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Chapter 1

Introduction

We have nothing to fear but fear itself.
—Franklin D. Roosevelt

I am not a crook.
—Richard M. Nixon

The scope of identification theory is to construct algorithms for automatic
model building from observed data. In these lectures we shall only discuss the case
where the data are collected in one irrepetible experiment and no preparation of
the experiment is possible (i.e. we cannot choose the experimental conditions or
the input function to the system at our will).

The observable variables, usually classified as ”inputs” ( u ) and ”outputs”
( y ), are measured at discrete instants of time t and collected in a string of data of
finite duration T . These data are called a ”time series” in the statistical literature.
There is a preselected model class, say the class of finite-dimensional linear time-
invariant systems of a given order and the problem is generally formulated as that
of inferring a ”best” mathematical model in the model class on the basis of the
observed data.

There may be a variety of different reasons to build models. Here we shall be
chiefly interested in model building for the purpose of prediction and control. This
means that the identified model should be useful for prediction or control of future
i.e. not yet observed, data.

1.1 Essential features of the Identification Problem
1. There are always many other variables besides the preselected ”inputs” and

”outputs” which influence the time evolution of the system and hence the
joint dynamics of y and u during the experiment. These variables represent
the unavoidable interaction of the system with its environment. For this
reason, even in the presence of a true causal relation between inputs and
outputs there always are some unpredictable fluctuations of the values taken

1
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2 Chapter 1. Introduction

by the measured output y(t) which are not explainable in terms of past input
(and/or output) history.

We cannot (and don’t want to) take into account these variables explicitely
in the model as some of them may be inaccessible to measurement and in
any case this would lead to complicated models with too many variables. We
need to work with models of small complexity and treat the unpredictable
fluctuations in some simple ”aggregate” manner.

2. Models (however accurate) are of course always mathematical idealizations of
nature. No physical phenomenon, even if the experiments were conducted in
an ideal interactions-free environment can be described exactly by a bunch
of differential or difference equations and even more so if the equations are a
priori restricted to be linear, finite-dimensional and time -invariant. So the
observables, even in an ideal ”disturbance-free” situation cannot be expected
to obey exactly any linear time-invariant model.

If we accept the arguments above it is clear that one essential issue to be
addressed for a realistic formulation of the problem is a satisfactory notion of non-
rigid, i.e. approximate mathematical modeling of the observed data. The meaning
of the word ”approximate” should here be understood in the sense that a model
should be able to accept as legitimate data sets (time series) which may possibly
differ slightly from each another. Imposing rigid ”exact” descriptions of the type
F (u, y) = 0 to experimental data has been criticized since the early beginnings
of experimental science. Particularly illuminating is Gauss’ general philosophycal
discussion in [27] sect. III, p. 236.

More to the point, there has been a diffused belief in the early years of control
theory that identification was merely a matter of describing (exactly) the measured
data by linear convolution equations of the type

y(t) =
t∑
t0

h(t− τ)u(τ) (1.1)

or equivalently, by matching exactly pointwise harmonic response data with linear
transfer function models. Results have always been poor and extremely sensitive
to small variations in the data. New incoming data tend to change the model dras-
tically, which means that a model determined in this way has in fact very poor
predictive capabilities. The underlying reason is that data obey exactly rigid rela-
tions of this kind ”with probability zero”. If in addition the model class is restricted
to be finite-dimensional, which of course is what is really necessary for control ap-
plications, forcing a solution of the integral equation (1.1) from real data leads
normally to disastrous results. This is by now very well-known and documented in
the literature, see e.g. [65, 69, 35, 20]. The fact, expressed in the language of numer-
ical analysis, is that fitting rigid models to data invariably leads to ill-conditioned
problems.

Gauss idea of describing data by a distribution function is a prime example
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1.1. Essential features of the Identification Problem 3

of thinking in terms of (non-rigid) approximate models1. Other alternatives are
possible, say using model classes consisting of a rigid ”exact” model as a ”nominal”
object, plus an uncertainty ball around it. In this case, besides a ”nominal” model,
the identification procedure is required to provide at least bounds on the magnitude
of the relative ”uncertainty region” around the nominal model. This type of mod-
eling philosophy has been put forward in view of applications to H∞ control. Here
one should provide a mathematical description of how the ”dynamic” uncertainty
ball is distributed in the frequency domain, rather than, as more traditionally done,
in the parameter space, about the ”nominal identified model”.

In addition to the above we need also to introduce a mathematical description
of the data. The data at our disposal at some fixed time instant represent only
partial evidence about the behaviour of the system; we don’t know the future con-
tinuation of the input and output time series, yet all possible continuations of our
data must carry information about the same physical phenomenon we are about
to model, and hence the possible continuations of the data cannot be ”totally ran-
dom” and must be related to what we have observed so far. So, in order to discover
models of systems, we have to work with models of uncertain signals.

Mathematical descriptions of uncertain signals can be quite diverse. Possible
choices are stochastic processes, deterministic signals with uncertainty bounds, etc..
The crucial distinction among theories of model building is the quantitave method
for modeling uncertain signals they use2.

In these lectures we shall eventually take the ”classical” route and model un-
certainty with the apparatus of probability theory. In this framework identification
is phrased as a problem of mathematical Statistics.

One could argue that the basic problem of identification is, much more than
designing algorithms which fit models to observed data ( the easy part), the quan-
tification of dynamic uncertainty bounds or the description of the dynamic errors
incurred when using the model with future data. Any sensible identification method
should provide some mathematical description of how uncertainty is distributed in
time or frequency about the nominal identified model. In this respect the stochastic
approach offers a very nice solution. In this setup (at least in the linear wide-sense
setting) model uncertainty turns out to be equivalent to additive random distur-
bances i.e. identifying model uncertainty is equivalent to identifying models for
”partially observed” stochastic processes. We shall discuss this point further in the
following.

Stationary signals and the Statistical Theory of Model building

Since identification for the purpose of prediction and control makes sense only if
you can use the identified model to describe future data, i.e. different data than
those employed for its calibration, at the roots of any data-based model building

1A vulgar belief attributes to Gauss the invention of least squares, which is historically wrong.
In Gauss’ work least squares come out as a solution method for optimally fitting a certain class of
density functions to the observed data.

2For this reason we would probably not classify as identification ”exact modeling” where the
data are ”certain” signals assumed to fit exactly some finite set of (linear) relations.
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4 Chapter 1. Introduction

procedure there must be a formalization of the belief that

future date will continue to be generated by the same ”underlying mech-
anism” that has produced the actual data.

This is a vague but basic assumption on the nature of the data, which are postu-
lated to keep being ”statistically the same” in the future. Besides being inherent in
the very purpose of collecting data for model building this assumption does offer a
logical standpoint to build a theory for assessing the quality of the identified model,
by asymptotic analysis, i.e. comparing finite-sample results with the ”best achiev-
able” model which could theoretically be identified with data of infinite lenght. One
could probably say that Statistics as a discipline, is founded on asymptotic analy-
sis, and that the wide use of Statistics and of probabilistic methods in identification
is mainly motivated by the large body of effective asymptotic tools which can be
applied to assess some basic ”quality” features of the estimated model.

Classical Statistics traditionally starts by postulating some ”urn model” whereby
the data are imagined as being ”drawn” at random from some universe of possible
values in a ”random trial” where ”nature” chooses according to some probability
law the current ”state” of the interactions and of the experimental conditions.

It has been argued that the abstract ”urn model” of probability theory looks
inadequate to deal with situations like the one we have envisaged, where there is
just one irrepetible experiment and there is really no sample space around from
which the results of the experiment could possibly have been drawn. This critique
comes from a tendendency to confuse physical reality with mathematical modelling.
In effect the ”urn model” is just a mathematical device which is not required to
have any physical meaning or interpretation and can be used to model anything.

The critique has at least the merit of bringing up an important issue. It
should be admitted that in large sectors of the literature the stochastic framework
is often imposed dogmatically to practical problems (the user is normally left alone
wondering if his problem is ”stochastic” enough to be authorized to apply algorithm
A, or his data are instead ”determinstic” and he should apply algorithm B instead
) and often statistical procedures are pushed to extremes where there really seems
to be no physical ground for their applicability.

Yet there is a vast number of situations, like e.g. stationary data, where a
precise justification for the adoption of the stochastic description of uncertainty can
be given. In what follows we shall attempt to offer a formal argument to motivate
this choice.

First, in order to capture the idea that future data are ”statistically the same”
as past data we shall introduce a definition of stationarity of a (deterministic) signal.

Let z := {z(t)}t∈Z be a discrete-time signal (i.e. a sequence of real numbers).
A function of z is any real-valued function f(z) := f(z(t); t ∈ I), f : RI → R where
I is a subinterval of Z, possibly infinite. The shift operator σ is a map defined as

[σtz](s) := z(t + s), t, s ∈ Z

transforming a signal z into its ”translation by t units of time” zt := {z(t+s)}s∈Z+ .
The shift can be made to act also on functions of z according to the rule

σtf(z) := f(z(t + s); s ∈ I) = f(zt).



“MainSHORT”
2005/4/22
page 5i

i
i

i

i
i

i
i

1.1. Essential features of the Identification Problem 5

In the following we shall denote σtf(z) by the more compact notation ft(z).

Definition 1.1. The signal z will be called

• Strict-sense stationary if the Cesaro limit

lim
T→∞

1
T + 1

T∑
t=0

ft(z)

exists for all bounded measurable functions f ;

• Second-order stationary if the limit exists for f(z) = z(0) (so that ft(z) =
z(t)) and for all quadratic forms in z, i.e. for all real functions f such that
f(αz) = α2f(z).

The definition extends in a natural way to vector-valued sequences.
The two conditions in the definition of a second-order stationary signal repre-

sent more or less the minimum amount of structure necessary to do a rudimental
asymptotic analysis of an identification algorithm for linear stationary models. They
are normally found in the literature under a variety of different names.

We shall now show that (strict-sense) stationary signals admit a natural math-
ematical description as trajectories of stationary stochastic processes.

Take f(z) := IA(z(0)) where IA is the indicator function of a Borel set A ⊂ R
( IA(x) = 1 if x ∈ A and 0 otherwise). Then the nonnegative number

νT (A) :=
1

T + 1

T∑
t=0

IA(z(t))

is just the relative frequency of visits of the signal z to the set A. In fact, for
each fixed T the function A → νT (A) is a probability measure, i.e. a countably
additive set function on the Borel sets of the real line. This follows simply from
the relation I∪Ak

=
∑

IAk
which is valid for any sequence of disjoint sets Ak. For

stationary sequences we have νT (A) → ν0(A) as T → ∞. It follows readily from
the observation above that

Lemma 1.2. The set function A → ν0(A) is a probability measure on R.

More generally take

f(z) := IA(z(0))IA1(z(τ1)) . . . IAn(z(τn))

where τ1 . . . τn are arbitrary time instants and A,A1 . . . An arbitrary Borel sets of
the real line and consider the relative frequency

νT (A,A1, τ1, . . . An, τn)) :=
1

T + 1

T∑
t=0

IA(z(t))IA1(z(t + τ1)) . . . IAn
(z(t + τn))
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6 Chapter 1. Introduction

of a visit to the set A followed by a visit, τ1 instants later, to the set A1, τ2 in-
stants later to the set A2 etc.. and τn instants later to the set An. By stationarity
νT (A,A1, τ1, . . . An, τn) → νn(A,A1, τ1, . . . An, τn) as T → ∞. An easy generaliza-
tion of Lemma 1.2 leads to the following result.

Lemma 1.3. The set function (A × A1 . . . × An) → νn(A,A1, τ1, . . . An, τn) is a
probability measure on Rn+1 for all time lags τ1 . . . τn. In fact the family {νk }k∈Z+

is a consistent family of probability distributions in the sense of Kolmogorov, i.e.

νn(A,A1, τ1, . . . , R, τn) = νn−1(A,A1, τ1, . . . An−1, τn−1)

for all Borel sets A,A1 . . . , An−1 and time lags τ1 . . . , τn.

It then follows by a famous theorem of Kolmogorov that there is a bona-fide
probability measure ν on the ”sample space” RZ of all real sequences, which is
the (unique) extension of the family of finite dimensional distributions {νk }k∈Z+

associated to a stationary signal z by the construction illustrated above. This
measure is invariant with respect to the shift σ acting on the sequences of RZ. In
other words, tha pair (RZ, ν) (with the natural family of measurable sets) defines a
stationary stochastic process z.

The moral of the story is that every stationary signal can be interpreted in
a canonical way as a ”representative” trajectory of a stationary process3. In other
words,

Proposition 1.4. For a stationary signal there always exists an ”urn model” i.e.
a probability space {Ω,A, µ} and a stationary process z := { z(t, ω) | t ∈ Z, ω ∈ Ω }
defined on it such that the signal is a representative trajectory of z, i.e.

z(t) = z(t, ω̄) t ∈ Z

for some elementary event ω̄ in the ”good” set of probability one guaranteed by
Birkhoff’s theorem.

So we are authorized if we wish, to think legitimately of a stationary sequence
of data as being ”drawn” from a population according to a stationary probability
law. We shall call this probability measure the true law of the data.

All of the above is of course mostly of ”theoretical interest” and only serves
the purpose of justifying the introduction of probabilistic and statistical language in
identification. Very often in practice one can make verifiable statements only about
the first and second order moments of the observed data and so in the following we
shall normally work under the assumption of wide sense stationarity. Moreover we
shall assume throughout that the time averages of all signals are subtracted off so

3It is well known that almost all trajectories of a stationary process z are stationary signals
in the sense of definition 1.1. This is essentially the famous D.G. Birkhoff’s ergodic theorem, see
e.g. Doob [19], p. 465. A ”representative” trajectory is just a trajectory belonging to the set of
trajectories of ν-probability one where the Cesaro sums converge. Note that the process z need
not be ergodic (i.e. ”metrically transitive” according to the old terminology).
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1.1. Essential features of the Identification Problem 7

all data will be zero mean hereafter. Hence a wide-sense stationary signal (which
we shall now assume m-dimensional) is just a sequence z for which the limit

lim
T→∞

1
T + 1

T∑
t=0

z(t + τ)z(t)′ := Λ0(τ) (1.2)

exists for all τ ∈ Z.

Proposition 1.5 (Wiener). The function Λ0 := τ → Λ0(τ) is a bona-fide covari-
ance function (i.e. a symmetric positive definite matrix function)

Proof. The function Λ0 is the discrete-time version of φ(x) in Wiener’s Generalized
Harmonic Analysis [72].

From this result, much in the same spirit of the strict-sense result above, one
can draw the conclusion that a wide-sense stationary signal admits as probabilistic
model a stationary wide-sense stochastic process. Here, following [19] ”wide-sense
process” means the equivalence class of stochastic processes (defined say on the
probability space (Rm)Z ) with zero mean and all having the same covariance func-
tion. In certain cases it may be appropriate to take as a representative of the
equivalence class the unique Gaussian process with (zero mean and) given covari-
ance function. Of course the additional strict-sense probabilistic structure provides
only illusory extra information (besides second-order) unless the data provide actual
evidence for the choice of Gaussian distributions.

A blanket assumption during the rest of these notes will be that the input-
output data extend in the future to form a stationary4 signal z; we shall call Λ0 the
true covariance of the signal.

Remarks Note that for (wide-sense) stationary signals which decay to zero as
T → ∞ the true covariance function is identically zero. This is not paradoxical,
as a signal of this kind may intuitively be regarded as a ”transient” phenomenon
settling eventually to a zero steady state.

The spectral distribution function of the signal is a monotonic Hermitian ma-
trix function F0 defined on the unit circle of the complex plane {ζ = ejω} by the
”Fourier-like” representation formula valid for any covariance function

Λ0(τ) =
∫ π

−π

ejωτdF0(ejω) (1.3)

(Herglotz Theorem). If Λ0(τ) forms a summable sequence (so that
∑
|Λ0(τ)| < ∞

) then the spectral distribution function admits a density Φ0, and

F0(ejω2)− F0(ejω1) =
∫ ω2

ω1

Φ0(ejλ)
dλ

2π

4”Stationary” will mean wide-sense stationary hereafter.
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8 Chapter 1. Introduction

In general when the covariance function does not decay to zero, for example when
there are periodic components in z, the distribution function has jumps and the
density function describes only the absolutely continuous part of F0. Persistently
exciting signals of order n are classical examples of periodic stationary signals
whose distribution function is a staircase function with exactly n jumps.

The statistical approach to identification

As we have argued in the previous section, a reasonable mathematical description of
the measured data is to model it as a chunck of a trajectory of a second-order wide-
sense stationary stochastic process. The identification problem is then naturally
formulated as the problem of recovering the ”true” second order law of the process
i.e. its true covariance or spectral distribution function from the observed trajectory.

Instead, in a strict-sense formulation one would try, much more ambtiously,
to infer the true probability law of the underlying process from the measured data.

These are of course just prototypical problems of Statistics. In this book we
shall only deal with the second-order formulation.

Naturally the family of all possible ”true descriptions” is an exceedingly gen-
eral infinite-dimensional object and to make the problem solvable one has to choose,
perhaps on the basis of some available a priori information, a manageable subclass
which should be describable in terms of a finite number of real parameters. In fact, it
is natural to study identification of finite dimensional model classes which are com-
monly assumed in the prediction and control schemes of the engineering literature.
Although we keep the meaning of the term somewhat vague at this stage, it is very
well-known that wide-sense stationary processes describable by “finite-dimensional
models” can only be linear combinations of quasi-periodic (i.e. sums of a finite num-
ber of sinusoids with random amplitudes) and purely-non-deterministic processes
with a rational spectral density. Generally, after a proper data pre-processing of the
observed time series, one may well assume that the observed process y is a purely
non-deterministic process. It is well known that this property is equivalent to as-
suming that for no a ∈ Rn, a>y(t) can be expressed exactly as a linear combination
of components of past variabes y(t − 1),y(t − 2), . . . of the process. From this it
can be easily shown that the block Toeplitz matrix

Tk :=


Λ(0) Λ(1) Λ(2) · · · Λ(k)

Λ(1)> Λ(0) Λ(1) · · · Λ(k − 1)
Λ(2)> Λ(1)> Λ(0) · · · Λ(k − 2)

...
...

...
Λ(k)> Λ(k − 1)> Λ(k − 2)> · · · Λ(0)

 (1.4)

must be (strictly) positive definite for all k. There is then very little choice for the
model class. If we are interested in finite-complexity modeling of “truly random”
(purely-non-deterministic) signals, then we must restrict to processes admitting a
rational spectral density. These modeling issues will be discussed in Chapter ??.
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1.1. Essential features of the Identification Problem 9

Input-Output models

Very often in “input-output” experiments one is not interested in modeling the
input signals and would like to concentrate just on recovering a (causal) relation
between inputs and outputs.

As we shall better see later, in the present second-order stochastic setup, the
structure of the “input-output” model class which results from the assumptions of
joint wide-sense stationarity and rational joint spectrum for the input and output
processes, is an additive structure of the form

y(t) = F (ζ)u(t) + v(t) (1.5)

where F (ζ)u(t) is, in symbolic notation, a causal and stable linear system (a con-
volution operator) with a rational transfer function F (ζ). The additive term v(t)
is the “stochastic component”, a stationary process, also with a rational spectrum,
uncorrelated with the past of u, which models precisely the uncertainty due to
disturbances etc. superimposed to the input-based prediction of y(t).

Note that the above model class comes out as a formal consequence of the
probabilistic setting used to describe our data. It can in fact be justified by a trivial
application of Wiener filtering theory. There is no arbitrariness or ”user choice” at
this stage, except of course in the choice of the order or the structure parameters of
the transfer function. Note incidentally that identifying the model uncertainty in
(1.5) means in particular identifying a dynamic model for the additive noise process
v.

A typical route which is commonly taken is to estimate the transfer function
F and the noise model for v as if u was a deterministic sequence. Sometimes in
the literature it may even be “assumed” that u is a “deterministic” signal. This
of course cannot be the real intention since it would lead to the rather absurd
consequence that

E
∑
t,s

y(t)u(s) =
∑
t,s

[Ey(t)]u(s) = 0

i.e. the input and output signals would be completely uncorrelated.
Uncorrelation is more likely to be understood as being conditional on the past

observed history of u. Although this may at a first sight look like a reasonable
thing to do it may lead to serious errors whenever hidden feedback links are present
influencing the way in which the input variable is manufactured (thereby introducing
in u ”stochastic components” correlated with the past of y).

In fact, if there is feedback from y to u the very notion of “input” looses its
meaning, since, as shown e.g. in [29] the input variable u(t) is then also determined
by a dynamical relation of the form (1.5), involving now the “output” process y
playing in turn the role of an exogenous variable (i.e. an “input”) to determine u.

The appropriate setup for discussing these matters is within the theory of
feedback and causality between stationary processess [12]. We shall not adventure
into this subject in this introduction. We shall just content ourselves of recalling,
as it has been argued in several places in the literature, that identification in the
presence of feedback (and of course in the absence of any other specific information
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10 Chapter 1. Introduction

on the feedback loop) is essentially equivalent to identification of the joint process
[y′, u′]′, in the sense of modeling the joint dynamics of the signals on the basis of
the observed time-series {[y(t)′, u(t)′]′}. It is also for this reason that we shall first
choose to restrict the scope of our discussion to time-series identification. Feedback
and feedback models will be studied in Chapter ??.

1.2 Basic issues in subspace identification of
time-series

We shall now discuss some general issues of the statistical identification problem of
describing an observed m-dimensional time series

{y0, y1, y2, . . . yN}, (1.6)

by a finite-dimensional model of the type commonly considered in the engineering
or econometrics literature.

As we will see in the next chapters there are different choices of the model
class which could be used (and are in fact widely used) in identification. One may
choose,

1. A parametric class of spectral density functions; say all the rational spectra
Φ(z) of fixed McMillan degree n.

2. A parametric class of (rational) minimal shaping filter representations, in other
words models consisting of a pair: minimal spectral factor W , plus input white
noise w. Expressing W as a polynomial matrix fraction,

W (z) = A(z−1)−1B(z−1)

gives this model the familiar form of a linear difference equation

y(t) +
ν∑

k=1

Aky(t− k) =
ν∑

k=0

Bkw(t− k) (1.7)

also called an ”ARMA” model. Among several (minimal) shaping filters, or
ARMA model representations, we must choose one. Typically a convenient
model to choose is the innovation model where W is minimum phase and w
is the innovation preocess of y. As we shall see at the end of Section ??, for
square W ’s the input noise is uniquely determined by the output signal y.

3. Minimal state-space realizations of the type (2.1). These objects are the most
”structured” kind of representation of the signal and can be reduced to the
previous kind of models by eliminating the auxiliary variables (x and w). They
will be our primary object of interest.

For each model class there is a problem of unique, or identifiable, parametriza-
tion, i.e. of making the correspondence: parameter → probabilistic model, generi-
cally bijective. For example, the ARMA innovations model must be parametrized
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1.2. Basic issues in subspace identification of time-series 11

in such a way as to yield an identifiable parametrization. This means that one should
parametrized by the coefficients {Ak, Bk} of the matrix polynomials (A(z−1), B(z−1)).
The solution of this problem via the theory of canonical forms constitutes an im-
portant chapter of identification theory which has attracted much interest in the
1970’s and early 1980’s but is now a bit obsolete after balanced canonical forms [58],
[59], which will be introduced later, are a much simpler and robust alternative.

Moreover, while a spectral density is a unique (wide-sense) probabilistic de-
scription of a signal, a family of different minimal spectral factors or state-space
models (neglecting the indeterminacy inherent in the choice of basis) give rise to
the same spectrum. For this reason when the model classes (2) and (3) are used
it is necessary to specify a representative factor or minimal realization to get a 1:1
correspondence with the spectrum. Normally one chooses to describe a spectrum by
its (unique) minimum phase spectral factor or forward innovation models i.e. or the
corresponding causal ”steady state Kalman Filter” realization. These models are
1:1 with the spectrum if we disregard the intrinsic indeterminacy in the input white
noise (which is only defined modulo constant real orthogonal transformations) and
the arbitrariness in the choice of basis in the relative state space X−.

The model classes described above are wide-sense. In case the signal y is be-
lieved to be Gaussian they can equivalently be interpreted as defining the spectrum
or the covariance function of a family of Gaussian probability laws for the underly-
ing stochastic process. These probabiliy laws are uniquely determined by a corre-
sponding model and are then also parametrized by the parameters {A,C, C̄, Λ(0)},
{Ak, Bk} and (A,B,C, D) respectively.

There are basically two different approaches to the problem of fitting a model
to the data,

• The optimization approach, based on the principle of minimizing a suitable
distance function between the data5 and the probability law corresponding to
the model class. Well-known and widely accepted examples of distance func-
tions are the likelihood function of the data according to the particular model,
or the average squared prediction-error of the observed data corresponding to
a particular choice of a model in the model class. Minimization of these cri-
teria can (except in trivial cases) only be done numerically and hence the
direct methods lead to iterative optimization algorithms in the space of the
parameters, say the space of minimal (A,B,C, D) matrix quadruples, which
parametrize the chosen model class.

• The so-called Subspace identification approach. This is a two steps procedure
which in principle can be described as construction of a state process for the
observed process followed by linear regression and then by a noise parameters
identification step which requires the solution of a Riccati equation. This
method is based on stochastic realization theory.

5This terminology is a bit misleading. In reality one minimizes a suitable ”finite sample”
approximation of a distance function between the true law of the data and the law induced by the
model class. An example of distance function between probability measures which can be used to
this purposse is the Kullback-Leibler distance.
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12 Chapter 1. Introduction

From a statistical point of view the difference with the first approach is that
the estimation of the model parameters is not done by optimizing a likelihood
or other distance functions but can simply be seen as matching second order
moments. For instance, let

{Λ0,Λ1, . . . ,Λν} (1.8)

be a finite set of sample m×m covariance matrices estimated in some (as yet
unspecified) way from the m-dimensional sequence of observations (1.6). The
problem is of finding a minimal value of n and a minimal6 triplet of matrices
(A,C, C̄), of dimensions n× n, m× n and m× n respectively, such that

CAk−1C̄ ′ = Λk k = 1, 2, . . . , ν (1.9)

The solution of these equations can be accomplished by modern versions of
the famous Ho-Kalman algorithm which are simple and numerically reliable.
Estimation by solving (3.72) is an istance of estimation by the method of
moments described in the statistical textbooks [13, p. 497], which is a very
old idea, for example used extensively by K. Pearson in the beginning of the
20th century. The underlying priciple is close in spirit to the wide-sense setting
that we are working in this book. It does not guarantee anything like minimal
distance between the ”true” and the model distributions but rather imposes
that the parameter estimates match exactly the sample second order moments.
These can easily be chosen at least ”consistent” (i.e. tending to the true
second order moments as the sample size goes to infinity) so the method gives
consistent estimates in the sense that ν true moments Λ0(τ) τ = 1, 2, . . . , ν
will be described exactly as N → ∞. In other words the first ν lag values of
the true covariance function will be matched exactly.

On the other hand estimation by the method of moments is in general ”non-
efficient” and it is generally claimed in the literature that one should expect better
results (in the sense of smaller asymptotic variance of the estimates) by optimization
methods. In practice this is true only to a point since the likelihood function or
the average prediction error are computable only if we assume Gaussian models (or
linear predictors which roughly amounts to the same) and this in the long run the
optimization generally leads to matching covariances anyway. Asa drawback there
is instead the structural handycap of iterative optimization methods which may
get stuck in local minima and may well provide sub-optimal parameter estimates, a
rather hard phenomenon to detect. The subspace approach offers in this respect the
major advantage of converting the nonlinear parameter estimation phase which is
the core of maximum-likelihood or prediction-error model identification to a partial
realization problem, involving essentially the factorization of a Hankel matrix of
estimated covariances, and the solution of a Riccati equation, both much better
understood problems for which efficient numerical solution techniques are available.

6Recall that (A, C, C̄) is minimal if (A, C) is completely observable and (A, C̄′) is completely
reachable.
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1.2. Basic issues in subspace identification of time-series 13

There is one point of warning however. In the literature the covariance match-
ing problem is invariably treated as a minimal partial realization problem. The
triplet (A,C, C̄) is computed by minimal factorization of the block Hankel matrix
corresponding to the data (1.8) as follows:

H =


Λ1 Λ2 Λ3 · · · Λj

Λ2 Λ3 Λ4 · · · Λj+1

...
...

...
. . .

...
Λi Λi+1 Λi+2 · · · Λi+j−1

 =


C

CA
...

CAi−1




C̄
C̄A′

...
C̄(A′)j−1


′

, (1.10)

where i + j = ν and |i− j| ≤ 1. An infinite sequence

{Λ0,Λ1,Λ2, . . .} (1.11)

is then obtained from (1.8) by setting CAk−1C̄ ′ = Λk for k = ν + 1, ν + 2, . . .,
this sequence is called a minimal rational extension of the finite sequence (1.8).
The elements of (3.73) are the coefficients of the Laurent expansion of the rational
function

Z(z) = C(zI −A)−1C̄ ′ +
1
2
Λ0 =

1
2
Λ0 + Λ1z

−1 + Λ2z
−2 + . . . (1.12)

about z = ∞.
Now Z(z) is expected to be the positive-real part of a spectral density matrix,

but the usual deterministic realization algorithms based on factorization of a Hankel
matrix do not take into account any positivity constraints. In fact the rational
function (3.74) obtained by solving the partial realization equations (3.72) may not
only fail to be positive-real but the relative A matrix may even fail to be stable [10].
So the second approach introduces some nontrivial mathematical questions related
to positivity of the estimated spectrum. Therefore there is a price to be paid for
the simplification allowed by the two-steps approach.

Note that positivity is the natural condition insuring solvability of the Linear
Matrix Inequality (or, in particular, of the Riccati equation) required to compute
state-space models of the signal from the covariance estimates.

The correct approach would in principle require to compute a rational posi-
tive extension of the finite covariance sequence (1.8), of minimal McMillan degree.
Although there are methods to compute positive extensions, the most famous of
which is the so-called ”maximum-entropy” extension, based on the Levinson algo-
rthm, these methods produce functions of very high complexity, in fact generically
of the highest possible degree. Unfortunately there are no algorithms so far which
compute positive extensions of minimal degree. A stochastic model reduction step
would then be necessary but this is again, a rather underdeveloped area of system
theory. For a discussion of these matters see [?].

In these notes we shall be content of discussing the deterministic partial real-
ization approach. Once a positive triple (A,C, C̄) is estimated, getting a state-space
model is just a matter of solving the LMI or the appropriate Riccati equation as seen
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14 Chapter 1. Introduction

in section 2.3. If the method breaks down (typically the Riccati equation fails to
have a solution becouse of nonpositive-realness of the estimated (A,C, C̄)) there is
a signal which th emethod gives, pointing to inadequacy of the selected parameters
(regression horizons and model order)

Historical remarks Stochastic realization based identification was apparently first
advocated in a systematic way by Faurre [21]; see also [22, 23]. More recent work is
based on Singular Value Decomposition and canonical correlation analysis [2] and
is due to Aoki [9], and van Overschee and De Moor [60] and Verhaegen [?]. There
are versions of the algorithms based on canonical correlation analysis which apply
directly to the observed data without even computing the covariance estimates [60].

The work of van Overschee and De Moor introduces an interesting ”geometric”
approach based on state-space construction and on the choice of particular bases
in the state space. The system matrices are computed after the choice of basis by
formulas analog to (2.12). This procedure on one hand makes very close contact
with the geometric state-space construction ideas discussed in section ??, ?? and on
the other hand seems completely unrelated to the partial realization and covariance
extension approach mentioned above.

In this book we shall analyze the geometric ”Subspace” approach of [60] and
show that it is very much related to the basic partial realization plus stochastic
realization idea. In fact we shall show that the two approaches are equivalent and
lead to exactly the same formulas.
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Chapter 2

State Space Models of
Stationary Processes

Wide-sense stationary second-order processes with a rational spectral density matrix
provide a natural class of finitely-parametrized stochastic models which are useful
for the identification of a wide class of observed data. The scope of this chapter is
to study these models in some detail.

2.1 State space models
In this and in the following two sections we shall review the basic facts about finite-
dimensional state-space models of stationary random processes7.

Consider a linear stochastic system

(Σ)
{

x(t + 1) = Ax(t) + Bw(t)
y(t) = Cx(t) + Dw(t) (2.1)

where (A,B, C, D) are constant matrices and {w(t)} is p-dimensional normalized
white noise , i.e.

E {w(t)w(s)>} = Iδts E {w(t)} = 0.

In this book we shall think of (2.1) exclusively as a representation of the output
process y. For this reason it will be often called a stochastic realization of the
process y. This representation involves auxiliary variables such as the state process
x and the generating white noise w which are processes of a simpler structure than
y and are introduced at the purpose of giving the model a particular structure and
particular properties. These auxiliary variables may be chosen in different ways or
even eliminated producing a different model structure. For example, by eliminating
x from the equations (2.1) one obtains an ”input-output” representation whereby
y appears as the result of processing the white noise signal w through a linear
time-invariant filter

7The material in the two next sections is a slightly remastered and compressed version of
previous joint work with Anders Lindquist [48][49][50]. Proofs will be skipped whenever available
in the original sources.

15
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16 Chapter 2. State Space Models

w−→ W
y−→ (2.2)

of transfer function
W (z) = C(zI −A)−1B + D. (2.3)

We shall for the moment make the assumption that the matrix A is stable, i.e. the
eigenvalues of A all lie inside the unit circle (|λ(A)| < 1) and that the input noise
has been applied to the system for an infinitely long time, i.e. starting at t = −∞.
In these conditions the effect of initial conditions has died off and the system is in
statistical steady state. Then

x(t) =
t−1∑

j=−∞
At−1−jBw(j)

and

y(t) =
t−1∑

j=−∞
CAt−1−jBw(j) + Dw(t)

In particular, x and y are jointly stationary8.
The system (2.1) can be regarded as a linear map defining x(t) and y(t) as

linear functionals of the input noise w. In fact, whenever the matrix A is stable,
x(t) and y(t) will depend only on the past of the input noise, i.e. only on the
random variables {w(s); s ≤ t}. We shall say that, in this case, the map is a causal
map.

Consider the linear vector space of second order zero-mean random variables
generated by the scalar components of the process w, i.e. all finite linear com-
binations of the infinite family of (scalar) random variables {wi(t) | t ∈ Z; i =
1, 2, . . . , p}. The closure of this vector space with respect to the norm induced by
the inner product 〈ξ, η〉 = E {ξη} is an (infinite dimensional) Hilbert space denoted
H(w). Convergence in this space is commonly called convergence in mean square.
We shall write

H(w) = span{wi(t) | t ∈ Z; i = 1, 2, . . . , p} (2.4)

Here the notation span will always denotes the closure in mean square of the vector
space generated by linear combinations of the random variables listed inside the
brackets. Likewise, the symbol H(y) will denote the Hilbert space generated by
an arbitrary wide-sense zero mean process y. It will be convenient to think of the
(components of ) x and y as elements of H(w). Since all random quantities related
to the model (2.1) belong to H(w), this space is called the ambient space of the
stochastic system (Σ).

For any stationary process y, we can formally define a shift operator U , a
linear map which is initially defined on the random variables of the form a>y(t),
as temporal translation i.e. Ua>y(t) = a>y(t + 1). The map is then extended

8Stationarity here is always meant in the “wide sense” of second order statistics. In particular
x and y being jointly stationary means that the covariance matrix E {[x(t)>y(t)>]>[x(s)>y(s)>]}
depends only on t− s.
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2.1. State space models 17

by linearity and continuity to the whole Hilbert space H(y) [67]. Note that U is
norm preserving (as the variances of each component of y(t) and y(t+τ) are equal)
and the extension is in fact a unitary operator, that is, a linear operator which
preseves inner product and is (automatically one to one and) onto H(y). The pair
(H(y), U) is called a stationary Hilbert space. By definition a stationary Hilbert
space contains all translates U tξ of any random variable ξ which belongs to it. Of
course the ambient Hilbert space H(w) can likewise be equipped with a unitary
shift U with respect to which the processes x and y are also stationary.

The past subspaces at time t of x and y

H−
t (x) = span{xi(s) | s < t; i = 1, 2, . . . , n} (2.5)

H−
t (y) = span{yi(s) | s < t; i = 1, 2, . . . ,m} (2.6)

are both contained in H−
t (w) (causality) and hence the future space of w

H+
t (w) = span{wi(s) | s ≥ t; i = 1, 2, . . . ,m}

will be orthogonal to (i.e. uncorrelated with) both H−
t (x) and H−

t (y).
The finite dimensional subspace of H(w)

Xt = span{x1(t),x2(t), . . . ,xn(t)} t ∈ Z,

is called the state space of the system (2.1) at the instant t.
In the following we shall always suppose that (A,B, C, D) in (2.3) is a minimal

realization of W . In other words we shall assume that (A,B) is reachable and (C,A)
is observable. Then, setting

P = E {x(0)x(0)>},

it follows from stationarity that P = E {x(t)x(t)>} for all t, and hence the first
equation in (2.1) yields

P = APA> + BB>, (2.7)

which is a Lyapunov equation. Since |λ(A)| < 1 the sum P =
∑∞

j=0 AjBB>(A>)j ,
converges and, as it is easy to show, it is a solution of (2.7). In fact, P is just the
reachability Gramian of Σ. But (A,B) is reachable, and hence P > 0. This implies
that {x1(t),x2(t), . . . ,xn(t)} is a basis in Xt.

Notations We shall use the symbol ∨ to denote vector sum of subspaces, + to
denote direct sum and ⊕ to denote orthogonal vector sum. The orthogonal com-
plement of a subspace A in the ambient space under consideration will be denoted
by A⊥. The future spaces always contain the present while the past does not [this
convention will be followed generally with the only exception of Markov processes
where both past and future must contain the present].

Several subspace constructions in the following are defined at some fixed refer-
ence time; by stationarity however they carry over to arbitrary time instants and we
shall always implicitly mean that the relevant definition is extended by stationarity
to the whole time axis.
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18 Chapter 2. State Space Models

Normally the reference time will be taken to be t = 0. To simplify notations
the subscript t = 0 will normally be dropped. The symbols H+ and H− will denote
the future and past spaces at time 0 of the process y. The orthogonal projection
onto a subspace S will be denoted E S or E [. | S]. For example, if ξ ∈ H(w) and
Z ⊂ H(w) is spanned by the components of the random vector z, then assuming
the components of z are linearly independent

EZξ = E{ξz′}(E{zz′})−1z. (2.8)

For Gaussian random variables this coincides with the conditional expectation
given the σ-algebra generated by S. The orthogonal projection of a subspace A onto
another subspace B is

E BA := span {E Ba | a ∈ A}

Operators like E S or U are also applied to vector valued random variables with the
understanding that in this case they will act on the single components in an obvious
way.

The Coordinate-free viewpoint The coordinate-free or geometric viewpoint lies
at the grounds of the subspace identification methods which will be discussed in
this book.

The main idea here is that building state-space models of a random process
(i.e. stochastic realization) is essentially a matter of constructing a space X with
properties which make it the stochastic analog of a deterministic state space. Once
this first basic step is done, the rest is just a matter of choosing coordinates in X
and the causality structure of the model. The basic notion in this respect is the
following.

Definition 2.1. Let X be a subspace of some fixed stationary Hilbert space H of
second-order random variables containing H(y). Define

Xt := U tX, X−
t := ∨s≤tXs, X+

t := ∨s≥tXs.

The subspace X is Markovian if the variables in the past, X−, and in the future,
X+, are conditionally uncorrelated (i.e. orthogonal) given X, which is written as

X− ⊥ X+ | X. (2.9)

A Markovian Splitting Subspace X for the process y is a subspace of H making the
joint past H− ∨X− and the joint future space H+ ∨X+ conditionally uncorrelated
(i.e. orthogonal) given X, denoted,

H− ∨X− ⊥ H+ ∨X+ | X. (2.10)

A Markovian Splitting subspace is of course Markovian. Any basis vector
x(0) := [x1(0),x2(0), . . . ,xn(0)]> in a Markovian splitting subspace X generates a
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2.1. State space models 19

stationary Markov process x(t) := U tx(0), t ∈ Z which serves as a state process of
the the process y see [?] for a deeper discussion of this concept.

A subspace X ⊂ H is called proper, or purely non deterministic if there are
vector white noise processes w and w̄ such that

X− = H−(w), X+ = H+(w̄)

A stationary process y is similarly called purely non deterministic. if H− and
(respectively) H+ can be represented as the past space (at time zero) and the
future space (at time zero) of a vector white noise processes. Clearly, if both X and
the process y are purely non deterministic then

H− ∨X− = H−(w), H+ ∨X+ = H+(w̄)

where the white noises w and w̄ are in general different than those previously
encountered (since they must now generate larger spaces). In fact we have

H− ∨X− = H−(z) where z(t) :=
[

x(t)
y(t− 1)

]
(2.11)

We recall from [67], that an equivalent characterization of joint pure-non-determinism
is that

∩tH
−
t (z) = {0}, and ∩t H+

t (z) = {0}.

.
The fundamental characterization in this setting is the following.

Theorem 2.2. The state space X of any stochastic ralization (2.1) is a Markovian
Splitting Subspace for the process y .

Conversely, given a p.n.d. process y and any proper Markovian splitting sub-
space X for y, of finite dimension n, to any choice of basis x = [x1,x2, . . . ,xn ]>

in X there corresponds a stochastic ralization of y of the type (2.1).

Proof. We shall only prove the converse statement. Let z be the joint vector process
defined in (2.11) whose past space is, by assumption, generated by some vector
white noise w. Decompose H−

t+1(w) = H−
t (w) ⊕ H(w(t)), which by assumption

is the same as H−
t+1(z) = H−

t (z) ⊕ H(w(t)). This leads to a decomposition of
z(t + 1) ∈ H−

t+1(z) as[
x(t + 1)

y(t)

]
= E

[[
x(t + 1)

y(t)

]
| H−

t (z)
]

+ E
[[

x(t + 1)
y(t)

]
| w(t)

]
By the Markovian splitting property, in the first projection we can substitute
H−

t (z) = H−
t ∨ X−

t with just the present state Xt ≡ H(x(t). The linearity of
the projections implies that there are matrices A,C and B,D such that

E
[[

x(t + 1)
y(t)

]
| Xt

]
=

[
A
C

]
x(t), E

[[
x(t + 1)

y(t)

]
| w(t)

]
=

[
B
D

]
w(t).
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20 Chapter 2. State Space Models

which leads to a state-space model of the type (2.1).

A particular instance of this representation is rephrased in the corollary below.
Note that, although we use the same generic symbol w for white noise, the two white
processes in Theorem 2.2 and in the corollary below will in general be different.

Corollary 2.3. If x is a basis in a finite-dimensional proper Markovian subspace X,
the Markov process x(t) := U tx is purely non determinstic and can be represented
by a linear equation of the type

x(t + 1) = Ax(t) + Bw(t)

If (A,B) is a reachable pair, then A has all its eigenvalues strictly inside of the unit
circle.

Proof. Since x is a basis, its variance matrix P := E {x(t)x(t)>} is positive definite
and satisfies the Lyapunov equation P = APA> + BB>. By reachability it must
hold that A is stable.

The coefficient matrices A,C are uniquely determined by the choice of basis
in the state space while B,D also depend on the choice of the generating noise
w. There are simple formulas expressing them in terms of x and y given in (2.12)
below.

A = Ex(t + 1)x(t)>P−1 B = Ex(t + 1)w(t)> (2.12a)
C = Ey(t)x(t)>P−1 D = Ey(t)w(t)>. (2.12b)

A Markovian splitting subspace is minimal if it doesn’ t contain (properly)
other Markovian splitting subspaces. Contrary to the deterministic situation mini-
mal Markovian splitting subspaces are non unique. Two very important examples
are the forward and backward predictor spaces (at time zero):

X− := E H−
H+ X+ := E H+

H− (2.13)

for which we have the following characterization [49].

Proposition 2.4. The subspaces X− and X+ are minimal Markovian splitting
subspaces. In fact, they are the minimal Markovian splitting subspaces contained in
the past H−, and, respectively, in the future H+, of the process y.

The abstract definitions (2.13) are valid for infinite dimensional (nonrational)
processes. If the process has a rational spectrum and hence admits a (minimal)
realization of dimension n, then the subspaces X− and X− are finitely generated.
In fact,

Proposition 2.5. If the process y admits a realization (2.1) of dimension n then

(Xt)− = span {E
[
y(t + k) | H−

t

]
; k = 0, 1, . . . , ν} (2.14)
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2.1. State space models 21

where ν is the observability index9 of the pair (A,C). In fact, X− is generated
by the n components of the (one step ahead predictor) estimate of the state of any
realization of y of the type (2.1). In formulas,

(Xt)− = span {x̂k(t); k = 1, 2, . . . , n}, x̂(t) := E
[
x(t) | H−

t

]
The subspace X+ admits a dual characterization exchanging past with future.

The estimate x̂(t) := E
[
x(t) | H−

t

]
is actually the state process of the inno-

vation or steady-state Kalman filter realization which will be discussed at the end
of this Chapter.

The causality of the representation (2.1) can be expressed geometrically as the
orthogonality relation

H+
t (w) ⊥ X−

t ∨H−
t (y) (2.15)

for all t ∈ Z. One also says that Σ is a forward model or that it evolves forward in
time. Note in particular, that E {x(t)w(t)>} = 0.

Backward or Anticausal realizations are models where instead the past of the
driving white noise is orthogonal to the future of the state and output processes.
These models are useful in several instances and are as legitimate representations
of y as the forward models studied so far. As a matter of fact, a random signal
has no ”preferred direction of time” or causality built in and admits many different
sorts of causality structures, see [66].

Theorem 2.6. [48, 47] Let x̄ be any basis in X and let x̄(t) = U tx̄; t ∈ Z be the

corresponding stationary vector Markov process. The joint process
[

x̄(t)
y(t)

]
is also

Markov and admits a backward representation[
x̄(t− 1)
y(t− 1)

]
=

[
Ā
C̄

]
x̄(t) +

[
B̄
D̄

]
w̄(t− 1) (2.16)

where w̄ is the generating white noise process of H+∨X+, i.e. H+∨X+ = H+(w̄)
and

Ā = E x̄(t− 1)x̄(t)>P̄−1 B̄ = E x̄(t)w̄(t)> (2.17)
C̄ = Ey(t− 1)x̄(t)>P̄−1 D̄ = Ey(t)w̄(t)> (2.18)

where P̄ = E x̄(t)x̄(t)>.
Taking x̄(t) as the dual basis of the state of a forward realization x(t), i.e.

E x̄(t)x(t)> = I

9The smallest integer r for which

rank

26664
C

CA
.
.
.

CAr

37775 = n.
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which implies
x̄(t) = P−1x(t), P̄ = P−1,

the matrices of the backward representation (Ā, B̄, C̄, D̄) are related to the forward
realization parameters (A,B,C, D) by a one-to-one transformation. In particular,

Ā = A> C̄ ′ = APC> + BD> (2.19)

Proof. . The proof is symmetric to that of Theorem 2.2 and is based on the
orthogonal decomposition H+

t−1(z) = H+
t (z)⊕H(w̄(t− 1)) which implies[

x̄(t− 1)
y(t− 1)

]
= E

[[
x̄(t− 1)
y(t− 1)

]
| H+

t (z)
]

+ E
[[

x̄(t− 1)
y(t− 1)

]
| w̄(t− 1)

]
By the Markovian splitting property, in the first projection we can substitute
H+

t (z) = H+
t ∨ X+

t by the present state X̄t ≡ H(x̄(t)). The linearity of the
projections implies that there are matrices Ā, C̄ and B̄, D̄ such that

E
[[

x̄(t− 1)
y(t− 1)

]
| Xt

]
=

[
Ā
C̄

]
x̄(t), E

[[
x̄(t− 1)
y(t− 1)

]
| w(t)

]
=

[
B̄
D̄

]
w(t).

which leads to a state-space model of the type (2.16). Formulas (2.19) follow by
using the forward model expressions in (2.17).

The forward and backward realizations are asymmetric because of the asym-
metry in the definition of past and future of y. This asymmetry is needed in order
to avoid unnecessarily high state space dimension due to overlap of past and future
spaces of the process. For, with the symmetric choice of including the present both
in the future and in the past, a p-dimensional white noise process would have a
minimal realization with a state space of dimension p. The choice here is to have
the present only in H+(y). However the Markov property requires instead symme-
try of past and future so, for Markov processes, it is convenient and natural to have
the present in both past and future spaces.

Now the past space at time zero of the joint process[
x(t)

y(t− 1)

]
is X− ∨ H− which checks with the Markov convention for the past (however the
future of the joint process does not span X+ ∨H+ but instead X+ ∨H+

−1). Dually
the future space at time zero of [

x̄(t)
y(t)

]
is exactly X+ ∨H+ according to the Markov convention. However the past space
of the barred process again is not chosen according to the Markov convention being
equal to X− ∨H−

−1 (which does not include the present of y).
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A more symmetric expression for the backward realization is obtained by
shifting time forward by one unit and introducing a shifted state ξ(t) := x̄(t + 1)
so that (2.16) can be rewritten[

ξ(t− 1)
y(t)

]
=

[
Ā
C̄

]
ξ(t) +

[
B̄
D̄

]
w̄(t)

These models will be useful to derive the backward Kalman filter later.

2.2 Spectral Factorization
We have so far collected enough evidence to the fact that, even if we restrict to
minimal realizations i.e. models of the smallest possible dimension of the state space,
there are in general many non-equivalent (minimal) state-space representations of
the same process y. In fact we may have minimal representations in which the input
noise processes have different dimensions. This is a significant departure from the
usual deterministic linear modeling setup and brings up a problem of model choice
which should be well understood before discussing any statistical methodology for
identification. Motivated by this observation, in this section we shall study the
family of shaping filter representations (2.2) of the process y.

The covariance sequence of a process y admitting a representation of the form
(2.1), i.e.

Λ(k) := E {y(t + k)y(t)>} = E {y(t)y(0)>}
is readily computed using the results of the previous section. It is easy to see that

Λ(k) = CAk−1C̄> for k > 0, Λ(0) = CPC> + DD> (2.20)

where,
C̄> = APC> + BD>. (2.21)

is exactly the C matrix of the ”backward” model (2.19), which checks with the
reverse time covariance expression

Λ(−k) = Λ(k)> = C̄(A>)k−1C> for k > 0.

Hence it follows that the infinite block Hankel matrix

H∞ :=


Λ(1) Λ(2) Λ(3) · · ·
Λ(2) Λ(3) Λ(4) · · ·
Λ(3) Λ(4) Λ(5) · · ·

...
...

...

 (2.22)

admits a facorization

H∞ :=


C

CA
CA2

CA3

...




C̄

C̄A>

C̄(A>)2

C̄(A>)3
...


>

(2.23)
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and hence has finite rank bounded above by the dimension n of the state space
Xt of the system Σ. Whether or not rank H∞ = n depends on the reachability
of the pair (A, C̄>), which, as we shalll see later, is equivalent (assuming that
(A,C) is observable) to stochastic minimality of the realization (2.1) of the process
y [47, 49, 50]. Note that both (A,C) and (A>, C̄) are observable, if and only if the
deterministic realization of Λ in (2.20) is minimal. Hence,

Proposition 2.7. If both (A,C) and (A>, C̄) are observable, the backward state-
output matrix C̄ is uniquely determined by the forward parameters (A,C).

This clearly follows since, under the stated assumptions, fixing one of the two
factors in the factorization (2.23) uniquely determines the other.

For the purely non-deterministic process y, the spectral distribution is abso-
lutely continuous [67] and admits a density. In our case the m×m spectral density
of y can even be computed as an ordinary Fourier (or z-) transform i.e.

Φ(z) =
∞∑

t=−∞
Λ(t)z−t.

Since A is stable the series is absolutely convergent in a neighborhood of the unit
circle {|z| = 1} of the complex plane and since Λ(−k) = Λ(k)>, Φ(z) has the
property

Φ(1/z) = Φ(z)>

which sometimes is called para-Hermitian symmetry. We may write

Φ(z) = Φ+(z) + Φ+(1/z)> (2.24)

where Φ+(z) is the transform of the ”causal” tract (2.20) of the covariance. For
symmetry we have assigned one half of the constant term Λ(0) to the causal part of
Λ and the other half to the anticausal component. It is evident that of Φ+(z) is a
rational matrix function, analytic outside of the unit circle, given by the expression

Φ+(z) =
1
2
Λ(0) + Λ(1)z−1 + Λ(2)z−2 + · · ·

= C(zI −A)−1C̄> +
1
2
Λ(0). (2.25)

The positivity condition of the sequence of Toplitz matrices (1.4) is equivalent to
positive semidefiniteness of Φ(z) on the unit circle i.e.

Φ+(ejθ) + Φ+(e−jθ)> ≥ 0 θ ∈ [−π, π] (2.26)

which can be rewritten as <eΦ+(ejθ) ≥ 0. From this, since Φ+(z) has by construc-
tion all of its poles strictly inside the unit circle it is seeen that Φ+(z) is a positive
real function. We shall call Φ+ the positive real part of Φ.

Proposition 2.8. The transfer function W of any state space representation of
the process y of the type (2.1) is a spectral factor of Φ, i.e.

W (z)W (1/z)> = Φ(z). (2.27)
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There is a straightforward proof of this result in case of the A matrix is
stable, based on the well-known formula for computing the output spectrum of a
linear time-invariant filter with stationary input (this formula is sometimes called
the Wiener-Kintchine theorem).

There is however also a purely algebraic proof based on an astute decom-
position of the product W (z)W (1/z)> which works in general for proper rational
transfer functions and does not require stability of A and stationarity of the signals
involved (of course in this case the “spectrum” Φ(z) is defined by the formulas (2.24)
and (2.25) and need not have a probabilistic meaning).

Proof. A straightforward calculation shows that

W (z)W (1/z)> = [C(zI −A)−1B + D][B>(z−1I −A>)−1C> + D>]
= C(zI −A)−1BB>(z−1I −A>)−1C>

+ C(zI −A)−1BD> + DB>(z−1I −A)−1C> + DD>

Now, using a famous trick apparently invented by Kalman and Yakubovich, bring
in the identity

P −APA> = (zI −A)P (z−1I −A>) + (zI −A)PA> + AP (z−1I −A>), (2.28)

which, in view of (2.7), yields

W (z)W (1/z)> = CPC> + DD> + C(zI −A)−1(APC> + BD>)
+ (CPA> + DB>)(z−1I −A>)−1C>

= Φ+(z) + Φ+(1/z)>. (2.29)

where the last equality follows from (2.21). 2

Note that the proof only requires existence of a solution to the Lyapunov
equation P = APA> + BB>. In case A is stable this is of course guaranteed. In
addition, W has all its poles inside the unit circle. Such a W is called a stable or
analyitic spectral factor.

We shall need to consider also antistable spectral factors W̄ (z), i.e. (rational)
solutions of the spectral factorization equation (2.27), having all poles ouside of the
unit circle. These spectral factors can be characterized as the stable factors G(z)
of the transpose spectrum Φ(z)>, subjected to the transformation of variable

W̄ (z) = G(1/z)

so that W̄ (z)W̄ (1/z)> = G(1/z)G(z)> = Φ(z). Antistable spectral factors turn out
to be exactly the transfer functions of backward realizations of y, i.e. state-space
representations of the form (2.16). For, the transfer function of a backward model
(2.16) can be written

W̄ (z) = C̄(z−1I − Ā)−1B̄ + D̄

where the Ā matrix is stable, i.e. has all eigenvalues inside of the unit circle. Since
the realization (2.25) of Φ+ induces a natural transpose realization for the transpose
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Φ+(z)>, namely

Φ+(z)> = C̄(zI −A>)−1C> +
1
2
Λ(0), (2.30)

we see that the dual choice of basis of Theorem 2.6 for the backward models is a
natural one. Hence by just switching symbols according to the correspondence

A ↔ A> C ↔ C̄,

one obtains characterizations of the family of antistable spectral factors and the
corresponding backward models which are completely analogous to those for stable
spectral factors and forward realizations.

An important observation to keep in mind is that even though we assumed
reachability and observability of (A,B,C) in (2.1), the pair (A, C̄>) may not be
reachable and hence

Φ+(z) = C(zI −A)−1C̄> +
1
2
Λ(0)

may not be a minimal realization.
We recall that the McMillan degree δ(F ) of a proper rational matrix function

F (z) is just the dimension of a minimal realization of F (z). We have the following
proposition relating the McMillan degree of a spectral factor to that of Φ. The
proof can be found in Anderson’s paper [5].

Proposition 2.9. For any spectral factor W , it holds that

δ(W ) ≥ 1
2
δ(Φ) = δ(Φ+). (2.31)

Whenever equality holds, we say that W is a minimal spectral factor of Φ.
Well-known examples of minimal stable spectral factor are the minimum

phase, sometimes also called the outer, and the maximum phase spectral factors,
denoted W−(z) and W+(z) respectively. Both W−(z) and W+(z) are stable (i.e.
analytic in {|z| ≥ 1}) but the first has no zeros outside of the closed unit disk while
the second has instead no zeros inside the open unit disk.

Dually, there are unique minimal antistable or co-analytic (i.e. analytic in
{|z| < 1} factors with all the zeros outside or, respectively, inside of the unit circle,
denoted10 W̄+ and W̄− respectively. The factor W̄+ is commonly called conjugate
minimum-phase or co-outer.

Theorem 2.10. All stable rational spectral factors can be constructed by postmul-
tiplying the minimum phase factor by a stable rational matrix function Q(z) such
that

Q(z)Q(z−1)> = I.

10The rationale for the subscripts will become clear in a moment.
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Dually, all antistable rational spectral factors can be constructed by postmultiplying
the minimum phase factor by an antistable rational matrix function Q̄(z) such that

Q̄(z)Q̄(z−1)> = I

Transfer function like Q or Q̄ are called all-pass . Stable and square all-pass
matrix functions are called inner. The result above goes back to Youla’ s classical
1961 paper [76].

2.3 Spectral Factorization and the LMI
In this section we consider the problem of computing all minimal stable spectral
factors W of a rational spectrum by computing the corresponding (minimal) real-
izations say W (z) = D + H(zI − F )−1B. (The condition that Φ is proper implies
that all rational spectral factors are proper so that they have representations of this
form). To solve this problem, we shall assume we are given a minimal realization

Φ+(z) = C(zI −A)−1C̄> + J,

where J + J> = Λ(0) and A is a stable matrix. We shall solve the spectral factor-
ization equation (??), giving a procedure to compute (F,H, B, D) from the “data”
(A,C, C̄, Λ(0)).

From the expression we have found earlier for the covariance function it should
be clear that F and H could be chosen equal to A and C for all factors. Hence the
problem can be reduced to finding just the B and D matrices. This is the content
of the following theorem.

Theorem 2.11. Let (A,C, C̄>) be a minimal realization of the causal part of
the spectrum. There is a one-to-one correpondence between minimal stable spectral
factors of Φ(z), and symmetric n×n matrices P solving the Linear Matrix Inequality

M(P ) :=
[

P −APA> C̄> −APC>

C̄ − CPA> Λ(0)− CPC>

]
≥ 0 (2.32)

in the following sense:
Corresponding to each solution P = P> of (2.32), which is necessarily positive

definite, consider the full column rank factorization M(P ),

M(P ) =
[

B
D

]
[B>D>] (2.33)

and the rational matrix W parametrized in the form

W (z) = C(zI −A)−1B + D. (2.34)

Then (2.34) is a minimal realization of a stable minimal spectral factor of Φ(z).
Conversely, for each stable minimal spectral factor W , with minimal realiza-

tion D + H(zI − F )−1B we can choose a basis such that F = A and H = C, and
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the corresponding pair
[

B
D

]
together with the solution P = P> of the Lyapunov

equation (2.7) satisfy the matrix factorization equation (2.33) and hence the Linear
Matrix Inequality (2.32).

Proof. Let P = P> be a solution of (2.32) and B,D be computed as in (2.33). Then
P solves the Lyapunov equation (2.7) and hence P > 0. Then forming the product
W (z)W (1/z)> it follows from the equation (2.29) above that W = D+(zI−A)−1B
is a stable spectral factor. Note that (A,B) must be reachable for otherwise the
McMillan degree of W , would be δ(W ) < n = 1

2δ(Φ) which contradicts (2.31).
Therefore W = D + (zI −A)−1B is a minimal spectral factor.

To show the converse, assume W = D + H(zI − F )−1B is a minimal stable
spectral factor. Then a P = P> > 0 exists solving the Lyapunov equation BB> =
P − FPF> and hence from the spectral factorization equation and the Kalman-
Yakubovich identity (2.29) we get

Φ+(z) + Φ+(1/z)> = W (z)W (1/z)> =[
H(zI − F )−1 I

] [
BB> BD>

DB> DD>

] [
(z−1I − F>)−1H>

I

]
=

HPH> + DD> + H(zI − F )−1(FPH> + BD>)+
+(HPF> + DB>)(z−1I − F>)−1H>.

which implies that Φ+ is also realized by a necessarily minimal (since we are consid-
ering minimal spectral factors for which δ(W ) = δ(Φ+)) matrix triple of the form
(F,H, H̄). Therefore(F,H) and (A,C) are similar and we may take F = A and
H = C for all minimal spectral factors.

Rearranging the Lyapunov equation for P , the definition of C̄, and the ex-
pression Λ(0)−CPC> = DD> in matrix form (see equation (??) it is then obvious
that (P,B,D) satisfy (2.33) and hence P is a positive definite solution of (2.32).

Note that the full rank factors in (2.33) are unique only modulo right multiplication
by orthogonal transformations, but this is of no harm since the same indeterminacy
holds for spectral factors.

The equations (2.33) are sometimes called the positive real equations, and can
be written[

P −APA> C̄> −APC>

C̄ − CPA> Λ(0)− CPC>

]
︸ ︷︷ ︸

M(P )

=
[

B
D

] [
B> D> ]

≥ 0 (2.35)

so we may look at the linear function M : Rn×n → R2n×2n, which depends on the
known parameters (A, C̄, C, Λ(0)), as a map from P to (B,D) pairs.

One immediate consequence of Theorem 2.11 is that the size of the minimal
spectral factors can be computed from the rank of the corresponding matrix M(P ).

In fact if we agree to consider only solutions
[

B
D

]
of full column rank, it follows
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from the the factorization above that the corresponding W (z) must be m× p with
p = rankM(P ).

It can be shown [25] that the set of solutions to the LMI (2.32)

P := {P | P> = P, M(P ) ≥ 0}

is closed, bounded and convex. Later we shall show that there are two special
elements P−, P+ ∈ P so that

P− ≤ P ≤ P+ for all P ∈ P

where P1 ≤ P2 means that P2 − P1 ≥ 0 is positive semidefinite.
For completeness, we also state the following well-known result. We have made

it appear as a corollary to Theorem 2.11 although historically things went quite the
other way.
Positive Real Lemma (Kalman-Yakubovich-Popov). The family P is nonempty
if and only if Φ+ is positive real, i.e. (2.26) holds.

Therefore, in our case, P 6= ∅.

The Dual Positive-Real Equations A dual of Theorem 2.11 providing a one-to-one
and onto pararmetrization of minimal antistable factors in terms of the solutions P̄
of the dual Linear Matrix Inequality

M̄(P̄ ) :=
[

P̄ −A>P̄A C> −A>P̄ C̄>

C − C̄P̄A Λ(0)− C̄P̄ C̄>

]
≥ 0 (2.36)

can readily be obtained by replacing the realization Φ+(z) = C(zI − A)−1C̄> + J,
by the transpose realization representing Φ+(z)> and repeating verbatim the proof
above, see also [48].

Then to each P̄ ∈ P̄, solution set of the dual Linear Matrix Inequality (2.36)
there corresponds an antistable minimal spectral factor

W̄ (z) = C̄(z−1I −A>)−1B̄ + D̄,

where B̄, D̄ are determined by the analog of the matrix factorization (2.33).
In the following we shall assume that

R(P ) := Λ(0)− CPC> > 0 (2.37)

for all P ∈ P. This means that all minimal state space models of y have a full-
rank additive noise term in the output equation. In other words, the D matrix is
full rank and DD> > 0. This condition serves here only the purpose of avoiding
the use of pseudo-inverses and of simplifying the exposition. It is curious that a
natural characterization of the spectra for which this condition holds has taken a
long time to emerge in the literature (see however the recent paper [?]). Under this
assumption, if T := −(C̄> −APC>)R−1, a straight-forward calculation yields[

I T
0 I

]
M(P )

[
I 0

T> I

]
=

[
−Λ(P ) 0

0 R

]
,
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where
Λ(P ) = APA> − P + (C̄> −APC>)R(P )−1(C̄ − CPA), (2.38)

Hence, M(P ) ≥ 0 if and only if P satisfies the Riccati inequality

Λ(P ) ≤ 0, (2.39)

and
p = rankM(P ) = m + rank Λ(P ).

If P satisfies the algebraic Riccati equation

Λ(P ) = 0, (2.40)

rank M(P ) = m, and the corresponding spectral factor W is square m×m. These
P form a subfamily P0 in P. For all square spectral factors, the condition (2.37)
insures that all solutions of DD> = R(P ) must actually be square and invertible
so that from the positive real equations (2.33) we obtain

B = (C̄> −APC>)D−>, (2.41)

If P /∈ P0, W is rectangular and we can use instead a pseudo inverse of D>.

From spectral factors to stochastic realizations We now examine the implications
of the spectral factorization results on state space realizations. Let W and W̄ be
two minimal stable and antistable spectral factors. It is intuitively clear that such
factors play the role of transfer functions of ”shaping filters” of the type (2.2) for
the process y. To make this precise however we need to manifacture two white
noise processes w and w̄ serving as input white noise processes in the two filters,
in such a way that the output process will be equal to y. Naturally, the filter with
unstable transfer function W̄ represents in the time domain a convolution operator
integrating the white input ”backwards in time”. When W and W̄ are square and
invertible transfer functions, the white noise processes can be generated by passing
y through the inverse ”whitening filters” W−1 and W̄−1. The idea here is just the
same as the classical ”whitening-shaping” filter dicotomy of Bode and Shannon [?].
The “whitened” processes w, w̄ obtained in this way have in fact a flat spectral
density and can be shown to be well-defined linear functionals of y (if the spectral
factors have zeros on the unit circle this is however not trivial and requires the full
power of spectral representation theory, see [67] ).

In particular, since W− is outer, the corresponding white noise process w−
is a causal functional of y, i.e. w−(t − 1) ∈ H−

t (y) for all t, so that we actually
have H−

t (w−) = H−
t (y). For this reason, w− is called the (normalized) forward

innovation process of y [73]. Similarly, the white noise process w̄+ is an anticausal
functional of y, i.e. w̄+(t) ∈ H+

t (y), so that H+
t (w̄+) = H+

t (y) for all t; w̄+ is
called the (normalized) backward innovation process of y.

This picture generalizes also to all minimal (nonsquare) spectral factors. The
only difficulty in the generalization is the nonuniqueness of the white generating
noises w and w̄ associated to rectangular spectral factors. The difficulty can be
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overcomed by selecting the input noises in a fixed ambient space, which is small
enough to make the w’s unique but also big enough to allow a solution w of the
convolution equation y = Ww for each minimal spectral factor W (and W̄ ). See
[50].

Let us fix the minimal triplet (A,C, C̄) in the representation (2.20) (or equiv-
alently in (2.25)). We shall agree to parametrize all minimal stable spectral factors
W by fixing the (A,C) parameters in a minimal realization (A,B,C, D). These are
chosen the same (A,C) as in the factorization (2.20) for all W . The matrices (B,D)
of each spectral factor are obtained by solving the positive real equations (2.33) in
the given basis. Dually, we shall agree to represent any minimal antistable spectral
factor W̄ by the minimal realization (A>, B̄, C̄, D̄), where C̄ is given by (2.19) and
(B̄, D̄) are obtained by solving the corresponding dual positive real equations.

Once the white noise inputs are defined by the appropriate whitening filters,
it is obvious that the deterministic realizations of the spectral factors provide two
families of minimal state-space stochastic realizations of the process y, the first one
being causal and the second anticausal. The state processes of the two realizations
have as covariance matrices P and P̄ = P−1, equal to the two solutions of the
forward and dual LMI’s. Equivalently, P is the unique solutions of the Lyapunov
equation (2.7) and P̄ of

P̄ = A>P̄A + B̄B̄>

respectively. In this way we have fixed the state processes x and x̄ of the two families
of forward and backward minimal stochastic realizations of y. In fact the family of
bases are fixed in such a way that each backward basis x̄(t) at the instant of time t
is the dual basis of some forward state x(t). We shall call this a uniform choice of
basis in the family of all minimal Markovian splitting subspaces. It is not difficult
to check that, a family of bases is uniform if and only if each corresponding minimal
stochastic realization of y leads to a representation of the output covariance by the
same (minimal) triplet (A,C, C̄).

The steady-state Kalman filter realizations Let us fix the triplet (A,C, C̄) of
the realization (2.20) and let w− and w̄+ be the normalized white noise processes
corresponding to the spectral factors W− and W+ as explained in the previous
paragraph. The shaping filter W− leads to a forward stochastic realization{

x−(t + 1) = Ax−(t) + B−w−(t)
y(t) = Cx−(t) + D−w−(t)

(2.42)

with state covariance P−, and W+ leads to a backward realization{
x̄+(t− 1) = A>x̄+(t) + B̄+w̄+(t− 1)
y(t− 1) = C̄x̄+(t) + D̄+w̄+(t− 1)

(2.43)

with state covariance P̄+.
These two stochastic realizations will play an important role in what follows.

In fact, an important interpretation of these realizations is that,
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Theorem 2.12. The model (2.42) written in the form

x−(t + 1) = Ax−(t) + B−D−1
− [y(t)− Cx−(t)]

is the steady-state Kalman filter of any minimal realization (2.1) of y in the uniform
choice of basis induced by the factorization (2.20). In the same way

x̄+(t− 1) = A>x̄+(t) + B̄+D̄−1
+ [y(t− 1)− Cx̄+(t)]

is the backward steady-state Kalman filter of all minimal backward realizations
(2.16) in the uniform choice of basis induced by the factorization (2.20).

A short geometric proof of this result is given in [?][Proposition 5.4.11]. Here
we shall follow a more pedestrian approach which requires some basic facts about
Kalman filtering which are recalled below. Consider the Kalman filter of a model
(2.1)

x̂(t + 1) = Ax̂(t) + K(t)e(t)

where x̂(t) := E
[
x(t) | H−

t (y)
]

is the state estimate and

e(t) := y(t)− Cx̂(t)

is the innovation process. The Kalman gain is usually determined via the Riccati
difference equation describing the evolution of the state error covariance matrix
Q(t) := Var {x(t)− x̂(t)},

Q(t+1) = AQ(t)A>−
[
AQ(t)C> + BD>] [

CQ(t)C> + DD>]−1 [
AQ(t)C> + BD>]>

(2.44)
with initial condition Q(0) = P = E {x(0)x(0)>}. Because of orthogonality of the
state estimation error to x̂(t) the matrix Q(t) is equal to P − P̂ (t), where P̂ (t) is
the variance matrix of the state estimate. The Kalman gain is given by the formula

K(t) =
[
AQ(t)C> + BD>] [

CQ(t)C> + DD>]−1

Apparently all these expressions depend on P,B,D which vary with the particular
realization (2.1). However subtracting (2.44) from the Lyapunov equation (2.7)
determinig P , one can eliminate all these parameters and obtain an invariant form
of the Riccati equation

P̂ (t + 1) = AP̂ (t)A> −
[
C̄> −AP̂ (t)C>

] [
Λ(0)− CP̂ (t)C>

]−1 [
C̄> −AP̂ (t)C>

]>
(2.45)

which has initial condition P̂ (0) = 0 and depends only on the parameters (A,C, C̄, Λ(0))
of the output covariance. Similarly we get a model-independent expression for the
Kalman gain

K(t) =
[
C̄> −AP̂ (t)C>

] [
Λ(0)− CP̂ (t)C>

]−1

.

Hence we have the following,
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Proposition 2.13. All minimal models (2.1) in the same uniform choice of basis
have the same Kalman filter. Symmetrically, the backward Kalman filter estimating
the state x̄(t) of any backward model (2.16), based on the future history H+

t (y), is
the same if the backward models belong to the same uniform choice of basis.

Having established this fact, we can now proceed with the proof of Theo-
rem 2.12.

Proof. It is not hard to check that under our standing assumption on the models
(2.1), the solution of the Riccati equation (2.44) converges as t → ∞ to a positive
semidefinite limit

Q(∞) := P − P̂ (∞) ≥ 0.

In fact, in the limit P̂ (∞) must clearly satisfy the algebraic Riccati equation (2.40),
and the inequality above just shows that P̂ (∞) is actually the minimal solution,
P−, of the LMI. In addition, in the steady state the Kalman gain can be expressed
as

K(∞) =
[
C̄> −AP−C>] [

Λ(0)− CP−C>]−1
= B−D>

−(D−D>
−)−1 = B−D−1

−

and Var {e∞(t)} = D−D>
−. On the other hand it is a well-known fact that the

“feedback matrix” A−K(∞)C appearing in the inverse of the steady state Kalman
filter realization

x̂(t + 1) = [A−K(∞)C]x̂(t) + K(∞)y(t)
e∞(t) = −Cx̂(t) + y(t)

(which actually is the steady-state whitening filter generating the innovation process
e∞(t)), has no eigenvalues outside of the unit circle (i.e. is causal) and therefore
e∞(t) is obtained by filtering y by a causal filter. Hence the steady state Kalman
filter realization is stable and its inverse is also stable. This means that its transfer
function must be proportional to the outer spectral factor W (z)−. In fact, the
transfer function of the steady-state Kalman filter realization is W−(z)D−1

− and the
normalized steady-state innovation process D−1

− e∞ is the white noise w−(t).
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Chapter 3

Realization by Canonical
Corrrelation and
Stochastic Balancing

We shall now concentrate on the construction of innovation realizations for a stochas-
tic process y. A particularly simple and useful method was introduced by Akaike
[2] using the idea of Canonical Correlation Analysis (CCA).

3.1 Canonical Correlation Analysis
Canonical Correlation Analysis (CCA) is an old concept in statistics [37]. Given
two finite-dimensional subspaces A, B of zero-mean random variables of dimensions
n and m, one wants to find two special orthonormal bases say {u1, . . . ,un} for A,
and {v1, . . . ,vm} for B such that

E {uk vh} = σk δk,h, k, h = 1, . . . , r ≤ min{n, m}

This is the same as asking that the correlation matrix of the two random vectors
u := [u1, . . . ,un]′ and v := [v1, . . . ,vm]′ made with the elements of the two bases,
should be diagonal, i.e. assuming for example that n ≥ m,

E {uv′} =


σ1 0 . . . 0
0 σ2 0 . . .
...

. . .
σm

0 0 . . . 0 0


That two orthonormal bases of this kind always exist follows by considering the
following sequence of operations:

AAlgorithm 3.1.

1. Pick any two basis vectors say a and b of the subspaces A, B. Let Σa :=
E {aa>} Σb := E {bb>} and R := E {ab>} be their variances and covariance
matrices.

35
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36 Chapter 3. CCA and Balancing

2. Orthonormalize a and b by say Gram-Schmidt. The orthonormal bases, â
and b̂ are obtained by factoring Σa and Σb,

Σa = LaL
>
a , Σb = LbL>b

with La and Lb square and nonsingular and letting â := L−1
a a, and b̂ :=

L−1
b b.

3. Let the covariance of the two orthonormal bases be R̂ = E {âb̂>} = L−1
a RL−>b .

Compute the SVD

R̂ = U

[
Σ 0
0 0

]
V >, Σ = diag {σ1, . . . , σr}

where σk > 0 and r = rank R.

4. Define
u := U>â, v := V >b̂

Then

E {uv>} =
[
Σ 0
0 0

]
So that the vectors u and v have the required properties.

To make this choice of bases unique one must requires that all the singular
values σk’ s, which are called canonical correlation coefficients, should be dif-
ferent (and ordered in decreasing magnitude). In this case the SVD in step (3)
is in fact unique. The components {u1, . . . ,un} and {v1, . . . ,vm} are called the
principal directions (or the canonical variables) of A and B. It follows from
Schwartz inequality that all canonical correlation coefficients are bounded between
zero and one, i.e.

1 ≥ σk > 0

and have also an interpretation as cosines of angles between subspaces. We define:
θk := arccos σk to be the k−th principal angle of A and B. It can be shown
that σk+1 = cos θk+1 is the solution of the following minimization problem

σk+1 = 〈uk+1,vk+1〉 = max
u∈A, v∈B

{〈u,v〉} (3.1)

subject to:
〈u,uh〉 = 0 h = 1, . . . , k
〈v,vh〉 = 0 h = 1, . . . , k
‖uh‖ = ‖vh‖ = 1

(3.2)

A proof can be found in [?, p.584].
Remark: Note that these concepts do not depend on the particular choice of bases
a, b initially made in the two subspaces.
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Consider the orthogonal projection onto the subspace A. The restriction of
this operator to random variables of B is denoted E A

|B. One has

E A
|Bξ =

n∑
k=1

σk〈 ξ,vk〉uk =
[
u1 . . . un

]
Σ

〈v1

...
〈vn

 , ξ〉

so the canonical correlation coefficients can be viewed as singular values of the
restricted projection operator E A

|B. This interpretation will be quite useful in the
next section.

3.2 Canonical correlation and balanced stochastic
realization

In this section we shall give a procedure for constructing the innovation models
(2.42) using CCA. The key idea is to construct the state spaces X− and X+ of (??)
and choose two special bases in them by doing CCA of the past and future spaces
H− and H+ of y. We shall essentially follow the same steps of the CCA algorithm
presented in the previous section.

To this end it will first be useful to arrange past and future outputs as infinite
vectors in the form,

y− =


y(−1)
y(−2)
y(−3)

...

 y+ =


y(0)
y(1)
y(2)

...

 (3.3)

Let L− and L+ be the lower triangular Cholesky factors of the infinite block Toeplitz
matrices

T− := E{y−y>−} = L−L>− T+ := E{y+y>+} = L+L>+

and let
ν := L−1

− y− ν̄ := L−1
+ y+ (3.4)

be the corresponding orthonormal bases in H− and H+ respectively. Define the
Hankel operator:

H := E H−

|H+ (3.5)

projecting the future (at time zero) of the process y orthogonally onto the past. Note
that the image space of H is exactly the minimal Markovian splitting subspace X−,
the state space of the Kalman filter realization. Dually, consider the adjoint Hankel
operator H∗ which now projects the past H− onto the future H+. It is easy to see
that

H∗ := E H+

|H− (3.6)

so that the image space of the adjoint is X+, the state space of the backward Kalman
filter realization.
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Proposition 3.1. Let y be realized by a finite dimensional model of the form
(2.1). Then in the orthonormal basis (3.4) the matrix representation of the Hankel
operator H is

Ĥ∞ = L−1
+ H∞L−T

− = L−1
+ Ω Ω̄>L−T

− , (3.7)

where H∞ := E {y+y>−} is the infinite Hankel matrix (2.22) and Ω and Ω̄ are the
factors introduced in (2.23), namely

Ω =


C

CA
CA2

...

 and Ω̄ =


C̄

C̄A>

C̄(A>)2
...

 . (3.8)

Proof. For any infinite string of real numbers b with finitely many nonzero com-
ponents we shall write

∑
k bkνk := b>ν̄ ∈ H+. Recalling the formula (2.8), in view

of (3.4),
EH−

b>ν̄ = b>L−1
+ E{y+y>−}(E{y−y>−})−1L−ν

and therefore it follows from E {y−y>−} = L−L>− that

H b>ν̄ = b>Ĥ∞ν

as claimed.

Note that, with a uniform choice of bases, we obtain the same matrix factorization
(2.23) for Ĥ∞, irrespective of which X (i.e. which minimal realization of y) is
chosen.

Since H has finite rank n, it has exactly n nonzero singular values. The
canonical correlation coefficients of the past and future paces H− and H+ of y
can then be defined to be the (nonzero) singular values of H. By Proposition 3.1
they are also the (nonzero) singular values of the “normalized” Hankel matrix H∞
(which was the way they were introduced in the CCA algorithm of the previous
section). Obviously we shall have 0 < σk < 1. Some of the largest canonical
correlation coefficients may be equal to one. This can however happen if and only
if H− ∩H+ 6= {0}.

Observabilty and Constructibility Operators The observability ad constructibility
operators associated to a Markovian splitting subspace X, are defined respectively
as

O : X → H+, Oξ := E H+
ξ (3.9)

C : X → H−, Cξ := E H−
ξ (3.10)

The meaning is of best (minimum variance) estimators of the state given the future
(or the past) of y. They play a somewhat similar role to the observability and
reachability operators in deterministic systems theory to charaterize minimality of
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a state space. In fact the splitting property of a subspace X can be shown to be
equivalent to a factorization of the Hankel operator of the process y, through the
space X, as

H = CO∗ (3.11)

a fundamental characterization of minimality being that X is a minimal splitting
subspace11 if and only if the factorization (3.11) is canonical, i.e. C is injective and
O∗ = E X |H+ is a surjective operator. Hence, for a minimal state space X, both
the Gramians12 C∗C and O∗O are invertible maps X → X.

Proposition 3.2. Let x be a basis in a minimal state space X and x̄ be its dual ba-
sis. Then the matrix representations of the constructibility and observability Grami-
ans relative to the bases x and x̄ respectively, are given by

ˆC∗C = P− (3.12a)

ˆO∗O = P̄+ = P−1
+ (3.12b)

where P− and P̄+ are the covariance matrices of x− and x̄+ in the given basis.
Hence the Gramians do not depend on the particular minimal model chosen and are
invariant over the family of all minimal realizations.

Proof. Take any ξ ∈ X expressed in the basis x as a>x. Since C projects onto the
past, by definition of the Kalman filter state x− we have,

C(a>x) = E H−
(a>x) = a>x−, a ∈ Rn

and therefore

〈C(a>x), C(b>x)〉 = 〈a>x, C∗C(b>x)〉 = 〈a>x−, b>x−〉 = a>P−b.

On the other hand, 〈a>x, C∗C b>x〉 = 〈a, ˆC∗C b〉, the last inner product being in
Rn. Hence (3.12a) follows. The other relation is proven by a dual argument.

For a discussion of the meaning of the Gramians in a stochastic setting see [?].
Note that in a uniform choice of bases the models (2.1) and (2.16) with dual basis
x̄ = P−1x yield the following representations

y− = Ω̄x̄ + terms in H−(w̄) y+ = Ωx + terms in H+(w) (3.13)

from which it is easy to check that

E {y− | x̄} = Ω̄x̄, E {y+ | x} = Ωx .

This means that the infinite matrices Ω and Ω̄ (operating from the left) are matrix
representations of the adjoint operators O∗ and C∗ in the bases x and x̄ respectively.
We shall call them the extended observability and constructibility matrices.

11i.e. is a minimal subspace making the future and past of y conditionally orthogonal given X.
12Note that the Gramians are finite dimensional operators, representable by n × n symmetric

positive semidefinite matrices.
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Incidentally, by substituting in (3.13) the formula for dual bases x̄ = P−1x, we
can formally compute also the orthogonal projections x− = E H−

x and x̄+ = E H+
x̄

expressed in the bases y− and y+, as

x− = Ω̄>T−1
− y− x̄+ = Ω>T−1

+ y+. (3.14)

Consequently, we have the the following explicit formulas for P− and P̄+:

P̄+ = Ω>T−1
+ Ω P− = Ω̄>T−1

− Ω̄ . (3.15)

Now, recall that the squares of the nonzero singular values {σ1, σ2, σ3, . . .} of
the Hankel operator H are, by definition, the nonzero eigenvalues of the self adjoint
operator H∗H. Namely

H∗Hξk = σ2
k ξk, k = 1, . . . , n

which in view of the factorization (3.11) can be written also as

O∗OC∗C(O∗ξk) = σ2
k (O∗ξk), k = 1, . . . , n

which involves the two Gramians. Combining this with Proposition 3.2 we get the
following important result.

Theorem 3.3. The squares of the (nonzero) canonical correlation coefficients of
past and future of a stationary process admitting a minimal realization (2.1) are the
eigenvalues of the product P−P̄+. In formulas,

{σ2
1 , σ2

2 , . . . , σ2
n} = λ{P−P̄+}. (3.16)

This result should be compared with the expression of the singular values of
(the Hankel matrix of) a deterministic system as the eigenvalues of the product of
the reachabilty and observability Gramians. Inspired by the deterministic notion
of a balanced realization, this suggests that an appropriate uniform choice of basis
would be the one that makes P− and P̄+ equal and equal to the diagonal matrix of
nonzero canonical correlation coefficients.

Definition 3.4 (Desai and Pal). A minimal realization (A,C, C̄, Λ(0)) of a m×
m positive real matrix is called Stochastically Balanced13 if the minimal solutions
P−, P̄+ of the dual Linear Matrix Inequalities (2.32), (2.36) are both equal to the
same diagonal matrix, i.e.

P− = Σ = P̄+

where Σ = diag{σ1, σ2, . . . , σn}. Whitout loss of generality we shall assume that the
σk’ s are ordered in decreasing magnitude, i.e. σk+1 ≥ σk.

Clearly, by Theorem 3.3 the σk’ s must necessarily coincide with the canonical
correlation coefficients of y.

13Or Positive-Real Balanced.
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Proposition 3.5. There always exists a similarity transformation which brings a
minimal (positive-real) quadruple (A,C, C̄, Λ(0)) into balanced form. If the num-
bers {σ1, σ2, . . . , σn} are all distinct then the balanced realization is unique up to a
signature matrix (i.e. any two balanced realizations differ by a change of basis given
by a signature matrix).

This can be accomplished by the following algorithm.

Algorithm for computing the change of basis matrix bringing a minimal positive-
real realization (A,C, C̄, Λ(0)) to balanced form.

1. Compute a square factorization of P−, i.e. let P− = RR∗ where R is square
nonsingular, e.g. a Cholesky factor.

2. Do Singular Value Decomposition of R∗P̄+R, i.e. compute the factorization
R∗P̄+R = UΣ2U∗ where U is an orthogonal matrix and Σ2 is diagonal with
positive entries ordered by magnitude in the decreasing sense.

3. Define T := Σ1/2U∗R−1. The matrix T is the desired basis transformation
matrix.

4. Check: Compute

T P− T ∗ = Σ1/2U∗R−1 P−R−∗UΣ1/2 = Σ

T−∗P̄+T−1 = Σ−1/2U∗R∗ P̄+ RUΣ−1/2 = Σ

Balanced stochastic realization by CCA In view of Proposition 3.1, the infinite
normalized Hankel matrix Ĥ∞ is the matrix representation of the operator H in the
orthonormal bases (3.4). Therefore in the singular-value decomposition

Ĥ∞ = U∞Σ∞V >
∞ = UΣV >, (3.17)

Σ is the diagonal n× n matrix consisting of the canonical correlation coefficients

Σ = diag{σ1, σ2, σ3, . . . , σn}, (3.18)

while Σ∞ is the infinite matrix

Σ∞ =
[
Σ 0
0 0

]
.

Moreover U∞ and V∞ are infinite orthogonal matrices, and U and V are ∞ × n
submatrices of U∞ and V∞ with the the property that

U>U = I = V >V. (3.19)

Mimiking the last step of Algorithm 3.1 we now rotate the the orthonormal
bases (3.4) in H+ and H− to obtain u := U>

∞ν̄ and v := V >
∞ν respectively. Note
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that E{uv>} = Σ∞. Therefore {vn+1,vn+2,vn+3, . . .} span the subspace of ran-
dom variables in the past H− which are orthogonal to the future, and likewise,
{un+1,un+2,un+3, . . .} span the subspace of random variables which are in the
future but are orthogonal to the past H−. In formulas

span{un+1,un+2,un+3, . . .} = H+ ∩ (H−)⊥ (3.20)
span{vn+1,vn+2,vn+3, . . .} = H− ∩ (H+)⊥ . (3.21)

This leads to the following important characterization.

Theorem 3.6. The canonical random variables {u1,u2, . . . ,un} and {v1,v2, . . . ,vn}
are orthonormal bases for the state spaces X+ and X− respectively, i.e.

X+ = span{u1,u2, . . . ,un}, X− = span{v1,v2, . . . ,vn} (3.22)

Proof. This is true since H− = [H− ∩ (H+)⊥] ⊕ X− so that X− is precisely the
subspace of random variables in H− having nonzero correlation with the future
H+ and, dually, since H+ = X+ ⊕ [H+ ∩ (H−)⊥] so that X+ is the subspace
of random variables in H+ having nonzero correlation with the past H−. Since
{vn+1,vn+2,vn+3, . . .} and {un+1,un+2,un+3, . . .} span H− ∩ (H+)⊥ and H+ ∩
(H−)⊥, respectively, the result follows.

Now define the n-dimensional vectors

z̄ =


σ

1/2
1 u1

σ
1/2
2 u2

...
σ

1/2
n un

 = Σ1/2U>L−1
+ y+ z =


σ

1/2
1 v1

σ
1/2
2 v2

...
σ

1/2
n vn

 = Σ1/2V >L−1
− y− (3.23)

From what we have seen before, z is a basis in X− and z̄ is a basis in X+, and they
have the property that

E{zz>} = Σ = E{z̄z̄>}. (3.24)

which means that they both belong to a stochastically balanced realization of
(A,C, C̄), as seen from the following statement.

Theorem 3.7 (L-P). The basis vectors

x−(0) = z x+(0) = z̄ (3.25)

in X− and X+ respectively belong to the same uniform choice of basis, i.e. to the
same triplet (A,C, C̄), and in this uniform choice

P− = Σ = P̄+. (3.26)

If the canonical correlation coefficients {σ1, σ2, σ3, . . . , σn} are all distinct, this is,
modulo similarity by a signature matrix 14, the only choice in the equivalence class
{TAT−1, CT−1, T C̄>; T nonsingular} for which (3.26) holds.

14A signature matrix is a diagonal matrix of ±1.
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Remark: Note, according to this theorem, that in the case of distinct canonical
correlation coefficients, a stochastically balanced realization of (A,C, C̄) defines a
canonical form with respect to state space isomorphism by fixing the sign in, say,
the first element in each row of C. Such canonical forms have been studied by Ober
[?].

Proof. It follows from (3.7) and (3.17) that

E{z̄z>} = Σ2. (3.27)

Now, choose (A,C, C̄) so that x̄+(0) = z̄, and let the bases in the other splitting
subspaces be chosen accordingly so that the choice of bases is uniform. We want
to show that x−(0) = z. To this end, first note that x+(0) = Σ−1x̄+(0) and that
x−(0) = EX−x+(0) by the Kalman filter property. Then, using formula (2.8) and
the fact that z is a basis in X−,

x−(0) = Σ−1E{z̄z>}Σ−1z,

which, in view of (3.27), yields x−(0) = z as claimed. Hence (3.26) follows from
(3.24).

Next, suppose that (QAQ−1, CQ−1, C̄Q>) is another uniform choice of bases
which is also stochastically balanced. Since then x−(0) = Qz and, as is readily
seen from the backward system (2.43) , x̄+(0) = Q−T z̄ so that P− = QΣQ> and
P̄+ = Q−T ΣQ−1, (3.26) yields

QΣQ> = Σ and Q−T ΣQ−1 = Σ,

from which we have
QΣ2 = Σ2Q.

Since Σ has distinct entries, it follows from [26, Corollary 2, p.223] that there is a
scalar polynomial ϕ(z) such that Q = ϕ(Σ2). Hence Q is diagonal and commutes
with Σ so that, by QΣQ> = Σ, we have

QQ> = I.

Consequently, since Q is diagonal, it must be a signature matrix.

Note that the normalization of H∞ is necessary in order the singular values
of H∞ to become the canonical correlation coefficients, i.e., the singular values of
H. In fact, if we were to use the unnormalized matrix representation (2.22) of H
instead, as may seem simpler and more natural, the transpose of (2.22) would not
be the matrix representation of H∗ in the same bases, a property which is crucial
in the singular value decomposition above. This is because (2.22) corresponds to
the bases y− in H− and y+ in H+, which are not orthogonal. As we shall see in
the next section, this holds also in applicable parts for the finite-dimensional case
studied in Section 2, and therefore the normalized Hankel matrix Ĥ∞, defined in
Section ??, is preferable to the unnormalized H∞.
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Formulas expressing the parameters A,C, C̄ in terms of the chosen basis in the
state space of a general minimal realization have been derived in (2.12) and (2.17).
For any dual pair of bases x(0) and x̄(0) we have

A = E {x(1)x(0)>}P−1 (3.28a)
A> = E {x̄(−1)x̄(0)>}P̄−1 (3.28b)
C = E {y(0)x(0)>}P−1, (3.28c)
C̄ = E{y(−1)x̄(0)>}P̄−1 = E {y(−1)x(0)>} (3.28d)

Taking x−(0) = z = Σ1/2V >ν we have x−(1) = Σ1/2V >σ(ν) where σ(·) is the
forward shift operator on random variables, i.e.

σ(ν) = σ




ν(−1)
ν(−2)
ν(−3)

...


 :=


ν(0)

ν(−1)
ν(−2)

...

 .

Recalling that P− = Σ, from (3.28) we get

A = Σ1/2V >E {σ(ν)ν>}V Σ1/2Σ−1 (3.29)

where, since ν is an orthonormal process,

E {σ(ν)ν>} =


0 0 0 . . .
I 0 0 . . .
0 I 0 . . .
0 0 I . . .
...

...
... . . .

 := S

which is the matrix shifting one block downward. Hence SV =
[

0
V

]
is the matrix

having the first m × n block of zeros and the rest equal to the V matrix shifted
downward by one block of m rows.

Theorem 3.8. The stochastically balanced triplet (Â, Ĉ, ˆ̄C) corresponding to the
canonical bases z and z̄ can be expressed directly in terms of the SVD of the nor-
malized Hankel matrix Ĥ∞ of (3.7), as

Â = Σ1/2V >SV Σ−1/2, (3.30a)
Â> = Σ1/2U>SUΣ−1/2, (3.30b)
Ĉ = ρ1(H∞)L−>− V Σ−1/2, (3.30c)
ˆ̄C = ρ1(H>

∞)L−>+ UΣ−1/2, (3.30d)

where ρ1(H∞) is the first block row of H∞.
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Proof. Formula (3.30) has already been proven. Dually, taking x̄+(0) = z̄ =
Σ1/2U>ν̄, we have x̄+(−1) = Σ1/2U>σ−1(ν̄) where σ−1()̇ is now the backward
shift operator on random variables so that the first block in σ−1(ν̄) is ν̄(−1). From
(3.28) recalling that in the current basis we also have P̄+ = Σ, we obtain,

Â> = Σ1/2U>E {σ−1(ν̄)ν̄>}UΣ−1/2 = Σ1/2U>SUΣ−1/2,

which is (3.30).
Finally, taking again x(0) = z = Σ1/2V >ν, (3.28) yields

Ĉ = E {y(0)ν>}V Σ−1/2 .

Then, a symmetric argument, using (3.28), yields (3.30).

Once A,C, C̄ have been determined, to complete the conceptual stochastic real-
ization procedure delineated in this section, we must explain how to compute the
(B−, D−) (or the (B+, D+) parameters in the forward (or backward) innovation
model (2.42) ((2.43) ). This is however immediate at least in principle, as all we need
to do is to compute the minimal symmetric solution P− (resp. maximal symmetric
solution P+) of the Algebraic Riccati Equation

P = APA> + (C̄> −APC>)R(P )−1(C̄ − CPA>),

which both exist because of positivity of the covariance Λ(t). From these, B± can
be computed via (2.41).

Remark 3.1. We can make contact with the expressions for (Â, Ĉ, ˆ̄C) which could
be obtained by applying the Ho-Kalman realization algorithm starting from the
factorization induced by the singular-value decomposition (3.17) of Ĥ∞. Defining Ω̂
and ˆ̄Ω to be the extended observability and constructibility matrices in the canonical
bases (3.25), namely

Ω̂ = L+UΣ1/2, ˆ̄Ω = L−V Σ1/2 (3.31)

so that
H∞ = L+UΣ1/2 Σ1/2V >L>− = Ω̂ ˆ̄Ω> ,

we can recover the Â matrix by imposing a recursive structure to Ω̂ according to
which Â is computed by solving the equation on the right side of

Ω̂ =
[

Ĉ

(↓ Ω̂)

]
, (↓ Ω̂) = Ω̂Â

This i s called the shift-invariance method in the literature. Now since (↓ Ω̂) = S>Ω̂,
we can equivalently write

S>Ω̂ = S>L+UΣ1/2 = L+UΣ1/2Â
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Now, since L+ is the Cholesky factor of the block-symmetric infinite Toeplitz matrix
T+, we have the shift invariance property S>L+ = L+ so that Â can be found by
solving

S>UΣ1/2 = UΣ1/2Â (3.32)

which is exactly the same as (3.30). A dual argument, imposing a recursive structure
to the constructibility matrix ˆ̄Ω, yields (3.30). Similarly for (Ĉ, ˆ̄C). In conclusion,
the expressions (3.30) for the system parameters are exactly the same one could
obtain by applying the Ho-Kalman algorithm to the factorization (3.17).

3.3 CCA realization based on Finite Data
In practice of course one never has an infinite string of covariances {Λ(t); t ≥ 0}
but has available instead a finite string of observed data

{y0, y1, y2, . . . , yN} (3.33)

where, however, N may be quite large. More specifically, we assume that N is
sufficiently large that replacing the ergodic limit for N →∞, of

1
N + 1

N∑
t=0

yt+ky>t k ≥ 0 (3.34)

by truncated sums, yields good approximations of a suitable finite set of covariance
lags, say

{Λ(0),Λ(1), . . . ,Λ(T )}, (3.35)

where, of course, we need to bound T so that T << N 15. This is equivalent to
saying that N is sufficiently large for

1
N + 1

N∑
t=0

a>yt+ky>t+jb (3.36)

to be essentially the same as the inner product a>E {y(k)y(j)>}b = a>Λ(k − j)b
for arbitrary vectors a, b ∈ Rm, provided |k− j| ≤ T . Hence we may in our analysis
proceed as if we had a finite sequence of random vectors

{y(0),y(1),y(2), . . . ,y(T )}, (3.37)

extracted from the underlying stochastic process y. For this reason in this section
we shall proceed as if we had observations of y on the finite interval [0, T ].

Now, let us fix a “present” instant t, and partition the “data” (3.37) into two
random vectors

y−t =


y(0)
y(1)

...
y(t− 1)

 y+
t =


y(t)

y(t + 1)
...

y(T − 1)

 , (3.38)

15A practical rule of thumb is that one should take T ' (1/50)N and should never take T
greater than (1/20)N .



“MainSHORT”
2005/4/22
page 47i

i
i

i

i
i

i
i
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representing the past and the future at time t. We have saved the last value y(T )
for later use, since in the following we shall need to consider also an enlarged future
string

ȳ+
t :=

[
y+

t

y(T )

]
.

We shall need to define the corresponding (finite-dimensional) subspaces Y −
t , Y +

t

and Ȳ +
t spanned by the scalar random variables components of y−t , y+

t and ȳ+
t

respectively.
In analogy to (3.76) introduce the (finite-interval) Hankel operator

Ht := EY −
t |Y +

t
. (3.39)

which has certainly a finite rank. It is easy to see that if y is representable by a
finite dimensional realization (2.1) of dimension n, then rank Ht will in general be
less or equal to n. The choice of the data size T and of the present time t are crucial
for a correct determination of the rank and of the system order. A basic assumption
in this respect will be the following.

Assumption 1. The future and past horizons, T −t and t, are chosen large enough
so that

rank Ht = n (3.40)

This condition is satisfied provided T − t and t are (respectively) greater than
the observability and constructibilty indices of the triplet (A,C, C̄>).

Next we shall consider (finite-interval) Markovian splitting subspaces for Y −
t

and Y +
t , i.e., subspaces X̂t for which Y −

t ∨X̂−
t ⊥ Y +

t ∨X̂+
t | X̂t, the past and future

subspaces being relative to finite past and future temporal horizons. For any such
subspace Ht admits a factorization

Ht = CtO∗
t (3.41)

where the constructibility and observability operators relative to the finite past and
future spaces Y −

t and Y +
t , are

Ot : X̂t → Y +
t , Oξ := E Y +

t ξ , Ct : X̂t → Y −
t , Ctξ := E Y −

t ξ

the subspace X̂t being minimal splitting if and only if these two operators are
surjective (or equivalently if and only if the adjoints are injective) linear maps.

It is standard [49, ?] to show that the forward and backward predictor spaces,

X̂−(t) := EY −
t Y +

t and X̂+(t) = EY +
t Y −

t , (3.42)

are such minimal Markovian splitting subspaces. The following proposition, whose
proof can be found in [?], shows that any basis in X̂−(t) is a Kalman filter estimate
of the state of a minimal stationary model (2.1) and, dually, any basis in X̂+(t)
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is an anticausal Kalman filter estimate of the state of a minimal stationary model
(2.1)

Proposition 3.9 (L-P). Let X be a (stationary) minimal Markovian splitting
subspace for y. Then Xt := U tX is also a minimal Markovian splitting subspace
for Y −

t and Y +
t , and

X̂−(t) = EY −
t Xt and X̂+(t) = EY +

t Xt. (3.43)

Conversely, let y admit minimal finite-dimensional realizations of the form (2.1).
Then a basis x̂(t) in X̂−(t) has a representation

x̂(t) = EY −
t x(t) (3.44)

where x(t) = U tx is a basis in Xt, the state space at time t of (2.1). For each fixed
x̂(t) and each choice of minimal stationary state space X, the basis x is unique.
All x for which the representation (3.44) holds form a uniform choice of bases 16.
Dually, any basis ˆ̄x(t) in X̂+(t) has a representation

ˆ̄x(t) = EY +
t x̄(t) (3.45)

where x̄(t) = U tx̄ is also a basis in Xt uniquely determined once X is fixed. All
x̄ for which (3.45) holds also form a uniform choice of bases. If x̄ and x are dual
bases then the minimal triplets (A,C, C̄) and (Ā, C̄, C) of the two uniform choice
of bases, are the same.

Remark 3.2. According to the proposition above, for any minimal stationary state
space Xt there is a unique pair (x(t), x̄(t)) of bases such that x̂(t) and ˆ̄x(t) admit
the representations (3.44) and (3.45). If (and only if) (x(t), x̄(t)) are dual bases
then, by the last statement in the proposition, both x̂(t) and ˆ̄x(t) are attached to
the same triplet (A,C, C̄). In this case we shall call them uniform bases 17

It follows from this proposition that for any x in a uniform choice of bases,
the random vector

x̂(t) = EY −
t x(t) (3.46)

is invariant and its components form a basis in X̂−(t). The vector x̂(t) is the one-
step predictor of x(t) based on Y −

t and is then generated by the transient Kalman
filter:

x̂(t + 1) = Ax̂(t) + K(t)[y(t)− Cx̂(t)]; x̂(0) = 0, (3.47)

where the gain K(t) is given by

K(t) = (C̄> −AP−(t)C>)(Λ0 − CP−(t)C>)−1 (3.48)
16and hence all corresponding stationary realizations determine the same minimal triplet

(A, C, C̄) parametrizing the covariance Λ(τ) of the process.
17If this is true, one can actually show that they are members of a uniform choice of bases in all

minimal finite-interval splitting subspaces, as in the stationary setting.
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and the filter estimate covariance

P−(t) = E{x̂(t)x̂(t)>} (3.49)

is the solution of the matrix Riccati equation{
P−(t + 1) = AP−(t)A> + (C̄> −AP−(t)C>)(Λ0 − CP−(t)C>)−1(C̄> −AP−(t)C>)>

P−(0) = 0.

(3.50)
which are both invariant with respect to the choice of the model (2.1) (i.e. depend
on the uniform choice of bases only)18 .

Symmetrically, in terms of the backward system (??) corresponding to (2.1),
the components of

ˆ̄x(t) = EY +
t x̄(t) (3.51)

form a basis in X̂+(t) and are generated by the backward Kalman filter

ˆ̄x(t− 1) = A> ˆ̄x(t) + K̄(t)[y(t− 1)− C̄ ˆ̄x(t)]; ˆ̄x(T ) = 0, (3.52)

with
K̄(t) = (C> −A>P̄+(t)C̄>)(Λ0 − C̄P−(t)C̄>)−1 (3.53)

where
P̄+(t) = E{ˆ̄x(t)ˆ̄x(t)>} (3.54)

is obtained by solving the matrix Riccati equation{
P̄+(t− 1) = A>P̄+(t)A + (C> −A>P̄+(t)C̄>)(Λ0 − C̄P̄+(t)C̄>)−1(C> −A>P̄+(t)C̄>)>

P̄+(T ) = 0.

(3.55)
Now, it is well-known that both

ν(t) = (Λ0 − CP−(t)C>)−1/2[y(t)− Cx̂(t)] (3.56)

and
ν̄(t) = (Λ0 − C̄P̄+(t)C̄>)−1/2[y(t− 1)− C̄ ˆ̄x(t)] (3.57)

are normalized white noises, called the forward respectively the backward (tran-
sient) innovation processes. Consequently, we may write the Kalman filter (3.47)
as {

x̂(t + 1) = Ax̂(t) + B−(t)ν(t)
y(t) = Cx̂(t) + D−(t)ν(t)

(3.58)

where D−(t) := (Λ0 − CP−(t)C>)1/2 and B−(t) := K(t)D−(t). Likewise, the
backward Kalman filter (3.47) may be written{

ˆ̄x(t− 1) = A> ˆ̄x(t) + B̄+(t)ν̄(t− 1)
y(t− 1) = C̄ ˆ̄x(t) + D̄+(t)ν̄(t− 1)

(3.59)

18This invariance provides in fact a proof of the second half of the statement of Proposition 3.9.
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where D̄+(t) := (Λ0 − C̄P̄+(t)C̄>)1/2 and B̄+(t) := K(t)D̄+(t). Note that, since

P − P−(t) = E{[x(t)− x̂(t)][x(t)− x̂(t)]>} ≥ 0,

and, for the same reason, P̄ − P̄+(t) ≥ 0, we have

P−(t) ≤ P ≤ P+(t) := P̄+(t)−1, (3.60)

so the prediction spaces X−(t) and X+(t) are extremal splitting subspaces, just as
the stationary subspaces X− and X+ in (??).

Remark 3.3. Comparing with (2.1) and (2.16), we see that (3.58) and (3.59)
are also stochastic realizations, which unlike (2.1) and (2.16), are time-varying but
where the state process is now a function of the output variables {y(t); t ∈ [0, T ] }
only on the interval [0, T ]. In the stationary case the present state is instead a
function of the infinite past (or of the infinite future) of the process. Hence the con-
struction of these realizations only requires data which are actually available. Note
also that in (3.58), (3.59) the (A,C, C̄) parameters are the same of the stationary
realization.

In complete analogy with the stationary framework in Section 3.2, we can
express the (A,C, C̄) parameters of the process by a finite-interval analog of formula
(3.28), in terms of the state vectors of the transient realizations (3.58) and (3.59),

A = E {x̂(t + 1)x̂(t)>}P−(t)−1 (3.61a)
A> = E {ˆ̄x(t− 1)ˆ̄x(0)>}P̄+(t)−1 (3.61b)
C = E {y(t)x̂(t)>}P−(t)−1, (3.61c)
C̄ = E{y(t− 1)ˆ̄x(t)>}P̄+(t)−1 = E {y(t− 1)x̂(t)>} . (3.61d)

Hence, in order to compute the stationary (A,C, C̄) matrices we need a procedure
to construct appropriate basis vectors (i.e. states ) in the predictor space X̂−(t) and
X̂−(t + 1). Similarly, we need a procedure to construct a basis (i.e. state) vector
in the state spaces X̂+(t) and X̂+(t− 1). This will be done next, by finite-interval
CCA.

The canonical correlation coefficients

1 ≥ σ1(t) ≥ σ2(t) ≥ · · · ≥ σn(t) > 0 (3.62)

between the finite past Y −
t and the finite future Y +

t are now defined as the singular
values of the Hankel operator Ht defined by (3.41). To determine them we need a
matrix representation of Ht in some orthonormal bases. Using the pair (3.56)–(3.57)
of transient innovation processes for this purpose, we obtain a normalized matrix
which, in analogy with (3.7), we shall denote Ĥt, given by

Ĥt = (L+
t )−1Ht(L−t )−> (3.63)

where Ht := E {y+
t (y−t )>} is a finite m(T − t)×mt upper left corner of the infinite

Hankel matrix (2.22) and L−t and L+
t are the finite-interval counterparts of L− and
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L+ respectively. The singular value decomposition yields

Ĥt = UtΣtV
>
t , (3.64)

where UtU
>
t = I = VtV

>
t , and Σt is the diagonal matrix of canonical correlation

coefficients. Exactly as in Section 3.2 one can prove that{
z(t) = Σ1/2

t V >
t (L−t )−1y−t

z̄(t) = Σ1/2
t U>

t (L+
t )−1y+

t

(3.65)

are bases in X̂−(t) and X̂+(t) respectively and that

E{z(t)z(t)>} = Σt = E{z̄(t)z̄(t)>}. (3.66)

In the present framework the invariance condition (3.16) becomes

{σ1(t)2, σ2(t)2, . . . , σn(t)2} = λ{P−(t)P̄+(t)} , (3.67)

and, precisely as in the previous section, the canonical choice of bases (3.65) has
the finite-interval balancing property, i.e.,

P−(t) = Σt = P̄+(t), t ∈ [0, T ] (3.68)

Concerning the t-dependence it should be said that (3.65), as well as the relative
variances (P−(t), P̄+(t)), actually depend on the length of the past and future
horizons (t− t0, T − t) (t0 here is the initial time which was arbitrarily fixed equal
to zero) and not on the specific “present date” t.

Now the question is to find bases in the updated forward and backward predictor
spaces, which can be expressed as

X̂−(t + 1) := EY −
t+1σY +

t and X̂+(t− 1) = EY +
t−1σ−1Y −

t ,

The CCA procedure followed in the stationary setting leads to consider, besides
the Hankel matrix Ht := E {y+

t (y−t )>} also two other finite block-Hankel matrices
(note that they have different dimensions than Ht since y−t+1 and ȳ+

t are obtained
by appending one more block row to y−t and y+

t )

Ht+1 := E {σ(y+
t )(y−t+1)

>}, Ht−1 := E {y−t (ȳ+
t )>} (3.69)

The definition of Ht−1 as E {σ−1(y−t )(y+
t−1)

>}may seem more natural but applying
the backward shift to the vector y−t would require availability of y(−1) which we
don’t have. Introduce the SVD’s of the corresponding normalized Hankel matrices

Ĥt+1 := Ut+1Σt+1V
>
t+1, Ĥt−1 := Ut−1Σt−1V

>
t−1 . (3.70)

Assuming for the moment that the diagonal matrices Σt,Σt+1,Σt−1 have the same
number n of nonzero canonical correlation coefficients and hence, whitout loss of
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generality could all be taken of dimension n× n, one could generalize the updating
formula of the stationary case by setting{

z(t + 1) = Σ1/2
t+1V

>
t+1(L

−
t+1)

−1y−t+1

z̄(t− 1) = Σ1/2
t−1U

>
t−1(L

+
t−1)

−1y+
t−1 .

(3.71)

Unfortunately, while these formulas do provide bases in the updated predictor spaces
they do not serve our purpose right. The explaination of this fact is in the following
remark.

Remark 3.4. The main point of subspace identification is to recapture the sta-
tionary (A,C, C̄) parameters of the process from the dynamic equations satisfied
by the bases x̂(t) and ˆ̄x(t) chosen in the finite-interval predictor spaces. As we
have seen before these equations can be written as Kalman Filter recursions (3.58,
3.59) where A,C, C̄ appear explicitly as dynamic parameters. However it should be
stressed that the stationary parameters A,C, C̄ appear in the Kalman-Filter equa-
tions simply because the bases x̂(t) and ˆ̄x(t) have been shown to be obtainable by
projection of the state x(t) of some stationary model of the process. In identifica-
tion, where we are actually attempting to recover the stationary dynamics of y, we
do not have a stationary state-space model for y at our disposal. Indeed, it has
taken us quite some work to understand how to pick bases in the predictor spaces
X̂−(t), X̂−(t + 1) (and in the backward predictor counterparts) without using any
information about the underlying stationary realizations. In particular, using the
CCA method we have picked (3.65) and (3.71) just basing on a finite string of co-
variances of the process y. It is however unclear at this point whether the difference
equations relating these bases at time t and t+1 will actually involve the stationary
parameters A,C, C̄ we are after. In fact, the difference equations, although being
of the Kalman Filter type seen so far, will not involve constant but rather time
varying matrices A,C, C̄ which will vary with t, the reason of this fact being that
picking bases arbitrarily at different time instants cannot yield the same coefficient
matrices (compare e.g. the formula A = E {x(t + 1)x(t)>}E {x(t)x(t)>}−1), even
if we are dealing with the state equations of a stationary process. In fact, the
time-varying A,C, C̄ matrices wouldn’t in general even be similar to the stationary
parameters we are looking for. So the question arises of choosing bases x̂(t) and
ˆ̄x(t) at successive instants t and t + 1 in such a way that their time evolution is
described by difference equations with constant matrices A,C, C̄. Bases x̂(t) and
x̂(t + 1) with this property will be called coherent. Dually, we have a concept of
coherent bases ˆ̄x(t) and ˆ̄x(t − 1). Only in this case the state space models yield
A,C, C̄ parameters which are a constant 19 minimal realization of the covariance of
the stationary process y.

The construction of coherent bases can be based on a recursive structure which
links the three Hankel matrices Ht,Ht+1,Ht−1, which are all formed with the same

19“Constant” as opposed to possibly time varying realizations where, instead of (2.20), we could

have Λ(k) = CkAk−1
k C̄>

k for k > 0.
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(stationary) sequence {Λ(1),Λ(2), . . . ,Λ(T )}. To understand this structure we shall
take a brief detour to review the partial realization problem.

3.4 Partial realization of covariance sequences
The Minimal Partial Realization Problem for the sequence (3.35) is of finding
a minimal value of n and a minimal triplet of matrices (A,C, C̄), of dimensions
n× n, m× n and m× n respectively, such that

CAi−1C̄ ′ = Λ(i) i = 1, 2, . . . , T. (3.72)

An infinite sequence

{Λ1,Λ2,Λ3, . . .} (3.73)

is then obtained from (3.35) by setting Λi := CAi−1C̄ ′ for all i, in particular for all
successive lags i = T + 1, T + 2, . . .. Since Λi := Λ(i) for i = 1, . . . , T , this sequence
is called a minimal rational extension of the finite sequence (3.35). The attribute
“rational” is due to the fact that the elements of (3.73) are the coefficients of the
Laurent expansion of the rational function

Z(z) = C(zI −A)−1C̄ ′ = Λ1z
−1 + Λ2z

−2 + . . . (3.74)

about z = ∞. This is called a rational extension of minimal degree of (3.35).

Remark 3.5. Even if we shall consistently refer to covariance matrices in view of
future application to stochastic modeling, in this section we shall not be concerned
with positivity questions and the partial realization problem could well be formu-
lated in terms of an arbitrary finite sequence of matrices which are not necessarily
covariances. Positivity is an issue which will be discussed separately later.

In order to avoid trivial notational complications we shall assume that the
index T is an even number say, T = 2k, and choose t = k as the ”middle point”
of the interval [0, T ]. Hence in this section we will be given certain 2k covariance
matrices 20

{Λ(1), . . . ,Λ(2k)}. (3.75)

20These could be either the original data or the corresponding normalized covariances of the
(finite-interval) whitened processes.
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with which we shall form the block Hankel matrices

Hk :=


Λ(1) Λ(2) · · · Λ(k)
Λ(2) Λ(3) · · · Λ(k + 1)

...
...

. . .
...

Λ(k) Λ(k + 1) · · · Λ(2k − 1)

 (3.76)

Hk+1 :=


Λ(1) Λ(2) · · · Λ(k) Λ(k + 1)
Λ(2) Λ(3) · · · Λ(k + 1) Λ(k + 2)

...
...

...
. . .

...
Λ(k) Λ(k + 1) · · · Λ(2k − 1) Λ(2k)

 =


Λ(1)
Λ(2)

...
Λ(k)

σHk



H̄k+1 :=


Λ(1) Λ(2) · · · Λ(k)
Λ(2) Λ(3) · · · Λ(k + 1)
...

...
. . .

...
Λ(k) Λ(k + 1) · · · Λ(2k − 1)
Λ(k + 1) Λ(k + 2) · · · Λ(2k)

 =
[

Λ(1) Λ(2) · · · Λ(k)
σHk

]

(3.77)

where σHk is the shifted Hankel matrix, of the same dimension of Hk but with all
entries shifted by one time unit i.e. with Λ(i + 1) replacing Λ(i) everywhere.

We quote from [68] the following uniqueness result of partial realizations.

Lemma 3.10. The sequence (3.75) has a unique rational extension of minimal
degree if and only if

rankHk = rankHk+1 = rankH̄k+1 := n (3.78)

Uniqueness is understood in the sense that if (A1, C1, C̄1) and (A2, C2, C̄2) both
define minimal rational extensions of (3.75), then there is a nonsingular n × n
matrix T such that

A2 = T−1A1T, C2 = C1T, C̄>
2 = T−1C̄>

1 . (3.79)

Computing a minimal partial realization can be done essentially via a rank
factorization of the Hankel matrix Hk. The prototype algorithm, called the Ho-
Kalman algorithm is reviewed below.

The Ho-Kalman Algorithm Start by a rank factorization of Hk,

Hk = ΩkΩ̄>k (3.80)

where both factors Ωk, Ω̄k have n linearly independent columns. Since by (3.78)
columnspanHk = columnspanHk+1 and, dually, rowspanHk = rowspanH̄k+1 there
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exist matrices C̄, ∆̄, C,∆ such that
Λ(1)
Λ(2)

...
Λ(k)

 = ΩkC̄>, σHk = Ωk∆ (3.81)

and [
Λ(1) Λ(2) · · · Λ(k)

]
= CΩ̄>k , σHk = ∆Ω̄>k (3.82)

It is obvious from the last two equalities on the right that there must exist a unique
matrix A of dimension n× n such that

σHk = ΩkAΩ̄>k .

In conclusion, the matrices

A = Ω−L
k σHk(Ω̄>k )−R (3.83)

C =
[

Λ(1) Λ(2) · · · Λ(k)
]
(Ω̄>k )−R (3.84)

C̄ =
[

Λ(1)> Λ(2)> · · · Λ(k)>
]
(Ω>k )−R (3.85)

are independent of the choice of the left- or right-inverses (denoted −L or −R respec-
tively) and propagate the factorization (3.80) uniquely to Hk+1 and H̄k+1 according
to the formulas,

Hk+1 =
[

ΩkC̄> ΩkAΩ̄>k
]

= Ωk

[
C̄> AΩ̄>k

]
:= Ωk Ω̄k+1 (3.86)

and

H̄k+1 =
[

CΩ̄k

ΩkAΩ̄>k

]
=

[
C

ΩkA

]
Ω̄>k := Ωk+1 Ω̄>k . (3.87)

From these we obtain the following updating equations for the factors Ωk+1, Ω̄k+1,

Ωk+1 =
[

C
ΩkA

]
, Ω̄k+1 =

[
C̄

Ω̄kA>

]
. (3.88)

Now once (3.81, 3.82) hold for some (A,C, C̄) and k big enough, they must hold
with the same (A,C, C̄) for all k = 1, . . . and then (3.88) can be interpreted as
bona-fide recursions in k. From this we obtain precisely the classical structure of
the observabililty and reconstructability matrices

Ωk =


C

CA
...

CAk−1

 Ω̄k =


C̄

C̄A>

...
C̄(A>)k−1


>

, (3.89)

seen in the literature.
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It is important to note that under the equal ranks assumption (3.78), to each
rank factorization (3.80) there corresponds a unique triplet (A,C, C̄). In a sense
fixing a rank factorization fixes the basis in the (deterministic) state space of the
partial realization. We shall summarize the various steps in the following way.

Theorem 3.11. Assume the rank condition (3.78) holds. Then each rank factor-
ization (3.80) of the finite Hankel matrix Hk induces rank factorizations of Hk+1

and H̄k+1 in (3.86) and (3.87) where the factors Ω̄k+1 and Ωk+1 are uniquely de-
termined. These factors satisfy the recursions (3.88) where the constant matrices
(A,C, C̄) are those uniquely determined by the factorization (3.80).

The induced factorizations of Hk+1 and H̄k+1 will be said to be coherent
with that of Hk. Clearly coherent factorizations are unique.

Hankel factorization and choice of basis in the finite-interval
predictor spaces

We shall show that there is a one-to-one correspondence between full rank factor-
izations of the Hankel matrix Hk and choice of bases in the finite-memory predictor
spaces X̂−(k) and X̂+(k). This correspondence relates the geometric approach of
finite-interval stochastic realization to the partial realization approach discussed
before.

Proposition 3.12. There is a one to one correspondence between rank factor-
izations (3.80) of the Hankel matrix Hk and choice of bases in the finite-interval
predictor spaces X̂−(k) and X̂+(k). Given a rank factorization (3.80) the n-vectors

x̂(k) := Ω̄>k (T−k )−1y−k , ˆ̄x(k) := Ω>k (T+
k )−1y+

k (3.90)

are uniform bases in X̂−(k) and X̂+(k) in the sense defined in Remark 3.2. Con-
versely, given two such bases x̂(k) and ˆ̄x(k), the matrices Ωk and Ω̄k in the repre-
sentations

E Y −
k y+

k = Ωk ˆ̄x(k), E Y +
k y−k = Ω̄kx̂(k) (3.91)

form a rank factorization of Hk of the type (3.80). The factors Ωk and Ω̄k are
the extended observability and constructibility matrices of all minimal realizations
of y in the uniform choice of bases determined by the triplet (A,C, C̄), uniquely
determined by the factorization (3.80).

Proof. By (3.80),

E Y −
k y+

k = Hk(T−k )−1 y−k = ΩkΩ̄>k (T−k )−1y−k = Ωkx̂(k)

Since by definition the components of the projection of y+
k onto Y −

k span X̂−(k), and
since the columns of Ωk are linearly independent it follows that X̂−(k) is spanned
by the scalar components of x̂(k). These are also linearly independent since (as
it is immediate to check) x̂(k) has a positive definite variance matrix. A similar
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reasoning for ˆ̄x(k) leads to the dual conclusion for ˆ̄x(k). Note that in (3.90) both
bases are expressed in terms of the same parameters (A,C, C̄) which are uniquely
determined by the factorization (3.80). It follows that x̂(k) and ˆ̄x(k) are uniform
bases.

The converse, i.e. that the factorization of Hk follows from (3.91), is a conse-
quence of the splitting property at time k of X̂−(k) and X̂+(k). In particular, let
us look at

Y +
k ⊥ Y −

k | X̂−(k)

which can be rewritten as,

Ey(t)y(s)> = E {E [y(t) | x̂(k)] E [y(s) | x̂(k)]>}

for t = k, . . . , 2k − 1 and s = k − 1, . . . , 0. This relation arranged in matrix form
is the same as Hk = ΩkP (k)∆̃>

k where P (k) := E x̂(k)x̂(k)> > 0 and ∆̃kx̂(k) =
E [y−k | x̂(k)]. Letting ∆̄k := ∆̃kP (k) yields the factorization Hk = Ωk∆̄>

k . The
fact that Ωk and ∆̄k are full rank is implied by observability and constructibility
(i.e. minimality) of X̂−(k), since x̂(k) is a basis. Naturally an analogous reasonig
yields a dual full-rank factorization of Hk.

Let now x̂+(k) := P̄ (k)−1 ˆ̄x(k) be the dual basis of ˆ̄x(k) and assume that
x̂(k) and ˆ̄x(k) are uniform bases, i.e. x̂+(k) is described by a (forward) model
with the same parameters (A,C, C̄) as x̂(k). Then by Kalman filtering formulas,
E [x̂+(k) | x̂(k)] = x̂(k) (this is the time-varying analog of Proposition 2.13). Since
the components of x̂+(k) belong to the future, we have y−k ⊥ x̂+(k) | x̂(k), so that

∆̃kP (k) = E {E [y−k | x̂(k)] x̂(k)>} = E {E [y−k | x̂(k)] E [ x̂+(k) | x̂(k)]>}
= E {y−k x̂+(k)>} = E { y−k ˆ̄x(k)>}P̄ (k)−1 = Ω̄k.

which is what we needed to show.

By an obvious extension of this result, bases in the predictor spaces X̂−(t+1)
and X̂+(t− 1) are biuniquely related to rank factorizations of the extended Hankel
matrices Hk+1 and Hk−1 defined in (3.69). Note to this effect that

H>
k−1 := E {ȳ+

k (y−k )>} = H̄k+1 (3.92)

Hence Proposition 3.12 has the following useful consequence.

Corollary 3.13. Under the assumption (3.78), coherent bases at time t + 1 and
t− 1 correspond one-to-one to factorizations of the extended Hankel matrices Hk+1

and H̄k+1 which are coherent with that of Hk.

All of the above of course works, mutatis mutandis, for the normalized Hankel
matrices Ĥk, Ĥk+1,

ˆ̄Hk+1 and, in particular, for the SVD-induced factorization of
Ĥk which is obtained by setting

Ω̂k := UΣ1/2
k , ˆ̄Ωk := V Σ1/2

k (3.93)
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in (3.64). The moral of the story is that :

Fact : The Hankel factorizations induced by the SVD’s (3.70) are in general not
coherent with the SVD-induced factorization (3.64). Hence, the canonical bases in
X̂−(t + 1) and X̂+(t− 1) given by (3.65) are not coherent with the canonical bases
(3.25) at time t and do not yield a stationary realization of Λ(τ).

Let
Ĥk+1 = Ω̂k

ˆ̄Ω>k+1,
ˆ̄Hk+1 = Ω̂k+1

ˆ̄Ω>k

be the factorizations of Ĥk+1,
ˆ̄Hk+1 coherent with (3.93), so that ˆ̄Ω>k+1 and Ω̂>k+1

are uniquely determined by

ˆ̄Ω>k+1 = Ω̂−L
k Ĥk+1 = Σ−1/2

k U>Ĥk+1, Ω̂>k+1 = ˆ̄Ω−L
k Ĥk−1 = Σ−1/2

k V >Ĥk−1 .
(3.94)

the last of which follows from the identity (3.92). The right way to choose bases in
X̂−(k + 1) and X̂+(k − 1), coherent with (3.25), is to set,

z(k + 1) := ˆ̄Ω>k+1(L
−
k+1)

−1y−k+1 = Ω̂−L
k Ĥk+1(L−k+1)

−1y−k+1 (3.95)

z̄(k + 1) := Ω̂>k+1(L
+
k+1)

−1y+
k+1 = ˆ̄Ω−L

k Ĥk−1(L+
k+1)

−1y+
k+1 (3.96)

where we have used the expressions of ˆ̄Ωk+1 and Ω̂k+1 given by (3.94). Hence we
actually don’t need to compute SVD’s of the updated Hankel matrices Ĥk+1,

ˆ̄Hk+1.
Now recalling that the white noise vectors

ν−t+1 := (L−t+1)
−1y−t+1, ν̄+

t−1 := (L+
t−1)

−1y+
t−1

have the same correlation structure of their stationary counterparts, namely

E {ν−t+1(ν
−
t )>} = St, E {ν̄+

t−1(ν̄
+
t )>} = S̄t

where now St and S̄t are finite shift matrices of dimensions m(k + 1) × mk and
mk×m(k + 1), the statement of Theorem 3.8 can be modified to the finite-interval
setting, in the following way.

Proposition 3.14. The triplet (A,C, C̄) corresponding to the (finite-interval)
canonical bases (3.65), is given by the formulas

Â = Σ−1/2
k U>Ĥk+1SV Σ−1/2

k , (3.97a)

Â> = Σ−1/2
k V >Ĥk−1SUΣ−1/2

k , (3.97b)

Ĉ = ρ1(Ht)(L−k )−>V Σ−1/2
k , (3.97c)

ˆ̄C = ρ1(H>
t )(L+

k )−>UΣ−1/2
k , (3.97d)

where the operator ρ1(·) is extraction of the first m-dimensional row block as in
Theorem 3.8.

Because of uniqueness, these formulas must give the same triplet of matrices
which one may compute by the (purely matrix-theoretic) Shift Invariance Method
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which amounts to factoring the Hankel matrix Hk by SVD and solving the two sets
of linear equations

ˆ̄Ω−L
k Ĥk−1 =

[
Ĉ

Ω̂kÂ

]
, Ω̂−L

k Ĥk+1 =

[
ˆ̄C

ˆ̄ΩkÂ>

]
(3.98)

Note that the left members in these equations are known quantities once the fac-
tors Ω̂k, ˆ̄Ωk have been computed. The triplet (A,C, C̄) will be in finite-interval
stochastically balanced form.

The final step of the finite-interval realization procedure is the computation of
the steady state Kalman gain and stationary innovation variance or, equivalently,
of the (B−, D−) parameters. Once (A,C, C̄) are computed (here Λ(0) is known)
this is done exactly as in the stationary case by solving the ARE (2.40).

In the next chapter we shall apply this procedure directly to the observed time
series.
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Chapter 4

A Subspace Identification
Algorithm
for Time Series

The general idea of the so-called ”Subspace methods” for identification of stochastic
systems [60], is to substitute the partial realization approach with a geometric
procedure operating directly on vector subspaces of RN generated by the data. Our
first duty will be to justify formally the equivalence of the two settings.

4.1 The Hilbert Space of a second-order ergodic
time series

Under the assumptions of second-order ergodicity on the data, the stochastic state-
space theory of the sections ??-?? can be translated into an isomorphic geometrical
setup based on linear operations on the observed time series and can then be applied
to the problem of state-space modeling of the data.

In this section we shall review the basic ideas behind this correspondence. For
clarity of exposition we shall initially assume that N = ∞ and that the data

{. . . , y−1, y0, y1, . . . , yt, . . .} (4.1)

have been collected starting from an infinitely remote time instant (so that the time
series is actually doubly infinite).

For each t ∈ Z define the m×∞ tail matrices

y(t) := [yt, yt+1, yt+2, . . .] (4.2)

and consider the sequences y := {y(t) | t ∈ Z}. This sequence will play a very
similar role to the stationary processes y of the previous sections.

Define the vector space Y of all finite linear combinations

Y := {
∑

a>k y(tk) ak ∈ Rm, tk ∈ Z} (4.3)

Note that the vector space Y is generated by the row spaces of the family of semi-

61
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infinite matrices (4.2) or, equivalently is the rowspace of the infinite Hankel matrix

Y∞ :=



...
y(t)

y(t + 1)
y(t + 2)

...


This vector space of scalar semi-infinite sequences (rows) can be equipped with an
inner product, which is first defined on the generators by the bilinear form

〈a>y(k), b>y(j)〉 := lim
N→∞

1
N + 1

N∑
t=0

a>yt+ky>t+jb = a>Λ0(k − j)b, (4.4)

Note that the limit exists because of our basic assumption of second-order ergodicity.
In particular, Λ0 is the true covariance function guaranteed by Wiener’s Theorem
in Section ??. This inner product is then extended by linearity to all finite linear
combinations of rows of the tail matrices (4.2), i.e. to the vector space Y which
then becomes an inner product space. The inner product is nondegenerate if the
Toeplitz matrix Tk, constructed with the true covariances {Λ0(0),Λ0(1), . . . ,Λ0(k)},
is a positive definite symmetric matrix for all k [55]. Note also that the limit does
not change if in the limits of the sum (4.4) t = 0 is replaced by an arbitrary initial
instant t0, so that

〈a>y(k), b>y(j)〉 = 〈a>y(t0 + k), b>y(t0 + j)〉

for all t0 (wide-sense stationarity). We can also introduce a shift operator U on the
family of semi-infinite matrices (4.2), by setting

Ua>y(t) := a>y(t + 1) t ∈ Z, a ∈ Rm,

defining a linear map which is isometric with respect to the inner product (4.4) and
extendable by linearity to all of Y.

By closing the vector space Y with respect to convergence in the norm induced
by the inner product (4.4), we obtain a Hilbert space of semi-infinite real sequences
Ȳ = closure{Y} to which the shift operator U can be extended by continuity as a
unitary operator 21

Now as stated formally in Proposition1.4 and in the subsequent generalization,
we can always think of the observed (infinitely long) time series as a regular sample
path of a wide-sense stationary stochastic process y, having covariance matrix equal
to the true covariance function Λ0(·). Hence, at least as far as first and second order
moments are concerned, the sequence of ”tails” y defined in (4.2) behaves exactly
like the abstract stochastic counterpart y. In particular all second order moments
of the random process can equivalently be calculated in terms of the tail sequence

21Since we will not have much use for the completed space in the following, we shall not introduce
a special symbol for it.
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y provided we substitute expectations with ergodic limits of the type (4.4). Since
we shall only be concerned with second order statistics in this paper, we may even
formally identify the tail sequence y of (4.2) with the underlying stochastic process
y. This requires just thinking of ”random variables” as being semi-infinte strings
of numbers and the expectation of products E {ξη} as being the (ergodic) inner
product of the corresponding rows ξ and η. For reasons of uniformity of notation
the inner product 4.4 will then be denoted

〈ξ, η〉 = E {ξη}, (4.5)

Here as usual we allow E {·} to operate on matrices by taking inner products row
by row.

Hence all defintions and results in the geometric stochastic Hilbert space
framework of second order random variables introduced in Section ?? carry over
unchanged to the present framework. The orthogonal projection of a (infinitely
long) tail random variable ξ onto a subspace X of the space Y will still be denoted
E [ ξ | X ]. Whenever X is given as the rowspace of some n×∞ matrix of generators
X, we shall write E [ ξ | X ] to denote the orthogonal projection expressed (perhaps
nonuniquely) in terms of the generators. It is clear that for finitely generated sub-
spaces we have the representation formula

E [ ξ | X ] = E (ξ X>)[E (XX>)]†X (4.6)

where in case of linearly independent rows (i.e X of full row rank) we can substitute
the pseudoinverse † with a true inverse. It is important to recognize that (4.6) is
just the solution of the ordinary Least-Squares problem

min
a∈Rn

‖ξ − a>X‖2 = min
z∈X

E [ ξ − z ]2

A (stationary) stochastic realization of y is a representation of the type{
x(t + 1) = Ax(t) + Bw(t)
y(t) = Cx(t) + Dw(t) (4.7)

where {w(t)} is p-dimensional normalized white noise , i.e. E{w(t)w(s)>} =
Iδts E{w(t)} = 0, etc..

Remark 4.1. It should be kept in mind that the various linear operations in
(4.7) hold in the sense of the metric of the space Ȳ and are to be understood as
”asymptotic equalities” between tail sequences. In particular, nothing can be said
about the particular sample values, say yt, xt, wt taken on by the time series involved
in the model at a specific instant of time. This is similar to the interpretation that
is given to the model (2.1) in case of bona fide stochastic processes, where the linear
model can be expected to hold for each particular sample value only with probability
one.
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The geometric framework with finite data

For data of finite lenght N the inner product (4.5) must be approximated by a finite
sum

E {ξη} ∼=
1

N + 1

N∑
t=0

ξtηt (4.8)

which makes the ”expectation” operator E essentially the same thing as ordinary
Euclidean inner product in RN .

Assume N is large enough for the time average in the ergodic limit (??) to be
sufficiently close to the true covariance and for all subscripts below to make sense.
Fix a ”present” time t = k and define the two mk-dimensional ”random vectors”
(i.e. block Hankel matrices of dimension mk × (N + 1)) formed by stacking the
output data as

Y−
k =


y(0)
y(1)

...
y(k − 1)

 =


y0 y1 · · · yN

y1 y2 · · · yN+1

...
...

...
yk−1 yk · · · yk+N−1

 (4.9)

Y+
k =


y(k)

y(k + 1)
...

y(2k − 1)

 =


yk yk+1 · · · yk+N

yk+1 yk+2 · · · yk+N+1

...
...

...
y2k−1 y2k · · · y2k+N−1

 (4.10)

The relative rowspaces Y−
k , Y+

k generated by the rows of the m× (N +1) matrices
y(t) for 0 ≤ t < k, and k ≤ t < 2k respectively, are the ”past” and ”future” spaces
of the data at time k. Since the tail matrix sequences we can form with the observed
signal are necessarily finite, these vector spaces can describe in reality only finite
past and future histories of the signal y at time k. For simplicity of notations we
use symbols that are not informative of this fact22.

For later use let us define also the ”augmented” future at time k ( a m(k +
1)× (N + 1) block Hankel matrix )

Y+
[k,2k] :=

[
Y+

k

y(2k)

]
,

the relative rowspace will be denoted Y[k,2k]. The present time k will be assumed
large enough troughout. In particular we shall always assume that k ≥ n where n
is the order of the underlying “true” system whenever it is needed.

The procedure propesed in [60] consists of a number of steps which can be
described as follows.

Given the past and future data matrices Y−
k , Y+

k ,

22More accurate notations would be,

Y−
k := Y[0,k) Y+

k := Y[k,2k)
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1. Form the sample finite-memory predictor matrices at time k, Ŷ+
k := E Y−

k Y+
k

and at time k + 1, Ŷ+
k+1 := E Y−

k+1Y+
k+1.

2. Compute the SVD

Ŷ+
k =

[
Ûk Ũk

] [
Σ̂k 0
0 Σ̃k

] [
V̂ >

k

Ṽ >
k

]
(4.11)

and do order estimation by selecting the “significant” singular values, Σ̂k.

3. Extract the Observability matrix Ωk := ÛkΣ̂1/2
k and the canonical basis in the

(forward) predictor space: X̂(k) := Σ̂1/2
k V̂ >

k .

4. Pick the coherent basis in X̂−(k + 1)

X̂(k + 1) := Ω−L
k Ŷ+

k+1 = Σ̂−1/2
k Û>

k Ŷ+
k+1 (4.12)

5. Compute (A,C) by solving[
X̂(k + 1)

Y(k)

]
=

[
A
C

]
X̂(k) +

[
K(k)

I

]
Ê(k) (4.13)

by Least Squares :

min
A, C

‖
[
X̂(k + 1)

Y(k)

]
−

[
A
C

]
X̂(k) ‖

Or, Compute (A,C) by the shift-invariance method.

6. Compute C̄ by
C̄ = EY(k − 1)X̂(k)> (4.14)

7. Estimate Λ0 by
Λ0 = EY(0)Y(0)> (4.15)

8. Attempt to solving the Algebraic Riccati equation Λ(P ) = 0 and finding the
unique stabilizing positive-definite solution P−. If (A,C, C̄, Λ0) is not positive
real this attempt fails.

9. If (A,C, C̄, Λ0) is not positive real re-run the algorithm with a larger k. Pos-
sibly the sample size may be too small; then increase N (if possible). If this
does not work the data do not support a description by a linear model. Then
stop.

10. If step (8) was successful, compute (B−, D−) by the formulas

D− = (Λ0 − CP−C ′)1/2, B− = (C̄ ′ −AP−C ′)(Λ0 − CP−C ′)−1/2. (4.16)
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The system-theoretical background of the procedure is exposed in the previous
sections see in particular Theorem ??.

For pedagogical reasons we have chosen to follow closely the line of thought of
[60] albeit, as argued in [55] this procedure involves some redundant computations
which can be avoided. In the following sections we shall discuss in detail the basic
steps listed above and explain the reasons of the redundancy.

Note that the conditionally shifted bases x̂(k+1) and ˆ̄x(k−1) can be computed
from the sole factorization (3.80) since Ω̄k+1 and Ωk are uniquely determined from
(3.80)

Change of basis If we pick arbitrarily an n-dimensional basis s(k + 1) in X̂(k+1)−
the basis transformation matrix M taking s(k + 1) into the conditionally shifted
basis at time k + 1 can be obtained by the following reasoning.

First notice that the first members of both expressions

E [UY+
k |x̂(k + 1) ] = Ωkx̂(k + 1)

E [UY+
k |s(k + 1) ] := Ω̃ks(k + 1),

are equal to E [UY+
k |Ȳ

−
k+1 ] by the splitting property. Obviously they must be equal

so that Ωkx̂(k + 1) = Ω̃ks(k + 1) and

x̂(k + 1) = (Ωk)−LΩ̃ks(k + 1). (4.17)

which provides the change of basis formula in X̂(k+1)−. A similar formula can be
derived easily for the change of basis in the backward predictor space.

To compute a stationary state-space model, say a forward stationary innova-
tion model (A,C, B−, D−), starting from a realization of the spectrum (A,C, C̄, Λ0),
the following additional steps are needed.

Also there is no need to pick a basis at time k+1 in X̂k+1 and to convert it to
the conditionally shifted basis of x̂(k), since the conditionally shifted basis x̂(k +1)
can be computed explicitely via formula (??). For, choosing a basis x̂(k) induces
a rank factorization (3.80) where the matrix Ωk is determined by x̂(k) as shown in
(3.91) of Theorem ?? above.

Alternative subspace Algorithm

1. Choose a basis x̂(k) in X̂k−.

2. Compute the corresponding observability matrix Ωk by (3.91).

3. Solve Hk = ΩkΩ̄k
′ to get (a unique) Ω̄k.

4. Compute the conditionally shifted basis x̂(k + 1) by (??).

5. Compute (A,C, C̄) by the following formulas,

A = E x̂(k + 1)x̂(k)′P̂ (k)−1 (4.18)
C = Ey(k)x̂(k)′P̂ (k)−1 (4.19)
C̄ = Ey(k − 1)x̂(k)′ (4.20)
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where P̂ (k) = E x̂(k)x̂(k)′ = Ω̄k
′(T−k )−1Ω̄k

Note that (4.20 ) which formally is derived from the backward (or anticausal)
form of the Kalman Filter realization with state x̂(k), can be rewritten directly in
terms of the dual basis ˆ̄x−(k) = P̂ (k)−1x̂(k) whereby,

y(k − 1) = C̄ ˆ̄x−(k) + D̄−(k)ε̄−(k − 1).

Whether this reduced procedure can be turned into a more efficient numerical
algorithm is however not clear as yet.

4.1.1 The least squares implementation

If the ”expectation” operator E is written explicitely as in (4.8), then the formulas
for (A,C, C̄) of Theorem ?? express exactly the solution of the two dual least squares
problems,

min
A,C

‖
[

x̂(k + 1)
y(k)

]
−

[
A
C

]
x̂(k)‖2 (4.21)

min
A′,C̄

‖
[

ˆ̄x(k− 1)
y(k − 1)

]
−

[
A′

C̄

]
ˆ̄x(k)‖2 (4.22)

where the norm is ordinary Euclidean norm in RN . This equivalence can be
used in the actual computation of (A,C, C̄) requiring just a least-squares equa-
tion solver. Good numerical implementations for lest-squares problems are easily
available. However we should notice that in this formulation we need to compute
explicitely all the basis vectors x̂(k), ˆ̄x(k), x̂(k + 1), ˆ̄x(k − 1).

This rephrasing of the formulas of of Theorem ?? is used in commercially
available codes. The appearence of least squares looks appealing to many and there
have been attempts to use the reformulation above also for theoretical purposes. In
this respect, there seems to be some confusion in the literature regarding the role
played by the estimation residues of the least-squares solution, say[

x̂(k + 1)
y(k)

]
−

[
A
C

]
x̂(k) :=

[
êx(k)
ê(k)

]
in ”proving” positive-realness of the estimated triple (A,C, C̄).

Although it is easy to check that

E
[

êx(k)
ê(k)

]
[êx(k)′ê(k)′] =

[
P (k + 1)−AP (k)A′ C̄ ′ −AP (k)C ′

C̄ − CP (k)A′ Λ(0)− CP (k)C ′

]
≥ 0

there is obviously no guarantee that some P ≥ 0 will satisfy the stationary matrix
inequality M(P ) ≥ 0. To draw this conclusion from the previous expression requires
existence of a positive limit of P (k) as k →∞ which, as is well know, is equivalent
to assuming positivity of (A,C, C̄) from the beginning.
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4.1.2 Use of the SVD and the LQ factorization

Of course determinig rank and ”picking bases” in practice is a numerically nontrivial
affair. The basic numerical tool which helps in this respect is the SVD. In particular
the truncated SVD derived from (??) of the previous section leads to the choice

Ωk = L+
k UkΣ1/2

k , Ω̄k = L−k VkΣ1/2
k (4.23)

These expressions are meant to be substituted for Ωk, Ω̄k everywhere in the
formulas above in this section wehnever the purpose is to do actual computations.
The LQ factorization a key step in subspace identification algorithms.[

U
Y

]
=

[
Luu 0
Lyu Lyy

] [
Q>

u

Q>
y

]
where Q>

u Qu = I, Q>
y Qy = I, Q>

u Qy = 0 and Luu, Lyy are lower triangular.

E [Y | U ] = Y Qu

[
Q>

u Qu

]−1
Q>

u = LyuQ>
u

E
[
Y | U⊥

]
= Y Qy

[
Q>

y Qy

]−1
Q>

y = LyyQ>
y

Q>
y an orthonormal basis for the orthogonal complement U⊥ in U ∨ Y.
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