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Abstract

It has been experimentally veri�ed that most commonly used subspace methods for identi�cation of linear
state�space systems with exogenous inputs may� in certain experimental conditions� run into ill�conditioning
and lead to ambiguous results� An analysis of the critical situations has lead to propose a new algorithmic
structure wich could be used either to test di�cult cases or�and to implement a suitable combination of
new and old algorithms presented in the literature to help �xing the problem� A MATLAB code is available
upon request at chiuso�dei�unipd�it�

� Introduction

It is well�known that the �classical� approach to system identi�cation is based on parameter optimization�
i�e� the system parameters are obtained by minimization of a suitable cost function� These methods have
been widely used and shown reasonably successful in modeling single�input single�output systems by ARMA
or ARMAX models� see the classical textbook �	
� for an up�to�date illustration of this approach�

However� when one has to attack general multi�input multi�output models� these methods su�er from
various drawbacks� Since� unless one restricts to rather trivial model classes� the dependence of the cost
function on the parameters is in general non�linear� iterative techniques are required for minimization� For
multivariable sytems these may well turn out to be very time�consuming� Due to existence of local minima
and non�convexity� the outcome is in general very sensitive to the choice of the parametrization and of the
starting point in the optimization procedure� There is generally no guarantee of global optimality but only
of ending close to a local minimum� Furthermore� to attack general multi�input multi�output models by
parameter optimization methods the hussle of choosing canonical parametrizations is unavoidable� In fact�
the use of canonical parametrizations has been recognized as a critical issue in MIMO identi�cation since
the early 
����s �
�� ���� and represents a bottleneck in extending from SISO to MIMO identi�cation�

Geometric� or �subspace� or realization�based� methods� rely on the ideas of stochastic realization theory
which have been developed �mainly for time series� by many authors� for instance Akaike �
� 	�� Faurre �
���
Lindquist and Picci �	�� 	��� Picci �
��� Ruckebusch ���� �
��

Subspace methods� roughly speaking� translate the constructions of stochastic realization theory into
procedures for model building which work on measured data �	��� They owe the name �subspace� to the
fact that the basic objects which are constructed in the algorithms are subspaces generated by the data� and
geometric operations such as orthogonal and oblique projections are all what is needed to compute estimates
of the parameters�

The appealing features of subspace methods are that there is no need for canonical parametrizations�
no iterative nonlinear optimization is required� only simple and numerically robust tools of numerical linear
algebra such as QR� SVD� QSVD� are used� �nally� since the methods rely on the theoretical background of
stochastic realization theory a deeper system�theoretic understanding of the involved procedures is possible�
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The basics of subspace methods may probably be traced back to old work of Hotelling �
��� Ho and
Kalman �
��� Akaike �
� 	�� Faurre �
��� Aoki ��� and Moonen et al� �
	�� but probably� the �rst �true�
subspace algorithm is the �stochastic� algorithm of van Overschee and De Moor ���� for the identi�cation of
time series� Various subspace algorithms have been introduced for identi�cation of systems with exogenous
inputs� some of the basic references being �
	� 

� ��� ��� �	� ��� ���� Even though these methods have been
around for a while� it is fair to say that for subspace methods with inputs there are still a number of questions
which are not completely understood�


� One of these questons is numerical ill�conditioning which has been experimentally veri�ed in a number
of situations ��� 
��� One should understand when ill�conditioning may occur and how to cure the
problem� Recently �

� it has been argued that using orthogonal decomposition and block�parametrized
models� together with the orthogonal decomposition algorithm of �
�� �� may be a possible solution
to the problem of ill�conditioning� Simulation results and comparison with the N�SID algorithm are
discussed in ��� 
	� 

��

	� As it is well�known� the dynamics of the input signal is crucial for the outcome of an identi�cation
experiment� It is important to have bounds on the performance of an algorithm as a �function� of the
input characteristic �bandwith� persistence of excitation� etc���� In particular� for comparing results of
simulations� a speci�cation of �probing inputs� for the validation of identi�cation algorithms �
	� is
needed� By �probing inputs� we mean inputs which are tailored to reveal the main limitations of the
algorithms�


� Subspace identi�cation in the presence of feedback has been addressed by some authors ��
� �
�� but
the problem seems to be very far from being completely understood�

�� The characterization of the accuracy of the estimates is still a partially open problem� Steps toward
solving this problem have been made in ��	� �� �� 
�� 
�� where results on asymptotic normality of the
estimates are obtained and procedures to compute asymptotic variance have been suggested�

On the thoretical side� one should remark that stochastic realization theory with exogenous inputs has
not been fully developed until very recently �

�� While the algorithm of van Overschee and De Moor for time
series ���� follows exactly the ideal steps suggested by stochastic realization theory� so far it has not been
possible to implement the ideal realization procedure in identi�cation with exogenous inputs� In particular�
it has been pointed out that there are no known procedures for constructing a basis in the state space of a
stochastic system with inputs �to be precise in a �nite�time oblique Markovian splitting subspace�� directly
from �nite�time input output data �

�� By �directly� we mean only by means of operations on the data
which do not involve preliminary estimation of some system parameters�

In all algorithms existing in the literature ad hoc tricks are used and an approximate version of the state
is involved� This can be shown to deteriorate the �ideal� numerical conditioning of the problm �

� and is
believed to be the reason why the state�of�the�art in subspace methods may be considered satisfactory only
for time�series identi�cation�

Due to page limitations� we cannot give here more details on these aspects and shall have to refer the
reader to the literature� The main purpose of this paper is to give a brief guided tour to the algorithms for
subspace identi�cation with inputs existing in the literature and to suggest some variations which help in
dealing with the possible ill�conditioning of the identi�cation problem� The algorithm may optionally use
alternative approaches to those in the literature� A MATLAB software package has been developed as a part
of the doctoral thesis of A� Chiuso� �

��

� Notations

There is a �true� stochastic system �which we assume in innovation form��
x�t� 
� � Ax�t� �Bu�t� �Ke�t�

y�t� � Cx�t� �Du�t� � e�t�
�
�

	



generating the observed data fy�t�g �m�dimensional�� fu�t�g �p�dimensional�� Let fx�t�g� fe�t�g be the
sample paths of the corresponding state �n�dimensional� and innovation processes� Suppose �ideally� that
we have observations on some �hopefully very long� time interval ��� N �� of one sample path fy�t�g� fu�t�g�
fx�t�g� of the processes fy�t�g� fu�t�g� fx�t�g� Since these processes generate the data� it is obvious that
the �nite �tail� matrices� Yt� Ut� Xt� constructed at each time t from the observed samples by the recipe

Yt �� � y�t� y�t� 
� � � � y�t�N � 
� �
Ut �� �u�t� u�t� 
� � � � u�t�N � 
� �
Xt �� �x�t� x�t � 
� � � � x�t�N � 
� �

also satisfy equation �
�� i�e�� �
Xt�� � AXt � BUt � KEt

Yt � CXt � DUt � Et
�	�

where Et �� � e�t� e�t� 
� � � � e�t�N � 
� � is the innovation tail� This equation can be interpreted as
a regression model� It is straightforward to see that� if the tail matrices Xt��� Xt� Ut� Yt� are given� then one
can solve �	� for the unknown parameters �A�B�C�D�� say by least squares� Hence in the ideal situation�
when we have available an input� output� and a corresponding state sequence at two successive time instants
t and t � 
� the identi�cation of the parameters �A�B�C�D� of the system �
� is a rather trivial matter�
In practice� Xt��� Xt are of course not available and will have to be estimated from the input�output data�
This is the crucial step of most susbspace identi�cation algorithms�

In the ideal case when in�nitely long sample trajectories are available �N � ��� Et is orthogonal to
the past data� namely Et � �Xs� Us� for all s � t �this is only approximately true for N large but �nite��
Because of orthogonality of the innovation term� the estimates computed by solving the regression equation�
coincide � for N ��� with the true parameters �consistency��

We shall use standard notations� in particular use the symbols

Yt�jt� ��

����
Yt�
Yt���

���
Yt�

���� �

����
y�t�� y�t� � 
� � � � y�t� �N � 
�

y�t� � 
� y�t� � 	� � � � y�t� �N�
��� � � �

� � �
���

y�t�� y�t� � 	� � � � y�t� �N � 
�

���� �

Ut�jt� ��

����
Ut�
Ut���

���
Ut�

���� �

����
u�t�� u�t� � 
� � � � u�t� �N � 
�

u�t� � 
� u�t� � 	� � � � u�t� �N�
��� � � �

� � �
���

u�t�� u�t� � 	� � � � u�t� �N � 
�

����
and denote

Pt�jt� �

�
Ut�jt�
Yt�jt�

�
the joint input�output history between instants t� and t��

Given a k� � N matrix B and a k� � N matrix A� we will� with slight abuse of notation� denote the
orthogonal projection

E �B j A� � B j A �� BAT �AAT �yA�

meaning the k� �N matrix whose rows are the orthogonal projection of the rows of B onto the row span of
A� Moreover� let

A �

�
A�

A�

�
and let

row�spanfA�g � row�spanfA�g � f�g

For notational convenience we will denote

E �B j A� � A�� �� E

�
B j

	
A�

A�


�






the orthogonal projection of the rows of B onto the row space of

	
A�

A�



� This orthogonal projection may

be uniquely decomposed as

E �B j A� � A�� � EkA�
�B j A�� �EkA�

�B j A��

which are respectively the oblique projection of the rows of B onto row�spanfA�g along row�spanfA�g and
viceversa� It is immediate to obtain expressions for these oblique projections�

EkA�
�B j A�� � B

�
A� j A

�
�

� h�
A� j A

�
�

� �
A� j A

�
�

�T i��
A�

where
A� j A

�
� �� A� �A�jA� � A� �A�A

T
� �A�A

T
� �
yA�

and similarly for the other�
De�ne the extended observability matrix

�k ��

����
C

CA
���

CAk��

����
the reversed controllability matrices

Cdk �� �Ak��B � � � AB B � Csk �� �Ak��K � � � AK K � �

and the Toeplitz matrices

Hs
k ��

����
I � � � � �
CK I � � � �
���

���
� � �

���
CAk��K CAk��K � � � I

���� � Hd
k ��

����
D � � � � �
CB D � � � �
���

���
� � �

���
CAk��B CAk��B � � � D

���� �
It follows from straightforward manipulations that we can write��

Xk � AkX� � CdkU�jk�� � CskE�jk��
Ykj�k�� � �kXk � Hd

kUkj�k�� � Hs
kEkj�k��

�
�

These relations are the starting point for most subspace identi�cation methods�

� The orthogonal decomposition approach

Identi�cation in the presence of exogenous inputs can be done� in principle� following two di�erent approaches�
which essentially correspond to di�erent choices of �model structures�� On one hand� one could use stochastic
realizations of y driven by u of the general form�

x�t� 
� � Ax�t� �Bu�t� �Ke�t�
y�t� � Cx�t� �Du�t� � e�t�

� ���

Identi�cation procedures based on this model will be referred to as �joint identi�cation�� On the other hand
one could instead consider models in block diagonal form such as
������

�
xd�t� 
�
xs�t� 
�

�
�

	
Ad �
� As


�
xd�t�
xs�t�

�
�

	
Bd

�



u�t� �

	
�
Ks



es�t�

y�t� � �Cd Cs �

�
xd�t�
xs�t�

�
�t� �Ddu�t� � es�t��

���

�



which is based on the preliminary decomposition of the state and output processes into the component
lying in the input space �the � deterministic component�� and its orthogonal complement �the �stochastic
component��� see �
�� �� 

�� For identi�cation based on models of this structure� we shall talk about a
�orthogonal decoposition� approach� We warn the reader that models of the form ��� may turn out to
be non minimal� due to lack of observability� which may occur when the �deterministic� and �stochastic�
components share some common dynamics� The most general situation is the one in which the deterministic
and stochastic subsystems may share some �and possibly all� �dynamics�� In such a situation a minimal
realization would have a block diagonal structure formed by three blocks corresponding to deterministic�
shared and stochastic dynamics of the form�
��������������

�� xd�t� 
�
xds�t� 
�
xs�t� 
�

�� �

��Ad � �
� Ads �
� � As

�A�� xd�t�
xds�t�
xs�t�

���

�� Bd

Bds

�

�Au�t� �
�� �
Kds

Ks

�Aes�t�
y�t� � �Cd Cds Cs �

�� xd�t�
xds�t�
xs�t�

���t� �Ddu�t� � es�t��

���

Naturally� the presence of common dynamics is to be regarded as a � non generic� situation� unless there
some a priori information on the way the noise enters the system�

In section � we shall present simulations comparing the results of subspace algorithms with the Cram�er�
Rao lower bounds� It will become apparent that an orthogonal decomposition approach is to be preferred
when the dynamics of the deterministic and stochastic parts are disjoint as the Cram�er�Rao bounds are lower
for this kind of approach�

This is essentially due to the fact that in this situation more �structure� is used and less parameters �as
compared to a joint approach� are to be estimated� Using a joint model in this case leads to worse results�
In fact� the identi�ed model will present some near cancellations of poles and zeros in the deterministic and
in the stochastic transfer functions� That might be a further source of ill�conditioning�

On the other hand� when it is known that the two subsystems share the same dynamics we are in the
opposite situation and the joint approach does better� If only part of the dynamics is shared then things
become of course harder to evaluate�

Several �subspace� algorithms have been presented in the literature which could be adapted to both
approaches� However� the di�erences are not just due to the choice between �joint� or �orthogonal decom�
position� approaches�

A subspace algorithms can organized into four main steps�


� Estimation of the state �or of the extended observability matrix�� which includes order estimation�

	� Estimation of the matrices �A�C� �or �Ad� Cd� for the orthogonal decomposition case��


� Estimation of the noise model� i�e� the �Kalman gain� K and the variance of the innovation � for the
joint apporach or the entire stochastic realization �As� Cs�Ks��s� for the orthogonal decomposition
approach�

�� Estimation of the input matrices �B�D� �or �Bd� Dd���

The four steps have been enumerated in the order they are usually performed� as any of them requires
�or may require� the estimates obtained in the previous steps but does not require estimates to be obtained
in the next steps�

We have de�ned two main functions� joint�m and ort dec�m which respectively implement the joint and
orthogonal decomposition aproaches� They are structured in such a way that the user has the freedom to
choose independently �to a certain extent� how steps 
�� 	�� and 
� are performed among the most common
choices considered in the literature� Essentialy� in the current implementation step �� is �xed � In the joint
case K and � are obtained solving a certain Riccati equation which amounts to computing the steady state
Kalman gain �when such a solution exists �	���� In the orthogonal decomposition approach the algorithm
implemented for the estimation of the stochastic component is the �stochastic� algorithm of Van Overschee
and De Moor ����� As a matter of fact� this algorithm� which is the only theoretically sound �stochastic�

�



subspace approach� has recently been shown to be asymptotically e�cient ���� We warn the reader that the
identi�cation of the stochastic component in the orthogonal decomposition approach requires a somewhat
delicate pre�ltering algorithm� For further details on the orthogonal decomposition approach one may consult
�
�� �� 

��

In the next sections we shall give a brief overview the main procedures of the algorithm� For reasons of
space we shall not be able to enter into much detail� The theoretical analysis on which some of the procedures
are based will be found in the forthcoming pubblications �

��

The syntax is the following

function �Ad�Bd�Cd�Dd�As�Ks�Cs�Lambda� �

ort�dec�y�u�ns�nd�ks�kd�BD�T�delay�type�Aest��

function �A�B�C�D�K�Lambda��joint�y�u�nn�k�BD�T�delay�type�Aest�	

where y and u are respectively output and input data� ns�nd�ks�kd�k are indexes related to orders� and
BD�T�delay�type�Aest are related to the user choices in steps 
�� 	�� 
� as discussed above�

� Estimation of the Extended Observability matrix

In this section we shall talk about estimation of the extended observability matrix rather than estimation
of the state vector� the reason being that� as we have already pointed out� there are non known recepies to
construct directly an oblique Markovian splitting subspace from mesured data �� A more precise analysis
would require the introduction of a sort of �conditional�model �given future inputs�� details will be found in
a forthcoming pubblication�

In the code we have implemented three standard approaches for the estimation of the observability matrix
which are called the �orthogonal projection�� the �oblique projection� and the �canonical variate analysis��
They correspond� as it has been pointed out in ����� to di�erent choices of weighting matrices� Infact� the
extended observability matrix is determined via SVD of the following matrix�

W�EkUkj�k��

�
Ykj�k�� j P�jk��

�
W� �W��kEkUkj�k��

�
Xk j P�jk��

�
W� � USV � ���

The matrix P�jk�� is either Y�jk���U�jk�� for the combined deterministic�stochastic identi�cation or P�jk�� �
U�jk�� for deterministic identi�cation� i�e� for the identi�cation of the deterministic component in the
orthogonal decomposition algorithm�

In an ideal situation� when data are generated by an n�dimensional� �true� linear time invariant system�
andN goes to in�nity� the matrix S has generically n singular values di�erent from zero� We say �generically�
since there might be pathological situations in which �Ykj�k�� looses rank �
��� nevertheless the set of systems
for which asymptotically S looses rank is non�generic ���� We will discuss this point in the following� In fact�
even though this matrix looses rank on a set of �measure zero�� there are open neighborhoods in the set of
parameters that makes the n�th singular value arbitrarily close to zero�

In practical situations� i�e� for �nite data� S has full rank and a reduction step has to be performed�
This corresponds to order estimation in subspace identi�cation methods and is of primary importance� Note
that� if S is partitioned as

S �

�
�Sn �
�  Sn

�
�

�
�Sn �
� �

�
and U and V are partitioned accordingly�

U � �Un U�n � V � �Vn V �n �

�We stress again that �directly� here means without preliminary estimation of some of the system parameters� e	g	 the

Markov parameters

�



the corresponding estimate of the state space and observablity matrix are�

��k �W��
� UnS

���
n �

� Xk � S���n V T
n W

��
� � ���

Even though a precise theoretical analysis is still lacking� there is some evidence �	
� �� 
�� �	� that CVA
performs better in a broader range of situations� We now brie!y review the aforementioned approaches�

��� Oblique Projection

This is the choice of basis which is done in N�SID ����� It is called oblique projection since it corresponds
to the weighting matrices W� �W� � I � i�e� to performing SVD of the oblique projection of future outputs
along future inputs onto the joint past�

USV T �� �Ykj�k�� � EkUkj�k��

�
Ykj�k�� j P�jk��

�
� �k  Xk ���

��� Orthogonal Projection

This factorization is for instance done in the PO�MOESP type of algorithms ��	�� and is called orthogonal

projection since it corresponds to projecting the optimal oblique predictor onto the orthogonal complement
of Ukj�k�� in P�jk�� � Ukj�k��� i�e�

USV T �� E
h
Ykj�k�� j

�
P�jk�� j U

�
kj�k��

�i
� �kE

h
 XkjU

�
kj�k��

i
� �
��

It is apparent that this corresponds to W� � I and W� � "U�
kj�k��

�

��� Canonical Variate Analysis

CVA is a way of choosing basis in the state space which makes use of the concept of Canonical Correlations
�		� 
��� The idea is to compute the canonical correlations between joint past P�jk�� and future outputs
Ykj�k��� given future inputs Ukj�k��� Let us de�ne

Lpju�L
T
pju� � #ppju� �




N

�
P�jk�� j U

�
kj�k��

��
P�jk�� j U

�
kj�k��

�T
and similarly

Lyju�L
T
yju� � #yyju� �




N

�
Ykj�k�� j U

�
kj�k��

��
Ykj�k�� j U

�
kj�k��

�T
�

#ypju� �



N

�
Ykj�k�� j U

�
kj�k��

��
P�jk�� j U

�
kj�k��

�T
�

The the following decomposition is performed�

USV T �� L��
yju�

#ypju�L
�T
pju�

i�e�� it corresponds to the factorization ��� with weighting matrices

W� � L��
yju�

W� � "U�
kj�k��

�

�

� Estimation of A�C

The estimation of the matrices A and C are usually performed in two di�erent ways�
One approach is based on the preliminary construction of an approximated state� say  Xk and it conditional

shift  Xk��� �CVA� N�SID �approximated�� �	
� ���� or of a �pseudostate� �together with its shifted version�

�



say Zk��� Zk� �N�SID� ����� from which �A�C� are estimated directly solving a linear least square problem�
namely� 	

 Xk��

Yk



�

	
A B

C D


	
 Xk

Uk



	

	
K�k� �Ek

�Ek



�
	�

where the approximate state is computed from the oblique predictor EkUkj�k��

�
Ykj�k�� j P�jk��

�
as  Xk ��

���Lk EkUkj�k��

�
Ykj�k�� j P�jk��

�
� Similarly� using instead the pseudostate Zk� the following recursion can be

shown to hold ���� 	
Zk��
Yk



�

	
A K�
C K�


	
Zk

Ukj�k��



	

	
K�k� �Ek

�Ek



� �

�

The pseudo�state Zk is computed starting from the predictor

�Ykj�k�� � E
�
Ykj�k�� j P�jk�� � Ukj�k��

�
as Zk �� ���Lk

�Ykj�k���
With these approaches one may also estimate �B�D� directly from �
	� or solving an overdetermined

linear set of equations from K� and K� obtained in �

�� We shall further comment on this later in section
��
�

On the other hand one could enforce the shift invariance structure of the observability matrix �k ��
CT ATCT � � �

�
Ak��

�T
CT

�T
�

The matrix C can be taken to be the �rst p rows of the estimated observability matrix ��k� Let us denote

by
c��
� k the estimated observability matrix with the �rst p rows deleted� It is straightforward to see that the

the matrix A should satisfy

��k��A �
c��
� k�

This equation� is not satis�ed exactly for �nite data when stochastic disturbances are present and hence it
has to be solved approximately�

This is usually done in a variety of ways including least squares solution� total least squares� subspace
�tting� let us just recall the most common solutions obtained by least squares as

�A � ��yk��
c��
� k

and by total least squares computing the singular value decompositionh
��k��

c��
� k

i
� U

	
Sn �
�  Sn


	
V�� V��
V�� V��


T
and setting

�A � �V��V
y
���

For a discussion on these topics see for instance �	�� and the references therein�
Our current implementation allows the choice between least squares and total least squares� However�

practical experience has shown that there are no big di�erences between the two approaches� moreover it
can be shown that they are asymptotically equivalent �����

� Estimation of B and D

It is well known that� once an estimate of A and C has been obtained� the problem of estimating B and
D can be formulated as a linear least squares problem� As we have seen in section � some approaches for
the estimation of �A�C� yield naturally also estimates for �B�D�� This is the case for the CVA algorithm of
Larimore �	
� and for N�SID ����� In addition a number of di�erent procedures have been proposed in the
literature which yields consistent results as the length of data sequences N goes to in�nity� However it is
not clear which of them gives better results� Our algorithm implements the most common procedures and
some variants which seem to give better results in some ill conditioned cases�

�



As a guideline we may say that the approach proposed by Van Overschee and De Moor with some minor
modi�cations and the �optimally weighted� projection approach �see section ���� seem to give the best
results�

We shall brie!y describe the di�erent approaches�

��� N�SID based approach

As we have anticipated in section �� B and D can be estimated solving an overdetermined set of linear
equations� starting from the estimated parameters K� and K� �see eq� �

��� which are linear functions of B
and D once A and C are given� The equations are as follows�

K�B�D� ��

	
K��B�D�
K��B�D�



�

�BB�B �A�yk

	
D

�k��B



�yk��H

d
k�� �A�yk

	
�

Hd
k��



D � C�yk

	
D

�k��B



�C�yk

	
�

Hd
k��



�CCA � �
��

The solution is found solving the weighted problem

min
B�D

k� �K �K�B�D��Lk�

which is linear in the elements of B and D� Di�erent choices of L are possible� However the most common
are L � I � which corresponds to the standard N�SID and L computed from QR factorization of future
inputs as Ukj�k�� � LQ which corresponds to the so called �robust� algorithm in �����

��� Minimum Prediction Error

A possible solution is computed via the minimization of the prediction error y�k� � �y�k�� Note that the
Kalman gain K is needed� which however can be determined without the knowledge of �B�D�� Since also
the initial condition will be estimated� the gain corresponding to the stationary solution can be used� The
one step ahead predictor can be written as�

�y�t� � C�A �KC�tx��� �
t��X
i��

C�A�KC�t���i�B �KD�u�i��

�

t��X
i��

C�A�KC�t���iKy�i� �Du�t�

Because of linearity in B� D� x��� the minimization of the cost functional

Jpred�B�D� x���� �
TX
k��

ky�k�� �y�k�k� �

can be easily performed�

��� Minimum Simulation Error

Another approach has been proposed �see for instance �	��� which is based on the minimization of the
�simulation error�

y�t�� �y�t� � y�t��

�
CAtx��� �

t��X
i��

CAt���iBu�i� �Du�t�

�
�
��

which is a linear functional of x���� vec�B�� vec�D�� Therefore� minimizing the cost functional

Jsim�B�D� x���� �

TX
k��

ky�k�� �y�k�k
�
�

with respect to B� D� x���� is just solving a linear least�squares problem�

�



��� Block Minimum Simulation Error

Let us denote �Y d
�j�k�� � ��k �Xd

o �Hd
�kU�j�k�� the projection of the outputs Y�j�k�� on the space spanned by

the inputs� Assuming A and C known� the i�th column �Y d
�j�k���i� of the matrix �Y d

�j�k�� is a linear functional

of �Xd
o �i�� i�e� the i�th column of the initial state and of vec �B� and vec �D��

�Y d
�j�k���i� � ��k �Xd

o �i� �Hd
�kU�j�k���i��

Therefore one could consider the following as a cost function for the estimation of B and D�

Jsimb
�B�D� x�� x�� � � � � xN � �

NX
i��

��� �Y d
�j�k���i�� ��kxi �Hd

�kU�j�k���i�
���� �

Again this is linear in �vec�B�� vec�D�� x�� x�� � � � � xN �� for some choice of the integer N � which will be a
tradeo� between speed and accuracy�

��� Projection Approach

rewriting the second equation in �
� as

Y�jk�� � �kX� �Hd
kU�jk�� �Hs

kE�jk���

and projecting this equation onto the space spanned by the inputs U�jk��� one obtains

�Y d
�jk�� �� E

�
Y�jk��jU�jk��

�
�� $U�jk�� � �kE

�
X�jU�jk��

�
�Hd

kU�jk��

The �rst term on the right hand side may be removed by multiplying from the left by
�
��k
�T

� For convenience
of notation let us denote

"�� ��
�
��k
�T

Since "���k �X� � �� in this way we obtain�

"��
�Y d
�jk�� � "��H

d
kU�jk��

Once the matrix %Hd
k �� "��H

d
k � "��$ is available� we obtain

K

�
D

B

�
�

�����
%Hk��� 
 � m�

%Hk���m� 
� 	m�
���

%Hk���m�k � 
� � km�

����� �
��

where

K ��

�����
"����� 
 � p� "����� p� 
 � kp��k��

"����� p� 
 � 	p� "����� 	p� 
 � kp��k��
���

���
"����� �k � 
�p� 
 � 	p� �

�����
This is implemented by the function BD proj�m�

A similar solution can be obtained orthonormalizing the inputs via LQ factorization �� i�e� computing

LQ � U�jk��

and then solving the weighted problem

min
B�D

k�"��$�"��H
d
k �B�D��Lk�

which is still linear in the elements of B and D� This solution gives much more robust results when some
canonical angles between the rows of U�jk�� are small�

�This clearly can also be done via SVD decomposition	


�



��� Optimally weighted projection

In this section we shall consider a procedure to estimate the matrices �B�D� which is slightly di�erent from
standard procedures proposed in the literature� We shall also see that the procedure proposed in ��	� is just
a special case� Under this framework it is possible to show that in an ideal situation� i�e� if A and C were
known exactly� this approach would guaratee lower variance of the estimated pair � �Bd� �Dd��

Let �Y�jk�� �� E
�
Y�jk�� j U�jk��

�
be the projection of outputs onto the input space� Making the depen�

dence on system parameters explicit� we have�

�Y�jk�� � �kE
�
X� j U�jk��

�
�Hd

k �B�D�U�j�� �Hs
kE

�
E�jk�� j U�jk��

�
� �
��

The third term should ideally be zero� in practice� due to �nite length e�ects� it is not� Let us call this
perturbation term Rk� i�e�

R�

k �� Hs
kE

�
E�jk�� j U�jk��

�
� Hs

k
�REUR

��
UUU�jk��

with obvious meaning of symbols� De�ning �$x such that �$xU�jk�� � E
�
E�jk�� j U�jk��

�
� we can rewrite

equation �
�� as

�$U�jk�� �� �Y�jk�� � �k$xU�jk�� �Hd
k �B�D�U�jk�� �Hs

k
�REU

�R��UUU�jk�� �
��

which turns out to be an equation for the coe�cients of the following form

�$ �� �k$x �Hd
k �B�D� �Hs

k
�REUR

��
UU �
��

This equation is linear in the parameters �$x� B�D� and can be easily rewritten in the form

vec
�
�$y

�
� �Ikm 
 �k� vec �$x� � Ldvec

	
B

D



�
�
R��UU 
Hs

k

�
vec

�
�REU

�
�	��

for some matrix Ld�
The last term is regarded as a perturbation which covariance matrix may be easily computed� In fact�

de�ne

RUU ��� � lim
N��




N
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T
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and

REE��� � lim
N��




N
E� j��k��E

T
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it follows from standar calculations that
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we can write the estimate of the input matrices as�

vec
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����
� Ld

���
LTdW

����
� &�W

����
� vec

�
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i�e�� the oblique projection of vec
�
�$y

�
onto the column span of W����Ld along the column span of &�

It easy to verify that the projection approach� which was �rst proposed in Verhaegen ��	�� is just a
particular case of this with a suitably choosen weighting matrixW � di�erent from the optimal W� computed
above�







� Simulation results

In this section some simulation results comparing the joint approach with the orthogonal decomposition
algorithm are presented� For reason of space we are only able to present one possible choice of the di�erent
steps 
�� 	� and 
�� i�e� the robust N�SID of ���� and the orthogonal decomposition algorithm with 
�
corresponding to CVA� 	� using the pseudo�state and 
� with the optimally weighted projection�

Cramer Rao lower bounds for the variance of the estimated transfer function are presented� The Cramer
Rao lower bound corresponding to a block parametrization of the form ��� is lower that the CR lower bound
for the joint parametrization when the deterministic and stochastic subsystem have completely disjoint
dynamics� The opposite happens when the dynamic is fully shared� Even though in our simulations the CR
bound has not been reached the plots show how in the case where the dynamics is disjoint the orthogonal
decomosition does better� as expected� The interested reader may contact the authors for more informations
concernig the eperimental conditions�

The plots show the mean square error of estimatd transfer function �deterministic system and minimum
phase spectral factor of stochastic component� versus frequency �ranging from � to �� and the corresponding
CR lower bound�
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Figure 
� Example 
� the deterministic and stochastic dynamics are completely disjoint� Estimated �Monte
Carlo� MSE of transfer functions versus Cramer�Rao lower bound� Left� deterministic subsystem� right
stochastic subsystem� dotted � ortogonal decomposition algorithm� solid � joint �N�SID robust�� The dotted
line with crosses is the CR lower bound for block parametrization� the solid line with stars is the CR lower
bound for joint parametrization�
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