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Abstract 

This work describes the application of partial least squares (PLS) modeling in data reduction purposes for the classifica- 
tion of spectroscopic near infrared (NIR) images. Given multi-dimensional images (i.e. p images taken at p different wave- 
lengths regions in the NIR-range), PLS projects the (nearly void) high dimensional space into a low dimensional latent space 
using the coded class information of the sample objects. Hence, PLS can be considered as a supervised latent variable analy- 
sis. In addition, data reduction by PLS increases the speed of on-line classification which is attractive in, e.g., process con- 
trol. In order to apply these conditions on imaging problems a rapid PLS version, kernel PLS, is investigated. Emphasis is 
put on the performance of PLS as a supervised data decomposition technique for the classification of collinear image data, 
applied on a real world application. This application entails the discrimination between the materials plastics, non-plastics 
and image backgrounds. 

Keywords: Kernel PLS; NIR imaging; Multivariate image analysis 

1. Introduct ion 

1.1. Introduction to PLS 

Partial least squares (PLS) has become an ac- 
cepted and well understood method for modeling lin- 
ear relationships in multivariate data. However, the 
problems attained so far have generally focused to 
multivariate calibration [1-3]. PLS provides an ex- 
cellent means to enhance the predictability of the 

* Corresponding author. Fax: + 31-24-3652653. 

model by finding the optimal compromise between 
bias and variance of the PLS estimates. Although the 
underlying PLS-algorithms show a resemblance to the 
methods used for multivariate classification (e.g. 
canonical correlation (CC), linear discriminant analy- 
sis (LDA)), so far little theory for classification anal- 
ysis has been derived for PLS. Since PLS decom- 
poses the input-data using the output-data in a super- 
vised way (i.e. the coded classification membership 
directs the decomposition of  the input space), the 
method provides some interesting properties suitable 
for classification purposes [4]. 

0169-7439/96/$15.00 Copyright © 1996 Elsevier Science B.V. All rights reserved. 
PI1 S0169-7439(96)00056-1 



188 W.H.A.M. van den Broek et al. / Chemometrics and Intelligent Laboratory Systems 35 (1996) 187-197 

Classification of image objects based on Maha- 
lanobis distances is performed in the latent (score) 
space where the most relevant physical or chemical 
information is contained. Especially in a high dimen- 
sional space containing collinear data, this approach 
is highly efficient considering the practical unaccept- 
able computational cost of calculating distance ma- 
trices. It is known that NIR-spectra are likely to con- 
tain collinear data since physical and chemical phe- 
nomena manifest themselves at various places in the 
infrared region [5]. Especially in this particular situa- 
tion, PLS provides estimates with a low variance in 
contrast to the ordinary least squares approach where 
(in the collinear data case) the nearly singular covari- 
ance matrix has to be inverted. More advanced PLS- 
algorithms such as kernel PLS are also able to deal 
with large data in a very efficient, fast and elegant 
way [6,7]. 

The properties described are relevant in situations 
where models have to be created, validated and used 
in on-line or at-line situations. Since a straightfor- 
ward classification approach like statistical pattern 
recognition techniques puts some practically unfeasi- 
ble constraints on the data used (e.g. assumptions of 
normality) a more pragmatic classification method, 
based on a similar soft-modeling approach, is de- 
scribed. 

1.2. Real world application 

Since the last decade, legislation is forcing pro- 
ducers and distributors to become more and more re- 
sponsible for their products, even to their final dis- 
posal [8]. Besides prevention and reduction of waste 
at their sources, the increased use of recycling and 
re-use of materials is being under investigation. An 
extra problem arises for recycling plastic fractions, 
because these are often not compatible due to differ- 
ent physical properties, which in particular affects the 
mixability and the thermal stability. In order to ob- 
tain a valuable recovery of plastics, a sorting system 
is needed which does not need any pretreatment of the 
waste entities, which is able to discriminate between 
the materials to be identified and which is rapid, ac- 
curate, robust, safe and easy for operators to work 
with. 

Several studies [9-13] have shown that NIR spec- 
troscopy is capable to meet the aforementioned sort- 

ing requirements for plastics. One of these studies is 
performed by SIRIUS 1, a cooperation project be- 
tween the Laboratory for Analytical Chemistry of the 
University of Nijmegen, The Netherlands and the In- 
stitute for Chemical and Biochemical Sensor Re- 
search in Miinster, Germany. Within this project, the 
present authors have developed an identification sys- 
tem to sort plastics from non-plastics which is based 
on NIR imaging spectroscopy [14,15]. 

1.3. Spectroscopic NIR imaging 

The near infrared (NIR) region of the electromag- 
netic spectrum spans the region between 750-2500 
nm. In NIR spectroscopy, the absorption of light from 
this part of the electromagnetic spectrum is mea- 
sured. This is done by illuminating the material un- 
der investigation with NIR radiation. Waste objects 
are then allowed to absorb their fraction of material 
specific NIR radiation. The remaining reflected pho- 
tons are collected and passed through a wavelength 
selection device which is transparent for preselected 
wavelength regions only. The selection of these re- 
gions is based on prior information about the mate- 
rial being studied and is described in van den Broek 
et al. [16]. These preselected reflected photons are 
eventually measured by a detector. As there are many 
detector materials available which can measure in 
different modes [17], the newest sort of detectors in 
NIR spectroscopic imaging are the focal plane array 
(FPA) detectors [18]. In contrast to conventional de- 
tectors, these FPA detectors individually consist of 
thousands of sensing elements called pixels. Each 
pixel can integrate light that has been reflected by a 
different part of the material surface. In this way, ge- 
ometric material information can be obtained which 
gives information about the composition of the mate- 
rial surface. The described experimental setup will be 
used to classify the measured municipal waste mate- 
rials into the classes plastic and non-plastic by using 
the material information per detector pixel. A main 
problem in spectroscopic imaging, also mentioned by 
other authors [19,20], is to deal with the large amount 
of data that is generated by these detection systems. 
Therefore, research is necessary in mathematical pro- 

1 SIRIUS stands for Sensors and artificial Intelligence for 
Recognition and Identification of Used plasticS. 
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cessing of these data to extract only the most rele- 
vant data with a minimum of effort. 

1.4. Summarized 

The performance of PLS as a data reduction tech- 
nique for the classification of collinear image data is 
investigated. PLS performs a data decomposition 
were pre-knowledge about the material composition 
is taken into account. Once the optimal PLS model is 
calculated, is has to be tested by offering unknown 
images to the model. Classification is then performed 
by using a distance measure (Mahalanobis and Eu- 
clidian distance measures). The strategy of this in- 
vestigation includes the preparation of a representa- 
tive calibration and test set from images, measured 
from the waste objects. These two datasets are used 
to optimize the PLS model. The classification results 
are compared with the classification performance of 
principal component analysis (no pre-knowledge used 
in the data decomposition) and with classification of 
the original data (without data reduction). Finally, the 
optimized model is used to classify complete three- 
dimensional stacks of raw images. 

It should be noted that w i and q i are normalized in 
each step prior to further processing. In cases when 
the number of objects is much larger then the num- 
ber of variables, the criss-cross projections of NI- 
PALS become very inefficient. Lindgren [6] pro- 
posed a very efficient and elegant alternative for the 
deflation of the X and Y matrices into latent vari- 
ables by means of the condensed covariance matrices 
XXX, XXY and y T y .  Since only small covariance 
matrices are used to update successive principal 
components, a significant gain in computation speed 
is obtained. For obvious reasons the method is re- 
ferred to as K(ernel) PLS. The PLS loadings can di- 
rectly be calculated from the covariance matrices, as 
is extensively described in [6,7]. A clear regression 

f = X * B  (5) 

Y = X * B + F  (6) 

can be derived by expressing the loadings of PLS as 

B = W ( P  x *W) - l  * QX (7)  

A more detailed description of the composition of 
data matrices X and Y is given in Section 4. 

2. Theory 2.2. PLS in multivariate NIR-imaging 

2.1. PLS modeling 

Partial least squares regression (PLS) has gener- 
ally been accepted as a powerful statistical analysis 
tool. In the last decade, a considerable amount of pa- 
pers emerged [1-3] providing the method with a solid 
theoretical foundation. The PLS algorithms have 
originally been developed as a reduced rank regres- 
sion method in order to stabilize its estimates. The 
original formulation of standard PLS can be recog- 
nized by the decomposition of the data matrices X 
and Y in order to produce successive orthogonal 
scores t of the X-space, commonly performed by the 
NIPALS algorithm which equations are given by 

W i = X T * u  i ( 1 )  

t i = X * w i  ( 2 )  

q i = y T * t /  (3) 

u i = Y*q i  (4) 

Multivariate NIR-images yield data which match 
the situation described above. To illustrate matters, a 
real world example from SIRIUS is given: 

A typical dataset for multivariate NIR-image anal- 
ysis is an unfolded three-dimensional stack of im- 
ages (m, n, p) into a two-dimensional (m * n, p) data 
matrix 14, where m (64) and n (64) represent detector 
dimensions and p (6) the number of interference fil- 
ters used in the experimental setup. Clearly, the up- 
date of the 6 , 6  kernel or covafiance matrices re- 
quires substantially less computation time than the 
original NIPALS computations. Even in the case of 
the 6 wavelengths in the NIR region an expensive 
time price has to be paid since each wavelength has 
to be selected by means of a rotating filter wheel 
causing delays in the (on-line) classification process. 
Obviously, the classification speed is proportional to 
the number of filters. The need for reduction of the 
number of collinear filters from a non-mathematical 
point of view is evident. 
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The PLS-model is obtained by means of cross- 
validation, i.e. internal calibration and test data are 
generated in order to estimate the optimal number of 
latent variables. For extensive theory on cross-valida- 
tion, the reader is referred to [21,22]. 

2.3. Classification o f  images 

The first scores vectors in the (smaller) latent 
space calculated by projecting the X-matrix to the 
transposed loading matrix as defined in Eq. (2) con- 
tain the most relevant physical or chemical informa- 
tion and can be used to classify the image objects by 
means of the Mahalanobis distance (D 2) measure de- 
fined by equation (Xi - X ) ' S -  l(Xi - X j), whereas 
S represents the pooled within the covariance matrix 
and i and j denote the indices of the objects [23]. 
More details about the use of Mahalanobis distances 
can be found in the Section 4. The D 2 matrix is an 
extension of the Euclidian distance measure account- 
ing for correlations that might exist between the vari- 
ables. These correlations are largely present in the 
presented application. The final output of a classifi- 
cation of a complete three dimensional stack of im- 
ages is a two dimensional matrix, where each ele- 
ment contains a coded representation of the material 
class. 

The PLS-estimates (19, representing binary code) 
can also be used as an indication to identify classes. 
However, since PLS is a biased estimator, systematic 
errors are to be expected using the code space (I9). 
Moreover, the number of coding bits relative to the 
number of latent variables are also examined on their 
classification performance. In this work most empha- 
sis is given to the classification of image objects in 
the latent score space (T, see Eq. (2)), computed in a 
supervised way, by means of the Mahalanobis dis- 
tance measure. 

3.  E x p e r i m e n t a l  

3.1. Experimental setup 

J . filter wheel 

/mirror i~ J i ,  '~ 

irnagin.g & 
anaJysmg 
software 

Fig. 1. The experimental setup for material identification. 

total distance between sample and detector is about 2 
m (remote sensing mode), and therefore a powerful 
light source is required to get sufficient photons on 
the detector for a safe identification of the samples. 
The reflected radiation from the samples is passed 
through 6 interference filters which are transparent in 
the following wavelength regions: 1548-1578,  
1545-1655, 1655-1745, 1700-2150, 2207-2321 
and 2115-2550 nm, respectively. The remaining 
photons pass a standard 50 mm EFL f /1 .8  multiple 
element lens (Pentacon). This objective lens is trans- 
parent from 300 to 2700 nm 2. As a result, the objec- 
tive lens projects the photons on an InSb focal plane 
array (FPA) detector (Cincinnati Electronics, OH). 
The FPA detector contains 64 * 64 pixels, and each of 
these is capable of registering incoming photons. 
Moreover, each image pixel exhibits a sensitivity 
range of 10 bits resulting in 1024 gray levels. The 
output of the camera is a 12 bit digital data port which 
is able to send 51.44 frames (complete images) per 
second. No framegrabber is used since the digital 
output of the camera is sent indirectly, via an exter- 
nal interface SC-01 (electronic buffer) and a high 
speed 16 bit S16D I / O  interface (Engineering De- 
sign Team, OR), to the internal memory of the com- 
puter. The computer is a SUN SPARC 10 worksta- 
tion containing 32 Mbyte RAM memory. Several 
materials have been investigated for background ma- 

The experimental macro setup for plastic identifi- 
cation in municipal waste is shown schematically in 
Fig. 1. An infrared light source is used to illuminate 
the samples positioned on e.g. a conveyor belt. The 

z Measurements taken from different objective lenses, per- 
formed by H.W. Siesler and students, NIR research group, Uni- 
versity of Essen, Germany. 
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terial in the experimental setup. Sanded aluminum 
gave the highest contrast for macroscopic plastic 
samples. 

4. Materials and methods 

4.1. Training and test set 

3.2. Software and computations 

The images are recorded and processed using the 
Khoros 1.0 software environment (The Khoros 
Group, University of New Mexico, Albuquerque, 
USA), with its accompanying graphical user inter- 
face CANTATA. Khoros can be used as a visual 
programming tool for software development in scien- 
tific image visualization. This package entails a li- 
brary of over 260 routines to facilitate research in 
image processing, pattern recognition, remote sens- 
ing and machine vision. 

An alternative way to register images is by direct 
data access using the S16D interface combined with 
a library of C procedures. The library enables real 
time image acquisition by self written software. The 
necessary acquisition software and external interface 
SC-01 were developed and installed by Starling Con- 
sultancy, Hengelo, The Netherlands. Matlab (The 
MathWorks, MA) was used for the PLS calculations 
and image representations. 

3.3. Dataset 

Objects or samples with known material composi- 
tion are needed in order to calibrate (learn) the mate- 
rial properties by PLS. As a consequence, a number 
of waste samples are gathered from the household 
waste of the city of Nijmegen. 

In total, 40 waste objects are collected composing 
17 plastics (1 PVC, 2 PET, 4 PS, 4 PE, and 6 PP) and 
23 non-plastics (4 ceramics, 5 metals, 3 glass, 5 pa- 
per, 5 wood and 1 fiber). The objects differed in size, 
color, composition, mechanical flexibility and thick- 
ness. Images are measured using 6 interference fil- 
ters per object and corrected for the dark current and 
reference images as described in literature [14]. After 
preprocess ing,  40 stacks of  corrected images  
(64 * 6 4 . 6 )  are obtained which are unfolded to 40 
matrices of size (4096, 6). The ith row in the matrix 
is referred to as a mini-spectrum measured by the ith 
detector pixel for six different wavelength ranges. 

A complete three-dimensional stack of images 
(size: n = 64, m = 64, p = 6) contains only informa- 
tion from a single (waste) object. Since each stack of 
images contains 6 4 . 6 4  pixels, representing 4096 
mini-spectra each of length p = 6, a huge amount of 
data is obtained for only one material sample. To in- 
clude sufficient variation in material type for both the 
calibration and test set, many material samples need 
to be characterized by their image stacks. Therefore, 
a compromise is made between a representative vari- 
ation in material type and the total size of training and 
test dataset. This is done by extracting a pre-defined 
number of material pixels (plastic or non-plastic) and 
background pixels from a series of image stacks. The 
pre-defined numbers are chosen such, that the cali- 
bration dataset contains about the same number for 
each material class. The pixels are selected by means 
of principal component analysis (PCA) [14]. Pixel se- 
lection by principal component analysis guarantees 
the selected homogeneity of the mini-spectra and is 
very easy to perform. The PCA selection is based on 
the spectral correlation of pixels in a score plot. A 
cluster in a score plot can be selected by mouse-as- 
sisted handling on a computer screen. Since there is 
little control about the number of pixels in a selected 
cluster of a PCA score plot, it is necessary to reduce 
the amount of selected pixels to a pre-defined num- 
ber. This selection is done randomly. The final num- 
ber of pixels in the calibration set (1250, 6) are: plas- 
tics: 400, non-plastics: 450, and background: 400, 
whilst those for the test set (1750, 6) are: plastics: 
450, non-plastics: 700, and background: 600. 

4.2. PLS modeling 

Before each measured image pixel can be classi- 
fied, a PLS model has to be constructed. The PLS 
model transforms the image pixel to the score and 
code space. It should be noted that in both cases 
classification can be performed. Classification in the 
score space is further called PLS-score, whereas 
classification in the code space is called PLS-code. 
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Table 1 
Calibration dataset: X-block containing reflectance values in au. 
Pixels were extracted from 22 stacks of images 

# Materials Filter Filter Filter Filter Filter Filter 
pixels 1 2 3 4 5 6 

plastic 1 

400 
401 

850 
851 

1250 

non-plastic 

background 

The model is constructed using a calibration set, Ta- 
bles 1 and 2. The calibration dataset consisted of NIR 
data of known material type (plastic, non-plastic and 
background), called X-block, and a coded representa- 
tion of the material type, coding block Y. Each row 
of the X-block contains six NIR gray values (mini- 
spectrum) of a specific geometric position inside the 
camera view, measured for six different wavelength 
regions. The X-block is a collection of material pix- 
els, extracted from a large number of measured im- 
ages. The rows of the coded Y-block represent the 
three corresponding material types of the data block. 
Both blocks can significantly influence the model. 
The X-block must be without falsely measured data 
and must be a good representation of the three classes. 
The model was finally tested with an independent test 
set of known composition. 

The choice of the coding block influences the PLS 
model through the choice of the type of coding, e.g. 

Table 2 
Calibration dataset: Y-block coding using 
extracted from 22 stacks of images 

three bits. Pixels were 

# pixels Materials Bit 1 Bit 2 Bit 3 

1 plastic 1 0 0 
... 1 0 0 

400 1 0 0 
401 non-plastic 0 1 0 
... 0 1 0 

850 0 1 0 
851 background 0 0 1 
... 0 0 1 

1250 0 0 1 

1, 2, 3 . . . .  bits coding, especially if the classifica- 
tion is performed in the coding space. The dimension 
of this space will be defined by the coding block. Also 
scaling the data can improve the classification. Scal- 
ing the data is often applied for creating a better 
classification model. For our problem, scaling tech- 
niques such as unit length scaling, range scaling, auto 
scaling and mean centering did not improve the 
model, in contrary, the classification results were 
even worse in comparison with the original data. One 
effect that caused this result was observed when the 
offset in the mini-spectra was eliminated by scaling. 
The reason why the offset in the mini-spectra con- 
tains useful classification information can be ex- 
plained by the surface properties of the materials. 
Non-plastics such as glass, stone and metals have a 
low infrared absorptivity and therefore can reflect 
most illuminated infrared radiation. In addition, the 
surface of aforementioned materials was rather 
smooth which reduces the diffuse reflectance propor- 
tions. 

4.3. Classification with Mahalanobis distances 

When the PLS model has been calculated, it can 
be used to classify unknown image pixels. An un- 
known image pixel is classified to the class member- 
ship c (plastic, non-plastic or background material), 
if the Mahalanobis distance between a PLS projected 
image pixel and the centroid in the projected space of 
class c is the smallest. In the classification of com- 
plete images, the same procedure can be applied, al- 
though now, the individual pixels in the image are 
classified in one step using matrix algebra. From the 
resulting classification matrix the total number of 
pixels from each material class needs to be calcu- 
lated. The classification results can also be visualized 
by plotting them after range scaling, see Figs. 6 and 
7. 

5. Results and discussion 

5.1. Cross-validation 

The PLS model is dependent on the number of la- 
tent variables. This number can be estimated by a 
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cross-validation experiment. Cross-validation is per- 
formed by splitting the training dataset randomly into 
five groups of the same size. A PLS model is calcu- 
lated from a reduced dataset where only one group is 
deleted. This model is used to predict the class mem- 
bership of the objects in the deleted group. The dif- 
ferences between the actual class membership and the 
predicted ones are squared and summed to yield the 
PRESS value (predicted residual error sum of 
squares). This is repeated for each deletion group 
successively. All PRESS values are eventually 
summed to one overall PRESS. The whole cross- 
validation procedure is repeated 10 times (each time, 
the dataset is split into different groups) whereupon a 
mean PRESS is calculated. For each latent variable a 
mean PRESS value is calculated, see Fig. 2. All ex- 
periments are repeated with four different types of 
coding: one, two, three and four bit coding. A signif- 
icant decrease in PRESS is observed when three la- 
tent variables are used. On the other hand, only a 
small decrease in PRESS is observed when four or 
more latent variables are used. Therefore, the opti- 
mal number of latent variables is chosen to be three. 

5.2. Class coding 

Now the number of latent variables is known, a 
PLS model is constructed where the influence of the 
coded Y-block is investigated. To illustrate this ef- 
fect with an example, the material type of the Y-block 

6001 

550 ~ - -  1-bit cede 

50C ~ \ . . . .  2-bi t  code 
\ - -  3-bi t  code 

~ 3 5 0  

I00" ' ' 
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 

number of latent variables 

Fig. 2. Plot o f  the cross-val idat ion experiments. The number  o f  la- 

tent variables is depicted horizontally, the PRESS vertically. 

1.5 
o ~ 

o o ~ o  ~ ~  ~ 

L o ~  o o ° . ,, 

 Oo% o o + o ~  
o o ° o 

o + + + 
+ p l a s t i c  + + ~  ~ + ~ + + + +  
0 non-plastic 

background 

-0.5 - -  ~ ' ' f + - -  
-0.2 ; 0.2 0,4 016 0'.8 1 1.2 1.4 

bit 1 of predicted Y-block 

Fig. 3. Plot of the reproduced class memberships of the calibration 
set in the code space. 

of the calibration set is coded with two bits: 10 to 
code for a plastic material, O1 for non-plastic and 11 
for background. The prediction of the mini-spectra in 
the test set by the PLS model can be seen in Fig. 3. 
This figure shows that PLS does not exactly repro- 
duce the original codes. Although the background 
pixels are clearly separated from the object pixels, the 
latter have little overlap with respect to each other. 
Furthermore, the clusters in Fig. 3 show a bias, espe- 
cially the non-plastic class, which is the intrinsic 
property of PLS [2]. The bias is the deviation be- 
tween the predicted mini-spectra in the code space 
and the original code. The non-plastic class was orig- 
inally coded as 01, but the PLS model was not able 
to reproduce this, Further investigation showed that 
this effect could not be caused by the bit order of the 
Y-block. Exactly the same predictions were obtained 
when plastic was coded as 11, 01 or 00, taken into 
account that the corresponding other materials were 
changed also. 

Fig. 4 shows the optimization of the number of 
coding bits in the Y-block belonging to the training 
set against the classification error in the test set. This 
is done for a classification in the code space as well 
as in the score space. When using a one bit code, as 
in PLS-1, the total classification error in the code 
space is more than 12%, whereas a total error of about 
4% is obtained when the classification is performed 
in the score space. The difference in classification er- 
ror can be caused by the fact that the corresponding 
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coding space is only one-dimensional whereas the 
score space is three-dimensional.  Probably a projec- 
tion from a three-dimensional score space to a one- 
dimensional code space results in a higher classifica- 
tion error. When using a two bit code, the difference 
between the total errors of  the score and code space 
is decreased as the difference in dimension has de- 
creased. Here, a projection from a three-dimensional 
score space to a two-dimensional code space results 
in a lower classification error. If  the number of  cod- 
ing bits is equal to the number of  latent variables, the 
error of  classification is of  the same order. The simi- 
larity in the error using a three bits code is obvious 
because the dimensionali ty of  both the score and the 
code space are the same. The estimates in the code 
space are then rotated scores. In the four bits code, 
the dimension of  code space is one larger than that 
of  the score space. The code space is obtained by the 
projection of  the score space in this code space, which 
leaves the discrimination abil i ty the same. Fig. 4 
shows that the lowest total error is obtained using the 
three bits code in the score and the coding space. 

To summarize the optimal PLS conditions for the 
identification of  plastic waste, the model  should con- 
tain three latent variables and a three bit code block. 
The best classification is performed either in the score 
and code space of  the PLS model. It should be noted 
that this comparison is only valid when the correct 
number of  coding bits is used. 

"~ 6 

- 

number of coding bits 

Fig. 4. Optimization of the number of coding bits. This figure 
shows the influence of the number of coding bits versus the classi- 
fication error. This is done for a classification in the code space as 
well as in the score space. 

Table 3 
O/, /3 and total error in percentages and number of pixels respec- 
tively, calculated for the test set 

Comparison of classification errors 

PLS-score PLS-code PCA original data 

O/plastics 0.4 (2) 0.4 (2) 0.7 (3) 0.4 (2) 
O/non-plastics 4.3 (30) 4.3 (30) 5.3 (37) 1.3 (9) 
C%ackgroun d 2.0 (12) 2.0 (12) 2.2 (13) 4.5 (27) 
/3plastics 2.5 (33) 2.5 (33) 1.4 (38) 2.8 (9) 
/3non-plastics 1.0 (11) 1.0 (11) 1.4 (15) 2.8 (29) 
/3background 0.0 ( - - )  0.0 ( - - )  0.0 ( - - )  0.0 ( - - )  
Total percentage 2.5 (44) 2.5 (44) 3.0 (53) 2.2 (38) 

5.3. Class i f i ca t ion  o f  the tes t  se t  

Table 3 shows the classification results of  the test 
set performed in the PLS space (score and coding) 
with classification performed in the PCA and origi- 
nal space. For  a comparison of  the classification 
techniques a zero-hypothesis (H 0) was formulated for 
each material type: 

H0: The classification result is material c if the 
Mahalanobis distance of  this object pixel in the score 
or code space to the centroid of  class c is the small- 
est, where c can be plastic, non-plastic or back- 
ground. 

The ot and /3  errors were calculated for each class, 
the a error was defined as the rejection of  H 0 while 
it is true ( ' fa lse  negative') .  The /3 error was defined 
as the acceptance of  H 0 while it is false ( ' fa lse  posi- 
t ive') .  The a values of  the plastic class show that the 
amount of  misclassified plastic pixels is very low 
(between 0.4 and 0.7%). The misclassification of  the 
background and the non-plast ic  image pixels are 
somewhat larger but still acceptable. The /3 values 
show that no image pixel non-plastic or plastic are 
classif ied as background.  There are image pixels 
plastic, non-plastic and background which are mis- 
classified as plastic or non-plastic but the percent- 
ages are also acceptable low. A good insight in the 
goodness of  the applied model  (PLS, PCA or no data 
reduction model)  can be given by the total errors of  
Table 3. The percentage total error of  both classifica- 
tions in the score space and the code space appeared 
to be the same when the optimal coding was used 
(three bits): in both cases 2.5%. When a PCA model 
is used, a larger error was expected in contrary to PLS 
(3.0% error), because the model  was made unsuper- 
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vised and therefore gave less good results. Perform- 
ing a classification in the original space gives the best 
result (2.2% error). The data reductive methods (PLS 
and PCA) lose information with this reduction and 
this leads to a (small) increase in the classification 
error of  0.3 and 0.7%, respectively. The gain of  data 
reduction can be found in the noise reduction and 
computation time; although time is needed to reduce 
the image data, the overall computation time will be 
significantly decreased without much error increase. 

i 

Fig. 6. Example of the same waste materials as in Fig. 5, but now 
classified by the calculated PLS model. 

Fig. 5. Example of two waste materials, measured in the wave- 
length region between 1548-1578 nm. The image a is measured 
from a plastic object, whereas b is measured from a non-plastic 
object. 

5.4. Classification o f  real images 

The PLS model has been tested with a pre-selected 
calibration and test set. In the following, the calcu- 
lated optimized model is used to classify complete 
three-dimensional stacks of  images into classification 
matrices. The PLS model has been constructed using 
three latent variables and a three bits code block. Im- 
ages were measured from two different materials, a 
plastic (polyethylene) and non-plastic (ceramic) frag- 
ment, Two examples of  the raw images are shown in 
Fig. 5. Fig. 6 shows the classification matrices of  the 
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aforementioned materials. These were obtained by a 
PLS classification in the score space. This means that 
4096 (64 * 64) mini-spectra had to be classified. Note 
that both images show falsely classified image pix- 
els, especially around the objects. This can be due to 
mixed image pixels, object-edge effects and shadow. 
Mixed pixels occur in particular when low spatial 
resolution detectors are used. Reflected radiation 
overlaps with neighboring pixels, which causes mixed 
mini-spectra. Shadow effects occur when objects ex- 
ceed a certain height [14]. The intensity of the radia- 
tion around the edges of the object will become less 
than elsewhere in the image. Object-edge effects oc- 

• I 

cur when images are not synchronized perfectly with 
respect to their spatial position in the image. Another 
measurement artifact that may occur are mirror re- 
flections. These occur when the surfaces of the ob- 
jects are so smooth that all illuminated radiation is 
reflected on the detector. This effect is expressed as 
spikes in the images. The problem of shadow can be 
solved by including shadow as an extra class and cal- 
ibration of the model for this class, too. The other 
measurement artifacts can be reduced by applying a 
mathematical filter on the classification matrix. In- 
formation from neighboring pixels is used to reduce 
or eliminate these effects. When a majority filter [24] 
is applied on the new PLS model with the four classes 
(plastic, non-plastic, background and shadow) the 
classified images of Fig. 6 are shown in Fig. 7. The 
images in Fig. 7 show a low number of falsely clas- 
sified pixels, which corroborates that the correspond- 
ing PLS model gave satisfactory results. 

Fig. 7. Example of the same waste materials as in Fig. 5, but now 
classified by the calculated PLS model and filtered by a majority 
filter. 

6. Conclusion 

In the present work, we have shown that the ker- 
nel PLS is a viable tool for reducing collinear image 
data in order to classify large stacks of these data. The 
advantages of this technique with respect to imaging 
are short calibration stages during modeling and re- 
duction of the number of latent variables which sig- 
nificantly increases the speed of image processing, 
especially, when new wavelength selection devices 
such as AOTF and interferometers are used, which 
can generate more data than the filter wheel used in 
this work. Moreover, spectral differences in the pixel 
mini-spectra contained sufficient information to iden- 
tify 95% or more of the investigated materials: plas- 
tic, non-plastic and background material. The classi- 
fication results for the wavelength reduced datasets 
are almost equal to those obtained with the original 
data. To emphasize this good result, the largest dif- 
ference in total classification error was less than 1%, 
obtained with PCA. In this case, the dataset was re- 
duced by a factor 0.5. Care should be taken in the 
modeling step where the number of latent variables 
and the number of coding bits have to be selected. 

Spectroscopic NIR imaging seems to be a promis- 
ing technique for material recognition. In combina- 
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tion with fast and robust chemometrical techniques, 
this imaging system may become mature for on-line 
process control. Quality control and process or reac- 
tion monitoring are then within reach. 
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