
Dynamic neural networks partial least squares (DNNPLS)
identification of multivariable processes

Olufemi A. Adebiyi 1, Armando B. Corripio *

Gordon A. and Mary Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803-7303, USA

Accepted 4 March 2002

Abstract

This paper presents the dynamic neural networks partial least squares (DNNPLS) as a strategy for open-loop identification of

multivariable chemical processes that circumvent some of the difficulties associated with multivariable process control. The

DNNPLS is an extension of the neural networks’ partial least squares (NNPLS) developed by Qin and McAvoy (Comp. Chem. Eng.

20 (1992) 379). Here, a dynamic extension to the NNPLS algorithm is proposed in which the static neural network models in the

latent space (inner relationship) are replaced by dynamic neural network models. Though this approach has previously been

dismissed as being sub-optimal (Am. Inst. Chem. Eng. J. 38 (1992) 1593; Chem. Eng. Sci. 48 (1993) 3447) in terms of the outer

relationship (relationship between the residuals), Lakshminarayanan et al. (Am. Inst. Chem. Eng. J. 43 (1997) 2307) have shown that

this sub-optimality problem comes into prominence only when no attention is placed on the design of the plant probing signals. As

illustrations, the DNNPLS identification strategy is implemented on simulations of a model IV fluid catalytic cracking unit (FCCU)

and of an isothermal reactor. In both cases, it is shown that the methodology is capable of modeling the dynamics of the chemical

processes and an improved performance is achieved over that of the PLS-ARMA (Comp. Chem. Eng. 20 (1996) 147) for the

isothermal reactor.

# 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Neural networks; PLS; Dynamics; Latent space scores; Non-linear process modeling

* Corresponding author. Tel.: �/1-225-388-1426; fax: �/1-225-388-1476
1 Currently with Accenture, Atlanta, GA, USA.

Nomenclature

B a matrix of sensitivities form the regression (size f �/f)

bh the regression coefficient for one PLS component
CB concentration of B in reactor example
d the number of samples in the training set
dprr differential pressure between reactor and regenerator pressure
Eh the residual of X after subtraction of h components (size d �/m )

f the number of factors used
F5 flow of fuel to feed furnace
Fh the residual of Y after subtraction of h components (size d �/n)

FT air flow rate into regenerator
h a dummy index for counting factors
i a dummy index counting samples
In the identity matrix of size d �/d

j a dummy index for counting independent (x ) variables

k a dummy index for counting dependent (y) variables

Computers and Chemical Engineering 27 (2003) 143�/155

www.elsevier.com/locate/compchemeng

0098-1354/02/$ - see front matter # 2002 Elsevier Science Ltd. All rights reserved.

PII: S 0 0 9 8 - 1 3 5 4 ( 0 2 ) 0 0 0 3 4 - 0



1. Introduction

Many chemical processes exhibit nonlinear behavior

which creates difficulties in process identification. In

multivariable processes, unknown model structures,

difficulties in obtaining process and measurement noise

characteristics, and high correlation between process

variables (MacGregor, Marlin, Kresta & Skagerberg,

1991) are examples of problems that are faced daily.

Process identification of a multi input�/multi output

(MIMO) process could be very difficult, especially when

the process exhibits high non-linearities with the pre-

sence of several time scales and time delays.

Partial least-squares (PLS) is a linear system identifi-

cation method that projects the input�/output data

down into a latent space, extracting a number of

principal factors with an orthogonal structure, while

capturing most of the variance in the original data

(Wold, 1984). PLS was first used in econometrics.

Typical examples are in multivariate calibration (Lorber

& Kowalski, 1998), structure�/activity relationships

(Dunn, Wold, Edlund, Hellberg & Gasteiger, 1984)

and optimization of complex processes. It has also

been applied to chemical engineering problems, such

as process monitoring, modeling and fault detection

(Ricker, 1988; Wise, 1991; Kresta, 1992; Qin & McAvoy,

1992). The approach also offers potential benefits for

dynamic modeling and control (Lakshminarayanan,

Shah & Nandakumar, 1997).

When the process exhibits non-linear behavior, it is

desirable to extend the PLS model structure to capture

non-linearities. Wold, Kettaneh-wold and Skagerberg

(1989) incorporated non-linearities into the PLS model

for modeling static data using a quadratic relationship

between the latent scores. Qin and McAvoy (1992) have

demonstrated the modeling of static data using an

integrated PLS-neural net structure called NNPLS.

The NNPLS uses neural networks to model the latent

scores (inner relationship), hence it is able to handle

correlated variables and nonlinear relationships directly.

The static NNPLS combines the robust properties of the

PLS and the continuous nonlinear modeling of neural

networks.

Dynamic models are required for process control.

Ray and Kaspar (1992) developed a dynamic PLS by

filtering the input data and analyzing the major dynamic

data removed using PLS. Other attempts at incorporat-

ing dynamics have been including large numbers of

lagged values of the input variables in the input data

matrix, called the PLS-FIR model (Ricker, 1988) and

including lagged values of both the inputs and the

outputs in the input data matrix, called the PLS-ARMA

model. These approaches require a substantial increase

in the dimensions of the input data matrix. Due to the

presence of lagged variables, resulting models may be

cumbersome to manipulate (Ray & Kaspar, 1993).

Lakshminarayanan et al. (1997) and Lakshminaraya-

nan, Patwardhan and Shah (1998) employed Hammer-

m the number of independent (x ) variables

n the number of dependent (y) variables

/pT
h / a row vector of loadings for the X block, factor h (size 1�/m )

p4 reactor pressure
PT a row vector of loadings (size f �/m )

/qT
h / a row vector of loadings for the Y block, factor h (size 1�/n )

QT the matrix of Y loadings (size f �/n)
r the number of samples in a prediction (test) set
rh residual after factor h has been extracted

T the matrix of X scores (size d �/f)

th a column vector of scores for the X block, factor h (size d �/1)

tr reactor temperature
U the matrix of Y scores (size d �/f)

uh a column vector of scores for the Y block, factor h (size d �/1)

v11 reactor pressure valve position
v14 regenerator stack gas valve position
vlift lift air blower steam valve position

/wT
h / a row vector of weights for the X block, factor h (size 1�/m )

x a column vector of features for the independent variables (size m �/1)

X a matrix of features for the independent variables (size d �/m )

xt the number of delayed input loadings used in neural network input
y a column vector of features for the dependent variables (size n �/1)

Y a matrix of features for the dependent variables (size d �/n )
yt the number of delayed output loadings used in neural network input
Dt the sampling interval

O.A. Adebiyi, A.B. Corripio / Computers and Chemical Engineering 27 (2003) 143�/155144



stein models for the inner relationship for modeling and

control purposes. The parameters of the linear dynamic

part and the static nonlinear part are identified sepa-

rately and sequentially. The technique was illustrated
using a distillation column and an acid-base neutraliza-

tion system.

The DNNPLS presented here captures the dynamic

and nonlinear relationship between the input and output

data using the latent scores. A dynamic neural network

models the present output latent score using lagged

values of both the input and output latent scores as its

inputs. Hence the input data matrix has no lagged values
of both the process inputs and outputs as commonly

done. This results in models easier to use because of the

reduced dimensions of the input and output data

matrices.

2. Neural networks

This section presents the structure of the neural

network models used in this work. For a more

comprehensive review, the reader is referred to the

paper by Lippman (1987).

In general, neural networks are characterized by the

networks’ topology, computational characteristics of its
processing elements and the training rule. The network

consists of processing elements called neurons, arranged

in layers and exhaustively interconnected. These inter-

connections produce the robust predictive qualities of

neural networks. This study uses the feed-forward

neural network commonly called multi-layer preceptron,

which means that the output of the network is not

included as input to any of the network’s neurons.
A typical network consists of an input layer where

each neuron has a single input, the external input, one or

more hidden layers with each neuron having inputs from

all the neurons in the previous layer, plus a bias, and an

output to all the neurons in the following layer and an

output layer in which each neuron has inputs from the

last hidden layer and its output is one of the external

outputs of the network. Fig. 1 shows a three-layer
network*/input, hidden and output*/with m inputs

and n outputs.

The purpose of a neural network is to obtain a

mapping from an input vector X of length m to an

output vector Y of length n . The user specifies the

number of neurons in the hidden layer. It has been

shown that the accuracy of the mapping is relatively

insensitive to the number of neurons in this layer as long

as some minimum number is used.

A neuron acts as a combining function and an
activation function. The combining function produces

the weighted sum of the neuron inputs, while the

activation function performs a nonlinear transformation

of this sum. This work uses a tangent sigmoid activation

function for the neurons in the hidden layer and a linear

function for the output layer.

Since the purpose of the network is to model a

nonlinear dynamical system, dynamics has to be in-
corporated into the network by letting the input vector

X be a combination of Nu previous inputs and Ny

previous outputs and requiring that the network output

match the system output at one sampling time into the

future. Hence

X � [y(k�1); . . . ; y(k�Ny); u(k�d�1); . . . ;

u(k�d�Nu)]T (1)

where d is the process time delay and k is the time index.

Therefore, the network general model structure is given

as

Ŷ (k)�f(X ) (2)

where f is the nonlinear mapping function provided by

the network.

The final part of the neural network definitions is to

specify the training rule that is an algorithm necessary to

determine the connecting weights of the model. Initially,
the weights are usually set to small random values.

During a training cycle, the network is presented with

training vectors that consist of sampled values of input

X and target Y . The output of the network is the

predicted value of the plant output, Ŷ :/
Training produces the optimal connection weights for

the network by minimizing a quadratic cost function of

the errors between the neural network output and the
plant output over the entire set of samples. The training

algorithm used here is the Levenberg�/Marquandt

optimization routine of MATLAB, which is more

efficient and faster than the popularly used back

propagation algorithm because it takes implicitly into

account second derivatives.

3. DNNPLS identification methodology

3.1. PLS identification

A brief description of the PLS methodology and its
extension to the DNNPLS is outlined below. Detailed

descriptions of the PLS can be found in Geladi and

Kowalski (1986) and Martens and Naes (1989).Fig. 1. Topology of a 3-layer neural network.

O.A. Adebiyi, A.B. Corripio / Computers and Chemical Engineering 27 (2003) 143�/155 145



Assume we have n output variables, yi (i�/1, 2,

. . . , n ) and m input variables, xi (i�/1, 2, . . . , m ).

Also assume d samples of data are observed, then two

matrices can be formulated, one for the output Y , and one

for the input X , as follows:

y�

y11 y12 �� y1n

y21 y22 �� y2n

� � �
yd1 yd2 �� ydn

2
664

3
775 �Rdxn (3)

x�

x11 x12 �� x1m

x21 x22 �� x2m

� � �
xd1 xd2 �� xdm

2
664

3
775 �Rdxm (4)

where each row is composed of observations from one

sample instant and each column contains the dynamic

observations of a variable from time instant 1 to time

instant d . The MIMO system identification problem

involves extracting all the relevant information in matrix

X (excluding correlations) represented by some function
for predicting Y . The matrices X and Y are decomposed

into bilinear models similar to principal components

(projections/outer relations of the PLS model):

X �t1pT
1 �t2pT

2 � � � ��tfp
T
f �Ef (5)

Y �u1qT
1 �u2qT

2 � � � ��ufq
T
f �Ff (6)

where t and u are the latent scores, p and q represent the

latent loadings, f the number of factors extracted in the
latent space, Ef and Ff are residuals for X and Y

matrices, respectively after f factors have been extracted.

Appropriate dimensions are defined in the nomencla-

ture. The number of factors (f ) is selected either

statistically or heuristically and each factor is extracted

sequentially from factor 1 to factor f . The outer

relationship is defined as the relationship between Ei

and Fi , (i�/1, . . . , f ) where initially E0�/X and F0�/Y .
In matrix form Eq. (5) and Eq. (6) are written as:

X �TPT �Ef (7)

Y �UQT �Ff (8)

where T and U are the score matrices, and P and Q are

the loading matrices of matrices X and Y, respectively.

Fig. 2 shows a schematic of the PLS model. It shows
that the input X is projected into the latent space by the

input-loading matrix P obtaining the input scores T .

Similarly, the output Y is projected into the latent space

by the output-loading matrix Q obtaining the output

scores U . A linear model captures the relationship

between the input and output latent scores for each

factor.

The loading vectors pi (i�/1, 2, . . . , f) and qi (i�/

1, 2, . . . , f) represent the cosines of the dominant

directions and the projection of the X and Y data on

pi and qi , respectively results in ti and ui (i�/

1, 2, . . .. , f). The linear combinations must account

for much of the variation of X and must correlate well

with the variables in the Y space to achieve the

objectives of model stability and goodness of fit

(Lakshminarayanan et al., 1997).
The procedure of determining the scores and loading

vectors is carried out sequentially from the first factor to

the fth factor. Scores and loading vectors for each factor

are calculated from the previous residuals (outer rela-

tionship). This is performed until the number of

required factors is extracted or the residual is below

some threshold.

Fig. 3 shows the schematic of the model development
algorithm for the DNNPLS. The schematic is equivalent

to the PLS except that a neural network model replaces

the linear model. Initially (h�/1), the residuals are the

matrices X and Y because nothing has been extracted.

Hence, E0�/X and F0�/Y , as previously defined. The

h th factor is extracted by projecting the residuals into

the latent space, obtaining uh and th (the latent scores of

factor h ).
A link between matrices X and Y is established by

linear regression (least squares) between uh with th . This

link is known as the inner relationship.

Fig. 2. Schematics of the PLS model.

Fig. 3. Schematic of the DNNPLS training algorithm (Qin and

McAvoy, 1996).

O.A. Adebiyi, A.B. Corripio / Computers and Chemical Engineering 27 (2003) 143�/155146



ûh�bhth (9)

In matrix notation

Û �TB (10)

Hence, from Eq. (8)

Ŷ �TBQT �Ff (11)

where B is a diagonal matrix with elements expressing

the relationship between individual uh and th scores. B is

estimated such as to minimize the norm jjFf jj2.

The advantage of PLS over other linear regressions is

that the outer model projects the original data into
latent factors, by which the orthogonality of the score

vectors is achieved (Höskuldsson, 1998).

3.2. DNNPLS identification

When modeling the dynamic behavior of non-linear

processes it is desirable to capture the dynamics and the

non-linearities in the DNNPLS model. This can be

achieved by modifying the link of the inner relationships

(Eq. (9)). The score vectors are visualized as realizations

of certain functions of discrete time ti(kDt ) and ui (kDt),

where Dt is the sampling interval and k is the sample
number (Ray & Kaspar, 1993). Hence k is equivalent to

the row number of X or Y . Modeling the inner

relationship by a dynamic neural network instead of a

linear regression equation incorporates nonlinear dyna-

mical information into the PLS model. The inner

relationships are modeled by the nonlinear regressor as:

ûh(k)�F[th(k�1); th(k�2); . . . ; th(k�xt); uh(k

�1); uh(k�2); . . . ; uh(k�yt)]�o (12)

where the function F(.) represents the neural network

model function and o is the residual.

The network models the present output score using

lagged values of the input and output scores, where xt is

the number of lagged input scores used and yt is the

number of lagged output scores used. MATLAB’s
Levenberg�/Marquandt optimization routine, which is

faster and more robust than the commonly used back-

propagation method, was used to train the network.

Parameters of the neural network model are chosen by

cross validation (Section 3.4). The main advantage of

using a dynamic neural network model is that it reduces

the multivariable problem to a set of single-variable

problems. Because of this, single-input single-output
model-based controllers can easily be incorporated into

the structure.

The residuals can now be calculated from the

equations:

Eh�Eh�1�thpT
h (13)

Fh�Fh�1� ûhqT
h (14)

where ûh is the predicted output score of the model. The

process is performed recursively until the f th factor is

extracted. The present loadings and scores of a factor

have to be obtained before the present residuals are

estimated.
The dynamic approach here differs from other

approaches in that the dynamic has been moved from

the original space into the latent space and also no

filtering of input or pre/post compensators are used. By

using neural networks as the inner regressors, only one

SISO network is trained at a time, which is easier to

train than MIMO networks and also prevents over-

parameterization and local minima problems by redu-
cing the complexity of the optimization problem.

In conclusion, this section presents the DNNPLS

identification structure that decomposes the original

MIMO problem into multiple SISO problems (Eqs. (5)

and (6)) in the latent space. The SISO problems are

modeled using neural networks, which capture the non-

linearities and dynamics of the original MIMO identi-

fication problem (Eq. (12)). Eq. (8) predicts the output
Y from the outputs of the neural networks in the latent

space.

3.3. Training (estimation) algorithm (Geladi &

Kowalski, 1986)

The algorithm is implemented after the data have

been pre-processed, i.e. scaling around zero mean and
unit variance. Proper scaling prevents the latent vari-

ables from being biased towards variables with larger

magnitude.

For each factor h

Step one: Initialization:

Set: uh �/yj

/told
h /�/xi

where i and j are any column of the

input matrix X and output matrix

Y , respectively, used just for the

initialization. These are often taken

as the first column.

In the X block:

Step two: Define wh as:

wT
h �

uT
h X

uT
h uh

(15)

Step three: Normalize wh to norm of one:

wh�
wh

kwhk
(16)

Step four: Calculate the X matrix scores:

O.A. Adebiyi, A.B. Corripio / Computers and Chemical Engineering 27 (2003) 143�/155 147



th�
Xwh

wT
h wh

(17)

In the Y block:

Step five: Calculate Y matrix loadings:

qT
h �

tT
h Y

tt
hth

(18)

Step six: Normalize the loadings to norm of

one:

qh�
qh

kqhk
(19)

Step seven: Calculate the Y matrix scores:

uh�
Yqh

qT
h qh

(20)

Step eight: Check for convergence:

abst(th � told
h )

told
h

5o (21)

where o is a stopping criterion.

If condition Eq. (21) is satisfied, continue to step 9

otherwise repeat from step 2 with told
h �th:/

Calculate the X loadings and rescale the scores and

weights accordingly:

Step nine: Calculate the X matrix loadings:

pT
h �

tT
h X

tT
h th

(22)

Step ten: Re-scale the X matrix scores accordingly:

th�th �kpT
h k (23)

Step eleven: Normalize the loadings to norm of one:

ph�
ph

kphk
(24)

Step twelve: Re-scale wh accordingly:

wh�wh �kphk (25)

ph , qh and wh are saved for prediction

purposes.

Step

thirteen:

Inner model training using neural net-

works

th and uh are taken as dynamic realiza-

tions as explained previously, so using

delayed values of th and uh , the present

value of uh is modeled using the neural
network Eq. (12). The number of delayed

values is based on cross validation

Section 3.4. The training is carried out

such that �/uh� ûh/� is minimized and the

weights are saved for prediction pur-

poses.

Step
fourteen:

Calculation of residuals

For each factor h , Eq. (13) gives the

general outer relation for the X block

with E0�/X and h is the current factor.

For the Y block,

Fh�Fh�1�F(�)qT
h (26)

where F0�/Y and the inner neural net-

work model has been used in calculating

the residual of the output block in Eq.
(26).

Step fifteen: Final step

The procedure is repeated recursively

with each factor with X and Y replaced

by the corresponding residuals Eh and Fh

in the algorithm. The required number of

factors and hidden neurons in the net-
work are obtained by cross validation

(Section 3.4).

3.4. Cross validation (Schenker & Agarwal, 1996)

Because of fear of over-fitting and flexibility of

nonlinear models, cross validation is very important

for the DNNPLS. It should be used to check the number

of factors needed.
The number of factors is that which gives the lowest

residual on the test data. If too many factors are chosen,

then the prediction property of the model is poor, so a

balance has to be made on when the error reduction is

minimal compared with the increase in the number of

factors. Eventually, after all important factors are

extracted, the residual will contain mostly random noise

and the next latent factors derived from the residuals
will be uncorrelated.

3.5. Prediction algorithm

This section outlines how the DNNPLS model is used

for prediction of an MIMO process.

O.A. Adebiyi, A.B. Corripio / Computers and Chemical Engineering 27 (2003) 143�/155148



Step one: Initial condition calculations.

Set k�/0

1. Create matrix Q� [qT
1 ; qT

2 ; . . . ; qT
f ]/

2. Calculate the inverse of Q�1. If Q is
not a square matrix, the generalized

inverse is calculated.

3. Scale initial measured inputs and

outputs to zero mean and unit

variance using the scaling parameters

used during the model training.

4. For each factor h extracted during

training, calculate the initial latent
scores using the loading weights (Step

12, Section 3.3) saved during training:

th(k)�Eh�1(k)wh(k) (27)

Eh(k)�Eh�1(k)�th(k)pT
h (k) (28)

U(k)�Y (k)Q�1 (29)

The initial calculated scores are used by

the neural network models at time step

one (k�/1) to predict the present output

scores. In the above equations, k repre-

sents the time instant, hence Y (k ) has

dimensions of 1�/n and Eh(k ) has

dimensions of 1�/m , where n and m are

the number of output and input variables,
respectively.

Step two: For the current time step until the end of

the process (k �/0)

1. Load the saved neural network

weights for each h factor.

2. Using previous (delayed) scores and

the neural network models predict
present output score at time k using

Eq. (12).

For control purposes, these models are

used where the manipulated variables are

th and the controlled variables are uh. For

example, consider a three-input, three-

output multivariable system with two

factors extracted. Since h�/2, two differ-
ent controllers are designed in the latent

space using the dynamic models for each

factor. The first controller has t1 and u1 as

its manipulated and controlled variables,

respectively while the second controller

has t2 and u2. The set point of the

controllers is obtained by projecting the

original set points into the latent space.
An upcoming paper expands on the usage

of the DNNPLS for control.

Step three: Calculate the predicted outputs from the

model outputs in the latent space.

Û(k)� [û1(k); û2(k); . . . ; ûf (k)] (30)

Ŷ (k)�Û(k)Q(k) (31)

Step four: Take process measurement

Scale present output measurements ap-

propriately and projects the scaled mea-

surements into the latent space to be used
for next time step prediction.

The difference between the model output and the

measurement at the present time step is assumed to

account for plant/model mismatch when prediction is

made into the future.

4. Simulation examples

4.1. Case study I: model IV fluidized catalytic cracking

unit (FCCU)

A model IV fluid catalytic cracking unit (FCCU) is

used here to study the effectiveness of the DNNPLS

methodology. The mathematical model of the FCCU

proposed by McFarlane, Reineman, Bartee and Geor-

gakis (1993) is simulated without modification using the

s -function of MATLAB. A FCCU receives heavier

hydrocarbons from several other refinery process units
and cracks these streams into lighter and more valuable

components. FCCUs play a very important role because

products from the unit can be blended into other

products, such as gasoline. They are multi-unit processes

with significant nonlinear and time-varying behavior

and hence have become prime candidates for process

control and optimization. Data generated by the FCCU

simulation are used for implementing the DNNPLS
algorithm. McFarlane’s model captures the major

dynamics of the reactor/regenerator section including

non-linearities and interactions.

Pre-heated fresh feed, mixed with hot slurry recycle

from the bottom of the main fractionator, is injected

into the reactor riser, where it mixes with hot regener-

ated catalyst from the regenerator. This completely

vaporizes the feed. Endothermic cracking reactions
take place in the riser and a side reaction forms coke,

which is deposited on the catalyst surface. The coke

reduces the activity of the catalyst, hence continuous

regeneration of the catalyst is needed. Separation of the

catalyst and product gases occurs in the disengaging

zone of the reactor. The product gases are sent to the

main fractionator for separation into various product

O.A. Adebiyi, A.B. Corripio / Computers and Chemical Engineering 27 (2003) 143�/155 149



streams. Air is injected into the bottom of the regen-

erator to assist circulation of the catalyst and to burn the

coke deposited on it. Carbon and hydrogen on the

catalyst react with the oxygen in the air to produce

carbon monoxide, carbon dioxide and water, which are

removed from the top of the regenerator.

The input variables to the model are the wet gas

compressor suction valve position (v11), the stack gas

valve position (v14), the lift air blower steam valve

position (vlift) and the flow of fuel to the feed preheat

furnace (F5). The output variables are the temperature

of reactor riser (tr), the reactor pressure (p4), the

differential pressure between the regenerator and the

reactor (dprr) and the air flow into the regenerator (FT).

Three hundred open-loop data points are generated at a

sample time of 1 min, using random amplitude signals as

inputs into the unit. Another 100 data points are

generated separately for cross validation to determine

the optimal number of factors. The objective is to

establish a non-linear dynamic model between the input

and output variables. A dynamic neural network models

each factor and three neurons are used in the hidden

layer. The neural network model inputs consisted of two

previous input scores and two previous output scores to

model the present output score, hence a 4-3-1 three layer

neural network. This is a one step ahead of prediction

network. Four factors are extracted. Fig. 4 shows the

performance of the trained neural network models in the

latent space on the testing data. Only 25 data points are

shown in Fig. 4. As the figure shows, the neural network

models are able to predict the latent scores for each

factor and the first two factors are adequate to predict

the output variables. This is because two factors were

sufficient for extracting the relevant information be-

tween the input and output variables. The sum of square

errors between the model and the test data, given by

factor in Table 1, also indicates that two factors are

sufficient; hence the model for prediction purposes uses

only two factors.

For comparison, a MIMO neural network was

developed using six hidden layer nodes and the same

data for training as was used for the DNNPLS. The

MIMO network input consist of two previous inputs of

the process and two previous outputs of the process to

predict the present outputs, hence it was a 16-6-4, one

step ahead, three layer neural network. It required 130

parameters to be identified compared to a total of 38

parameters of the DNNPLS networks. The structure of

the MIMO network is chosen based on Theorem 1

(Appendix A), with the number of hidden layer nodes

equal to the total of the hidden layer nodes of the SISO

networks of the DNNPLS model. Hence, the MIMO

neural network structure is equivalent to the DNNPLS

structure. It took :/75 min to train on a Pentium II, 100

MHz processor compared to 5 min for each SISO

network of the DNNPLS model. An argument might

Fig. 4. Performance of the neural network models on the testing data for the four factors extracted.

O.A. Adebiyi, A.B. Corripio / Computers and Chemical Engineering 27 (2003) 143�/155150



be made that the MIMO network can be broken down

into SISO networks, but the MIMO model is needed to

directly account for interactions in the sensitivity

analysis calculations.

The model is used to predict unseen data, which was

generated using different random amplitude signals as

inputs. These data are different from the testing data

generated for cross validation. Fig. 5 compares the

results of the DNNPLS model with two factors and the

MIMO neural network model in predicting the reactor

temperature and Table 2 shows the sum of squared

errors of the DNNPLS model and the MIMO neural

network model for the reactor temperature and pres-

sure, the differential pressure and the air flow. Both

models predict adequately except for the regenerator air

flow, for which the DNNPLS out-performs the MIMO

neural model. Notice that only two factors are extracted

by the DNNPLS model for prediction. This means the

dimension of the MIMO problem in the original space

has been reduced from a four-input by four-output to

two SISO problems in the latent space.

By using the DNNPLS model, the training time and

the number of parameters needed are reduced and it

performs as good as a MIMO neural network model. It

is also more suitable for control purposes, as decoupling

takes place in the latent space while indirectly account-

ing for interactions. Though the dynamics remain

decoupled, the coupling of the input constraints in the

latent space can lead to problems. Hence, not only is the

DNNPLS able to model the complex dynamics, the

properties of the PLS can still be used to reduce the

dimensionality of the problem.

4.2. Case study II: isothermal reactor

The reactor of Li and Biegler (1988) is used for

comparison between the DNNPLS and PLS-ARMA

approach to modeling dynamics. Fig. 6 shows a sche-

matic of the reactor. The following reaction occurs in an

ideal stirred tank reactor:

A�B 0 P (32)

where A is in excess. The reaction rate equation is given

by:

rB�
K1CB

(1:0 � K2CB)2
(33)

where CB is the concentration of component B . The

concentration of B in the two inlet streams are assumed

constant at CB 1�/24.9 mol/l and CB 2�/0.1 mol/l and

contain an excess amount of A . The flow of liquid from

the tank is determined by

F (h)�0:2 �h0:5: (34)

The cross-sectional area of the tank is 1.0 m2 and the

sampling time is 1.0 min. The values of parameters used

are listed in the Table 3.

Table 1

Sum of squared errors between model and test data

No of factors Sum of squared errors

1 27.4793

2 6.5921

3 2.5648

4 2.5185

Fig. 5. Prediction of the reactor temperature.

Table 2

Comparison of sum of squared errors between the DNNPLS model

and the MIMO neural network model

Variable DNNPLS

model

MIMO neural network

model

Reactor

temperature

6.821�10�3 6.688�10�3

Reactor pressure 0.9748 0.29845

Differential pressure 0.9598 0.9838

Regenerator air flow 3.8332 12.5805

O.A. Adebiyi, A.B. Corripio / Computers and Chemical Engineering 27 (2003) 143�/155 151



After simplification the model becomes:

dt�
dc1

dt
�v1�v2�0:2c0:5

1 (35)

dc2

dt
� (24:9�c2)v1c�1

1 �(0:1�c2)v2c�1
1 �

c2

(1 � c2)2
(36)

y1�c1

y2�c2

�
(37)

where c1 is the liquid height in tank in meters, c2, the

concentration of B in the reactor in mol/l, v1, the inlet
flow rate with condensed B in m3/s and v2, the inlet flow

rate with dilute B in m3/s. A factor of 1000 l/m3 cancels

out in Eq. (36).

Open loop data (input variables v1 and v2, and output

variables y1 and y2) used for training the inner neural

networks models of the DNNPLS and PLS-ARMA

structure, are obtained using random amplitude signals

as inputs into the simulation of the process. Two

hundred data points are generated separately for train-

ing and 100 for testing.

For the DNNPLS the input matrix X�/[v1(k ) v2(k )]

and Y�/[y1(k ) y2(k )] while for the PLS-ARMA, the

input matrix X�/[v1(k�/1) v2(k�/1) v1(k�/2) v2(k�/2)].

The input matrix X for the PLS-ARMA approach

consist of two delayed input and output variables

because the same structure is used for the neural

network models of the DNNPLS. Hence, for training

the dimensions of X are 200�/2 and 200�/4, respec-

tively and the dimension of Y is 200�/2 for both

methods. The dimension of matrix X is twice for the

PLS-ARMA approach compared to the DNNPLS. In

the PLS-ARMA models, neural networks have been

used to model the inner relationship between the latent

scores for fair comparison. An argument might be made

that the DNNPLS methodology equally increases the

number of parameters to be estimated but this is much

easier to handle than the complexities of non-square

loading matrix inversions, that may result from introdu-

cing lagged values in the input matrix X .

Fig. 7 shows the response of the reactor concentration

to a different random amplitude signal for both

approaches using the same number of factors. The two

factors are used by both approaches for predicting the

reactor liquid level and concentration. The DNNPLS

outperforms the PLS-ARMA approach for both the

level and concentration. While the PLS-ARMA is able

to model the trend using two factors, the DNNPLS

gives more accurate predictions. The performance of the

PLS-ARMA approach can be improved by increasing

the number of factors.

Table 4 shows the sum of squared errors for the

DNNPLS model and PLS-ARMA model.

Table 3

Parameters for the isothermal reactor

Kinetic parameters Concentrations of B Initial conditions

K1�1.0 s�1 CB 1�24.9 mol/l x10�40 m

K2�1.0 l/mol CB 2�0.1 mol/l x20�0.1 mol/l

Fig. 7. Prediction using DNNPLS and PLS-ARMA of concentration.

O.A. Adebiyi, A.B. Corripio / Computers and Chemical Engineering 27 (2003) 143�/155152



Figs. 8 and 9 show the prediction of the first 25 factor

scores on the test data for each factor in the latent space

using both approaches. uh and th are the output and

input scores for the hth factor.

There are probably two reasons why the DNNPLS

outperforms the PLS-approach:

1) Because the data are dynamic, the scores become

inherently dynamic by nature and hence modeling

the scores by a static model does not perform as well

as a dynamic model. This can be seen by the

prediction accuracy of the inner models when using

a dynamic neural network and a static neural

network during training (see Figs. 8 and 9 for

comparison).
2) Increasing the dimensions of the X matrix means

increasing the number of factors extracted to

capture the underlying information. Though in the

example two factors for the PLS-ARMA gave less

accurate performance to the DNNPLS, the number

of factors for the PLS-ARMA needed for compar-

able performance may have to be increased. Fig. 10

Table 4

Comparison of the sum of squared errors between the DNNPLS

model and PLS-ARMA model

Variable DNNPLS model PLS-ARMA model

Level 9.425�10�3 2.3670

Concentration 7.929�10�2 0.6723

Fig. 8. First factor predictions of the inner models.

Fig. 9. Second factor predictions of the inner models.

O.A. Adebiyi, A.B. Corripio / Computers and Chemical Engineering 27 (2003) 143�/155 153



shows the residual information after factors have
been extracted during training using the PLS-

ARMA. x1 is the residual of the scaled inlet flow

rate of condensed B and x2 is the residual of the

scaled inlet flow rate of dilute B . It is obvious from

Fig. 10 that not all the relevant information is

extracted with two factors and better results would

be obtained if four factors were extracted. When the

number of factors extracted is increased to four,
most of the information needed is extracted. Notice

in Fig. 10 that the residuals are very small after four

factors are extracted.

5. Conclusions

A dynamic NNPLS (DNNPLS) modeling approach
for multivariable systems is introduced. This is a direct

extension of the NNPLS, which is static. The dynamic

relation has been moved from the outer model into the

inner model of the PLS. The advantages of moving the

lagged details into the inner model include reduction in

the size of the input X matrix and a simpler model

structure suitable for process control.

The performance of the approach is shown on the
highly nonlinear fluidized catalytic cracking unit to

model the dynamics. It was shown that with less

parameters and difficulties, the process predicts as

good as a MIMO neural network. Though this ap-

proach has been dismissed as sub-optimal in the past, no

reason has been given why it should not be used. The

superior performance over an approach of modeling the

dynamics using the outer model (PLS-ARMA) is also
shown. Some reasons for this superiority are also given.

Future research would address using the developed

model for process control.

Appendix A

A.1. Theorem 1

The DNNPLS model is equivalent to an m -input p-

output dynamic network with one hidden layer given by:

Y (k)�C2s(C1z(k)�k1)�k2�Ff (A1)

where

z(k)� [X (k�1); . . . ; X (k�xt); Y (k�1); . . . ;

Y (k�yt)]T (A2)

C2� [q1W21; . . . ; qf W2f ] (A3)

C1� [W̃ 11; . . . ; W̃ 2f ] (A4)

k1� [B11; . . . ; B2f ]T (A5)

k2� [B21q1; . . . ; B2f q1] (A6)

and s is the sigmoid function.

A.1.1. Proof

Eq. (8) can be written as:

Y (k)�
Xf

h�1

ûh(k)qT
h �Fh (A7)

where

ûh(k)W2hs(W1hINh(k)�B1h)�B2h (A8)

INh(k)� [th(k�1); . . . ; th(k�xt); uh(k�1); . . . ;

uh(k�yt)]T (A9)

Hence

INh(k)� [X (k�1)w̃h; . . . ; X (k�xt)w̃h;

Y (k�1)c̃h; . . . ; Y (k�yt)c̃h]T (A10)

Define

Fig. 10. Residuals after using PLS-ARMA.

O.A. Adebiyi, A.B. Corripio / Computers and Chemical Engineering 27 (2003) 143�/155154



gAh�diagonal (w̃h) �Rxtx(m�xt) (A11)

gBh�diagonal (c̃h) �Rytx(n�yt) (A12)

gh�
gAh 0

0 gBh

	 

�R(xt�yt)x(m�xt�n�yt) (A13)

z(k)� [X (k�1); . . . ; X (k�xt);Y (k�1); . . . ;

Y (k�yt)]T (A14)

Then

INh(k)�ghz(k) (A15)

Hence:

Y (k)�
Xf

h�1

(W2hs(W1hghz(k)�B1h)�B2h)qT
h �Ff (A16)

Y (k)�C2s(C1z(k)�k1)�k2�Ff (A17)

Q.E.D.

where

W̃ 1h�W1hgh (A18)

Hence the weight of a MIMO neural network model can

be obtained from a DNNPLS model.

References

Dunn, W. J., III, Wold, S., Edlund, U., Hellberg, S., & Gasteiger, J.

(1984). Multivariate structure�/activity relationships between data

from a battery of biological test and an ensemble of structure

descriptors: the PLS method. Quant.-Struc.-Act. Relat. 3 , 131�/

137.

Geladi, P., & Kowalski, B. R. (1986). Partial least squares regression: a

tutorial. Anal. Chim. Acta 185 , 1�/17.

Höskuldsson, A. (1998). PLS regression methods. J. Chemomet. 2 ,

211�/228.

Kresta, J. Applications of partial least squares regression. PhD Thesis,

McMaster University, Hamilton, Ont., Canada, 1992.

Lakshminarayanan, S., Shah, S. L., & Nandakumar, K. (1997).

Modeling and control of multivariable processes: dynamic PLS

approach. Am. Inst. Chem. Eng. J. 43 , 2307�/2322.

Lakshminarayanan, S., Patwardhan, R. S., & Shah, S. L. (1998).

Constrained nonlinear MPC using Hammerstein and Wiener

models: PLS framework. Am. Inst. Chem. Eng. J. 44 (7), 1611�/

1622.

Li, W. C., & Biegler, L. T. (1988). Process control strategies for

constrained nonlinear systems. Ind. Eng. Chem. Res. 27 , 1421�/

1433.

Lippman, R.P. An introduction to computing with neural nets. IEEE

ASSP Magazine, April 1987, p. 4.

Lorber, A., & Kowalski, B. R. (1998). The effects of interferences and

calibration design on accuracy: implications for sensor and sample

selection. J. Chemomet. 2 , 67�/79.

MacGregor, J.F., Marlin, T.E., Kresta, J., Skagerberg, B. Multivariate

statistical methods in process analysis and control. Proceedings of

the CPC-IV Conference, South Padre Island, TX, 1991, pp. 18�/22.

Martens, H., & Naes, T. (1989). Multivariate Calibration . New York:

Wiley.

McFarlane, R. C., Reineman, R. C., Bartee, J. F., & Georgakis, C.

(1993). Dynamic simulator for a model IV fluid catalytic cracking

unit. Comp. Chem. Eng. 17 (3), 275�/300.

Qin, S. J., & McAvoy, T. J. (1992). Nonlinear PLS modeling using

neural networks. Comp. Chem. Eng. 16 (4), 379�/391.

Qin, S. J., & McAvoy, T. J. (1996). Nonlinear FIR modeling via a

neural net PLS approach. Comp. Chem. Eng. 20 (2), 147�/159.

Ray, W. H., & Kaspar, M. H. (1992). Chemometric methods for

process monitoring and high-performance controller design. Am.

Inst. Chem. Eng. J. 38 , 1593.

Ray, W. H., & Kaspar, M. H. (1993). Dynamic PLS modeling for

process control. Chem. Eng. Sci. 48 , 3447�/4346.

Ricker, N. L. (1988). The use of biased least squares estimators for

parameters in discrete-time pulse response models. Ind. Eng. Chem.

Res. 27 , 343�/350.

Schenker, B., & Agarwal, M. (1996). Cross-validated structure

selection for neural networks. Comp. Chem. Eng. 20 , 175�/186.

Wise, B.M. Adapting multivariate analysis for monitoring and

modeling dynamic systems. PhD Thesis, University of Washington,

Seattle, 1991.

Wold, H. (1984). Partial least squares. In Encyclopedia of Statistical

Sciences , vol. 6 (pp. 581�/591). New York: Wiley.

Wold, S., Kettaneh-wold, N., & Skagerberg, B. (1989). Nonlinear PLS

modeling. Chemometr. Intell. Lab. Sys. 7 , 53�/65.

O.A. Adebiyi, A.B. Corripio / Computers and Chemical Engineering 27 (2003) 143�/155 155


	Dynamic neural networks partial least squares (DNNPLS) identification of multivariable processes
	Introduction
	Neural networks
	DNNPLS identification methodology
	PLS identification
	DNNPLS identification
	Training (estimation) algorithm (Geladi & Kowalski, 1986)
	Cross validation (Schenker & Agarwal, 1996)
	Prediction algorithm

	Simulation examples
	Case study I: model IV fluidized catalytic cracking unit (FCCU)
	Case study II: isothermal reactor

	Conclusions
	Appendices
	Appendix A
	Theorem 1
	Proof



	References


