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Abstract

Partial least squares (PLS) regression is a powerful and frequently applied technique in multivariate statistical process

control when the process variables are highly correlated. Selection of the number of latent variables to build a representative

model is an important issue. A metric frequently used by chemometricians for the determination of the number of latent

variables is that of Wold’s R criterion, whilst more recently a number of statisticians have advocated the use of Akaike

Information Criterion (AIC). In this paper, a comparison between Wold’s R criterion and AIC for the selection of the number of

latent variables to include in a PLS model that will form the basis of a multivariate statistical process control representation is

undertaken based on a simulation study. It is shown that neither Wold’s R criterion nor AIC exhibit satisfactory performance.

This is in contrast to the adjusted Wold’s R criteria which is shown to demonstrate satisfactory performance in terms of the

number of times the known true model is selected. Two industrial applications are then used to demonstrate the methodology.

The first relates to the modelling of a product quality using data from an industrial fluidised bed reactor and the second focuses

on an industrial NIR data set. The results are consistent with those of the simulation studies.
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1. Introduction

For industrial-scale processes where a large num-

ber of process variables are monitored, one of the

more commonly applied modeling techniques for the

development of a multivariate statistical process con-

trol (MSPC) nominal representation is partial least

squares (PLS) [1,2]. The objective of PLS is to define

a set of latent variables through the projection of the

process and quality spaces onto new orthogonal

subspaces, by maximising the covariance between

the two spaces [3,4]. The latent variables are defined

as linear combinations of the original variables.

Although as many latent variables as min(N,M) can

be calculated, where N is the sample size and M is the

number of process variables, it is conjectured that the

lower order latent variables are associated with proc-

ess noise and should be excluded from the model.

Therefore to remove the noise, a criterion is required

for selecting the number of latent variables to include

in the PLS model.

A wealth of approaches have been cited in the

literature to select the number of variables to
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include in a model, including Akaike Information

Criterion (AIC), Final Prediction Error Criterion

(FPE), Bayesian Information Criterion (BIC), Law

of Iterated Logarithms Criterion (LILC), Normal-

ised Residuals Sum of Squares (NRSS), Multiple

Correlation Coefficient (R2), Adjusted Multiple

Correlation Coefficient, (Ra
2), Overall F-test of

the Loss Function (OVF) and Mallow’s statistic

(Cp). A review of these model order selection

criteria can be found in Haber and Unbenhauen

[5].

Within the chemometric literature, Wold’s R cri-

terion, which is based on cross-validation [6,7], has

been the typical approach used to select the number

of latent variables. Wold’s R criterion is based on

calculating the ratio of the PRedicted Error Sum of

Squares (PRESS) for latent variable (m + 1) and

latent variable, m. Inclusion of latent variables into

the model terminates at m when the ratio exceeds

unity [7]. More recently statisticians [8–10] have

advocated the use of Akaike Information Criterion

(AIC) [11]. AIC is based on a trade-off between

accuracy and model parsimony. One advantage of

AIC is that of computational costs since, as noted by

[12,13], cross-validation is a time-consuming proce-

dure. The question therefore arises, which approach

is more appropriate for PLS model selection in terms

of its application in multivariate statistical process

control (MSPC)?

To evaluate the capabilities of different criteria,

simulated models allow the underlying structures of

the models to be known [14,15]. Practical case stud-

ies, as described in Refs. [12,16], although important,

cannot provide quantitative assessments. In this paper

a comparison is performed between Wold’s R criterion

and AIC for PLS model selection using simulation

models that generate multi-collinear process data. A

further criteria examined is that of the adjusted Wold’s

R criteria which adopts different thresholds from the

Wold’s R criterion.

In Section 2, the PLS algorithm and a number of

criteria for PLS model selection are briefly summar-

ized. In Section 3, the simulation models are

described before an analysis of the simulation results

is undertaken in Section 4. In Sections 5 and 6, two

practical examples using industrial data are examined

and finally a number of conclusions are drawn in

Section 7.

2. PLS algorithm and model selection criteria

2.1. Summary of the PLS algorithm

Consider a data set representing the ‘‘normal’’

operating conditions of a process. XN�M represents

the data matrix of process variables and YN� K the

data matrix of quality (response) variables, which are

recorded for N time points. The objective of linear

PLS is to project the data down onto a number of

latent variables, say tj and uj ( j = 1,. . ., A), where A is

the number of the latent variables, and then to develop

a regression model between tj and uj:

uj ¼ bjtj þ ej j ¼ 1; . . . ;A ð1Þ

where ej is a vector of errors and bj is an unknown

parameter estimated by b̂j=(tj
Ttj)

� 1 tj
Tuj. The latent

variables are computed by tj =Xjwj and uj =Yjqj,

where both wj and qj have unit length and are

determined by maximizing the covariance between tj
and uj. Xj + 1 =Xj� tjpj

T where X1 =X and pj =Xj
Ttj/

(tj
Ttj) and Yj + 1 =Yj� b̂jtjqj

T where Y1 =Y.

Letting ûj = b̂jtj be the prediction of uj, the matrices

X and Y can be decomposed as the sum of the

following outer products:

X ¼
XA
j¼1

tjp
T
j þ E and Y ¼

XA
j¼1

ûjq
T
j þ F ð2Þ

where E and F are the residuals of X and Y after

extracting the first A pairs of latent variables.

In PLS regression, each pair of latent variables, tj
and uj ( j= 1,. . ., A) is sequentially extracted through

an iterative procedure, the basis of which is the

NIPALS algorithm [3,4]. The only issue remaining

to be addressed is how to determine the number of

latent variables, A.

2.2. Cross-validation based criteria

Wold’s R criterion is based on cross-validation.

In cross-validation the data, X and Y, is split into

a number of blocks, k, and a one latent variable

model is built from (k� 1) blocks of data. Based

on this one latent variable model, the excluded

block is used for testing and an individual PRESS

is calculated. This procedure is repeated excluding

B. Li et al. / Chemometrics and Intelligent Laboratory Systems 64 (2002) 79–8980



each block, once and only once, and then the total

PRESS is calculated for one latent variable by

summing the individual PRESS values. This proce-

dure is then repeated for 2, 3, . . ., min(N,M) latent

variables and a series of PRESS values are obtained

[6,7].

Several criteria have been proposed to identify the

appropriate number of latent variables to include in

the model. Two of the more commonly applied

approaches include using that number of latent vari-

ables that give the minimum PRESS, or alternatively

Wold’s R criterion [7]. Wold’s R criterion is given as

R = PRESS(m + 1)/PRESS(m) where PRESS(m)

denotes the PRESS after including the first m latent

variables. Wold’s R criterion terminates when R is

greater than the given threshold, unity [7], and hence

A=m. Osten [12] showed that selecting the absolute

minimum PRESS had particularly poor statistical

properties and suggested using a criterion based on

the first local minimum in the PRESS, cf. Wold’s R

criterion. In addition, Osten [12] proposed an F-test

based criterion, where the F value is given by:

F ¼ PRESSðmÞ � PRESSðmþ 1Þ
K�

PRESSðmþ 1Þ
NK � ðmþ 1ÞK ð3Þ

The above criterion is compared against an F value,

FK,NK� (m + 1)K, 0.95.

Besides Wold’s R criterion and Osten’s F criteria,

the adjusted Wold’s R criterion is also considered in

the subsequent comparison. Instead of adopting

unity as a threshold as in Wold’s R criterion, the

adjusted Wold’s R criterion uses 0.95 and 0.90 as

thresholds due to sampling variability as stated in

Krzanowski [17]. These are denoted by R(0.95) and

R(0.90), respectively. The adjusted R criteria states

that an additional latent variable will not be in-

cluded in the PLS model unless it provides signifi-

cantly better predictions. A similar threshold was

adopted by Krzanowski [17]. For the W statistic,

Eastment and Krzanowski [14] originally selected

unity as a threshold, whilst Krzanowski [17] pro-

posed adopting 0.9 as a threshold due to sampling

variability.

2.3. Akaike Information Criterion

One of the most frequently used criteria in system

modelling and system identification is that of Akai-

ke’s Information Criterion (AIC) [11]. For problems

associated with a single response variable, i.e. K = 1,

the information criterion is given by:

AICðmÞ ¼ N logðr̂2Þ þ 2m ð4Þ

where m is the number of model parameters, N is the

sample size and r̂2 is the maximum likelihood esti-

mate of the variance of the response variable, R. The
right-hand side of Eq. (4) consists of two terms, the

first, N log(r̂2), represents model accuracy and the

second, 2m, relates to model parsimony. It should be

noted that an arbitrary constant may be added to the

right-hand of Eq. (4). For example since r̂2 =RSS/N,

where RSS is the residual sum of squares, Eq. (4) can

be re-written as:

AICðmÞ ¼ �N logðNÞ þ N logðRSSÞ þ 2m ð5Þ

or else:

AICðmÞ ¼ N logðRSSÞ þ 2m ð6Þ

Both versions of AIC, Eqs. (5) and (6), are

equivalent in terms of model selection since selection

is based on the difference between the values of AIC

between two candidate models [11,18]. The multi-

variate version of AIC was given by Bedrick and

Tsai [15]:

MAICðmÞ ¼ NðlogAR̂Aþ KÞ
þ2d½Kmþ KðK þ 1Þ=2� ð7Þ

where d =N/[N� (m +K + 1)] and R̂ is the maximum

likelihood estimate of R. This is a corrected version of

the multivariate AIC for the small sample case. When

sample sizes are large, d =N/[N� (m +K + 1)]c 1,

and thus Eq. (7) may be further simplified.

Akaike [19] investigated an alternative multivariate

version of AIC for factor analysis. Here the assump-

tion of the ‘response variables’ in the linear model in

Ref. [19] was not based on conditional normality as

had previously been the case. The derived multivariate

version of AIC [19] therefore differs from Eq. (7) as
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given in Ref. [15]. In this paper, the version of AIC in

Ref. [19] is not considered.

Besides AIC, a number of alternative information

criteria exist, such as those developed by Hannan and

Quinn [20] and Schwarz [21]. However attention in

this paper focuses on AIC as it has been one of the

more frequently applied approaches by statisticians

for PLS model selection in recent years.

3. Simulation models

A simulation study was undertaken to evaluate the

performance of different criteria for PLS model selec-

tion. In the subsequent study, simulation models were

first developed from which data was generated. Then

different criteria were applied for model selection. The

resulting models were then compared with the true

models and finally an evaluation of the different

criteria for PLS model selection was made through a

comparison of the frequency as to which the true

model was selected [14,15].

The framework for the simulation models was

based on the study of Næs and Martens [22] for the

problem of a single response variable. The Næs–

Martens’ framework is extended in this paper to the

situation where there exist multiple response varia-

bles. For each A* (2VA *V 4), where A* is the true

number of latent variables, the X-block data, X, with

sample size N were generated as:

X ¼
XA*
i¼1

rixTi þ Ẽ ð8Þ

where Ẽ=[e1, . . ., e6] and ej ( j = 1,. . .,6) are simulated

as mutually independent normal variables, ej ( j =

1,. . .,6), with zero-mean and var(ej) = 0.01. ri (i =

1,2,3,4) were generated from mutually independent

normal variables, ri (i = 1,2,3,4) with zero-mean and

var(r1) = 10, var(r2) = 5, var(r3) = 2 and var(r4) = 0.5

and Xi are given by:

It is noted that var(r1) + var(ej) = 10.01 is the largest

eigenvalue of cov(X) and is approximately 1000 times

as large as the smallest eigenvalue. The Y-block data,

Y, were generated as:

Y ¼
XA*
i¼1

zihT

A*i þ W ¼
XA*
i¼1

rihT

A*i þ F̃
A* ð9Þ

where 8=[w1,. . .,wA * ] was generated by an A *� 1

random vector with a multivariate normal distribution

N(0, S) where S = r2[(1� k)I + k11T] and r2 = 0.001
and k= 0.6. I is an identity matrix, 1 is a vector of

unity and F̃ ¼
XA*

i¼1
f ihT

i þ8 is a noise matrix and Hi

is given by:

h21 ¼ ½1; 2; 1�T=61=2; h22 ¼ ½0; 1;�2�T=51=2

h31 ¼ ½1; 2; 1�T=61=2; h32 ¼ ½0; 1;�2�T=51=2;

h33 ¼ ½�5; 2; 1�T=301=2

h41 ¼ ½1; 2; 1; 0�T=61=2; h42 ¼ ½0; 1;�2; 1�T=61=2;

h43 ¼ ½0; 1;�2;�5�T=301=2;

h44 ¼ ½�5; 2; 1; 0�T=301=2

The matrix Z=[z1, z2, z3, z4] was constructed as:

zi ¼ ri þ f i ð10Þ

where fi (i = 1, 2, 3, 4) were generated as independent

normal variables, fi (i = 1, 2, 3, 4), with zero-mean and

var( f1) = 0.25, var( f2) = 0.125, var( f3) = 0.05 and

var( f4) = 0.0125. It is noted that both {Xi} and

{HA * i} are normalized orthogonal vector series, and

ri (i= 1,2,3,4) are mutually independent random var-

iables. Hence, comparing Eq. (2) with Eqs. (8) and

(9), it can be concluded that latent variable ti, loading

x 1 ¼ ½1; 1; 1; 1; 1; 1�T=61=2; x2 ¼ ½0:5; 0:5;�1; 0:5; 0:5;�1�T=31=2;

x3 ¼ ½1; 1; 1;�1;�1;�1�T=61=2; x4 ¼ ½�1; 1; 0;�1; 1; 0�T=2
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vectors pi and qi obtained from the PLS algorithm are

approximately equal to ri, Xi and HA * i (i = 1,. . ., A*)

respectively. The Y-block data, Y, of the response

variables then essentially depends on ri, (i = 1,. . ., A*),

plus noise. This means that the theoretical value of the

number of latent variable is equal to A*.

4. Simulation results

4.1. Comparison of different criteria

For a fixed sample size, N = 1000 and a fixed

number of blocks, k = 5, for cross-validation, the

performances of a number of different criteria were

investigated. X and Y were generated as 1000� 6 and

1000�H data matrices respectively, where H = 3 if

A* = 2 or 3, and H = 4 if A* = 4. To reduce random

fluctuations, 1000 simulation experiments were per-

formed.

The relative cumulative variances captured by the

six latent variables for the X and Y blocks, averaged

over the 1000 simulation experiments, are given in

Table 1. It can be seen from the first two rows of

Table 1 that on average, for A* = 4, the first four

latent variables capture 100% and 99.94% of the

variance in the X and Y data sets, respectively. The

additional two latent variables do not contribute to

explaining any of the variability in the data. This

verifies the theoretical value of the number of latent

variables, A* = 4.

Table 2 summarizes the frequencies of the

selected numbers of latent variables. The first five

rows give the frequencies of the selected models

after applying different criteria to the PLS algorithm,

when for the true model, the number of latent

variables is A* = 4. It can be seen that in this case

neither Wold’s R criterion nor AIC give satisfactory

performance. Of the 1000 experiments, in 490 cases

Wold’s R selects four latent variables. AIC exhibits

better performance than Wold’s R criterion, giving

the right value in 75.8% of the time. In comparison

Osten’s F criterion is better than either Wold’s R

criterion or AIC. It gave the right number of latent

variables 85.4% of the time. In contrast, both the

adjusted Wold’s R(0.90) and R(0.95) criteria gave

the true value 100% of the time.

In this example the variables are highly multi-

collinear, thus including all six latent variables is

unacceptable. From Table 2, it can be observed that

there is a tendency for Wold’s R criterion to include

Table 1

Relative cumulative variances of X and Y for A * = 2, 3 and 4

(sample size, N = 1000; number of blocks, k= 5)

True Blocks Number of latent variables
models

1 2 3 4 5 6

A* = 4 X-block 0.7896 0.9657 0.9979 1.0000 1.0000 1.0000

Y-block 0.5983 0.8928 0.9961 0.9994 0.9994 0.9994

A* = 3 X-block 0.8159 0.9978 1.0000 1.0000 1.0000 1.0000

Y-block 0.7819 0.9950 0.9994 0.9994 0.9994 0.9994

A* = 2 X-block 0.8176 1.0000 1.0000 1.0000 1.0000 1.0000

Y-block 0.7855 0.9994 0.9994 0.9994 0.9994 0.9994

Table 2

Comparison of the frequencies of the selected number of latent

variables (sample size, N = 1000; number of blocks, k= 5)

True

models

Criteria Number of

latent variables

Mean

number

1 2 3 4 5 6
of latent

variables

A* = 4 AIC 0 0 0 758 228 14 4.26

Osten’s

F Criterion

0 0 0 854 132 14 4.16

Wold’s

R Criterion

0 0 0 490 36 474 4.98

Adjusted

R(0.95)

0 0 0 1000 0 0 4.00

Adjusted

R(0.90)

0 0 0 1000 0 0 4.00

A* = 3 AIC 0 0 623 340 37 0 3.41

Osten’s

F Criterion

0 0 861 115 23 1 3.16

Wold’s

R Criterion

0 0 611 44 16 329 4.06

Adjusted

R(0.95)

0 0 1000 0 0 0 3.00

Adjusted

R(0.90)

0 0 1000 0 0 0 3.00

A* = 2 AIC 0 478 443 79 0 0 2.60

Osten’s

F Criterion

0 895 75 30 0 0 2.14

Wold’s

R Criterion

0 713 26 43 0 218 2.98

Adjusted

R(0.95)

0 1000 0 0 0 0 2.00

Adjusted

R(0.90)

0 1000 0 0 0 0 2.00
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more latent variables than required. One reason for

this is that the ratio of consecutive PRESS values may

be influenced by random noise, thus a threshold of

unity tends to encourage overfitting. Similar conclu-

sions can be drawn for A* = 2 and 3. Thus in this

study it can be concluded that the adjusted Wold’s R

criteria exhibits superior performance to both AIC and

Wold’s R criterion.

4.2. Comparison of different sample sizes

The simulation study was repeated for a sample

size of N = 100. The number of blocks was again

taken as k = 5 and the experiments were repeated 1000

times. For a sample size of 100, the relative cumu-

lative variances captured by the six latent variables

for the X and Y blocks, averaged over the 1000

simulation experiments, are given in Table 3. They

are similar to their counterparts in Table 1 where

N = 1000.

Table 4 summarises the frequencies of the selected

numbers of latent variables for a sample size of 100. It

can be seen that, in general, the results of AIC are

better in Table 4 than those in Table 2. This is because

the multivariate AIC adjusts for small sample sizes

[15]. For Osten’s F, Wold’s R and the adjusted R

criterion, the results are slightly worse than those

reported in Table 2 for a sample size of 1000.

However, it is clear that the adjusted Wold’s R criteria

still exhibit the best performance.

4.3. Comparison of different block-sizes in cross-

validation

Selecting a different number of blocks in cross-

validation can affect the results of model selection.

Theoretically, the method of ‘leave-one-out’ can

extract the maximum possible information [14] and

thus is the best in theory. This method, however, has

very high computational costs, especially when sam-

ple sizes are large. This is the main reason for many

researchers proposing that the data are split into four

to six blocks and it has been argued that the impact of

different numbers of partitions has limited impact on

the final results [7,12,16].

For a sample size of 100, i.e. N = 100, Table 5

summarises the frequencies as to the number of latent

variables selected where the number of blocks in the

cross-validation is taken as k= 5, 10 and 100 (i.e. leave-

one-out). It can be seen that when the number of blocks

is large, the percentage of choosing the appropriate

number of latent variables to give the true model is

slightly higher. However in general these improve-

Table 3

Relative cumulative variances of X and Y for A * = 2, 3 and 4

(sample size, N = 100; number of blocks, k= 5)

True Blocks Number of latent variables

models
1 2 3 4 5 6

A* = 4 X-block 0.7887 0.9656 0.9979 1.0000 1.0000 1.0000

Y-block 0.6002 0.8941 0.9961 0.9994 0.9994 0.9994

A* = 3 X-block 0.8155 0.9978 1.0000 1.0000 1.0000 1.0000

Y-block 0.8412 0.9983 0.9994 0.9994 0.9994 0.9994

A* = 2 X-block 0.8194 1.0000 1.0000 1.0000 1.0000 1.0000

Y-block 0.7871 0.9994 0.9994 0.9994 0.9994 0.9994

Table 4

Comparison of frequencies of the selected numbers of latent

variables (sample size, N= 100; number of blocks, k= 5)

True Criteria Number of

latent variables

Mean

numbermodels

1 2 3 4 5 6
of latent

variables

A* = 4 AIC 0 0 0 840 159 1 4.16

Osten’s

F Criterion

0 0 0 823 162 15 4.19

Wold’s

R Criterion

0 0 0 476 59 465 4.99

Adjusted

R(0.95)

0 0 0 969 31 0 4.03

Adjusted

R(0.90)

0 0 0 1000 0 0 4.00

A* = 3 AIC 0 0 711 268 21 0 3.31

Osten’s

F Criterion

0 0 860 123 17 0 3.16

Wold’s

R Criterion

0 0 600 57 12 331 4.07

Adjusted

R(0.95)

0 0 938 61 1 0 3.06

Adjusted

R(0.90)

0 0 993 7 0 0 3.01

A* = 2 AIC 0 535 413 51 1 0 2.52

Osten’s

F Criterion

0 880 102 17 1 0 2.14

Wold’s

R Criterion

0 670 60 48 4 218 3.04

Adjusted

R(0.95)

0 961 38 1 0 0 2.04

Adjusted

R(0.90)

0 997 3 0 0 0 2.00
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ments, where they exist, are marginal. Therefore, the

simulation results in this paper support the conclusions

of Refs. [7,12], i.e. partitioning the data into four to six

blocks is appropriate for cross-validation.

5. An industrial application of chemical process

modeling

An industrial fluidised-bed catalytic reactor is now

considered [23]. Conventional process controllers

maintain the flows and temperatures at the desired

levels. The reactor is cooled by a number of internal

cooling coils in the bed of the reactor with the coil

coolant flow rates being fixed. As the coils foul, their

thermal efficiency is reduced and the flow of raw

materials into the reactor changes through the action

of the plant control systems. The aims of the plant

operational staff in operating the process are to max-

imize reactor performance for a given production rate

and to minimize product losses to by-products. This

has a consequential impact on equipment fouling,

Table 5

Comparison of frequencies of the selected numbers of latent variables for different numbers of blocks in cross-validation with sample size,

N= 100

True models Criteria Number of blocks Number of latent variables Mean number of

1 2 3 4 5 6 latent variables

A* = 4 Osten’s F Criterion k = 5 0 0 0 823 162 15 4.19

k = 10 0 0 0 886 108 6 4.12

leave-one-out 0 0 0 916 75 9 4.09

Wold’s R Criterion k= 5 0 0 0 476 59 465 4.99

k= 10 0 0 0 440 32 528 5.09

leave-one-out 0 0 0 394 0 606 5.21

Adjusted R(0.95) k= 5 0 0 0 969 31 0 4.03

k= 10 0 0 0 981 19 0 4.02

leave-one-out 0 0 0 986 14 0 4.01

Adjusted R(0.90) k= 5 0 0 0 1000 0 0 4.00

k= 10 0 0 0 1000 0 0 4.00

leave-one-out 0 0 0 999 1 0 4.00

A* = 3 Osten’s F Criterion k = 5 0 0 860 123 17 0 3.16

k = 10 0 0 885 98 17 0 3.13

leave-one-out 0 0 910 73 16 1 3.11

Wold’s R Criterion k= 5 0 0 600 57 12 331 4.07

k= 10 0 0 630 35 18 317 4.02

leave-one-out 0 0 641 31 6 322 4.01

Adjusted R(0.95) k= 5 0 0 938 61 1 0 3.06

k= 10 0 0 961 38 1 0 3.04

leave-one-out 0 0 968 32 0 0 3.03

Adjusted R(0.90) k= 5 0 0 993 7 0 0 3.01

k= 10 0 0 997 3 0 0 3.00

leave-one-out 0 0 998 2 0 0 3.00

A* = 2 Osten’s F Criterion k = 5 0 880 102 17 1 0 2.14

k = 10 0 895 79 25 1 0 2.13

leave-one-out 0 913 60 27 0 0 2.11

Wold’s R Criterion k= 5 0 670 60 48 4 218 3.04

k = 10 0 690 49 53 2 206 2.99

leave-one-out 0 694 46 91 0 169 2.90

Adjusted R(0.95) k= 5 0 961 38 1 0 0 2.04

k= 10 0 966 32 2 0 0 2.04

leave-one-out 0 979 21 0 0 0 2.02

Adjusted R(0.90) k= 5 0 997 3 0 0 0 2.00

k= 10 0 1000 0 0 0 0 2.00

leave-one-out 0 999 1 0 0 0 2.00
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catalyst efficacy, waste treatment costs, energy usage

per unit product, inventory and responsiveness to

scheduled grade changes. During reactor operation,

the cooling coils are switched in and out as part of a

de-fouling recycling procedure to maintain optimum

bed cooling and good production. This results in

clustering in the data due to different operation con-

ditions.

Data on the process variables is collected as 5-min

averages, with data for the quality variables (yields

and conversion of the process feed) being available

from an on-line gas chromatograph every 30 min.

Seven ‘chemical quality’ variables and 36 process

variables are measured on-line. A total of 1335

observations are included for process modeling. The

reactor is complex, multivariable, highly instrumented

and data rich. Because of the many competing reac-

tions in the process, there is no mechanistic model that

provides the kinetic distribution of products from a

specific set of process conditions. The objectives of

the analysis are therefore to build a representation of

the process for the monitoring of process perform-

ance, providing on-line diagnostic support through the

early warning of process malfunctions and the iden-

tification of changes in process operation.

Fig. 1 shows a plot of the relative cumulative

variances captured by the PLS latent variables. Two

different phases of behaviour are observed. In the first

phase, including an additional latent variable results in

the capture of a significant level of variability in the

quality variables, whilst in the second phase, only

marginal improvements are observed as more latent

variables are included in the model. The cut-off point

of the two phases is located between 7 and 10 latent

variables. Similar behavior can be observed in Fig. 2

where during phase I, the PRESS decreases rapidly.

The rate of decrease in the PRESS then becomes quite

slow after the first 7–10 latent variables have been

included in the model.

Applying different criteria to the data set results in

quite different PLS models. Both Osten’s F and

Wold’s R criteria include 21 latent variables in the

model, whilst AIC identifies 32 latent variables. In

contrast, adjusted Wold’s R criteria, R(0.90) and

R(0.95), result in more parsimonious model, including

only 7 and 10 latent variables respectively in the

model. From Figs. 1 and 2, it appears that both Wold’s

R criterion and AIC include too many latent variables

when compared with the increase in captured variance

or the decrease in PRESS with increasing numbers of

latent variables.

6. A study using industrial NIR data

The major focus of this paper is model selection for

PLS for its application to multivariate statistical proc-

ess control (MSPC), where the number of observa-

tions are typically much larger than the number of

process variables and the aim of the analysis is toFig. 1. Relative cumulative variance captured by latent variables.

Fig. 2. PRESS versus number of latent variables (number of blocks,

k= 5).
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extract latent variables to build representative models

of the process. However, in contrast to this situation is

where the number of observations is less than the

number of explanatory variables. This is a typical

scenario with spectroscopic data.

An industrial NIR spectral data set was collected to

investigate the feasibility of replacing certain labora-

tory analyses with NIR spectroscopy. Two response

variables, active and excipient, are considered. The

NIR spectra with 1550 channels were measured over

the range 10000 to 3800 cm � 1 using a resolution of 4

cm � 1. Spectra for sixteen samples were used for

calibration (Fig. 3). A further six samples were used

as unseen test data. The prediction was investigated in

terms of the root mean prediction squared error

(RMPSE).

A combined model for both response variables

(active and excipient) was first built using PLS2.

The variation captured for both X and Y by PLS for

models with different numbers of latent variables is

shown in Table 6. Fig. 4 gives the plot for the PRESS.

From Table 6 and Fig. 4, it is conjectured that a PLS

model comprising four to six latent variables is

appropriate. Model selection and prediction are sum-

marized in Table 7 (Case I). It can be seen that by

applying the adjusted Wold’s R criteria a parsimoni-

ous model is obtained and the best prediction, i.e. the

lowest value of RMPSE, is obtained with four latent

variables. AIC also gives quite good prediction

results. Wold’s R criterion included too many (81)

latent variables, resulting in a large value of RMPSE,

clearly overfitting the data in this case. Osten’s F is

prematurely terminated for this example since only

one latent variable has been included.

A model for the response variable ‘active ingre-

dient’ was then built using PLS1. Model selection and

prediction are summarized in Table 7 (Case II). In this

case, Wold’s R criterion has a tendency to include too

many latent variables but it gives the best performance

in terms of prediction. Finally, a model for the

response variable ‘excipient’ is built using PLS1 with

Fig. 3. NIR spectra for calibration data. Fig. 4. PRESS versus number of latent variables (number of blocks,

k= 5).

Table 6

Relative cumulative variances of X and Y explained

No. of LVs 1 2 3 4 5 6 8 10 12

Case I X-block 0.8619 0.9385 0.9589 0.9839 0.9904 0.9956 0.9980 0.9985 0.9998

Y=[ y1, y2] Y-block 0.5117 0.6950 0.9485 0.9821 0.9859 0.9903 0.9984 0.9996 1.0000

Case II X-block 0.8628 0.8747 0.9216 0.9837 0.9872 0.9924 0.9980 0.9985 0.9998

Y= y1 Y-block 0.5256 0.9722 0.9830 0.9852 0.9898 0.9929 0.9987 0.9998 1.0000

Case III X-block 0.8608 0.9395 0.9612 0.9839 0.9871 0.9918 0.9980 0.9986 0.9998

Y= y2 Y-block 0.5267 0.7514 0.9485 0.9827 0.9892 0.9933 0.9988 0.9997 1.0000
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model selection and prediction being summarized in

Table 7 (Case III). For this situation, Wold’s R

criterion and adjusted R(0.95) exhibit the overall best

performance in terms of prediction.

It should be noted that for cases II and III very

similar patterns, in terms of the captured variances, are

apparent (see Table 6) and similar plots of PRESS (not

displayed) as for Case I are achieved. Therefore, it can

be assumed that an appropriate model should include

between four and six latent variables for all three

cases. However, these ‘appropriate’ models do not

necessarily give the best prediction in terms of the

RMPSE for the test data. Thus, from this example, it

can be concluded that there are some very complex

mechanisms that need to be taken into account during

model selection and building. A model capturing a

reasonable amount of variation in the response vari-

able(s) does not necessarily give the best prediction

for the unseen test data.

7. Conclusion and discussions

A comparison has been performed between Wold’s

R criterion and AIC for the selection of the number of

latent variables to include in a PLS model. From the

simulation results, the adjusted Wold’s R criteria

which adopts thresholds less than unity results in

more parsimonious models than those selected by

Wold’s criterion, and achieve a higher percentage in

terms of selecting the true model. This is because

when using the adjusted Wold’s R criteria, a latent

variable will not be included in the PLS model unless

the additional latent variable can provide significantly

better prediction performance.

Some additional comments are made on the selec-

tion of the thresholds. First, since the theoretical

distribution of Wold’s R statistic is unavailable, an

‘optimal threshold’ is not available. Therefore, an

appropriate threshold can be only be chosen empiri-

cally. In addition, the threshold depends on the pref-

erence of the analyst and their perception in terms of

model parsimony and accuracy. This can be clearly

seen from the practical examples discussed in Section

5, where A= 7 and A= 10 were respectively located at

the end of phase 1 and at the beginning of the phase 2

in Figs. 1 and 2.

Finally, it is noted that according to Eastment and

Kraznowski [14], model selection is also strongly

dependent on the objective of the analysis. If the

aim is dimensionality reduction and noise removal,

such as for applications in MSPC, it is suggested from

the simulation study carried out in this paper that the

adjusted Wold’s R would be an appropriate choice. If,

however, the aim is prediction, for example, then

Wold’s R criterion or AIC may be preferred since

accuracy, instead of parsimony, is the major concern

as indicated by the example of the NIR data.
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