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Abstract: A novel algorithm is presented for the design of inferential estimators for
process monitoring and control. The algorithm aims at integrating Partial Least
Squares (PLS) techniques and Subspace Identification Methods (SIM) to exploit
the main advantages of both methodologies. In particular, the algorithm will retain
the PLS computational robustness in dealing with large sets of correlated inputs
and outputs, whilst profiting by the SIM dynamic description of the system being
investigated.
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1. INTRODUCTION

Partial Least Squares (PLS) is a very widespread
technique to deal with large numbers of (possi-
bly) correlated data ((Geladi and Kowalski, 1986),
(Helland, 1988), (Helland, 1990)). However, a po-
tential drawback of PLS consists in its inherently
static nature. A potential solution is to include
lagged variables in the input matrix in order to
take into account past inputs and outputs (Ku
et al., 1995), (Lakshminarayanan et al., 1997).
A different approach is to merge Subspace Iden-
tification Methods (SIM) with Principal Com-
ponent Analysis (PCA) regression (Negiz and
Çinar, 1997), (Wang and Qin, 2002), (Treasure
et al., 2004). A comparison between static and
dynamic regression can be found in (Shi and
MacGregor, 2000). The goal of this paper is to
suggest a methodology to combine PLS and SIM.
In particular, the iterative algorithm structure of
the PLS is preserved, but in the each estimation
step SIM is used instead of static regression.
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2. PRELIMINARIES

s section, the PLS regression and SIM are
reviewed. The purpose is to highlight and
pare their pros and cons in order to better

stand the proposed algorithm.

x(·)} ∈ R
m and {y(·)} ∈ R

p be two jointly
nary second–order ergodic processes and X,
realizations 1

= [ x(t0) x(t1) · · · x(tN−1) ] ∈ R
m×N ,

= [ y(t0) y(t1) · · · y(tN−1) ] ∈ R
p×N .

oal is to construct a static (using PLS) or a
ic (using SIM) model mapping future val-
x(t) in an estimation ŷ(t) of y(t). Observe
and y do not necessarily have the meaning

ut and output of the plant. In fact, they can
ought to be two different sets of measure-
, i.e. process variables and quality variables.
tain good product and/or to keep the system

now on, bold letters are used for random vectors
s italic letters for the sample values.



under control, it is necessary to estimate the set
of quality variables (having usually a small sample
time) using the process variables (having a high
sample time).

For sake of readability, the random vectors x(·)
and y(·) are assumed to be scaled to zero-mean
and unit variance.

2.1 A review of PLS: NIPALS algorithm

The nonlinear iterative partial least squares (NI-
PALS) algorithm (Geladi and Kowalski, 1986) is
written here with the rows and columns reversed
with respect to the usual notation and without
normalization. The goal is to give for each equa-
tion a geometric interpretation that will be use-
ful in the following. Here, the Greek letter Σ is
used to indicate variance and covariance matri-
ces. Moreover, E[·] and E[·|·] are the expectation
and the conditional expectation, respectively. The
slightly different symbol Ê[·|·] is introduced for the
linear projection operator (in the Gaussian case,
Ê[·|·] = E[·|·]).
After setting Y1 = Y , X1 = X, the following iter-
ations are repeated for each loading, k = 1, 2, . . ..
Observe that the subscript in each variable means
the loading number, whereas the apex the number
of iteration.

(1) Initialization: set s0
k be equal to a row of Yk.

(2) Linear regression step: find the loading vector
ŵi

k = Σ̂Xksi
k
Σ̂−1

si
k

that regresses the rows of

Xk on si
k:

Xk = ŵi
ksi

k + Ei
k, ŵi

k =
Xk(si

k)T

si
k(si

k)T
. (1)

The matrix Ei
k is the estimation error.

(3) Estimation step: compute the score tik as the
LSE of si

k based on Xk using the model (1)

tik := ŝi
k =

(
(ŵi

k)T ŵi
k

)−1
(ŵi

k)T Xk.

(4) Linear regression step: find the loading vector
qi
k = Σ−1

ti
k

Σti
k
Yk

that regresses the rows of Yk

on tik

Yk = q̂i
ktik + W i

k, q̂i
k =

Y i
k (tik)T

tik(tik)T
. (2)

The matrix W i
k is the estimation error.

(5) Estimation step: compute the score si+1
k as

the LSE of tik based on Yk using the model
(2)

si+1
k := t̂ik =

(
(q̂i

k)T q̂i
k

)−1
(q̂i

k)T yk.

(6) Check convergence: compare two subsequent
realizations of sk (si

k, si+1
k ). If ‖si+1

k − si
k‖ >

ε
e
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, then set i := i + 1 and go back to step 2;
lse, tk := tik and go to step 7.
inear regression step: find the loading vector
k = Σ−1

tk
ΣtkXk

regressing the rows of Xk on
k

Xk = p̂ktk + Vk, p̂k =
Xk(tk)T

tk(tk)T
.

atrix updating: compute the residual ma-
rices Xk+1 and Yk+1

Xk+1 = Xk − Ê [Xk|tk] = Xk − q̂ktk
Yk+1 = Yk − Ê [Yk|tk] = Yk − p̂ktk.

hey comprise the information of the original
atrices X and Y not explained by the first
loadings.
heck the stopping rule: it is possible to
ompute loadings until the maximum from p
nd m is achieved. Otherwise, the procedure
an be stopped when the explained variance
n the Y –block is big enough or when the
ncrement between two steps is not significa-
ive.

e end of the procedure, the original matrices
ritten as

X =
∑N

k=1 q̂ktk + E = QT + E

Y =
∑N

k=1 p̂ktk + F = PT + F

N is the number of loadings and E and F
e error matrices. These equations have good
rical properties even if the original data are
ear. From the above matrices, the estimated
static model becomes

y(t) = Ax(t).

review of SIM

ovation state–space model of z =
[
x
y

]
is

by 2

z(t) =
[

A K
C I

]
e(t) (4)

the innovation process e has variance equal
The unknowns are the matrices A, K, C,

here K is the steady–state Kalman gain.

and in the following, the compact notation y =

B

D

]
u is used instead of the state–space model

tion {
x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t).
(3)



Subspace methods for time–series can be used to
estimate all these matrices, (Van Overschee and
De Moor, 1993), (Lindquist and Picci, 1996).

As before an estimator of y(t) based on x(t) needs
to be designed. The model (4) can be written as

[
x(t)
y(t)

]
=

⎡
⎣ A K1 K2

L I 0
C 0 I

⎤
⎦[

e1(t)
e2(t)

]
, (5)

Var

[
e1(t)
e2(t)

]
=

[
Π11 Π12

Π21 Π22

]
.

In order to find the dynamic system mapping
x(t) into y(t), a transformation matrix to obtain
uncorrelated noises ex, ey is first performed

[
ex(t)
ey(t)

]
=

[
I 0

−Π21Π−1
11 I

] [
e1(t)
e2(t)

]
.

After setting J = Π21Π−1
11 , the system (5) be-

comes

[
x(t)
y(t)

]
=

⎡
⎣ A Kx Ky

L I 0
C J I

⎤
⎦[

ex(t)
ey(t)

]
(6)

Var

[
ex(t)
ey(t)

]
=

[
Πx 0
0 Πy

]
, (7)

where Kx := K1 and Ky := K2 + K1J . Substi-
tuting the x–measurement equation into the state
equation and into the y–measurement equation
(quality measurement equation), a system map-
ping x(t) and ey(t) into y(t) is obtained. To get
the estimator ŷ(t) for y(t) based on past measure-
ments x(t0),. . .,x(t − 1), it is necessary to

(1) compute the state estimation x̂(t) based on
x(t0), . . ., x(t − 1) using a (one–step–ahead
or a priori) steady–state Kalman filter,

(2) substitute the state estimation x̂(t) in the
quality measurement equation.

At the end, the estimator takes the form

ŷ(t) =
[

A − GL G
C − JL J

]
x(t) (8)

where G is the Kalman gain

G = [A − KyL]PLT
[
LPLT + Πx

]−1
+ Ky

and P is the positive–definite solution of the
algebraic Riccati equation

P = (A − KyL)
(
P − PL

(
LPLT + Πx

)−1
LT P

)
·

· (A − KyL)T + KyΠyKT
y .

It is important to highlight that numerical robust-
ness of SIMs is strongly dependent on the data. If
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are collinear components in the matrix Z (as
n happens in industrial data), the computa-
ay be ill-posed. This means that even if the

ator (8) is correct from a theoretical point of
it could still give wrong results because of
rical issues.

ke advantage of the above methods, an
ator like (8) is derived by following the
philosophy. The idea is to replace linear
sions with subspace identifications in the
2, 4, 7 in the PLS iterative algorithm.

DYNAMIC LINEAR PLS ALGORITHM

lgorithm is partitioned as the static PLS
thm in Section 2.1, and it is explained by
wchart in Figure 1.

Q(z) : Y → t̂(z) : X → ŝ

t s

Y

2

4

53

. Flowchart of the Dynamic PLS

respect to the standard PLS, there are two
tant differences:

tatic linear regressions are now substituted
y system identifications.
nstead of (dynamically) regress Xk on si

k in
tep 2 and Yk on tik in step 4, the algorithm
egresses si

k on Xk and tik on Yk, respectively.
his avoids the inversion of transfer func-

ions.

the algorithm is structured as follows:

nitialization: set s0
k equal to a variable of the

ector yk and let s0
k be the corresponding

rajectory.
IM step: identify the state–space system
apping xk into si

k. The first step is to
nd the stochastic system describing the en-

anced output vector
[
xk

si
k

]
using the data

Xk

si
k

]

[
xk(t)
si
k(t)

]
=

⎡
⎣ Ai

k Ki
1,k Ki

2,k

Li
k I 0

ci
k 0 1

⎤
⎦[

ei
1,k(t)

ei
2,k(t)

]

Var

[
ei
1,k

ei
2,k

]
= Πi

k =
[

Πi
11 Πi

12

Πi
21 Πi

22

]
.



The quality measurement si
k(t) is now a

scalar fictitious variable. In order to find
the system mapping xk into si

k, one needs
to do the same manipulations described in
Section 2.2. All matrices have a subscript
related to the loading number (k) and an
apex related to the iteration number (i).
Since the meaning of the matrices is the
same, the mathematics is not reported. The
model is given by

si
k(t) = W i

k(z)xk(t)︸ ︷︷ ︸
ŝi

k
(t)

+ni
k(t)

W i
k(z) =

[
Ai

k − Gi
kLi

k Gi
k

ci
k − J i

kLi
k J i

k

]
(9)

where the model noise ni
k(t) is orthogonal to

ŝi
k(t).

(3) Estimation step: compute the scores tik. By
redefining the variable ŝi

k as the score vari-
able ti

k, it is possible to obtain a realization
tik(t), t = t0, . . . , tN−1 as the output of the
system (9) driven by Xk(t), t = t0, . . . , tN−1.
The k–score data matrix at the i–step is
defined as

tik := [ tik(t0) tik(t1) · · · tik(tN−1) ] ∈ R
1×N .

(4) SIM step: identify the state–space system
mapping yk into ti

k. The first step is to
find the stochastic system describing the en-

hanced output vector
[
yk

ti
k

]
using the data[

Yk

tik

]
:

[
yk(t)
ti
k(t)

]
=

⎡
⎣ F i

k Gi
1,k Gi

2,k

M i
k I 0

hi
k 0 1

⎤
⎦[

wi
1,k(t)

wi
2,k(t)

]

Var

[
wi

1,k(t)
wi

2,k(t)

]
=

[
Λi

11,k Λi
12,k

Λi
21,k Λi

22,k

]
.

The model takes the form

ti
k(t) = Qi

k(z)yk(t)︸ ︷︷ ︸
t̂i

k
(t)

+vi
k(t)

Qi
k(z) =

[
F i

k − Gi
kM i

k Gi
k

hi
k − V i

kM i
k V i

k

]
(10)

where the model noise vi
k(t) is orthogonal to

t̂i
k(t).

(5) Estimation step: compute the scores si
k+1.

By redefining the variable t̂i
k(t) as the score

variable si
k+1, it is possible to obtain a new

realization si+1
k (t), t = t0, . . . , tN−1 as the

output of the system (10) driven by Yk(t),
t = t0, . . . , tN−1. The si+1

k score matrix is

si+1
k := [ si+1

k (t0) si+1
k (t1) · · · si+1

k (tN−1) ] .
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heck convergence: compare two subsequent
ealizations of sk. If ‖si+1

k − si
k‖ > ε then

:= i + 1 and go back to step 2; else, tk = tik
i.e. tk = ti

k) and go to step 7.
IM step: identify the state–space systems
apping tk into x̂k and of ŷk

x̂k(t) =
[

Ax,k Bx,k

Cx,k Dx,k

]
tk(t) (11)

ŷk(t) =
[

Ay,k By,k

Cy,k Dy,k

]
tk(t). (12)

oreover, since it is necessary to move from
he real measurement Xk(t) to the fictitious
ariable tk(t), the system mapping xk into tk

tk(t) =
[

At,k Bt,k

Ct,k Dt,k

]
xk(t)

=
[

Ai
k − Gi

kLi
k Gi

k

ci
k − J i

kLi
k J i

k

]
xk(t) (13)

s also computed.
atrix updating: compute the residual ma-

rices Xk+1 and Yk+1 by subtracting the es-
imations obtained using (11) and (12), re-
pectively,

Xk+1 := Xk −
[

Ax,k Bx,k

Cx,k Dx,k

]
tk (14)

Yk+1 := Yk −
[

Ay,k By,k

Cy,k Dy,k

]
tk. (15)

heck the stopping rule. The procedure is
topped when the explained variance on the
–block is big enough or when the increment
etween two steps is not significative.

be the number of dynamic loadings com-
. The plant is written as

(t) =
N∑

k=1

[
Ax,k Bx,k

Cx,k Dx,k

]
tk(t) + e(t) (16)

(t) =
N∑

k=1

[
Ay,k By,k

Cy,k Dy,k

]
tk(t) + f(t) (17)

e(t) and f(t) are the approximation errors.
that to compute the estimation ŷ(t) of y(t)
on the measurements x(t0), x(t1), . . ., x(t−
e transfer functions (13) from x1(t), x2(t),
N (t) to t1(t), t2(t), . . ., tN (t) are also needed
he equations at the top of the next page).

the scores are available, it is possible to
ute the estimation according to formula:

ŷ(t) =
N∑

k=1

[
Ay,k By,k

Cy,k Dy,k

]
tk(t)

=
N∑

k=1

Gtky(z)tk(t).



Remark 1. Note that the updating of Xk in equa-
tion (14) is not necessary because the only nec-
essary updating is the one related to Yk (this
fact also holds in the standard PLS). If the input
matrix is not updated, the new scores t̄i (which
differ from ti in equation (13)) can be calculated
by

t̄i(t) =
[

Āt,i B̄t,i

C̄t,i D̄t,i

]
x(t)

without computing x2(t), x3(t), . . ., xn(t). Then
it is possible to resort to the more compact block
diagram of figure 3 instead of using the one
obtained following the previous construction, see
figure 2.

4. AN IMPROVEMENT: DYNAMIC PLS
WITH INPUTS

Until now, we have used as input and output
data only process and quality variables. It is also
possible to introduce the controlled variables (if
they are available) in the model by resorting to
the subspace identification with inputs algorithms,
(Van Overschee and De Moor, 1994). The above
algorithm changes only in step 2 where the iden-
tified plant becomes

[
xk(t)
si
k(t)

]
=

⎡
⎣ Ai

k Bi
k Ki

1,k Ki
2,k

Li
k 0 I 0

ci
k 0 0 1

⎤
⎦

⎡
⎣ u(t)

ei
1,k(t)

ei
2,k(t)

⎤
⎦

Var

[
ei
1,k

ei
2,k

]
= Πi

k =
[

Πi
11 Πi

12

Πi
21 Πi

22

]
.

Therefore the dynamic PLS takes the form

tk(t) =
[

At,k Bu
t,k Bx

t,k

Ct,k 0 Dt,k

] [
u(t)
xk(t)

]

ŷ(t) =
n∑

k=1

[
Ay,k By,k

Cy,k Dy,k

]
tk(t)

where the controlled inputs and the process vari-
ables are first projected into the score space and
then are used to estimate the quality variables.
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5. CONCLUSION

aper has presented and discussed a novel
thm to integrate PLS and SIM methodolo-
he main benefit is that a truly dynamic de-

ion of the system being considered is feasible
ut losing the numerical advantages of a PLS
ach. Even if some work needs to be done to
the theoretical foundation for the proposed

thm and demonstrate its convergence, the
imulations have produced promising results.
ethod is effective for the same reasons as

LS algorithm. Recursively, it constructs sub-
s that become after each iteration closer to
other (si

k). The only difference is that the
utation also takes into account the process
ics. In other words, the data fitting ob-
by identification is more accurate that the
data fitting obtained by using the least-

es method. Future work will include the ap-
ion of the suggested algorithm to process
o assess its effectiveness when compared to
ard PLS.

REFERENCES

i, P. and B. R. Kowalski (1986). Partial
ast-squares regression: a tutorial. Analytica
himica Acta 185, 1–17.
d, I.S. (1988). On the structure of partial
ast squares regression. Commun. Statist. B–
imulation Comput. 17(2), 581–607.
d, I.S. (1990). Partial least squares regres-
on and statistical models. Scand. J. Statist.
7, 97–114.
., R.H. Storer and C. Georgakis (1995). Dis-
rbance detection and isolation by dynam-
ic principal component analysis. Chemo-
etrics and Intelligent Laboratory Systems
0, 179–196.
minarayanan, S., S.L. Shah and K. Nadaku-
ar (1997). Modeling and control of mul-
variable processes: dynamic pls approach.
IChE J. 43(9), 2307–2322.
uist, A. and G. Picci (1996). Canonical cor-
lation analysis, approximate covariance ex-
nsion, and identification of stationary time
ries. Automatica 32(5), 709–733.
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