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Abstract

Metabonomic analysis is increasingly recognised as a powerful approach for delineating the integrated metabolic changes in biofluids and

tissues due to toxicity, disease processes or genetic modification in whole animal systems. When dealing with complex biological data sets, as

generated within metabonomics, as well as related fields such as genomics and proteomics, reliability and significance of identified biomarkers

associated with specific states related to toxicity or disease are crucial in order to gain detailed and relevant interpretations of themetabolic fluxes

in the studied systems. Since various physiological factors, such as diet, state of health, age, diurnal cycles, stress, genetic drift, and strain dif-

ferences, affect the metabolic composition of biological matrices, it is of great importance to create statistically reliable decision tools for

distinguishing between physiological and pathological responses in animal models. In the screening for new biomarkers or patterns of

pathological dysfunction,methods providing statistically validmeasures of effect-related changeswill become increasingly important as the data

within areas such as genomics, proteomics and metabonomics continues to grow in size and complexity. 1H NMR spectroscopy and mass

spectrometry are the principal analytical platforms used to derive the data and, because extensively large data sets are required, as much

consideration has to be given to optimum design of experiments (DoE) as for subsequent data analysis. Thus, statistical experimental design

combinedwith partial least squares (PLS) regression is proposed as an efficient approach for undertakingmetabonomic studies and for analysis of

the results.Themethodwasapplied todata froma liver toxicologystudy in the rat usinghydrazineasamodel toxin.1Dprojectionsof2DJ-resolved

(J-RES) 1HNMRspectra and the corresponding clinical chemistry parameters of blood serum samples fromcontrol and dosed rats (30 and 90mg/

kg) collected at 48 and 168 h post dose were analysed. Confidence intervals for the PLS regression coefficients were used to create a statistical

means for screening of biomarkers in the two combined data blocks (NMR and clinical chemistry data). PLS analysis was also used to reveal the

correlation pattern between the two blocks of data as well as the within the two blocks according to dose, time and the interaction dose� time.

D 2004 Elsevier B.V. All rights reserved.
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1. Introduction efficient technique in characterising and predicting the
Within the area of metabonomics, defined as the multi-

parametric metabolic response of living systems to patho-

physiological stimuli or genetic modification, biofluids and

tissues are analysed by the sequential combination of high

field NMR spectroscopy and multivariate chemometric

techniques. The metabonomic approach has proved an
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nature and target organ of toxicity for a large number of

different xenobiotics [1–6].

High-resolution 1H NMR spectroscopy is an efficient and

nondestructive tool for generating data on a multitude of

metabolites in biofluids or tissues [7]. The acquired spectral

profile of a biofluid reflects the metabolic status of the

organism, which alters in response to stressors in order to

maintain a homeostatic balance [8].

Information recovery, in terms of relationships between

the NMR spectral profiles and their biochemical interpreta-

tion, can be maximised by applying multivariate statistical
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tools to the analysis of these complex, information-rich, NMR

data.Aspreviously shown, 1HNMRspectroscopyof complex

biological samples, coupled with multivariate statistical anal-

ysis methods provides an alternative in vivo approach to the

investigation of drug induced toxicity, altered gene function

and also for disease diagnosis. Applications of this metabo-

nomic technology include the identification of biomarkers of

toxicity and disease [9,10], monitoring of time related met-

abolic perturbations in biofluids and tissues following toxic

insult [11–13] and metabolic characterisation of physiolog-

ical variance in humans under mild physiological stress [14].

One important aspect of the metabonomic approach is

reliability and significance of the identified biomarkers

associated with specific metabolic states. Since various

physiological factors, such as diet, state of health, age, diurnal

cycles, stress, genetic drift and strain differences, affect the

metabolic composition of biological samples, it is of great

importance to create statistically reliable decision tools for

distinguishing between physiological and pathophysiological

responses in animal models. In metabonomic data, a drug-

induced biomarker, is by definition linked to a change with

dose or with both dose and time. In the screening for new

biomarkers or patterns of toxic response, methods providing

statistically significant measures of effect-related changes

will become more important as genomic, proteomic and

metabonomic data sets grow in size and complexity. Such

methods will also be a prerequisite in the work towards

combining blocks of data generated with different analytical

techniques or within different areas of science, e.g. combin-

ing genomic, proteomic and metabonomic matrices, in order

to extract relevant patterns, enhance interpretation and hence

facilitate the understanding of processes and mechanisms

induced by toxicity and disease.

Statistical experimental design or design of experiments

(DoE) [15,16] is a powerful tool for defining the effect of one

or more variables on a set of measured responses by using

multiple linear regression (MLR) or generalised regression

methods such as partial least squares (PLS) [17,18]. Confi-

dence intervals for the calculated regression coefficients

create a means for understanding the significance of the

variables and the interactions between variables on the

measured responses. DoE also provides a strict mathematical

framework for changing all pertinent experimental variables

simultaneously and independently of each other, and achieve

this in the smallest possible number of experimental runs. The

strength of DoE, compared to univariate approaches consid-

ering only one variable at the time, is its ability to detect and

estimate nonadditive variable interactions as well as provid-

ing a higher precision to estimates of the variables’ effects on

the measured responses.

Here we have evaluated DoE combined with PLS regres-

sion as a multivariate metabonomic screening tool for large

biological data sets with the aim of biomarker identification,

toxic response detection and interpretation of variable corre-

lations within and between blocks of complex multiparamet-

ric data based on statistical significance. Hydrazine is a well-
documented hepatotoxin that induces steatosis and the effects

of hydrazine administration to animal models on both con-

ventional clinical parameters and the 1H NMR biofluid

profiles have been reported [19].

The type of NMR experiment used influences the visi-

bility of different components of the biofluid profile. Plasma

spectra contain a mixture of high molecular components

such as lipoproteins which generate broad resonances on

which are superimposed sharper resonances from the low

molecular weight components such as organic and amino

acids. Use of a spin echo experiment such as the Carr-

Purcell-Meiboom-Gill (CPMG) or J-resolved results in the

suppression of the broader elements and therefore enhances

visualization of the low molecular weight metabolites.

Conversely diffusion edited pulse sequences can be used

to enhance the small molecule profiles [20]. Here we have

chosen to use J-resolved projections to characterise the

effect of hydrazine on the low molecular weight profile

since hydrazine is known to induce modifications in several

low molecular weight species present in the plasma profile.

The application to the combined blood serum 2D J-

resolved (J-RES) NMR data and clinical chemistry parame-

ters for a hydrazine dose study in the rat exemplified the

versatility of the proposed DoE–PLS methodology in toxi-

cology screening and metabolic profiling.

All data presented here were acquired within the COnsor-

tium for MEtabonomic Toxicology (COMET). COMET is an

academic project involving five major pharmaceutical com-

panies (BMS, Eli Lilly, Hoffman La Roche, Novo Nordisk,

Pfizer) and Imperial College. Its ultimate goal is to build

expert systems capable of predicting the toxicity of candidate

drug compounds. This is being achieved through the con-

struction of a database of f 100,000 1H NMR spectra of

biofluids from toxicological studies. Multivariate statistical

data mining techniques are being used to build mathematical

models of the NMR data for classifying new samples accord-

ing to their most likely site or mechanism of toxicity, and also

to discover new biomarkers of these effects. Results of

studies on individual toxins will be published elsewhere.
2. Methods

2.1. Animal studies

Male 8–10 week Sprague–Dawley (SD) rats were ran-

domly assigned to dose groups (1—control (saline), 2—low

dose (hydrazine, 30 mg/kg) and 3—high dose (hydrazine, 90

mg/kg)). Serum samples were collected at 48 and 168 h post

treatment.

2.2. Acquisition of 2D J-resolved (J-RES) 1H NMR serum

spectra

All 1H NMR 2D J-resolved (J-RES) serum spectra [21]

were measured at 600.13 MHz 1H NMR frequency and 300
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K on a Bruker DRX-600 using the BESTk flow-injection

system (Bruker Efficient Sample Transfer, Bruker Biospin,

Rheinstetten, Germany) for sample delivery. The spectra

were acquired according to a standard procedure [22] in

order to focus on the small molecules present in the serum.

One-dimensional sum projections on to the chemical shift

axis were calculated from the 2D-JRES spectra and used for

subsequent analysis. The assignment of 1H NMR urine

spectra and the 1H NMR 2D J-resolved (J-RES) serum

spectra were made with reference to published literature

data [22,23].

2.3. Clinical chemistry measurements

The serum samples were also characterised by measure-

ment of the following clinical chemistry parameters: blood

urea nitrogen, alanine aminotransferase (ALT), aspartate

aminotransferase (AST), alkaline phosphatase (ALP), gam-

ma glutamyl transferase (GGT), sodium, potassium, calcium,

phosphate, albumin, total protein and total bilirubin.

2.4. Data reduction and pattern recognition

Each NMR spectrum was reduced to 245 integrated

regions of equal width (0.04 ppm) corresponding to the

region d 0.2–10.0 using AMIX (version 2.5.9, Bruker) and

the data collated into a single data table. The region (d 4.50–

5.98) was deleted to remove any spurious effects of variabil-

ity in the suppression of the water resonance and any

consequent chemical exchange effects on the urea signal.

Finally, all spectra were normalised to a constant integrated

intensity.

Multivariate analysis was performed using the MODDE

software (version 5.0, Umetrics, Umeå, Sweden). Prior to

data analysis, the NMR and clinical chemistry data were

mean centered followed by scaling to unit variance, in

which the variable mean was subtracted from each variable

(column of the data) and then each variable was divided by

its standard deviation.

2.5. DoE–PLS method

Design of experiments (DoE) was applied separately to

the two study data sets in order to create the possibility of

investigating and statistically validating the effect of dose

and time on the metabonomic NMR patterns and the

changes in serum clinical chemistry parameters.

The idea of using DoE was to systematically vary the two

parameters (variables), dose and time, known to affect the

outcome of the metabolic evolution pattern, independently of

each other. The matrix of designed experiments (X) was then

correlated to the corresponding combined matrix of NMR

spectra and clinical chemical parameters (Y) for the hydra-

zine serum study by using PLS. For the calculated PLS

model, a set of weights (w, c) were calculated component

wise for the two data matrices, X and Y. The X-weights (w)
described the importance of the X-variables (dose, time) and

the interaction between the two (dose� time) for correlating

to Yand similarly the Y-weights (c) described the Y-variables

(NMR spectral regions and clinical chemistry parameters)

which were important in maximising the covariation between

X and Y [16,17]. Consequently, the effect of each variable

(dose and time) on the metabolic changes described by NMR

data and the clinical chemistry data was investigated at all

levels of the other variable included in the design. This

allowed calculation of PLS regression coefficients (b) for

the effects of each variable (dose and time) as well as the

interaction effect (dose� time) between the included varia-

bles. A significant interaction effect between two variables

implies that the effect of one variable is dependent on the

setting of the other variable, which is defined as a nonadditive

relationship between the variables. The statistical signifi-

cance of the metabolic changes according to dose and time

were expressed as 95% confidence intervals for the PLS

regression coefficients (b) calculated from the residual stan-

dard deviation inY based on the t-distribution. The calculated

confidence intervals were then used as selective criteria in

screening for significant changes in the NMR data and the

clinical chemistry parameters. One advantage of the approach

was the possibility of characterising each NMR spectral

region and each clinical chemistry parameter as nonsignifi-

cant or significant according to dose, time, dose� time or

combinations thereof and thereby improving the understand-

ing of the complex time-related metabolic variable patterns.

The design for the hydrazine serum study was set to vary

in time between the two time points 48 and 168 h post dose

and in hydrazine dose concentration between the three

concentrations 0, 30 and 90 mg/kg. This gave a total of

six experimental settings and using four replicates provided

a data set (X) of 24 observations for PLS model calcula-

tions, where X was regressed against the multiblock Y-

matrix (the combined matrix of the reduced J-resolved

NMR data and the corresponding clinical chemistry param-

eters measured on the blood serum samples) (Fig. 1).

2.6. Correlation of designed data (X) and two combined

blocks of data (Y) (metabonomic 1H J-resolved NMR serum

data and clinical chemical data) using PLS

The combined Y-matrix for the hydrazine serum data

consisting of the J-resolved NMR data and the corresponding

clinical chemical parameters allowed intra- and inter-block

correlation and covariation studies based on the calculated

PLS weights (w, c) and regression coefficients (b).

By interpretation of the PLS weights plot (w� c1/w� c2),

the correlation and covariation between the variables from the

different blocks according to variations in dose and time were

revealed. Hence, variables in the two blocks responding in the

same way to toxic insult would cluster together in the plot.

The extracted PLS regression coefficients (b) with cor-

responding 95% confidence intervals were used for interpre-

tation of the dose–time response as well as for judging the



Fig. 1. Scheme explaining the experimental design and modelling strategy for the hydrazine serum study.
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significance of each single variable according to dose, time

and the interaction dose� time.

2.7. Algorithms

2.7.1. PLS algorithm

The PLS NIPALS algorithm [24–27] used to extract the

PLS components can be described as follows,

w ¼ XVu=ðuVuÞ ð1Þ

w ¼ w=NwN ð2Þ

t ¼ Xw ð3Þ

c ¼ YVt=ðtVtÞ ð4Þ

u ¼ Yc=ðcVcÞ ð5Þ

p ¼ XVt=ðtVtÞ ð6Þ

EðX � residualÞ ¼ X � tpV

FðY � residualÞ ¼ Y � tcV ð7Þ

where X is the predictor matrix (design matrix), Y is the

response matrix, w is the PLS-weight vector for X, u is the

PLS-score vector forY, t is the PLS-score vector forX, c is the

PLS-weight vector for Y also used to calculate the Y-residual

matrix, F, and p is the PLS-loading vector for X used in the
Fig. 2. PLS weights plot (w� c1/w� c2) revealing the model correlation struc

following classes: nonsignificant (grey), significant according to: dose (das

(underlined).
calculation of the X-residual matrix, E. A matrix or vector

followed by V indicates a transposed matrix or vector.

The PLS regression coefficients (b) can then be calculated:

b ¼ wðpVwÞ�1cV ð8Þ

2.7.2. Calculation of confidence intervals for the PLS

regression coefficients

Confidence intervals (>95%) were calculated for the

PLS regression coefficients according to the following

formula [16],ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXVXÞ�1

q
� RSD� tða=2;DFresidÞ ð9Þ

where RSD is the standard deviation of theY-residual, t is the

tabulated t-value for a given significance level (a) and the

degrees of freedom for the Y-residual (DFresid).
� 1 refers to a

matrix inversion.
3. Results

3.1. Correlation of designed data (X) and two combined

blocks of data (Y) (metabonomic 1H J-resolved NMR serum

data and clinical chemical data) using PLS

The weights plot (w� c1/w� c2) for the calculated PLS

model (Fig. 2) showed that the number of significant
ture for the hydrazine blood serum study. Variables divided into the

hed line), time (dotted line), dose and time (solid line), dose� time
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variables was much smaller compared to the original num-

ber of acquired variables. Based on the PLS weights plot,

interpretations were made of the correlation structure in the

data.

To exemplify the interpretations that could be made in

terms of correlation and significance from the PLS weights,

a few variables were chosen for more detailed analysis.

Looking at the spectral region at d 3.92 (creatine), located in

the lower left quadrant of the PLS weights (R2Y= 0.83,

Q2 = 0.6) high positive correlation was seen with the other
Fig. 3. (a) PLS regression coefficients with 95% confidence intervals for the spectr

time and dose� time. (b) Replicate plot for the spectral region (d 3.92) showing p
1H NMR spectra (d 3.932–3.908) for six representative serum samples, one from

mg/kg 48 h (grey dashed line) and 90 mg/kg 48 h (grey solid line), 0 mg/kg 168 h

h (black solid line).
region associated with creatine at d 3.04 and to the spectral

regions circled with a solid line, implying that all these

spectral regions have a similar response to hydrazine treat-

ment (dose) with time. Positive correlation with the hydra-

zine dose can also be seen suggesting that the intensities of

these spectral regions increase when hydrazine is dosed. To

investigate the correlations connected to d 3.92, a line was

fitted which connected d 3.92 with the origin of the plot. By

projecting all other variables perpendicular to this line, the

correlation to d 3.92 could be decided based on the distance
al region (d 3.92) associated with a creatine resonance. Coefficient for: dose,

eak intensity versus dose and time for the included samples. (c) Normalised

each experimental setting in the design, 0 mg/kg, 48 h (grey dotted line), 30

(black dotted line), 30 mg/kg 168 h (black dashed line) and 90 mg/kg 168
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from the projections to the origin (leverage). Projection of

the X-variables dose and time on to the imaginary line

showed that d 3.92 was positively correlated with hydrazine

dose but negatively correlated with time. The PLS regres-

sion coefficients (b) for d 3.92 (Fig. 3a) verified the positive

correlation with dose and the negative correlation with time

and also provided evidence for their significance (at >95%
Fig. 4. (a) PLS weights plot (w� c1/w� c2) after the first screening step (signific

(dashed line), time (dotted line), dose and time (solid line). (b) PLS weights pl

showing only the potential markers for hydrazine toxicity.
confidence level). In addition, the interaction dose� time

was significantly negatively correlated to d 3.92. An expla-

nation to this could be found by looking in the replicate plot

(Fig. 3b), where the effect of the high dose at both time

points (48 and 168 h) was evident compared with the

replicate variation but where it was also evident that this

effect of hydrazine dosing decreased between 48 and 168
ance screening) showing only the significant variables according to dose

ot (w� c1/w� c2) after the second screening step (biomarker screening)
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h post dose. The original spectral data for the resonance at d
3.92 for six representative spectra, one for each experimen-

tal setting in the design, verified the model results (Fig. 3c).

In the plot, the effect of the high hydrazine dose (90 mg/kg)

can be seen as a large intensity increase at 48 h post dose.

This significant change according to time can also be
Fig. 5. PLS regression coefficients (d3.0–4.0) for the hydrazine blood serum stu

(a) Regression coefficients related to hydrazine dose. Variables significant accordin

serum collection time. Variables significant according to dose are denoted by fille
verified by the fact that the increase in peak intensity is

smaller at 168 h compared to 48 h post hydrazine admin-

istration. In addition, d 3.92 was negatively correlated to the

clinical chemistry parameters ALT and AST in the PLS

weights plot (Fig. 2), implying that when d 3.92 (creatine)

increases in intensity, levels of ALT and AST decrease in the
dy. Significant variables (white bars), nonsignificant variables (grey bars).

g to time are denoted by open arrows. (b) Regression coefficients related to

d arrows and variables significant according to time only are denoted by *.
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serum samples, also implying that ALT and AST levels are

depleted due to hydrazine dosing.

Thus in this way, interpretations could be made for all

variables (NMR regions and clinical chemistry parameters)

in the model and significant changes due to dose, time and

dose� time could be detected and verified statistically.

3.2. Two step variable screening procedure for hydrazine

toxicity

A two step screening strategy was applied to the com-

bined blocks of NMR and clinical chemistry variables for

the hydrazine data set. Removal of the nonsignificant

variables (significance screening) leaves only the variables

significantly changing with dose or time or combinations

thereof (Fig. 4a). In the second screening step (biomarker

screening), all NMR and clinical variables significant with

time only were removed leaving a relatively small number

of variables significantly affected by hydrazine dose (Fig.

4b). The remaining NMR spectral regions and clinical

chemistry parameters thus become the variables to focus

on in terms of serum biomarkers for hydrazine toxicity,

mechanistic understanding of the toxic insult and the cor-

relation between NMR spectral data and serum clinical

chemistry parameters.

3.3. Detailed interpretation of PLS regression coefficients

for a selected NMR spectral area

To further emphasize the benefits of this proposed meth-

od, the PLS regression coefficients (b) for the variables in a

selected spectral range were investigated and interpreted in

more detail for the hydrazine blood serum study. The PLS

regression coefficients (b) for the spectral range d 3.0–4.0

were plotted together with the corresponding 95% confi-

dence interval for each coefficient (Fig. 5a and b). The range

was selected to include the two spectral regions associated

with the metabolite creatine (d 3.92 and d 3.04), which were

discussed earlier. Viewing the PLS regression coefficients

according to hydrazine dose (Fig. 5a), it was evident that

eight of the displayed spectral regions were significant.

Among those, the two regions attributed to creatine (d 3.92

and d 3.04) showed a significant increase with hydrazine

dose. The segment at d 3.24 associated with the metabolite

taurine also showed a high degree of significance related to

an intensity decrease with dosing of hydrazine. This could

also be detected in the PLS weights plot for the hydrazine

serum study (Fig. 5a), where this region showed a high

negative correlation with hydrazine dose. The spectral seg-

ment at d 3.36 associated with a methanol contaminant

proved to be insignificant with dose implying that the

changes in that spectral region were completely unrelated

to hydrazine administration. From consideration of the re-

gression coefficients (b) for time (Fig. 5b), it was evident that

11 of the displayed spectral regions turned out to be signif-

icant with time. Notably, the region 3.36 (methanol) showed
a high degree of significance related to a decrease with time,

highlighting the fact that by using DoE the effects of dose and

time can be efficiently separated. The filled arrows in the plot

indicate the spectral regions that were considered significant

according to dose and the stars indicate the spectral regions

only significant according to time. From the coefficient plot

for time (Fig. 5b), it was possible to distinguish between

potential biomarkers for hydrazine dose, spectral changes

unrelated to hydrazine dose, which could not be considered

as biomarkers of hydrazine toxicity but as potential carriers of

valuable information related to non-dose specific events, and

nonsignificant spectral areas in all respects. Within the group

considered as potential biomarkers, a division could still be

made into regions or metabolites significant according to

various combinations including dose (i.e. dose, dose and

time, dose and dose� time or dose, time and dose� time).

This subtler classification could hence provide a further more

detailed understanding of the metabolic evolution due to

toxic insult.
4. Discussion

By applying DoE to the variables corresponding to hy-

drazine dose concentration and serum collection time and

regressing the design matrix (X) against the corresponding

reduced J-resolved NMR spectra and Clinical Chemistry data

(Y) using PLS, systematic intensity changes in NMR spectral

regions and clinical chemistry parameters could be classified

as significant or not according to dose, time, the interaction

between the two (dose� time) or combinations thereof on a

95% significance level.

Combination of the J-resolved NMR spectra and the

serum clinical chemistry parameters in the same model

enabled the interpretation of inter-block variable correla-

tions and covariations based on statistical significance

providing greater information recovery as well as a more

detailed biochemical explanation to changes occurring due

to toxic insult as well as non-dose related events.

The fact that the significant changes caused by dose and

time can be interpreted independently means that the sug-

gested approach is able to separate changes occurring due to

toxin treatment from events taking place with time, which

are unrelated to dose. Examples of such changes could be

diet, state of health, diurnal cycles, genetic drift, stress and

strain differences as well as bacterial and other types of

contamination, drifts in instrumentation and experimental

conditions. This was exemplified by the methanol contam-

ination of the serum NMR spectra in the hydrazine dosing

study. The DoE–PLS approach managed to easily separate

the effects of dose and time on the spectral region associated

with methanol. In this way, it was seen that methanol was

only changing significantly with time and not with dose and

hence that spectral region could be discarded as a potential

biomarker. In complex biological data sets, this kind of

analysis is crucial in order not to draw false conclusions
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about dose/disease related effects and thereby detect ‘false’

markers for toxicity or disease.

By applying DoE–PLS, the interpretation and under-

standing of changes in complex data matrices will be facil-

itated. The variables were classified as being significant or

not and the significant variables could then be further

characterised according to what they showed in terms of

significant changes. Hence, biomarker detection and identi-

fication could be carried out in a more efficient and reliable

manner, since overall nonsignificantly changing variables

could be ignored together with variables significant only

with time, leaving only the significant dose-related variables,

associated to certain metabolites, as a result of the screening.

The approach presented here is not limited to the types of

data used here. Instead there is a great potential for adding

other types of data in order to find the statistical significance

of these descriptors according to the variables varying in the

design (in this case dose and time) and also, importantly, to

find the correlation and covariation between variables within

and between blocks of descriptors. A challenging task would

be the application of this approach to the analysis of gene

expression data in order to screen for genes or combination of

genes significantly affected by toxic insult or disease as well

as finding correlations and covariations between metabo-

nomic descriptors and gene expression patterns.
5. Conclusions

The combination of design of experiments (DoE), mul-

tivariate projections (PLS) and statistical significance testing

forms an efficient means of screening for biomarkers and

detecting toxicity-related patterns in metabonomic NMR

data. The method also proves a reliable approach for the

analysis of combined blocks of multiparametric data sug-

gesting its value in the aim of combining data sets from

different analytical techniques, e.g. LC, NMR, MS, or

combining data matrices generated within different fields

of science, e.g. genomics, proteomics, metabonomics, in

order to facilitate the understanding the processes taking

place in biological systems.

By applying DoE–PLS in the variables dose and time

significant changes according to toxic insult could be

separated from purely time-related changes occurring from

impurities, inherent physiological variation, drifts in instru-

mentation or experimental conditions. Separation of the

effects into groups according to significance facilitated

information recovery leading to better understanding of

the occurring metabolic processes.

Correlation pattern interpretation in multiblock response

data was facilitated by PLS projections, yielding clustering

of variables according to significance and type of effect.

The two-step screening procedure vastly reduced the

number of variables considered as markers for hydrazine

toxicity facilitating the interpretation of the acquired com-

plex multiparametric data structures.
The proven ability of the method to screen large sets of

complex multiparametric data and assign the individual

variables to a certain kind of functionality suggests that it

could be of great value in studies of other complex data sets

generated within various fields of science, e.g. genomics

and proteomics and in screening for toxicity and disease.
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