of batch data 

The number of measurements (feedrates, tempera- 
tures, pressures, etc.) being made every few seconds 
over several hours of the batch duration creates a data 
overload. Some of the variables measured may be re- 
dundant and most of them are highly correlated with 
one another. Not only is the relationship among all the 
variables at any one time important, but so is the en- 
tire past history of the trajectories of all these vari- 
ables. The aim is to build an empirical model based 
on the measurements of a reference batch database, 
which will describe the normal operation of the pro- 
cess (X) when it produces good quality product (Y). 

This Gpirical model will be used to monitor the 
evolution of future batch runs. 

MPLS [ 111 is an extension of PLS [12] to handle 
data in three-dimensional arrays. A historical dataset 
of batch trajectory data consists of i = 1,2,..,1 batch 
runs where each of them has the on-line measure- 
ments of j = 1,2 ,.., J variables over k = 1,2 ,.., K time 
intervals throughout the batch. This vast amount of 
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data is organized into a three-way array X (I X .I X 

K) as it is shown in Fig. 1. Different batFh runs are 
organized along the vertical side, the measurement 
variables along the horizontal side, and their time 
evolution occupies the third dimension. The final 
quality variables (m = 1,2,..,M) for each batch are 
summarized in a (I X M) matrix Y. The relation be- 
tween MPLS and PLS is that MPLS is equivalent to 
performing ordinary PLS on a large two dimensional 
matrix X formed by unfolding the three way array X 

in one of the six possible ways (two are degenera!! 
cases). For analyzing and monitoring batch processes 
[3,10], the most meaningful way of unfolding the ar- 
ray X is to put each of its vertical slices (I X J) side 
by sge to the right to create the matrix X (I X JK), 
starting with the one corresponding to the first time 
interval (Fig. 1). Each of the vertical slices of X is a 
(I X .Z> matrix representing the values of all thrpro- 
cess variables for all the batches at a common time 
interval k. After the unfolding of X, each column of 
X and Y are mean centered and sTaled to unit vari- 
ance prior to perform the ordinary PLS analysis. 
MPLS in this framework explains the variation of a 
process variable about its average trajectory at each 
point of time, as this has been defined from the refer- 
ence normal database, which is most closely related 
to the end quality of the product. This subtraction of 
the average trajectories removes the major nonlinear 
behavior of the process, leading to a more linear and 
stationary problem which is suitable for statistical 
analysis and inference [3,10]. Although other multi- 
way methods [13-161 have been proposed for de- 
composing such three-way arrays, we focus on MPLS 
exclusively because of its simplicity and ease of in- 
terpretation. 

For batch data, PLS decomposes the X (I X JK) 
and Y (I X M) matrices into a summation of R score 
vectors (t (I X 1)) and loading vectors (p (JK X l), 
q (A4 X l), plus some residual matrices (E (I X JK), 
F (I x M)): 

X= i t,p;+E, Y= i t,q’,+F (1) 
r= 1 r=l 

or if we combine the t, p, and q vectors into T (I X 
R), P (JK X R), and Q (M X R) matrices 

X=TP’+E, Y=TQ’+F (2) 

where T is given by: 

T = XW(P’W)-’ (3) 
The w vectors are orthonormal, the t vectors are or- 
thogonal, and the matrix (P' W) is upper triangular 
with ones as diagonal elements [ 171. This decomposi- 
tion summarizes and compresses the data with re- 
spect to both x and y variables and time into low 
dimensional spaces that describe the operation of the 
process which is most relevant to final product qual- 
ity. Each row of the T matrix corresponds to a single 
batch and depicts the overall variability of this batch 
with respect to the other batches in the database. The 
P and W matrices summarize the time variation of the 
measurement variables about their average trajecto- 
ries, and their elements give the weights applied to 
each variable at each time interval within a batch to 
give the t-scores for that batch. The Q matrix relates 
the variability of the process measurements to the fi- 
nal product qualities. 

As in MPCA, batches with unusual operation will 
appear in MPLS either as batches with large f-scores, 
or with large residuals in the x-space (Q, = Cfi’=“, 
E(i, cj2), or with both. Additionally in MPLS, if the 
residuals for a batch in the y-space (Qr = Cr=“=i F(i, 
cj2) are large, it means that its final product qualities 
are not well predicted by its process measurements. 
MPCA has proven very useful in the post analysis of 
batch runs and has shown its abilities, both in simu- 
lated examples and in real industrial data [3,10,18], to 
discriminate between normal and abnormal batches 
and detect abnormalities which are difficult to detect 
by visual inspection only of the measurement trajec- 
tories. MPLS shares these benefits. The power of both 
MPCA and MPLS results from using the covariance 
matrix of the variable trajectories. By doing this, both 
methods utilize not just the magnitude of the devia- 
tions of each process variable from its mean trajec- 
tory but also both their simultaneous and temporal 
correlations. 

The assumptions behind these methods, as in all 
inferential methods, are that one has ‘comparable’ 
runs and ‘observable’ events of interest. The first as- 
sumption states that future batches will operate in a 
similar way with those in the reference database. If 
something changes in the operation of the batch (e.g. 
amount or type of catalyst), it will make all subse- 
quent batches operationally different from the previ- 
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Fig. 1. Arrangement of batch data in MPLS. I is the number of batches, J is the number of process measurement variables, K is the num- 
ber of time intervals, and M is the number of product quality variables. The three-way array X (I X J X K) unfolds into a matrix X (I X JK), 
and a normal PLS can be performed between the X and Y matrices. 

. _ 

ous ones. In this case one has to build a new database 
which incorporates the change and re-apply the 
method. The second assumption requires the mea- 
surements to contain some information about an ab- 
normality, in order that the method to be able to de- 
tect it. If there is no information in the data about a 
fault, then no method can detect it. 

3. SBR example 

The application of MPLS in batch data is illus- 
trated here with a detailed mechanistic model for 
semi-batch emulsion polymerization of styrene- 
butadiene rubber (SBR) [ 191. Using typical variations 
in the initial charge of materials and impurities, and 
in the process operations, a number of batches were 
simulated. Details of the simulations can be found in 
[3,20], and the data used in this article are available 

from the authors upon request. Fifty batches which 
gave final latex with quality properties within an ac- 
ceptable region were selected to provide a reference 
data array. On-line measurements were assumed to be 
available on nine variables: the feedrates of styrene 
and butadiene monomers, the temperature of the feed 
stream, the reactor contents, the cooling water, and 
the reactor jacket, the latex density, the total conver- 
sion, and the instantaneous heat release from an en- 
ergy balance. Using 200 time increments over the 
duration of the batch, the reference dataset X was a 
(50 X 9 X 200) array. The resulting latex anld poly- 
mer properties of the product were summarized in 
five quality variables (Y (SO X 2)): composition 
(% styrene), particle size (A), branching 
(branches/reacted monomer units), crosslinking 
(crosslinks/reacted monomer units), and polydisper- 
sity. 

The ability of MPLS to discriminate between 
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batches with acceptable product and ‘bad’ batches 
was tested through a post analysis of the 50 ‘good’ 
batches plus some ‘bad’ ones with product quality 
barely outside the acceptable region. MPLS was able 
to detect clearly these ‘bad’ batches by placing them 
in the reduced space (t-plots) away from the main 
central cluster formed by the 50 ‘good’ batches. Hav- 
ing established the observability of faults, an MPLS 
model was built from the 50 ‘good’ batches, which 
summarizes the information contained in them about 
the normal operation of the process. This model will 
be used as the statistical reference to classify new 
batches as ‘good’ or ‘bad’ and give on-line predic- 
tions of their final qualities. 

Two PLS components were needed, as deter- 
mined by cross-validation [21], to capture the varia- 
tion of the process variables about their average tra- 
jectories which is most predictive for the final prod- 
uct qualities. The cumulative percentage sum of 
squares explained (%SS) by the two principal com- 
ponents of the X and Y matrices and of each quality 
variable separately, is given in Table 1. One should 
always use cross-validation to determine the number 
of components in the PLS model and to assert its 
predictability. To rely only on the percentage of ex- 
plained Y will be misleading because of the large 
number of predictor x-variables (9 X 200 = 1800 in 
the SBR example). Any regression model could have 
accounted for a large portion of the variability in the 
Y. 

The last row in Table 1 is the regression statistic 
mean sum of squares due to regression (MSR) over 
the mean squared error (MSE) (see Section 5) with 
its 95% critical value, which shows how well the x- 
data account for the variation in each y-variable. 
These F-tests provide another way from a regression 
point of view to check how well each of the y-varia- 
bles is explained by the MPLS model. As it can be 
seen from Table 1, quality variables 3 and 4 are ex- 

plained very well from the MPLS model and only 
quality variable 2 (particle size) is poorly explained 
by the process measurements. This arises because the 
particle size is determined largely by the variation in 
the number of seeded particles charged initially in the 
reactor, and it is not influenced much by resulting 
process conditions. 

Plots of the latent vectors t, versus u, (u, = 
Y,_ I9 ,/(q’,q r ), where Y, _ 1 is the residual matrix of 
Y after extracting r - 1 components) are shown in 
Fig. 2. The linear nature of these plots suggests that 
nonlinear PLS [22] would probably not be needed. 
Indeed, performing such a nonlinear PLS gave essen- 
tially identical results to the linear analysis. The par- 
ticular unfolding of X that is been used and the sub- 

traction of the averaye trajectories from the process 
measurements have apparently eliminated most non- 
linear effects in the data. 

4. On-line monitoring 

The central idea in on-line monitoring is as fol- 
lows. An MPLS model is built using a database of 
‘good’ batches which yielded acceptable product and 
did not exhibit any operational problems. Subsequent 
batches are then referenced against this ‘in-control’ 
model. The W, P, and Q matrices from such an anal- 
ysis contain all the structural information about how 
the process measurements deviate from their mean 
values at each time interval and how these are re- 
lated to the final quality variables. The predicted r- 
scores (2 (1 X R)), the predicted quality variables (9 
(1 X M)), and the residuals (e (1 X KJ), f (1 X M)) 

for a new batch X,,, (K X J) are given by: 

unfold and scale X,,,( K X J) to x,<,,,( 1 X ZU) 

i = x,,,W(P’ W) -‘, 9 = iQ’, e = x,,, - b’, 

f=y-9 (4) 

Table 1 
Cumulative percentage sum of squares explained by the two principal components of the X and Y matrices 

%SS X Y Yl Y2 Y3 Y4 Y5 

PC1 14.82 57.10 52.87 7.93 91.21 91.23 42.24 
PC2 23.05 65.08 54.30 20.79 91.28 91.29 67.74 
MSR/MSE (F,,,,,,,,, = 3.20) 27.92 6.17 245.97 246.21 49.93 
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Fig. 2. t versus u plots. Each point represents one of the fifty 
batches in the reference database. The t and u observations, for 
both PLS components, fall close to the diagonal line of the graph. 
This indicates that the PLS latent variables in the x- and y-space 
(t, u) are well correlated. 

The problem which arises in the on-line applica- 
tion of the above equations is that the X,,, matrix is 
not complete until the end of the batch operation. At 
time interval k, the matrix X,,, has only its first k 
rows complete and it is missing all the future obser- 
vations (K - k rows). Several approaches have been 

(5) 

studied to overcome this problem [lo]. The approach 
shown here uses the ability of PLS to handle missing 
data [23]. PLS does this by projecting the already 
known observations up to time interval k (x,,,, k (1 
X W)) into the reduced space defined by the W and 
P matrices in a sequential manner as following: 

at each time interval k 

for r = 1 to R 

$l,r) =x new,kW(I:Kr) 

/(W(l:kl,r)‘W(l:kl,r)) 

X new,k = X new,k - i( l,r)P( l:W,r) 

end 

where the symbol (l:W,r) indicates the elements of 
the rth column from the first row up and to the klth 
row. PLS, essentially, predicts these missing values 
by restricting them to be consistent with the already 
known values, and with the correlation structure of 
the process variables as defined by the W and P ma- 
trices. This approach gives r-scores very close to their 
final values as the X,,, becomes complete, but dur- 
ing the first few time intervals may give poor esti- 
mates of the t-scores since there is so little informa- 
tion to work with. However, in our experience with 
MPCA and MPLS on this and other examples 
[3,10,24], this method works well by the time one has 
about 10% of the batch history. The reasons for this 
is that one is not building a PLS model based on large 
amounts of missing data, but using an already well 
established PLS model to predict the future behavior 
of a new batch. Furthermore, the early data are com- 
plete for all the measurement variables up to the cur- 
rent time interval, and are very good for predicting the 
future trajectory deviations which arise from varia- 
tions in the initial batch charge conditions (i.e. impu- 
rities, particle concentrations, etc.). 

Now, one can calculate at each time interval the 
predicted t-scores, the predicted final quality vari- 
ables, and the residuals. Note that there are no resid- 
uals (f) in the y-space during the on-line monitoring 
since the actual values of the quality variables will be 
known only at the end of the batch. If a new batch is 
still operating in the same way as the batches in the 
normal database, but has a larger than normal varia- 
tion in its measurements, this will show up in the t- 
scores which will place the new batch away from the 
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origin of the reduced x-space (t-plots). In the case 
where a new type of variation occurs, the new batch 
data will move away from the reduced x-space de- 
fined by the MPLS model, and its residuals will be 
large. In this case, the squared prediction error (SPE) 
associated with the latest on-line measurements at 
time interval k (SPE, = Ct<,,_ ljJ+ 1 e(l, c>‘) which 
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represents the perpendicular distance of the instanta- 
neous batch process measurements from the reduced 
x-space, will indicate the particular instant that some- 
thing behaves abnormally [lo]. Thus, one has to 
monitor the t-scores and the SPE for a new batch by 
using SPC charts. These charts are easily imple- 
mented and easily interpreted. Multivariate hotelling 
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Fig. 3. Monitoring charts for the SPE and tl-scores with their 95% and 99% control limits (dashed and solid lines) for the new ‘good’ batch 
(left hand side plots) and the for ‘bad’ batch with the problem half-way through its operation (right hand side plots). The abnormality in the 
‘bad’ batch is clearly flagged in the SPE chart after time interval 105. 
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statistics can be used to monitor the overall perfor- 
mance of the t-scores and the predicted final quali- 
ties [10,25]. If an abnormal situation is detected by 
either of these charts, one can diagnose the fault by 
interrogating the underlying MPLS model to find 
which process variables are primarily responsible for 
the detected deviations. This diagnostic information 
can be found by checking the contribution of each 
process variable to the deviations observed in the t- 
scores and residuals [20,24,26,27]. 

The control limits for the monitoring charts are 
derived from the statistical properties of the histori- 
cal reference distribution of past normal batches [lo]. 
Each of the fifty ‘good’ batches in the reference 
database was passed through the on-line monitoring 
algorithm given above, and their t-scores for each 
PLS component and SPE were collected at each time 
interval. This provided fifty observations at each time 
interval for the t-scores and SPE which were used to 
construct the control limits for future observations. 

Two additional batches were simulated to provide 
examples for on-line monitoring. One was a ‘good’ 
batch, and the other a ‘bad’ one in which the level of 
organic impurities in the butadiene monomer feed to 
the reactor, increased by 50% halfway through the 
batch operation (at time interval 100). This latter fault 
is an incipient one, typical in industry, where the ab- 
normal operation develops slowly. The final product 
from this ‘bad’ batch was slightly out of the accept- 
able quality region. Fig. 3 shows the on-line monitor- 
ing charts, with their 95% and 99% control limits, for 
the two new batches. The new ‘good’ batch shows no 
abnormality in any of these charts. The ‘bad’ batch 
with the problem half-way through its operation, is 
clearly flagged as abnormal in the SPE chart around 
time interval 105. After this time interval the obser- 
vations from this batch move away from the reduced 
x-space. The MPLS model is not any longer valid, 
and one should treat the predicted t-scores with cau- 
tion. 

5. Confidence intervals for the final quality vari- 
ables 

Although the SPC charts based on MPLS for 
monitoring a batch process can be constructed simi- 
lar to those based on MPCA, MPLS additionally pro- 

vides predictions for the final product qualities. 
MPLS gives, at each time interval, predictions of the 
final quality variables (Y) of the product. These pre- 
dictions do not have anything to do with the actual 
values of the quality variables at the given time in- 
terval. They only refer to the values which the prod- 
uct quality variables will have upon completion of the 
batch. In this section we develop approximate confi- 
dence intervals for these predictions which can be 
easily calculated. We treat the problem in its general 
form and the prediction confidence intervals are ap- 
plicable to any PLS study. 

A major problem in the statistical analysis of PLS 
is the nonlinear extraction of the PLS components. 
PLS does not only look at the conditional distribu- 
tion of the y-variables given the x-observations, but 
treats both x and y as random variables connected 
through the latent variables t. In the following we 
shall treat only the case with univariate y, for the 
multivariate case (Y) one has to treat each of the y- 
variables separately. The X and Y matrices are as- 
sumed to be mean centered. The statistical properties 
which we shall derive in this section, are based on the 
work of Searle [28] for regression based on general- 
ized inverses. 

The regression problem y = Xp can always get a 
solution in the following form: 

b=Gy 

where G is a generalized inverse of X. 

(6) 

PLS gives a right weak generalized itverse G of 
the PLS, apptoximation_of the ,X matrix X = TP’ (X 
GX = X, GXG = G, XG = (XGY) which is given 
by: 

G= W(P’W)-‘(T’T)-‘T’ (7) 

Rao and Mitra [29], and Boullion and Od$l[30] show 
that a right weak generalized inverse of X, which has 
the same rank as X, gives the least squares solution b 
for the problem y = X/3, in which: 

I~-Yl+k-Yl, vg (8) 

PLS gives the aboveAleast squares solution which 
has unique minimum Ixb - y I, but the b and G are 
not defined uniquely. The property of invariance of 
generalized inverses, guarantees that the predicted 9 
has a unique value (Xb) ~0 matter what right weak 
generalized inverse of X one choose to use. Al- 
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though, PLS does not provide the minimum norm so- 
lution (minlbl which is unique), its solution is close 
to this, since the matrix W(P’ W) -‘P’ is generally 
close to being symmetric and thus G would have been 
also a left weak generalized inverse of a (%G% = 8, 
GAG = G, GA = (Ga)‘). PLS provides the 
Moore-Penrose generalized inverse of the original X 
for the full rank decomposition of X, and in the case 
where X has full column rank, PLS provides the or- 
dinary least squares solution b = (X’ X1-l X’ y. 

To proceed with Searle’s analysis [28], one needs 
a generalized inverse of 8’8. PLS gives the follow- 
ing reflexive generalized inverse Z for A’% 
CEza9 = fi?Q, z?&Bz = Z): 

Z=W(P’W)-‘(T’T)-‘(W’P)-‘W’ (9) 

Define the indempotent matrix H = G%‘% = 
W(P’ W)-‘P’ (H2 = H), which has rank equal to the 
number of PLS components we have extracted 
(rank(H) = R). Under the assumption that the y-vari- 
able is distributed normally as N(X p, CT ‘1, and that 
Z is independent of the y-variable, we get the fol- 
lowing statistical analysis: 

b = Zk y + ( (H - I) g for arbitrary g 

(from now on, assume g = 0) (10) 

E(b) = H p b is a biased estimator of /3 (11) 

var(b) = Za2 (12) 
The statistical test which we can derive from the 

above results, in the usual regression notation, is 
summarized in Table 2. 

The statistic MSR/MSE is distributed as an F 
distribution with R and Z - R - 1 degrees of free- 
dom [28]. The problem is that this statistic does not 
check for significant regression ( /? # 0). It tests for 
the null hypothesis (X p) = 0. The only conclusion 
we can derive, if this test is significant, is that the PLS 
model accounts for a significant portion of the varia- 
tion in the y-variable. The j3 is not an estimable 
function, since b is not invariant to the generalized 

Table 2 
Statistical test 

SSR=f’j d.f. = R MSR = SSR/R 
SSE = (y - jY(y - 9) d.f.=I-R--l MSE = SSE/ 

(I-R-l)=+’ 

A A 

inverse of X’X that is used for Z (b has an infinite 
number of descriptions). The only estimable function 
is any quantity c’p, in which c’H = c’. This c’/3 has 
c’b as its best linear unbiased estimator which is dis- 
tributed normally as: 

c’b N N(c’P, C’ZC’CT ‘) (13) 

This shows that we are not able in general to test 
for the significance of each coefficient separately, but 
only certain linear combinations of them. In spite of 
this, PLS provides a way to derive confidence inter- 
vals for the predicted y-variable since a new set of 
observations xneW can be decomposed as fi,,, = ^fP’, 

and L,., P is an estimable function (~,,,,H = jz”,,). 
The confidence intervals at significance level CY for 
an individual y-response are given by: 

9 * r,_R_1,~,2(MSE)1’2(1 + ~(TT)‘P)“* (14) 

where T and MSE is the r-score matrix and mean 
squared error of the PLS analysis of the data upon the 
PLS model was built, and t,_,_,,,,, is the critical 
value of the Studentized variable with Z-R-l degrees 
of freedom at significance level a/2. 

The motivation behind the above analysis was to 
develop a simple expression for approximate confi- 
dence intervals for the PLS predictions. Eq. (14) is 
general for any PLS study. If one drops the (1) in the 
(1 + t(T’T)-‘It’) term, one gets the equation for con- 
fidence intervals of the expected value of a y-re- 
sponse (2 ,,,b). Of course, the assumption that Z is 
not a function of the y-variable is incorrect. Phatak 
et al. [31] recognized this, and for the case of uni- 
variate y did a first order linear approximation of b 
around a set of observations (X 0, y,) to get im- 
proved confidence intervals for 9. Although his ap- 
proach is more accurate than the zero order approxi- 
mation used here, it is computationally much more 
time consuming. 

Fig. 4 shows the on-line predictions with their 95% 
and 99% confidence intervals, for three of the five 
quality variables for the two new batches. The pre- 
dictions for the ‘normal’ batch, match well the actual 
final quality values of the product. For the ‘bad’ 
batch, the predictions capture its problem and stretch 
their values towards their actual final qualities. Qual- 
ity variable two, which was poorly explained in the 
MPLS model, has the poorest predictions for the 
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Fig. 4. On-line predictions, with their 95% and 99% confidence intervals (dashed and solid lines), for three of the five final product quality 
variables for the ‘good’ batch (left hand side plots) and for the ‘bad’ batch with the problem half-way through its operation (right hand side 
plots). The actual final product qualities are indicated by diamond marks. The PLS model for the ‘bad’ batch is not valid after time interval 
105 (absence of confidence intervals) and its predictions are not generally trustworthy. 
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‘bad’ batch. On the other hand, quality variable three, product quality. Batch quality variables typically are 
which was very well explained in the MPLS model, measurements of physical properties of the product, 
has very good predictions and its final prediction is or variables which indicate if the product will have 
very close to the actual one for the ‘bad’ batch. Since acceptable operation in the next stage, and some- 
the MPLS model is no longer valid for the ‘bad’ batch times variables from customer feedback. For an ef- 
after time interval 105 (the SPE exceeds its control fective PLS, the Y matrix should have as columns, 
limits in Fig. 3) the predictions after this time inter- quality variables which are closely connected with the 
val are not trustworthy. The confidence limits given batch process, as to be well correlated with the pro- 
by Eq. (14) will no longer be valid, and they have not cess measurements. Also, these quality measure- 
be plotted beyond this time interval in Fig. 4. Al- ments should span a wide range of product proper- 
though the predictions may not be accurate, the di- ties because it is hard to believe that the whole batch 
rections that the quality variables will take can be operation can be reflected to a single quality mea- 
trusted in general, and this can help considerably in surement, or that one quality measurement can cap- 
diagnosing the source of the abnormality. This is an- ture all the quality aspects of the final product. An- 
other advantage of PLS with respect to other regres- other difficulty with the batch quality measurements 
sion methods, it models both x- and y-spaces to give is that they are usually susceptible to a significant 
good predictions and also provides a measure through amount of measurement error. In such cases, the un- 
its residuals in the x-space of how well the PLS certainty in the quality measurements can make the 
model can be trusted. use of MPLS inappropriate. 

6. MPCA or MPLS 7. Conclusions 

The question that arises in monitoring batch pro- 
cesses is whether to use MPCA or MPLS. MPCA 
uses only the information about the process opera- 
tional behavior (x-data) and its model describes how 
the on-line process measurements deviate from their 
average trajectories when the process operates in an 
‘in-control’ state. As a consequence, it will flag any 
abnormality in the process measurements even though 
it may be irrelevant to the quality of the product. As 
an example, a batch-run may have a slightly different 
agitator power profile because of a deterioration in its 
agitator mechanism. This event will cause an alarm 
in the MPCA monitoring. If the agitator power is not 
correlated with the final product qualities, the MPLS 
monitoring may not detect this deterioration in the 
agitator. Therefore, which approach one uses will de- 
pend upon whether or not one is primarily interested 
in events that will probably offset product quality or 
in any type of abnormal behavior. In general, it may 
be beneficial to try to detect all process deteriora- 
tions and correct them before they lead to permanent 
malfunctions. 

Batch monitoring methods based on MPCA have 
been extended by using MPLS. This extension al- 
lows one not only to utilize the historical data on the 
measured process variable trajectories, but also on the 
final quality measurements at the end of each batch. 
In addition to monitoring the process variable space, 
MPLS gives on-line predictions for the final product 
qualities. Approximate confidence intervals have 
been developed for these predictions. The proposed 
monitoring schemes have shown, via a polymeriza- 
tion simulation, that they are able to detect clearly and 
quickly an abnormality. 

When additional information about the initial con- 
ditions and set-up of the batch process is available, 
one may use a multi-block method based on MPCA 
or MPLS [20,24,27,32] to incorporate this informa- 
tion into the monitoring scheme. Such prior informa- 
tion can be organized in a new matrix which may 
have variables like feed quality measurements, initial 
amounts of initiator or emulsifier, preprocessing con- 
ditions such as preheat duration, position of the batch 
in the cleaning cycle, operator on duty, etc. 

A difficultly with using MPLS to analyze and 
monitor batch processes is having a sufficient num- 
ber of quality variables which describe adequately the 

The methodology presented here is generic in that 
it is easily applied to almost any batch or semi-batch 
process, and provides a base for continuous improve- 
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ment. The proposed monitoring charts are in accor- 
dance with the SPC requirements, in that they can be 
easily displayed and diagnose a fault. In addition, the 
data reduction and the light computational require- 
ments of the proposed methods do not impose any 
problem in their implementation. The objective of the 
monitoring procedure is to detect faults, diagnose 
them, and eliminate their cause and thereby shrink the 
control limits and work towards a more consistent 
quality product. 
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