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STATE SPACE MODELS OF
DETERMINISTIC SYSTEMS

{y(t)} m-dimensional output {u(t)} r-dimensional input{
x(t +1) = Ax(t)+Bu(t) x(t0) = x0

y(t) = Cx(t)+Du(t) , t ≥ t0

{x(t)} n-dimensional state of the system. A,B,C,D COSTANT system pa-
rameters. May be time-varying (but known).

REACHABILITY rank
[
BAB. . . ,An−1B

]
= n

OBSERVABILITY rank


C

CA
...

CAn−1

= n
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THEOREM 1 The model is MINIMAL (dimx(t) as small as possible) iff the
system is reachable and observable .



TRANSFER FUNCTION

F(z) = C[zI−A]−1B+D

m× r matrix. Elements Fi j (z) are proper rational functions of z

F(z) = C
Adj [zI−A]
det[zI−A]

B+D

Characteristic Polynomial:

∆(z) = det[zI−A]

∆(pk) = 0 ⇔ POLES OFW(z)

BIBO STABILITY (Bounded inputs⇒ Bounded outputs) ⇔ |pk|< 1
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Z- (Fourier) TRANSFORM

f̂ (z) :=
+∞∑

t=−∞
f (t)z−1, z∈ C

Frequency response θ = ωT, F(ejθ ).
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SIMILARITY TRANSFORMATION

Warning: use of incongruous units may lead to ill-conditioned models.

State can be transformed x̂(t) := Tx(t); T n×n nonsingular matrix

Â = T−1AT, B̂ = T−1B Ĉ = CT{
x̂(t +1) = Âx̂(t)+ B̂û(t) x̂(t0) = x̂0

y(t) = Ĉx̂(t)+Du(t) , t ≥ t0

has the same transfer function

F(z) = Ĉ
[
zI− Â

]−1
B̂+D
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SINGULAR VALUE DECOMPOSITION (SVD)

THEOREM 2 Let A∈Rm×p of rank n≤min(m, p). Can find two orthogonal
matrices U ∈ Rm×m and V ∈ Rp×p and positive numbers {σ1≥, . . . ,≥ σn},
the singular values of A, so that

A = U∆V> ∆ =
[

Σ 0
0 0

]
, Σ = diag{σ1, . . . ,σn}

Full-rank factorization of A

A = [u1, . . . ,un]Σ [v1, . . . ,vn]> := UnΣV>n

where Un, Vn submatrices of U, V keeping only the first n columns

U>n Un = In = V>n Vn
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Ax=
n∑

k=1

ukσk〈vk , x〉

U = [u1, . . . ,um] = normalized eigenvectors of AA>;

V :=
[
v1, . . . ,vp

]
normalized eigenvectors of A>A.

{σ2
1 ≥, . . . ,≥ σ2

n} (non zero) eigenvalues of AA> (or of A>A).
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MATRIX NORMS

2- norm of A∈ Rm×p Let ‖x‖ be the Euclidean norm.

‖A‖2 := sup
x6=0

‖Ax‖
‖x‖

= σ1 (σMAX(A))

The Frobenius norm ‖A‖F is

‖A‖2F =
∑
i, j

a2
i, j = σ

2
1 + . . .+σ

2
n

Condition number

κ(A) =
‖A‖2
‖A−1‖2

=
σMAX(A)
σMIN(A)
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USEFUL FEATURES OF SVD

Range and Nullspace of A:

Im(A) = Im(Un), Ax= 0⇔ x ∈ span(
[
vn+1, . . . ,vp

]
) = ImV⊥n

Approximation properties

Ak :=
k∑

i=1

σiui v
>
i , k≤ n

is the best approximant of rank k of A

min
rank(B)=k

‖A−B‖2 = ‖A−Ak‖2 = σk+1

min
rank(B)=k

‖A−B‖2F = ‖A−Ak‖2F = σ
2
k+1+ . . .+σ

2
w

9



BALANCING

Assume: Eigenvalues of A strictly less than 1: |λ (A)|< 1, (A,B) reachable
+ (C,A) observable.

Π :=
+∞∑
0

AkBB>(A>)k, Ω :=
+∞∑
0

(A>)kC>CAk

Reachability and Observability Gramians , solutions of the dual LYA-
PUNOV EQUATIONS

Π = AΠA>+BB>

Ω = A>ΩA+C>C

THEOREM 3 Assume the eigenvalues of A are strictly less than 1. Sys-
tem is reachable if and only if Π > 0. System is observable if and only if
Ω > 0. If both hold the model is MINIMAL (dimx(t) as small as possible).
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INTERPRETATION OF THE GRAMIANS

Assume we can use only finite energy controls:

‖u‖22 :=
+∞∑
k=0

u(k)>u(k)≤ 1

Energy of the state x(0) =
∑+∞

0 AkBu(−k) := Ru

max
‖u‖≤1

‖x(0)‖2

‖u‖2
= max
‖u‖≤1

〈u,R∗Ru〉
‖u‖2

= ‖R∗R‖2 = ‖Π‖2 = λ
2
max(Π)

Diagonalize:

U>c ΠUc⇒ diag{λ 2
c,1, . . . ,λ

2
c,n} λ

2
c,1≥, . . . ,≥ λ

2
c,n > 0

Change coordinates xc(0) := U>c x(0)

Along the k-th eigenvector the maximum energy gain is λ 2
c,k
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Energy ratios of the (orthogonal) state components

‖x1c(0)‖
‖xnc(0)‖

=
λ1c

λnc
≥ . . .≥

‖xn−,1c(0)‖
‖xnc(0)‖

=
λn−1,c

λnc

λ1c

λnc
may be large: the effect of the input on certain directions in the state

space nearly invisible⇒ BAD CONDITIONING!
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INTERPRETATION OF THE GRAMIANS (Cont.)

Dual meaning of the observability Gramian: Maximal L2-energy (‖y‖2 ) of
the output y(t) = CAtx(0) for ‖x(0)‖ ≤ 1: maximum singular value of Ω.

Diagonalization:

U>o ΩUo⇒ diag{λ 2
o,1, . . . ,λ

2
o,n} λ

2
o,1≥, . . . ,≥ λ

2
o,n > 0

Change coordinates xo(t) := U>o x(t)

Energy of the (orthogonal) state components (for t→ ∞)

‖y1,o(0)‖
‖yn,o(0)‖

=
λ1,o

λn,o
≥ . . .≥

‖yn−1,o(0)‖
‖yn,o(0)‖

=
λn−1,o

λno

λ1,o

λn,o
may be large: the effect of some states nearly invisible⇒ BAD CON-

DITIONING
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(INTERNALLY) BALANCED MODELS

Changing bases can make things better

Π̂ = T−1ΠT−T , Ω̂ = T>ΩT

Definition : Linear system in Balanced form if both Π̂ and Ω̂ are diagonal
and equal .

THEOREM 4 Every linear model with |λ (A)|< 1, (A,B) reachable + (C,A)
observable can be transformed to balanced form.

ALGORITHM :

1. Compute Π and Ω, solutions of the two dual Lyapunov equations.
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2. Compute the SVD

Ω = UΛoU
>

where Λo is the diagonal matrix of eigenvalues of Ω

3. Change basis T1 := Λ−1/2
o U> so that Ω̂ = I ; compute

Π̂ = UΛ1/2
o ΠΛ1/2

o U>

4. Compute the SVD

Π̂ = VΛ2V>

where Λ2 is diagonal matrix with the (ordered) eigenvalues of Π̂



5. Second change of basis defined by T2 := VΛ1/2 so as to make Π̄ :=
T−1

2 Π̂T−T
2 = Λ, diagonal.

With this change of basis

Ω̄ = T>2 Ω̂T2 = Λ1/2V>IV Λ1/2 = Λ

The Gramians are diagonal and equal Π̄ = Ω̄ = Λ



MATLAB

BALREAL Balanced state-space realization and model reduction.

[Ab,Bb,Cb] = BALREAL(A,B,C) returns a balanced state-space

realization of the system (A,B,C).

[Ab,Bb,Cb,G,T] = BALREAL(A,B,C) also returns a vector G containing

the diagonal of the gramian of the balanced realization, and

matrix T, the similarity transformation used to convert (A,B,C)

to (Ab,Bb,Cb). If the system (A,B,C) is normalized properly,

small elements in gramian G indicate states that can be removed to

reduce the model to lower order.
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SINGULAR VALUES OF A LINEAR SYSTEM

The diagonal matrix Λ is a system invariant (does not change if basis is
changed). Input-output map (from zero initialconditions)

y(t) =
t−1∑
k=0

CAk−1Bu(t−k)+Du(t)

In matrix form y = Hu, where

H :=


CB CAB CA2B . . .

CAB CA2B CA3B . . .

CA2B CA3B . . . . . .
. . . . . . . . . . . .


Λ is diag of the singular values of the Hankel matrix H of the system

SVD(H) = U

[
Λ 0
0 0

]
V>
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MODEL REDUCTION
BY BALANCED TRUNCATION

How to best approximate a “Large” model (assumed stable + reach + obs){
x(t +1) = Ax(t)+Bu(t)

y(t) = Cx(t)+Du(t)

Bring it to balanced form. Let Λ be partitioned

Λ =
[

Λ1 0
0 Λ2

]
Λ2 n2×n2 made of small singular values ( Λ1 >> Λ2 )
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BALANCED TRUNCATION

Ideally: Best rank n1 approximation of H ....
[
x1(t +1)
x2(t +1)

]
=

[
A11 A12
A21 A22

][
x1(t)
x2(t)

]
+
[
B1
B2

]
u(t)

y(t) =
[
C1 C2

][x1(t)
x2(t)

]
+Du(t)

'{
x1(t +1) = A11x1(t)+B1u(t)
y(t) = C1x1(t)+Du(t)

N.B. STABILITY, REACHABILITY AND OBSERVABILITY ARE PRESERVED.
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STATE-SPACE MODELS OF RANDOM SIGNALS

y = {y(t,ω)} discrete-time m-dimensional random signal t ∈ [t0,+∞).

Expected value: Ey(t) = 0 ⇔
∫

Ω y(t,ω)dP= 0 can be subtracted
off. All random quantities zero mean .

STOCHASTIC STATE-SPACE MODEL{
x(t +1) = Ax(t)+Bw(t) x(t0) = x0

y(t) = Cx(t)+Dw(t) , t ≥ t0

A,B,C,D COSTANT matrices {w(t)} p-dimensional white noise process of
variance

Ew(t) w(s)> = Ipδ (t−s) Ex0w(t)> = 0 ∀ t ≥ t0

Initial (random) data Ex0 = 0 , Var x0 = Σ0
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MINIMAL MODELS

REACHABILITY: rank
[
BAB. . . ,An−1B

]
= n

OBSERVABILITY: rank


C

CA
...

CAn−1

 = n

are necessary but not enough for minimality.{
x(t +1) = −ax(t)+(1−a2)w(t)

y(t) = x(t)+aw(t)

y(t) is white noise. Has a minimal representation of order n = 0.
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STATE SPACE MODELS (Cont.)

Unnormalized white inputs:

v(t) := Gw(t) , w(t) := Dw(t) ,{
x(t +1) = Ax(t)+v(t) x(t0) = x0

y(t) = Cx(t)+w(t) , t ≥ t0

Q := E{v(t)v(t)>} S:= E{v(t)w(t)>} R := E{w(t)w(t)>}

E

{[
v(t)
w(t)

][
v(t)> w(t)>

]}
=
[

Q S
S> R

]
.

{v(t)} and {w(t)} in general correlated white noise processes

B = [B̄ 0], D = [0 D̄] S= BD> = 0
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THE STATE PROCESS

{x(t)} is a wide-sense Markov process ,

Ê [x(t) | x(τ)τ ≤ s] = Ê [x(t) | x(s) ] , ∀t ≥ s ,

If {w(t)} and x0 jointly Gaussian, then {x(t)} is Gaussian and Markov in
strict sense. State Variance

Σ(t) = Ex(t)x(t)> := Var(x(t))

Satisfies a LYAPUNOV DIFFERENCE EQUATION

Σ(t +1) = AΣ(t) A>+BB> , Σ(t0) = Σ0 .

Σx(t,s) = At−s Σ(s) , t ≥ s
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SECOND-ORDER DESCRIPTION

Joint covariances of {y(t)} and {x(t)} are completely determined by the
model!

Output Covariance Σy(t,s) = Ey(t)y(s)>

Σx(t,s) =

{
At−s Σ(s) t ≥ s

Σ(t) (A>)s−t t ≤ s

Σy(t,s) =


CAt−s−1 G(s) t > s

CΣ(t)C>+DD> t = s

G(t)> (A>)s−t−1C> t < s

G(s) := AΣ(s)C>+BD>
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ASYMPTOTIC STATIONARITY

Definition : {y(t)} is asymptotically stationary if for t− t0→∞, Σy(t,s), t,s≥
t0, tends to depend on the difference t−s.

If A (as.) stable |λ (A) | < 1 then {x(t)} and {y(t)} for t− t0→ +∞, jointly
asympt. stationary

Σx(t−s) = At−s Σ̄ , t ≥ s ,

Σy(t−s) =

{
CAt−s−1 Ḡ t > s

CΣ̄C>+DD> t = s

where Ḡ := AΣ̄C′+BD′ and Σ̄ := limt−t0→+∞ Σ(t) satisfies the LYAPUNOV
EQUATION

Σ̄ = AΣ̄A>+BB> .

Σ̄, asympt. state variance, does not depend on the initial condition Σ0.
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THE LYAPUNOV EQUATION

FACT: Any two conditions imply the remaining one

i) (A,B) is reachable

ii) A is asymptotically stable

iii) The Lyapunov equation

X = AX A>+BB>

has a unique solution P = P> > 0
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SHAPING FILTERS AND ARMA MODELS

Assume A (as.) stable i.e. |λ (A) | < 1 then {x(t)} and {y(t)} t− t0→ +∞,
jointly asympt. stationary . Effect of initial conditions disappears

{y(t)} : response to normalized white noise process {w(t)} of a linear filter
(Shaping Filter) with transfer function

W(z) = C(zI−A)−1B+D

w(t) y(t)
W(z)- -
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W(z) is a rational matrix function. Can be written as a ratio of polynomial
matrices

W(z) = D(z)−1 N(z);

D(z) = Izν +
ν∑
1

Akzν−k N(z) = N0zν +
ν∑
1

Nkzν−k

{y(t)} may be described by a (multivariabile) ARMA model

y(t)+
ν∑
1

Aky(t−k) = N0w(t)+
ν∑
1

Nkw(t−k) .

WARNING: There are many ARMA model representations!



SHAPING FILTERS AND SPECTRUM

w(t) y(t)
W(z)- -

Wiener-Kintchine formula gives the spectral density matrix Φ(z) of {y(t)}

Φ(z) = W(z) W(z−1)>

Spectrum is a rational function of z.

Positivity: Φ(ejθ ) = W(ejθ )W(e− jθ )> ≥ 0
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SPECTRAL FACTORIZATION

FACT: The shaping filter W(z) is a spectral factor of Φ(z)

Φ(z) = W(z) W(z−1)>

Conversely: modeling by SF is computing (rational) spectral factors from
given (rational) spectrum.

Minimal spectral factors (minimal Mc Millan degree) ⇒ Minimal state
space models.
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FREQUENCY-DOMAIN COMPUTATIONS

Computing the spectrum of y:

Φ(z) =
[
C(zI−A)−1 I

] [B
D

] [
B>D>

] [(z−1 I −A>)−1C>

I

]
.

[
B
D

] [
B>D>

]
=
[

BB> BD>

DB> DD>

]
:=
[

Q S
S> R

]
= E

{[
v(t)
w(t)

][
v(t)> w(t)>

]}
Scalar process: spectrum from ARMA :

Φ(ejθ ) =
N(ejθ )N(ejθ )∗

D(ejθ )D(ejθ )∗
=
∣∣∣∣N(ejθ )
D(ejθ )

∣∣∣∣2
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SUMMARY: THREE CLASSES OF MODELS

State Space Models:

{
x(t +1) = Ax(t)+Bw(t)

y(t) = Cx(t)+Du(t)

Shaping filters/ARMA : y(t)+
∑

ν
1 Aky(t−k) = N0w(t)+

∑
ν
1 Nkw(t−k)

Spectrum: Φ(z)=W(z)W(z−1)>; W(z)=C(zI−A)−1B+D = D(z)−1 N(z)
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MODELS FROM COVARIANCE

Assume given the covariance function Σy(k) k = 1,2, . . .

PROBLEM (stochastic realization): From {Σy(k) k = 0,1,2, . . .} compute
{A,B,C,D} of a minimal state space model of y.
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NECESSARY CONDITIONS

Form the Hankel Matrix of Σy

G :=


Σy(1) Σy(2) Σy(3) . . .
Σy(2) Σy(3) Σy(4) . . .
Σy(3) Σy(4) . . . . . .
. . . . . . . . . . . .


If Σy is generated by a linear state space model

Σy(k) = CAk−1 Ḡ

{
Ḡ := AΣ̄C>+BD>

Σ̄ = AΣ̄A>+BB>

Σy(0) = CΣ̄C>+DD> Fork = 0
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Must admit a factorization of the type

G =


CḠ CAḠ CA2Ḡ . . .

CAḠ CA2Ḡ CA3Ḡ . . .

CA2Ḡ CA3Ḡ . . . . . .
. . . . . . . . . . . .

 =


C

CA
CA2

...

[Ḡ AḠ A2Ḡ . . .
]

Necessary condition: rankG = n

Positivity of the function k→CAk−1 Ḡ (' Σy(k))



TWO-STEPS SOLUTION

Step 1: From a finite submatrix GN of G, of rank= n compute {A,C,Ḡ}

ALGORITHM (HO-KALMAN ) :

1. Compute the SVD

GN = U∆V> ∆ =
[

Σ 0
0 0

]
where Σ := diag{σ1, . . . ,σn} is the diagonal matrix of nonzero singular
values .

2. Rank n factorization

GN = UnΣV>n = UnΣ1/2 Σ1/2V>n := Ω Ω̄
33



3. Impose

Ω =


C

CA
CA2

...
CAN−1

 Ω̄ =
[
Ḡ AḠ A2Ḡ . . . AN−1Ḡ

]

and solve for C,A,Ḡ.



THE HO-KALMAN ALGORITHM (CONT’D)

Computing A:

Ω =
[

C
(↓Ω)

]
=
[

(↑Ω)
CAN−1

]
; (↓Ω) = (↑Ω)A ⇒ A = (↑Ω)−L(↓Ω)

Ω̄ =
[
Ḡ
→
Ω̄
]

=
[←

Ω̄ AN−1Ḡ

]
; A

→
Ω̄ =

←
Ω̄ ⇒ A = (

←
Ω̄)(

→
Ω̄)−R.

Found a minimal state space model for the Causal part of the spectrum
Φ(z) = Φ+(z)+Φ+(z−1)>

{A,C,Ḡ,Σy(0)} ⇒Φ+(z) = C[zI−A]−1Ḡ+1/2Σy(0)
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STOCHASTIC REALIZATION ALGORITHM

Step 2: From the spectrum (Φ+(z)) to a state-space model{
x(t +1) = Ax(t)+Bw(t)

y(t) = Cx(t)+Dw(t) ,

A,C, can be taken the same! Just need to compute (B,D).

Recall: W(z) := C(zI−A)−1B+D is a spectral factor Φ(z) = W(z)W(1/z)>

ALGORITHM:

Given (A,C,Ḡ, 1
2Σy(0)) a minimal realization of Φ+(z),
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1. Find n×n matrices P = P> solving the Linear Matrix Inequality

M(P) :=
[

P−APA> Ḡ>−APC>

Ḡ−CPA> Σy(0)−CPC>

]
≥ 0

2. Compute full column rank matrix factors

[
B
D

]
of M(P),

M(P) =
[

B
D

][
B> D>

]
,

3. W(z) = C(zI−A)−1B+D. is a minimal spectral factor (a minimal shap-
ing filter). And conversely....

All symmetric solutions P of the LMI are positive definite : State variance,
solution of P−APA> = BB>



SOME SPECIAL STOCHASTIC MODELS

Minimal state-space models ⇔ set of solutions P ofthe LMI.

If Σy(0)−CPC> > 0, easy to see that M(P)≥ 0 iff P satisfies the Algebraic
Riccati Inequality

P−APA>− (Ḡ>−APC>)(Σy(0)−CPC>)−1(Ḡ−CPA>)≥ 0.

In particular, if P satisfies the Algebraic Riccati Equation (ARE)

P = APA>+(Ḡ>−APC>)(Σy(0)−CPC>)−1(Ḡ−CPA>),

the corresponding W(z) is square m×m.
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FACT:

Two special solutions of the ARE: P−, P+, such that P−≤P≤P+, for all P∈ P,

P−⇒
[

B−
D−

]
⇒W−(z) = C(zI−A)−1B−+D−

The minimum phase model: zeros in {|z| ≤ 1} i.e. Causal inverse

P+⇒
[

B+
D+

]
⇒W+(z) = C(zI−A)−1B+ +D+

The maximum phase model: zeros in {|z| ≥ 1} i.e. Anticausal inverse

NB: w(t) = W(z)−1y(t) tells how to construct the white noise input!

37



WARNING: with real data the parameters {A,C,Ḡ} computed by Ho-Kalman
may not satisfy the positivity condition that Φ+(z) must be the causal part
of a power spectrum

Φ+(ejθ )+Φ+(e− jθ )> = W(ejθ ) W(e− jθ )> ≥ 0

This prevents solvability of the Riccati equation.
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THE KALMAN FILTER

PROBLEM: Estimate the state of the linear model{
x(t +1) = Ax(t)+v(t)
y(t) = Cx(t)+w(t) , t ≥ t0 ,

given past measurements of {y(t)} (m-dimensional) up to time t.

E
{[

v(t)
w(t)

] [
v(s)>,w(s)>

]}
=
[

Q S
S> R

]
δ (t−s) R> 0

Ex0 = µ0 , Var{x0}= P0 .

KALMAN FILTER (PREDICTOR):

x̂(t +1 | t) = Ax̂(t | t−1)+G(t)e(t)

The one-step output predictor: ŷ(t | t−1) = Cx̂(t | t−1).
Innovation process e(t) := y(t)−Cx̂(t | t−1) is white noise !
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THE KALMAN FILTER (CONTD)

The Kalman gain K(t)

K(t) :=
[
AP(t | t−1)C>+S

]
Λ(t)−1

Need error covariance matrix , P(t | t−1) = Var{x̃(t | t−1) := x(t)− x̂(t |
t−1)}

P(t | t−1) = E x̃(t | t−1) x̃(t | t−1)> = P− P̂(t)

Innovation covariance Λ(t) = Ee(t)e(t)>,

Λ(t) = CP(t | t−1) C>+R

Riccati Equation for the error covariance P(t +1 | t),

P(t +1 | t) = AP(t | t−1)A>−K(t)Λ(t)K(t)>+Q
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RICCATI EQUATION

Equivalent form in terms of covariance of x̂(t | t−1)

P̂(t +1) = AP̂(t)A>+(Ḡ>−AP̂(t)C>)(Σy(0)−CP̂(t)C>)−1(Ḡ−CP̂(t)A>),
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THE STEADY-STATE KALMAN FILTER

The Kalman filter is an asymptotically stable feedback system!!

-

6

�

z−1 --

�A

6
�
��

-K(t)-

C

�
��y(t) e(t) x̂(t|t−1)

ŷ(t|t−1)

+
−

+

+

Closed loop matrix Γ(t) = A−K(t)C, for t − t0→ ∞ asymptotically stable
under very mild conditions
S.S. KALMAN FILTER IS ALSO A STATE MODEL FOR y!{

x̂(t +1) = Ax̂(t)+K∞e(t)

y(t) = Cx̂(t)+e(t)
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Steady state solution of the RE, limt−t0→∞ P̂(t) = P∞. Solution of the ARE

P∞ = AP∞A>+(Ḡ>−AP∞C>)(Σy(0)−CP∞C>)−1(Ḡ−CP∞A>),

SAME RICCATI EQUATION OF STOCHASTIC REALIZATION !!! ⇒ S.S.
KALMAN FILTER MODEL{

x̂(t +1) = Ax̂(t)+K∞e(t)

y(t) = Cx̂(t)+e(t)
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WHAT KIND OF MODEL IS THE STEADY-STATE
KALMAN FILTER?

Closed loop matrix Γ∞ = A−K∞C, of the steady state KF is asymptotically
stable under very mild conditions.

Inverse system (whitening filter){
x̂(t +1) = [A−K∞C] x̂(t)+K∞y(t)

e(t) = −Cx̂(t)+y(t)

Has eigenvalues inside the unit circle. So SSKF is the MINIMUM PHASE
MODEL!!

P∞ = P−
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THE BACKWARD KALMAN FILTER

PROBLEM: Estimate the state of the linear model{
x(t +1) = Ax(t)+Bw(t)
y(t) = Cx(t)+Dw(t) ,

given future measurements of {y(t)} (m-dimensional) from time t on.

Backward models......
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(EARLY) SUBSPACE IDENTIFICATION
FOR TIME SERIES [Aoki]

Given observed data (zero mean)

{yt | t = 0,1,2, . . . ,N}

Algorithm:

1. Form covariance estimates

Λk =
1
N

N−k∑
t=0

yt+ky>t (→ Σy(k))
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2. Form the Hankel matrix

HΛ :=


Λ1 Λ2 Λ3 . . . Λν

Λ2 Λ3 Λ4 . . . Λν−1
Λ3 Λ4 . . . . . . . . .
. . . . . . . . . . . . . . .

Λν+1 . . . . . . . . . Λ2ν


Choose ν “large enough” (ν ≥ n).

3. Compute the SVD

HΛ = U∆V> ∆ =
[

Σ1 0
0 Σ2

]
where Σ := diag{σ1, . . . ,σn} is the diagonal matrix of dominant singu-
lar values . Σ2' 0 are neglected.



4. Rank n factorization

HΛ 'UnΣ1V
>
n = UnΣ1/2

1 Σ1/2
1 V>n := Ω Ω̄

5. Impose

Ω =


C

CA
CA2

...
CAν

 Ω̄ =
[
Ḡ AḠ A2Ḡ . . . Aν−1Ḡ

]

and get C,Ḡ by inspection. Compute A by solving (↓Ω) = (↑Ω)A

A = (↑Ω)−L(↓Ω) = (↑UnΣ1/2
1 )−L(↓UnΣ1/2

1 ) = Σ−1/2
1 (↑Un)>(↓Un)Σ

1/2
1



INNOVATION MODEL IDENTIFICATION

From previuos step: (A,C,Ḡ). Want K, Λ = Ee(t)e(t)> in{
x̂(t +1) = Ax̂(t)+Ke(t)

y(t) = Cx̂(t)+e(t)

Solve the ARE (minimal solution P = P> > 0)

P = APA>+(Ḡ>−APC>)(Λ0−CPC>)−1(Ḡ−CPA>),

K =
[
Ḡ>−APC>

]
R(P)−1 R(P) = Λ0−CPC>
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WARNING: with real data the parameters {A,C,Ḡ} computed by Ho-Kalman
may not satisfy the positivity condition that Φ+(z) must be the causal part
of a power spectrum

Φ+(ejθ )+Φ+(e− jθ )> = W(ejθ ) W(e− jθ )> ≥ 0

This prevents solvability of the Riccati equation.

Main drawback of the method: the estimates Λ(k) in general rather poor!
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SUBSPACE IDENTIFICATION
FROM INFINITE/FINITE INPUT-OUTPUT DATA

OUTLINE OF THE NEXT LECTURES:

1. Some Hilbert space background

2. State construction for stationary processes. Canonical Correlation
Analysis (CCA). Stochastic Balancing

3. Realization of stationary processes (no input) with infinite/finite data
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4. Subspace algorithms for time series. Relation with to Ho-Kalman al-
gorithm

5. State construction for stationary stoch. systems. Conditional Canoni-
cal Correlation Analysis (CCCA)

6. Finite interval realization of stationary stochastic systems with inputs

7. Subspace identification algorithms: CCA, N4SID, MOESP.

8. Numerical aspects



BASIC IDEA OF SUBSPACE IDENTIFICATION
FOR TIME SERIES

Assume we can observe also a state trajectory {x0,x1,x2, . . . ,xN} of the
model, corrresponding to the data

{y0,y1,y2, . . . ,yN}, yt ∈ Rm

Form the “tail” matrices Yt, Xt,

Yt := [ yt, yt+1, yt+2, . . .]
Xt := [ xt, xt+1, xt+2, . . .]

Every sample trajectory {yt}, {xt} of the system must satisfy the model
equations, so there exist {et} s.t.[

Xt+1
Yt

]
=
[

A
C

]
Xt +

[
K
I

]
Et
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SUBSPACE IDENTIFICATION OF TIME SERIES (cont’d)

[
Xt+1
Yt

]
=
[

A
C

]
Xt +

[
K
I

]
Et

Linear Regression ! Solve by Least Squares :

min
A,C
‖
[
Xt+1
Yt

]
−
[

A
C

]
Xt ‖

getting

ˆ[A
C

]
N

:=
1
N

[
Xt+1
Yt

]
X>t

{
1
N

XtX>t

}−1
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BASIC IDEA OF SUBSPACE IDENTIFICATION (cont’d)

Theorem: If the data are second order ergodic , and the inverse exists:

lim
N→∞

ˆ[A
C

]
N

=
[

A
C

]
(†)

consistent estimate of A, C.

Proof: HOMEWORK!
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FINITE DATA

Meaning of Finite Data : finite string of observed data

{y0,y1,y2, . . . ,yN}

N sufficiently large so that

1
N+1

N∑
t=0

yt+ky>t k = 1,2, . . . ,T

is a “good approximation” of a finite set of covariance lags,

{Λ(0),Λ(1), . . . ,Λ(T)},

Need to bound T so that T << N. Rule of thumb is T ' (1/50)N

53



Equivalent to ∀a,b ∈ Rm

1
N+1

N∑
t=0

a>yt+ky>t+ jb ' a>E{y(k)y( j)>}b |k− j| ≤ T

For N→ ∞ the sample covariances ' true covariances .

Assuming N “very large” numerical TAIL sequences same as random vec-
tors !

Yt ⇔ y(t)
1
N

YtY>s ' E{y(t)y(s)>}

EXACTLTY THE SAME AS if we had a finite sequence of TRULY RAN-
DOM vectors

{y(0),y(1),y(2), . . . ,y(T)},

extracted from y. CAN PRETEND had observations of y on the finite in-
terval [0, T]. SAME FORMULAS!



CONSTRUCTING THE STATE FROM FINITE
DATA

Construct x̂(t) : state of transient Kalman filter on [t0,T]: x̂(t +1) = Ax̂(t)+K(t)ê(t)
y(t) = Cx̂(t)+ ê(t)
x̂(t0) = 0

Predictor of finite future based on finite past data :

ŷ+
t := E

[
y+

t | y
−
t
]
= Γkx̂(t) k = T− t

X̂t = spanE
[
y+

t | y
−
t
]
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THE STATE BY CANONICAL CORRELATION
ANALYSIS

Introduce Finite past and future at time t:

y−t :=


y(t0)

y(t0+1)
...

y(t−1)

 ' Y−t :=


Yt0

Yt0+1
...

Yt−1



y+
t :=


y(t)

y(t +1)
...

y(T)

 ' Y+
t :=


Yt

Yt+1
...

YT


CCA of finite future and past spaces ' CCA of rowspaces of Y−t and Y+

t
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CANONICAL CORRELATION ANALYSIS

CCA is an old concept in statistics. Given two finite-dimensional subspaces
A, B of zero-mean random variables of dimension n and m, one wants to
find two special orthonormal bases say {u1, . . . ,un} for A, and {v1, . . . ,vm}
for B such that

E{ukvh}= σkδk,h, k,h = 1, . . . ,min{n,m}
This is the same as asking that the correlation matrix of the two random
vectors u := [u1, . . . ,un]′ and v := [v1, . . . ,vm]′ made with the elements of the
two bases, should be diagonal, i.e. assuming for example that n≥m,

E{uv′}=


σ1 0 . . . 0
0 σ2 0 . . .
... . . .

σm
0 0 . . . 0 0


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To make this choice of basis unique one further requires that all the σk’s be
nonnegative and ordered in decreasing magnitude.

That two orthonormal bases of this kind always exist follows by considering
the singular value decomposition of the projection operator EA

|B.

Choosing as orthonormal basis in A and in B precisely the principal direc-
tions {u1, . . . ,un} and {v1, . . . ,vm} of EA

|B, one has

EA
|Bξ =

n∑
k=1

σk〈ξ ,vk〉uk

from which it is obvious that the two bases have the required properties.
Uniqueness is guaranteed when and only when the singular values {σk},
which in this context are called canonical correlation coefficients, are all
distinct.



CCA ALGORITHM

1. Normalization: Form T− :=
1
N

Y−t (Y−t )> T+ :=
1
N

Y+
t (Y+

t )>

Compute (Cholesky) factors T− = L−L>−, T+ = L+L>+

Ŷ−t := L−1
− Y−t Ŷ+

t := L−1
+ Y+

t

2. SVD :
1
N

Ŷ+
t (Ŷ−t )> =

[
Û Ũ

] [Σ̂ 0
0 Σ̃

] [
V̂ Ṽ

]>
Can be done (QSVD) without forming the Hankel matrix

1
N

Ŷ+
t (Ŷ−t )>

Order estimation: Choose n so that Σ̂� Σ̃
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3. Canonical Variables

X̂t := Û>Ŷ−t = Û>L−1
− Y−t

ˆ̄Xt := V̂>Ŷ+
t = V̂>L−1

+ Y+
t

ˆ̄Xt basis for the Backward Kalman filter.

4. Balancing of Canonical Variables

Zt := Σ̂1/2X̂t Z̄t := Σ̂1/2 ˆ̄Xt
1
N

ZtZ>t = Σ̂ =
1
N

Z̄tZ̄>t

5. Repeat for t = t +1 to get Zt+1 basis in X̂t+1 and solve[
Zt+1
Yt

]
=
[

A
C

]
Zt +

[
K(t)

I

]
Êt

by Least-Squares.
N.B. Zt+1 must be a coherent basis with Zt.



THE BACKWARD K.F. AND THE Ḡ = C̄
PARAMETERS


ˆ̄x(t−1) = A> ˆ̄x(t)+ K̄(t)ē(t−1)
y(t−1) = C̄ ˆ̄x(t)+ ē(t−1)
x̄(T) = 0

Predictor of past based on finite future data :

ŷ−t := E
[
y−t | y

+
t
]
= Γ̄k ˆ̄x(t) k = t

The Backward sate space :

ˆ̄Xt = spanE
[
y−t | y

+
t
]

Backward covariance Σy(−τ) = Ey(−τ)y(0)> = C̄Aτ−1C>
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ESTIMATING THE B,D PARAMETERS

We have the stationary parameters (A,C,Ḡ) and Λ0' Σy(0)

Solve the Algebraic Riccati Equation

P = APA>+(Ḡ>−APC>)(Λ0−CPC>)−1(Ḡ−CPA>) (ARE)

To get the minimal (stabilizing) solution P−

K =
[
Ḡ>−AP−C>

]
R(P−)−1 R(P−) = Λ0−CP−C> = D−D>−

Equivalently B− = KD−

The ARE has a solution iff (A,C,Ḡ,Λ0) is positive real !
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COMPARISON WITH THE “EARLY”
ALGORITHM

Conceptually the algorithm is the same as HO-KALMAN applied to the
finite Normalized Hankel matrix

ĤΛ := L−1
+


Λ1 Λ2 Λ3 . . . Λν

Λ2 Λ3 Λ4 . . . Λν−1
Λ3 Λ4 . . . . . . . . .
. . . . . . . . . . . . . . .

Λν+1 . . . . . . . . . Λ2ν

L−>−

ĤΛ =' Û Σ̂V̂> Σ̂ = diag{σ1, . . . ,σn}

Leads to exactly the same formulas as

ˆ[A
C

]
N

=
[
Zt+1
Yt

]
ZtZ>t
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NUMERICAL ASPECTS

The LQ factorization a key step in subspace identification algorithms.[
U
Y

]
=
[
Luu 0
Lyu Lyy

][
Q>u
Q>y

]
where Q>u Qu = I , Q>y Qy = I , Q>u Qy = 0 and Luu, Lyy are lower triangular.

E [Y | U] = YQu
[
Q>u Qu

]−1
Q>u = LyuQ>u

E
[
Y | U⊥

]
= YQy

[
Q>y Qy

]−1
Q>y = LyyQ>y

Q>y an orthonormal basis for the orthogonal complement U⊥ in U∨Y.
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NUMERICAL ASPECTS (Cont’d)

SVD step: Compute from LQ factorization

E{Ŷ+
t | Ŷ

−
t } =

[
Û Ũ

] [Σ̂ 0
0 Σ̃

] [
V̂ Ṽ

]>
Do order estimation: pick n such that Ũ ' 0

Extended Observability matrix from

E{Ŷ+
t | Ŷ

−
t } ' Û Σ̂1/2 Σ̂1/2V̂> := Ωt X̂(t)

Get A,C from Shift-Invariance method :

Û Σ̂1/2 = Ω =
[

C
(↓Ω)

]
=
[

(↑Ω)
CAN−1

]
; (↓Ω)= (↑Ω)A ⇒ A=(↑Ω)−L(↓Ω)
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N.B. no need to compute Zt+1coherent basis in X̂t+1 with Zt and solving[
Zt+1
Yt

]
=
[

A
C

]
Zt +

[
K(t)

I

]
Êt

by Least-Squares.

Get A>, C̄ from the backward procedure

E{Ŷ−t | Ŷ
+
t } ' V̂Σ̂1/2 Σ̂1/2Û> := Ω̄t

ˆ̄X(t)

Ω̄ =
[

C̄
(↓ Ω̄)

]
=
[

(↑ Ω̄)
C̄(A>)N−1

]
; (↓ Ω̄) = (↑ Ω̄)A> ⇒ A>= (↑ Ω̄)−L(↓ Ω̄)

Only need to pick the first block of m rows to get C̄.



ORDER SELECTION

Minimize Akaike-type criterion

NIC(n) :=
nMAX∑

k=n+1

σ̂
2
k −d(n)

logN
N

where d(n) = number of additional free parameters in a model of order
nMAX > n.

Consistency If data are generated by a true model of order n0 and N → ∞
the minimum NIC estimate of n is consistent:

n̂ → n0 with probability one.
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STATISTICAL PROPERTIES

• Consistency If data are generated by a true model

• Asymptotic Variance of A, C

• Efficiency
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STATE-SPACE MODELS WITH INPUT SIGNALS

u = {u(t,ω)} discrete-time p-dimensional zero-mean random signal in t ∈
[t0,+∞).

STOCHASTIC STATE-SPACE MODEL WITH INPUTS{
x(t +1) = Ax(t)+Bu(t)+Gw(t) x(t0) = x0

y(t) = Cx(t)+Du(t)+Jw(t), t ≥ t0

A,B,C,D,G,J constant matrices, {x(t)} is the state process of dimension
n, and {w(t)} is a normalized white noise process. Assume |λ (A)| < 1
(causality).

N.B: We are not interested in modelling the input {u(t)}.

Assumption: there is no feedback from y to u. This is the same as: the
processes {u(t)} and {w(t)} are completely uncorrelated .
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DETERMINISTIC + STOCHASTIC
DECOMPOSITION

State Space Model for y: parallel of models (in general Non Minimal! )

Stochastic Model

{
xs(t +1) = Axs(t) + Gw(t)
ys(t) = Cxs(t) + Jw(t)

Deterministic Model

{
xd(t +1) = Axd(t)+Bu(t)
yd(t) = Cxd(t)+Du(t)

y(t) = ys(t) + yd(t) = C [xs(t)+xd(t)] +Du(t)+ Jw(t)

NB. xs(t) uncorrelated with u ⇒ xs(t) uncorrelated with xd !
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FROM STATE-SPACE TO ARMAX

+
+ y(t)yd(t)u(t)

ys(t)

-��
��

-C(zI−A)−1B+D-

?

Deterministic system + “stochastic error” decomposition :

y(t) =
[
C(zI−A)−1B+D

]
u(t)+

[
C(zI−A)−1G+J

]
w(t)

:= F(z)u(t) + G(z)w(t)

NB: F(z) and G(z) realized with the same (A,C) pair. In general non-
minimal realizations
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F(z) G(z) rational. Can be written as a ratio of polynomial matrices with
same denominator

F(z) = A(z)−1 B(z); G(z) = A(z)−1 C(z)

A(z) = Izν +
ν∑
1

Akzν−k B(z) =
ν∑
1

Bkzν−k C(z) =C0zν +
ν∑
1

Ckzν−k

{y(t)} may be described also by the ARMAX model

y(t)+
ν∑
1

Aky(t−k) =
ν∑
1

Bku(t−k)+C0w(t)+
ν∑
1

Ckw(t−k) .



IDENTIFICATION OF SYSTEMS WITH INPUTS
(NO FEEDBACK)

Could be done in two ways. Either identify the joint model or first compute
yd(t) = E{y(t) | H(u)} and identify a Deterministic Model{

xd(t +1) = Axd(t)+Bu(t)
yd(t) = Cxd(t)+Du(t)

Then identify a stochastic model for the disturbance

ys(t) = y(t) − yd(t) = E{y(t) | H(u)⊥}

Shall do the JOINT model only.
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JOINT INNOVATION MODEL WITH INPUTS

Steady state Kalman filter: x̂(t +1) = E{x(t +1) | y(s), u(s)s≤ t}

Innovation process (of y) : ê(t) = y(t)−Cx̂(t)−Du(t) white noise !

[
x̂(t +1)

y(t)

]
=
[

A B
C D

] [
x̂(t)
u(t)

]
+
[
K
I

]
e(t)

No feedback from y to u : e(t) ⊥ u(τ) ∀τ, t[
A B
C D

]
= E{

[
x̂(t +1)

y(t)

] [
x̂(t)
u(t)

]>
}

(
E{
[

x̂(t)
u(t)

] [
x̂(t)
u(t)

]>
}

)−1

Parameters are uniquely determined by the basis x(t) !
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IDENTIFICATION OF THE DETERMINISTIC
SUBSYSTEM

Problem : Assume the data are generated by a true stochastic system of
order n. From observed input-output time series

{y0,y1,y2, . . . ,yN}, yt ∈ Rm {u0,u1,u2, . . . ,uN}, ut ∈ Rp

find estimates (in a certain basis)
ˆ[

A B
C D

]
N

such that (consistency )

lim
N→∞

ˆ[
A B
C D

]
N

=
[

A B
C D

]
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BASIC IDEA OF SUBSPACE IDENTIFICATION

Assume we can observe also a state trajectory {x0,x1,x2, . . . ,xN}, corrre-
sponding to the I/O data

{y0,y1,y2, . . . ,yN}, yt ∈ Rm {u0,u1,u2, . . . ,uN}, ut ∈ Rp

Form the “tail” matrices Yt, Xt, Ut

Yt := [ yt, yt+1, yt+2, . . .]
Xt := [ xt, xt+1, xt+2, . . .]
Ut := [ ut, ut+1, ut+2, . . .]

Every sample trajectory {yt}, {xt}, {ut} of the system must satisfy the
model equations, so [

Xt+1
Yt

]
=
[

A B
C D

][
Xt
Ut

]
+
[
K
I

]
Et

71



BASIC IDEA OF SUBSPACE IDENTIFICATION (cont’d)

[
Xt+1
Yt

]
=
[

A B
C D

][
Xt
Ut

]
+
[
K
I

]
Et

Linear Regression ! Solve by Least Squares :

min
A,C,B,D

‖
[
Xt+1
Yt

]
−
[

A B
C D

][
Xt
Ut

]
‖

getting

ˆ[
A B
C D

]
N

:=
1
N

[
Xt+1
Yt

][
Xt
Ut

]>{ 1
N

[
Xt
Ut

][
Xt
Ut

]>}−1
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BASIC IDEA OF SUBSPACE IDENTIFICATION (cont’d)

ˆ[
A B
C D

]
N

:=
1
N

[
Xt+1
Yt

][
Xt
Ut

]>{ 1
N

[
Xt
Ut

][
Xt
Ut

]>}−1

Theorem: If the data are second order ergodic , there is no feedback and
the inverse exists:

lim
N→∞

ˆ[
A B
C D

]
N

=
[

A B
C D

]
(†)

consistent estimate of A, B, C, D.

Proof: HOMEWORK
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SECOND ORDER ERGODICITY

For N → ∞ sample covariances converge to true covariances, say

1
N

t+N∑
k=t

{yku>k }=
1
N

YtU>s → E{y(t)u(s)>} N → ∞

For N→∞ the sample covariances can be substituted by the true ones .

Assuming N “very large” can use random variables instead of numerical
sequences!

y(t)⇔ Yt, u(t)⇔ Ut, etc.
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COMMENTS

STATE SEQUENCE IS NOT AVAILABLE: NEED TO CONSTRUCT THE
STATE FROM INPUT-OUTPUT DATA!

Easy to do if infinite past data were available at time t: want to construct
the

Steady state Kalman filter: x̂(t) = E{x(t) | y(s), u(s)s< t}

Innovation process (of y) : ê(t) = y(t)−Cx̂(t)−Du(t) white noise ![
x̂(t +1)

y(t)

]
=
[

A B
C D

] [
x̂(t)
u(t)

]
+
[
K
I

]
e(t)

Pick basis vector in the state space of this model : Generalize Akaike
procedure by conditional CCA
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CONSTRUCTING THE STATE SPACE
OF A JOINT STATIONARY MODEL

Xt := span{x̂1(t), x̂2(t) . . . , x̂n(t)} State space of a joint innovation model.
Assume we have data starting from t =−∞

Pt := Yt ∨ Ut = span{y(s), s< t, u(s), s< t }
U+

t := span{u(s), s≥ t }

Theorem If the data are generated by a finite-dimensional stationary
model and there is no feedback,

Xt = span{E‖U+
t
{y(t +h) | Pt}; h = 0,1, . . . ,n}

State-Space = Oblique Predictor Space= Oblique projection of future
outputs onto joint past along future inputs
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Proof:

y(t +h) = CAh x̂(t) +
∑h−1

k=0 CAh−1−kBu(t +k)+Du(t +h)

+
∑h−1

k=0 CAh−1−kK e(t +k)+Je(t +h)

since e(t +k) ⊥ Pt:

E{y(t +h) | Pt ∨ U+
t } = E{y(t +h) | Pt ∨ Ut |t+h}

= CAh x̂(t) +
∑h−1

k=0 CAh−1−kBu(t +k)+Du(t +h)

= E‖U+
t
{y(t +h) | Pt } + E‖Pt

{y(t +h) | U[t t+h]}

HENCE: E‖U+
t
{y(t +h) | Pt } = CAh x̂(t) h = 0,1, . . . . QED
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OBLIQUE PROJECTIONS

Let A = span{a}, B = span{b}.
The oblique projection of v onto A along B is

E ||B{v |A}=
[

E
{

va>
}

E
{

vb>
}][ E

{
aa>

}
E
{

ab>
}

E
{

ba>
}

E
{

bb>
} ]†[

a
0

]
If A⊥B i.e. A and B are orthogonal

E ||B{v |A}= E {v |A}

If A∩B = {0} i.e. A and B are in direct sum unique decomposition

E {v |A+B}= E ||B{v |A}+ E ||A{v |B}
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OBLIQUE PROJECTIONS

“Conditional quantities”

E
{

v | b⊥
}

:= v− E {v | b} , E
{

a | b⊥
}

:= a− E {a | b}

Σva|b := Cov
[

E
{

v | b⊥
}

, E
{

a | b⊥
}]

, Σaa|b := Var
[

E
{

a | b⊥
}]

Fact: Assume A∩B = {0} and a and b are bases:

E ||B{v |A}= Σva|b Σ−1
aa|b a E ||A{v |B}= Σvb|aΣ−1

bb|ab
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THE STATE SPACE
OF A STATIONARY MODEL

Any choice of basis in the oblique predictor space

Xt = E‖U[t, t+n]
{Y[t, t+n] |Y

−
t ∨U−t } = span{E‖U+

t
[y(t +h) | Pt] ; h= 0,1,2′ . . .}

provides a minimal innovation model ( Steady state Kalman filter){
x̂(t +1) = Ax̂(t)+Bu(t)+Ke(t)
y(t) = Cx̂(t)+Du(t)+e(t)

Can compute a basis in Xt by conditional CCA : SVD of the normalized
conditional covariance of future outputs y+

t and (joint!) past

p(t) :=
[

u−t
y−t

]
[∞×1 past observations]

given future inputs u+
t .
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STATIONARY CONDITIONAL CCA

If data are described by a true n-dimensional model, the Conditional Han-
kel Matrix

Hy+p|u+ := Cov
[

E
{

y+
t | (u

+)⊥
}

, E
{

p(t) | (u+
t )⊥

}]
has finite rank n⇒ y+

t and u+
t can be taken to be finite dimensional vectors.

Cholesky factors

Hy+y+|u+ := Var
[

E
{

y+
t | (u

+)⊥
}]

= Ly+|u+L>y+|u+,

Hpp|u+ := Var
[

E
{

p(t) | (u+)⊥
}]

= Lp|u+L>p|u+

Do SVD of the normalized conditional Hankel matrix

Ĥy+p|u+ := L−1
y+|u+Hy+p|u+ L−>p|u+
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Order estimation

Ĥy+p|u+ :=
[
Û Ũ

] [Σ̂ 0
0 Σ̃

] [
V̂ Ṽ

]> ' Û Σ̂V̂>

Canonical state

z(t) = Σ̂1/2V̂>L−1
p|u+p(t)

MAIN DIFFICULTY: The The infinite past p(t) spanning Y−∞|t ∨U−∞ |t is
not available !! Approximation with available finite past yields biased esti-
mates. Bias may be large if the zeros of the true system are far from the
unit circle.
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ONLY FINITE DATA ARE AVAILABLE!

Infinite past approximation leads to errors (bias) in the estimate which do
not→ 0 as N→ ∞.

Bias can be made arbitrarily large taking the zeros of the stochastic sub-
system arbitrarily close to the unit circle.

For consistency with finite regression data: NEED FINITE-INTERVAL (NON–
STATIONARY) STOCHASTIC REALIZATION
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FINITE-INTERVAL INNOVATION MODEL

Modeling using “data” on a finite-interval [t0,T]. The estimate

x̂(t) := E
[
x(t) | P[ t0, t )∨U[ t,T ]

]
satisfies the transient conditional Kalman filter equation

x̂(t +1) = Ax̂(t)+Bu(t)+K(t)ê(t)
y(t) = Cx̂(t)+Du(t)+ ê(t)

x̂(t0) = E
[
x(t0) | U[t0T]

]
How to construct x̂(t) ?

Is x̂(t) a basis in some predictor space? e.g E‖U[t,T]

[
Y[ t,T ] | P[ t0, t )

]
?

Cannot be E
[
Y[ t,T ] | P[ t0, t )

]
; would introduce innovation of u !!
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FINITE-INTERVAL REALIZATION THEORY

Hd :=


D 0 . . . 0 0

CB D . . . 0 0
... . . . ...

CAν−1B CAν−2B . . . CB D

 ,

E
[
y(t +h) | P[t0, t )∨U[t,T ]

]
=

= E‖U[t,T ]

[
y(t +h) | P[t0, t )

]
+ E‖P[t0, t )

[
y(t +h) | U[t,T ]

]
= CAhE‖U[t,T ]

[
x̂(t) | P[t0, t )

]
+ CAhE‖P[t0, t )

[
x̂(t) | U[t,T ]

]
+Hd,hu+

t

Projecting along U[t,T ] kills one piece of

x̂(t) = E‖U[t,T ]

[
x̂(t) | P[t0, t )

]
+ E‖P[t0, t )

[
x̂(t) | U[t,T ]

]
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PATCHING UP

Causal component of the state : ξξξ (t) := E‖U[t,T ]

[
x̂(t) | P[t0, t )

]
E‖U[t,T]

[
y(t +h) | P[t0, t )∨U[t,T ]

]
:= CAh

ξξξ (t)

From an oblique projection can recover the Observability Matrix Γk:

ŷ+
t = E




y(t)
y(t +1)

...
y(t +k)

 | P[t0, t )∨U[t,T ]

= Γk ξξξ (t) + part inU[t,T]

Need

E{ξξξ (t)ξξξ (t)>}> 0 (consistency condition)
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THE VAN OVERSCHEE-DE MOOR MODEL

Pseudostate : x̄(t) := Γ−L
k ŷ+

t = x̂(t)+Γ−L
k Hku+

t[
x̄(t +1)

y(t)

]
=
[

A
C

]
x̄(t)+

[
K1
K2

]
u+

t +w⊥t (∗)

K1 K2 known linear functions of (B,D).[
A
C

]
Σx̄x̄|u+ =

[
Σx̄1x̄|u+

Σȳx̄|u+

]
[
K1
K2

]
Σu+u+|x̄ =

[
Σx̄1u+|x̄
Σyu+|x̄

]
Solve in terms of Conditional Covariances :

Σx̄ x̄|u+ = E{
[
x̄(t)−E (x̄(t) | u+

t )
][

x̄(t)−E (x̄(t) | u+
t )
]>} = Σx̂ x̂|u+

Σu+u+|x̄ = E{
[
u+

t −E(u+
t | x̄(t))

][
u+

t −E(u+
t | x̄(t))

]>}
87



THE N4SID ALGORITHM

[vanOverschee-DeMoor94]

1. Predictor matrix based on joint input-output data

Ŷ[ t,T−1] := E
[
Y[ t,T−1] |Y[ t0, t )∨U[ t0,T ]

]
(projection onto the joint rowspace).

2. Compute the oblique projection along U[ t,T ]

Z(t) := E‖U[t,T]

[
Ŷ[ t,T−1] |Y[ t0, t )∨U[ t0, t )

]
to get an estimate of ΓkΞt

3 Estimate the order and the observability matrix Γk by SVD factorization.
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4. The “Pseudostate” X̄t := Γ−L
k Ŷ[ t,T−1] obeys the recursion[

X̄t+1
Yt

]
=
[

A
C

]
X̄t +

[
K1
K2

]
U[ t,T ] +W⊥

5. Compute a coherent pseudostate at time t +1 : X̄t+1 := Γ−L
k Ŷ[ t+1,T ]

6. Solve by LS for the unknown parameters (A, C) and (K1, K2)

7. Estimate (B, D) from (K1, K2).



“ MOESP”

Start from the stationary innovation model (state vector x(t) ) future hori-
zon: k = T− t,

y(t)
y(t +1)

...
y(T)

 =


C

CA
...

CAk

x(t) +


D 0 0

CB D 0
... . . . . . .

CAk−1B · · · CB D




u(t)
u(t +1)

...
u(T)



+


I 0 0

CK I 0
... . . . . . .

CAk−1K · · · CK I




e(t)
e(t +1)

...
e(T)


y+

t = Γkx(t) + Hd u+
t + Hee+

t

Want to kill the last two pieces.
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“ MOESP” (Cont’d)

1. Project orthogonally onto Y[t0, t )∨U[t0,T ]

ŷ+
t := E

[
y+

t | P[t0, t )∨U[t,T ]

]
= Γkx̂(t) + Hd u+

t

2. Project onto the orthogonal complement U⊥[t,T ]

ẑ+
t := ŷ+

t − E
[
ŷ+

t | U[t,T ]

]
= Γk x̂c(t)

x̂c(t) = x̂(t)− E
[
x̂(t) | U[t,T ]

]
3. Factorize ẑ+

t , i.e. the matrix

Zc(t) := E
[
Ŷ[ t,T ] | U

⊥
[t,T]

]
by SVD to get an estimate of the order n and of Γk e.g. Γ̂k.
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4. Estimate (A,C) from the estimated observability matrix by the “shift-
Invariance method”.

5. Construct a (projection) matrix Γ̂⊥k such that Γ̂⊥k Γ̂k = 0

6. Compute

Γ̂⊥k ŷ+
t = Γ⊥k Hd u+

t + noise

7. A linear function of (B,D) : estimate (B,D) by linear regression

Γ̂⊥k ŷ+
t = L(A,C)vec(B,D) + noise



MOESP ≡ ORTHOGONALIZING REGRESSORS

[
X̄t+1
Yt

]
=
[

A
C

]
X̄t +

[
K1
K2

]
U[ t,T ] +W⊥

Introduce orthogonal regressors X̄c
t := X̄t− E{X̄t |U[ t,T ]}[

X̄c
t+1
Yt

]
=
[

A
C

]
X̄c

t +
[
Kc

1
Kc

2

]
U[ t,T ] +W⊥

Least squares: right-multiply by (X̄c
t )>, E U[ t,T ](X̄

c
t )> → 0

E X̄c
t (X̄c

t )> → Σxc,xc = Σx̄ x̄|u+ = Σx̂ x̂|u+
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WEIGHTING

Both N4SID (“Robust”) and MOESP use the preliminary orthogonalization

basic step is the SVD of

Zc(t) := E
[
Ŷ[ t,T ] | U

⊥
[t,T]

]
' E

[
ŷ+

t | (u
+
t )⊥

]
= E

[
y+

t | (p(t)− E{p(t) | u+
t })

]
zc(t) = E

[
y+

t (E{p(t) | (u+
t )⊥})>

]
Var{E{p(t) | (u+

t )⊥}−1 E{p(t) | (u+
t )⊥}

Conditional Hankel Matrix

Hy+p|u+ := Cov
[

E
{

y+
t | (u

+)⊥
}

, E
{

p(t) | (u+
t )⊥

}]
has finite rank n ⇒ y+

t and u+
t are finite dimensional vectors.
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CCA : introduce Cholesky factors

Hy+y+|u+ := Var
[

E
{

y+
t | (u

+)⊥
}]

= Ly+|u+L>y+|u+,

Hpp|u+ := Var
[

E
{

p(t) | (u+)⊥
}]

= Lp|u+L>p|u+

CCA: Doing SVD of the normalized conditional Hankel matrix

Ĥy+p|u+ := L−1
y+|u+Hy+p|u+ L−>p|u+

Same as introducing a weighting matrix on the left

zc(t) → L−1
y+|u+ zc(t)

Weighting on the right side does not make sense....



ASYMPTOTIC SOLUTION (CONSISTENCY)

For N→ ∞ the estimates tend to satisfy[
A
C

]
Σx̂x̂|u+ =

[
Σx̄1x̄|u+

Σȳx̄|u+

]
[
K1
K2

]
Σu+u+|x̄ =

[
Σx̄1u+|x̄
Σyu+|x̄

]
Solve in terms of Conditional Covariances :

Σx̂ x̂|u+ = Σx̂c x̂c

Σu+u+|x̄ = E{
[
u+

t −E(u+
t | x̄(t))

][
u+

t −E(u+
t | x̄(t))

]>}
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CONSISTENCY CONDITION AND ILL-CONDITIONING

Jansson-Wahlberg consistency condition:

Σx̂x̂|u+ = Σx̂c x̂c MUST BE NON SINGULAR!

Σx̂c x̂c (= Σx̂x̂|u+) may be ILL– CONDITIONED!⇒

The computation of the parameters (A, C) of the regression will be ill-
conditioned : random fluctuation errors in the data will be amplified .
Σx̂x̂|u+ ILL-CONDITIONED ⇔ Rowspaces of X̂t and U[ t,T ] are “NEARLY
PARALLEL”

Similar analysis holds for (K1, K2) and Σu+u+|x̄.
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Crucial question: how “parallel” are the
rowspaces of

U[ t,T ] and X̄t = X̂t +Γ−L
k HkU[ t,T ]

If some (canonical) angles are nearly zero ⇒ the computation of the pa-
rameters (A, C) and (K1, K2) of the regression will be ill-conditioned (large
errors).
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CONDITIONING OF SUBSPACE
IDENTIFICATION

The conditioning of the problem (*) is determined by the singular values of
the conditional covariances

Σx̂x̂|u+ and Σu+u+|x̄

Π := E
[
u+

t x̂(t)>
]

Π̄ := E
[
u+

t ˆ̄x(t)>
]

Λu = Cov
[
u+

t
]

Π̂ := L−1
u+ΠL−>x̂

ˆ̄Π := L−1
u+Π̄L−>x̄

Singular values of Π̂ are cosines of the canonical angles between X̂t and
U[ t,T ]. Condition numbers:

κ

(
Σx̂x̂|u+

)
≤ κ (Σx̂)

1−σ2
min(Π̂)

1−σ2
max(Π̂)
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κ

(
Σu+u+|x̄

)
≤ κ (Λu)

1

1−σ2
max(

ˆ̄Π)



CONDITIONING OF SUBSPACE
IDENTIFICATION (back to)

• singular values of Π̂ = singular values of Π̂d≡E
[
u+

t x̂d(t)>
]

cosines of
the canonical angles of the spaces spanned by u+

t and the determin-
istic state x̂d(t)

• singular values of Π̄≡ E
[
u+

t ˆ̄x(t)>
]

cosines of the canonical angles of
the spaces spanned by u+

t and x̄(t)

• conditioning of the input κ
(
Λu+

)
large when the amplitude of the spec-

trum of u varies widely
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PRINCIPAL ANGLES (Canonical correlations)

Introduce Cholesky factors:

Σx̂x̂ = Lx̂L>x̂ Σu+,u+ = Lu+L>u+

Normalized Cross-Covariance (Correlation Matrix)

Π := L−1
u+ Cov{u+

t x̂(t)}L−>x̂

Singular values of Π are cosines of the canonical angles between X̂t and
U[ t,T ].

Σx̂x̂|u+ = Lx̂

[
I −Π>Π

]
L>x̂

σMAX {X̂t, U[ t,T ]} ' 1 ⇔ Σx̂x̂|u+ Nearly Singular !
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CCA OF FUTURE INPUTS AND STATE SPACE

Given an input with assigned spectrum Φu. Which systems F(z) have the
SMALLEST canonical angles of (the spaces spanned by) u+

t and xd(t)
(worst conditioning of the identification problem) ??

σk(Xd,U+) cosines of Canonical Angles btw. the subspaces

U+ and Xd := span{xd(t)} ⊂ U−

Fact :

σk(Xd,U+)≤ σk(U
−,U+) , k = 1,2, . . .

Maximal when

σk(Xd,U+) = σk(U
−,U+) k = 1,2, . . . ,nd

if and only if the first nd principal directions of U− for the pair of sub-
spaces (U−,U+) span Xd.
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PROBING INPUTS (ASYMPTOTICS FOR N,T→ ∞)

Theorem Assume u has given rational spectral density matrix
Φu. The maximal canonical correlation coefficients σk(X,U+)
are obtained when, and only when there are nd principal zeros
of the spectral density matrix Φu of u cancelling all the poles
of the deterministic transfer function F(z) = C(zI−A)−1B+D.

How to deal with ill-conditioning? Sometimes Decoupling + Orthogonaliza-
tion helps.

100



ASYMPTOTIC VARIANCE OF A, C

THEOREM 5 Under standard assumptions on the true innovation noise,
the estimation errors ÃN := ÂN−A, C̃N := ĈN−C are asymptotically Normal,

lim
N→∞

N E
{

vec
(
ÃN
)

vec
(
ÃN
)>} =

{
Σ−1

x̂cx̂c⊗ [M Hs]
}
·

·
∑
|τ|≤k

Σx̂cx̂c(τ)⊗Σē+ē+(τ) ·
{

Σ−1
x̂cx̂c⊗ [M Hs]

}>
lim

N→∞
N E

{
vec
(
C̃N
)

vec
(
C̃N
)>} =

{
Σ−1

x̂cx̂c⊗ [RHs]
}
·

·
∑
|τ|<k

Σx̂cx̂c (τ)⊗Σe+e+(τ) ·
{

Σ−1
x̂cx̂c⊗ [RHs]

}>
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NOTATIONS

M :=
[
K Γ†

]
−A
[
Γ† 0n×m

]
R :=

[
Im 0m×m(k−1)

]
−CΓ†

Γ the observability matrix in a certain basis.

Hs : =


I 0 . . . 0 0

CK I . . . 0 0
... . . . ...

CAk−1K CAk−2K . . . CK I



e+
t :=


e(t)

e(t +1)
...

e(T−1)

 ē+
t :=

[
e+
t

e(T)

]

Σe+ e+(τ) := E{e+
t+τ (e+

t )>} Σ ē+ē+(τ) = E{ē+
t+τ (ē+

t )>}
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Valid for N4SID, MOESP, and also CCA.

• Σ−1
x̂cx̂c = Σ−1

x̂x̂|u+ Very “large” for ill-conditioned problems, the variance of
the estimation errors will also be large.

• No (or white) input: Σx̂x̂|u+ ≡ Σx̂x̂
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PREVIOUS AVAILABLE RESULTS

[Bauer, Bauer-Ljung, Bauer-Jansson]: asymptotic formulas valid for N→∞
AND p := t − t0 (past data horizon), tending to infinity with N at a certain
rate

Estimates neglect transient due to FINITE-INTERVAL DATA. Consistency
only for p→ ∞

Different asymptotic formulas for different methods, CCA, MOESP, N4SID
etc. Complicated and difficult to use.

Aymptotic formulas should be valid for FINITE p and “transient” estimates
( in practice can only regress on finite past ). Stationary approxim’s are
biased for finite p.

104



APPLICATIONS

Assume for simplicity that A has simple eigenvalues.

here is an eigenvalue λ i of A such that the difference between the i-the
eigenvalue of ÂN, λ̂ i

N, and λ i, satisfies

λ̂
i
N−λ

i '
v>i ÃNui

v>i ui
+O(‖ ÃN‖2)

where vi and ui are the normalized left and right eigenvectors of A corre-
spoding to λ i.

NE(λ̂ i
N−λ

i)2 =
1

(v>i ui)2
(u>i ⊗v>i )NE

{
vec
(
ÃN
)

vec
(
ÃN
)>}(ui⊗vi)

Note that (v>i ui)2 is the square of the cosine of the angle between the two
eigenvectors and is equal to one if the matrix A is symmetric (in which case
vi = ui).
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ASYMPTOTIC VARIANCE OF (B,D)

The vectorized parameter estimates vec(K̂1,N) vec(K2,N) form an asymp-
totically Gaussian sequence

AsVar
(√

Nvec(K̂1,N)
)

= Ḡ
{∑

|τ|≤kΣu+u+|x̄(τ)⊗Σe+e+(τ)
}

Ḡ>

AsVar
(√

Nvec(K̂2,N)
)

= G
{∑

|τ|<kΣu+u+|x̄(τ)⊗Σe+e+(τ)
}

G>

G := Σ−1
u+u+|x̄⊗ [RHs] , Ḡ := Σ−1

u+u+|x̄⊗ [M H̄s]

R and M being as before, and,

Σū+ū+|x̄(τ) := E{ ˜̄u+
t+τ ( ˜̄u+

t )>}, Σe+e+(τ) = E{e+
t+τ (e+

t )>}

ũ+
t+τ the τ-steps ahead stationary shift of the random vector ũ+

t := u+
t −

E
[
u+

t | x̄(t)
]
.
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SUBSPACE IDENTIFICATION WITH FEEDBACK

+
+

+

+

y? u

e

? �

-����
-F(z)-����

-

6

?

G(z)
?

+ F(∞) = 0.
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PROBLEMS WITH STATE CONSTRUCTION

y(t +h) = CAhx(t)+ “ terms inU+
t ” + “ terms inE+

t ” h = 0,1, . . . ,k

Classical (N4SID, CVA, MOESP) construct the state space via the oblique
projection

E‖U+
t

[
Y+

t | Y
−
t ∨U−t

]
Needs E+

t ⊥ U+
t which is equivalent to Absence of Feedback from y to u.

(Granger)

Need an alternative way to construct the state space , see the discus-
sion in Ljung-McKelvey 1996
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REMEDY (Jansson 2003/Chiuso-Picci 2004)

FACT: x(t) is also the state space of the predictor model{
x(t +1) = (A−KC)x(t)+Bu(t)+Ky(t)

ŷ(t | t−1) = Cx(t)

ŷ(t +h | t) = C(A−KC)hx(t)+ “ terms in U+
t ∨Y+

t ”

X+/−
t = E‖U+

t ∨Y+
t

[
Ŷ+

t | U
−
t ∨Y−t

]
Jansson 2003 Compute predictor space removing the effect of undesired
terms pre-estimating Markov parameters of predictor using an ARX model.
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“PREDICTOR IDENTIFICATION ALGORITHM:

1. Compute the oblique predictors

ŷ(t +h | t) := E‖U[t,t+h)∨Y[t,t+h)

[
y(t +h) | Y[t0,t)∨U[t0,t)

]

2. Compute X̂+/−
t as “best” n-dimensional approximation of the space

spanned by ŷ(t +h | t), h = 0, ..,k, repeat for X̂+/−
t+1

3. Solve regression in the least squares sense to get Â, B̂, Ĉ, K̂.
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COMMENTS:

• The classical subspace procedure to construct the state space turns
out to be WRONG if data are collected in closed-loop.

• Subspace methods based on the predictor model work also with
feedback !

• Predictor is always stable (joint spectrum bounded away from zero
⇒ |λ (A−KC)|< 1.)

• Ideally predictor space can be constructed without any assumption on
feedback channel.

111



REMARKS

1. Predictor identification “ideally” yields consistent estimators

2. Practically need to work with finite past starting from a certain time t0.

3. If number of data points ([yt,yt+1, ..,yt+N]) N→ ∞, but t− t0 fixed and
finite Consistency not guaranteed.

4. “Transient” predictors (transient Kalman filter) involve also the dynam-
ics of u !
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