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Abstract

In order to control product compositions in a multicomponent distillation column, the distillate and bottom compositions are

estimated from on-line measured process variables. In this paper, inferential models for estimating product compositions are con-
structed using dynamic Partial Least Squares (PLS) regression, on the basis of simulated time series data. It is found that the use of
past measurements is e�ective for improving the accuracy of the estimation. The in¯uence of selection of measurements and sam-

pling intervals on the performance is also investigated. From the detailed dynamic simulation results, it is found that the cascade
control system based on the proposed dynamic PLS model works much better than the usual tray temperature control system.
# 2000 IFAC. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

For product composition control of distillation col-
umns, it is rarely the case that measurements of product
compositions are directly used as controlled variables,
because on-line accurate measurement of compositions
is di�cult. Most analyzers, like gas chromatographs and
NIR (Near-InfraRed) analyzers, su�er from large mea-
surement delays and high investment and maintenance
costs.

1.1. Tray temperature control

In place of composition control using a product ana-
lyzer, tray temperature control is widely used. The tem-
perature control is based on the assumption that the
product composition can satisfy its speci®cation when
an appropriate tray temperature is kept constant at its
set-point. For a binary distillation column at constant
pressure, the temperature at an end of the column is an
exact indicator of the corresponding product composi-
tion. However, the temperature variation is very small at
the column end and may be di�cult to distinguish from
measurement noise. Therefore, the use of temperatures

removed from the column end is recommended for
temperature control. A method used by practitioners to
select the appropriate tray is based on the sensitivity of
temperatures to changes in feed compositions and in
reboiler and re¯ux ¯ows [1].
In the case where a feed composition or a feed ¯ow

rate changes in a multicomponent column, it is quite
di�cult to keep a product composition at its set-point
by using temperature control, because the tray tem-
perature does not correspond exactly to the product
composition. In addition, pressure changes also cause
temperature variations.
In order to cope with these problems, many approa-

ches have been proposed. The in¯uence of non-key
components can be reduced by locating a temperature
measurement in the region of the column where their
compositions are nearly constant [2]. Yu and Luyben [3]
used the other di�erential temperature for non-key
component compensation. Whitehead and Parnis [4]
used a weighted average of many di�erential tempera-
tures for disturbance compensation and also used the
temperature di�erence for pressure compensation.
Bozenhardt [5] used multiple temperatures to track the
maximum temperature di�erence between two trays in
an alcohol±water±ether column. He found that the
position of this maximum di�erence was strongly cor-
related to the product composition. However, some of
the problems remain unsolved and the performance of
the tray temperature control may not be acceptable.
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1.2. Inferential control

In order to realize on-line composition control, an
inferential control scheme can be used. In inferential
control, a product composition is estimated from other
measured process variables and the estimates are used
for control. Therefore, it is crucial to build a highly
accurate inferential model. A ®rst principle model is
preferred as far as it is available and provides su�cient
accuracy with reasonable computational load. However,
if no fundamental model appropriate for real-time use
exists, an empirical model determined from process data
must be used.
In order to build an empirical model, least squares

regression has been widely used. However, when many
input variables are used, this method may be unsuc-
cessful due to the highly correlated nature of process
data. For example, in distillation, tray temperatures
close to each other change in nearly the same way.
Applying a linear regression method to such highly
correlated data leads to numerical errors and singularity.
Even if a numerically accurate solution is reached, the
results are not useful for prediction due to the problem
called over®tting or overparametrization.
The simplest approach for tackling the problems of

correlation and over®tting is to select a few measure-
ments, which are mutually independent, from all mea-
surements. Many articles have been published on this
matter [6±9]. However, this simple approach is not
optimal, because additional measurements may improve
the performance of an estimator.
Brosilow and co-workers [6,7] proposed a composi-

tion estimator called the Brosilow estimator, in which
temperatures and ¯ow rates were used for estimating
unmeasured disturbances and then the derived dis-
turbance values were used to estimate product compo-
sitions. This estimator is based on a linearized process
model.
In recent years, composition estimators using Partial

Least Squares (PLS) regression have been proposed [10±
12]. In their work, steady-state inferential models of
product compositions were built. That is, their models
were constructed by using steady-state data. However,
an industrial distillation column is perturbed by dis-
turbances and it is di�cult to obtain ideal steady-state
data. Even if steady-state data can be obtained, a
steady-state estimator may not work well for dynamic
operational conditions because it does not take the
dynamics into account. Furthermore, Mejdell and Sko-
gestad [11,12] dealt mainly with binary distillation col-
umns. For a multicomponent column, tray temperatures
do not correspond exactly to product compositions.
Therefore, estimation of product compositions for a
multicomponent column is more di�cult than that for a
binary column. Mejdell and Skogestad [11] have shown
that the performance of the steady-state PLS model for

a multicomponent column is worse than that for a bin-
ary column.
Mejdell and Skogestad [13] compared three di�erent

estimators using a linear model of a binary distillation
column. They concluded that good control performance
could be achieved with the steady-state PCR (Principal
Component Regression) estimator, which was almost as
good as the dynamic Kalman ®lter. They also found
that the steady-state Brosilow estimator was very sensitive
to modeling error for the ill-conditioned plant. There-
fore, they recommended using the simple regression
estimator. However, the performance of the steady-state
PCR estimator deteriorated when feed composition
changed. This fact indicates that the achievable perfor-
mance of the steady-state estimator is limited.
In their paper, only tray temperatures were used as

input variables by reason that: (1) the steady-state esti-
mate was not signi®cantly improved by adding mea-
surements, such as ¯ow rates, and (2) the dynamic
estimate became even worse by doing that. Result (1)
seems quite natural because the steady state of the dis-
tillation column can be represented by a few independent
variables. In their case, 41 tray temperatures, used as
input variables, were enough to represent the steady-
state of the column. Result (2) comes from the fact that
the manipulated variables cannot a�ect the product
compositions without delay. Therefore, for improving
the prediction accuracy by adding manipulated vari-
ables to the input variables of the model, past measure-
ments should be used. From the above, the results
shown by Mejdell and Skogestad [11,13] seem to indi-
cate the necessity of a dynamic regression estimator,
which is the focus of the present paper.
An application of a composition estimator to an

industrial packed-bed column was reported [14]. Their
inferential model is a static PLS model based on pres-
sure, ¯ow rate, and temperature measurements. This
model was built from time-series data, which can be
obtained more easily than steady-state data at many
di�erent operating conditions.

1.3. Objectives

In the present paper, inferential models are classi®ed
into three types, i.e. steady-state models, static models,
and dynamic models.
Steady-state models are de®ned as models determined

from steady-state data. When models are built using
time-series data, they are called static or dynamic mod-
els. Models are classi®ed as dynamic models only when
measurements at di�erent sampling times are used as
input variables.
In the present paper, a dynamic PLS model, which

can estimate the product compositions from multiple
temperatures and other on-linemeasured process variables,
is designed for a multicomponent distillation column.
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Measurements at several past sampling times are used
as input variables in order to incorporate process
dynamics into the PLS model. The in¯uence of selection
of both input variables and sampling intervals on the
performance is also investigated. Furthermore, this
paper addresses the performance of on-line composition
control systems based on the proposed dynamic PLS
model.

2. Problem de®nition

The problem treated in this paper is to build a
dynamic PLS model based on on-line measurements of
process variables, such as tray temperatures, re¯ux ¯ow
rate, reboiler heat duty, and pressure. In this section, the
example column and the conditions of dynamic simula-
tions are illustrated.

2.1. Example distillation column

The dynamic operation of a multicomponent distilla-
tion column was simulated. The schematic diagram of
the column is shown in Fig. 1. The column consists of
30 theoretical trays including the re¯ux drum and the
reboiler. The diameter of the column is 1 m. The liquid
holdups of the re¯ux drum and the reboiler are 1.57 and
3.14 m3, respectively. The feed stream enters the column
at the 15th tray and is equimolal ¯ow of methanol,
ethanol, 1-propanol, and n-butanol. The total ¯ow rate
is 128 kmol/h. The set-points of the key components in
the distillate and bottom compositions are mole frac-
tions of 0.0010 of propanol and ethanol, respectively. A
rigorous model of SPEEDUP2 is used for dynamic
simulations. The ¯ow dynamics on each tray are

expressed by the Francis weir formula. In this study,
pressure in the re¯ux drum is assumed to be kept con-
stant at 1.013�105 Pa. That is, the pressure is perfectly
controlled by using a total condenser. The pressure drop
at each tray changes depending on the vapor ¯ow rate
in the column. The base steady-state condition is sum-
marized in Table 1.
Two temperature control loops are used to keep the

product compositions at their set-points. Temperatures
on the 9th and 22nd trays are used as controlled vari-
ables. Re¯ux ¯ow rate and reboiler heat duty are used
as the corresponding manipulated variables. Holdups of
the re¯ux drum and the reboiler are controlled by
manipulating the distillate and bottom product ¯ow
rates, respectively. PI controllers are used in these con-
trol loops. The parameters of the level controllers are
determined by using model matching method, in which
control parameters are determined so that the closed-
loop transfer function of the control system is approxi-
mately equivalent to a transfer function with desirable
dynamics. The proportional gains of temperature con-
trollers are tuned by trial and error, while the integral
times are set to be 0.5 h.
In the simulations, process variables are assumed to

be measured every minute. It is also assumed that the
propanol mole fraction in the distillate product xD

(PrOH)

and the ethanol mole fraction in the bottom product
xB

(EtOH) are measured every 10 min.

2.2. Conditions of dynamic simulations

Simulated data for building dynamic inferential mod-
els are obtained under the following conditions. The
pseudo random binary signals of bounded and varying
amplitude (within �10% of the steady-state value) with

Fig. 1. Tray temperature control scheme of distillation column.

Table 1

Base steady-state condition for the example distillation column

Feed

F 128.00 kmol/h

T 358.15 K

P 1.150�105 Pa

xF 0.25/0.25/0.25/0.25 ±

Re¯ux drum

L 110.66 (5.899) kmol/h (m3/h)

D 64.00 (3.412) kmol/h (m3/h)

T 343.77 K

P 1.013�105 Pa

xD
(PrOH) 0.0010 ±

Reboiler

V 160.26 kmol/h

B 64.00 (5.965) kmol/h (m3/h)

Q .755 GJ/h

T 386.47 K

P 1.332�105 Pa

xB
(EtOH) 0.0010 ±
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di�erent frequency are introduced as component ¯ow
rate changes of feed stream during simulations. For
realizing slow composition changes, each signal is ®l-
tered by a ®rst order lag model. In addition to these
random disturbances, the total feed ¯ow rate changes
stepwise by �10% every 2 h, while the ¯uctuation of
the total ¯ow rate is restricted within �20% of its
steady-state value. The total simulation time is 20 h.
Simulated data for validating inferential models are

obtained under the almost same conditions as described
above. The di�erences are the seeds of the random sig-
nals. The total simulation time is 20 h.
If the time-series data described above are obtained

when the temperature controllers are in the automatic
mode, the data do not include the operational condi-
tions where the controlled temperatures undergo large
changes. However, when inferential composition con-
trol is applied instead of temperature control, the tray
temperatures ¯uctuate greatly. Thus, when an infer-
ential model is used for composition control, the accu-
racy of the estimation may deteriorate due to large
changes of the tray temperatures. In order to improve
the accuracy, the inferential model must be built using
appropriate data, which include large ¯uctuation of the
temperatures. For this purpose, the proportional gains
of temperature controllers are changed between 0.5 and
1.5K every hour in the simulations. Here, K denotes the
base controller gain.
The sampling period of the product compositions is

10 min when generating data for modeling. This situa-
tion could occur when the compositions are measured
by using o�-line analyzers. On the other hand, it is not
necessary to use this sampling period for model valida-
tion. Therefore, when generating data for model vali-
dation, the sampling period of the compositions as well
as other process variables is set at one minute.

3. Inferential models

In this section, inferential models based on time-series
data and steady-state data are built and compared. The
in¯uence of selection of both input variables and sam-
pling intervals on the performance is also investigated.
The models are evaluated on the basis of mean squared
error of prediction (MSEP), which is calculated by
applying the models to the validation data,

MSEP � 1

N

XN
n�1

x n� � ÿ x̂ n� �� �2 �1�

where x is a measurement of the product composition, x̂
is its estimate, and N is the number of measurements.
Another measure is Explained Prediction Variance
(EPV) in percent

EPV � 1ÿ
PN
n�1

x n� � ÿ x̂ n� �� �2

PN
n�1

x n� � ÿ x� �2

8>>><>>>:
9>>>=>>>;� 100 �2�

where x is a mean value of measurements.

3.1. Partial Least Squares regression

In chemical plants, many variables are measured and
those measurements are saved in computers. The e�ec-
tive use of these data is very important for suitable
operation.
In the last decade, some multivariate analysis meth-

ods, such as principal component analysis (PCA) and
PLS [15], have been widely applied for process model-
ing, monitoring, and control [16±18]. The main advan-
tage of these methods is that they can cope with
correlated variables. This characteristic is suitable for
analyzing data from chemical processes, because che-
mical processes are multivariable systems and many
variables are mutually correlated.
In these multivariate analysis methods, the trans-

formed independent (orthogonal) variables, which are
linear combinations of the original variables and called
latent variables, are used.
In the present work, PLS is used for estimating the

product compositions from correlated process variables.
All input variables are mean centered and their standard
deviations are scaled to be unity. No nonlinear trans-
formations are used for dealing with nonlinearity
between input variables and product compositions in
this paper. When the nonlinearity cannot be ignored,
logarithmic transformation of the product compositions
is useful [12,19,20]. When using a PLS regression
method, the appropriate selection of the number of
latent variables is important. The number of latent
variables is determined on the basis of the results of
cross validation tests and also the results of applying
models to validation data.

3.2. Steady-state PLS model

The output variables to be estimated are the propanol
and ethanol mole fractions in the products. For clarify-
ing the e�ect of using pressure measurement, the fol-
lowing two cases are studied:

A1. All 30 tray temperatures are used.
A2. A1 and reboiler pressure are used.

For building a steady-state PLS model, 99 di�erent
steady-state data are obtained by considering all possible
combinations of the feed ¯ow rates (F) and product
compositions (xD, xB), as shown in Table 2. The number
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of the latent variables is selected to be 5, because the
mean squared errors (MSE) for a cross validation test
are not remarkably decreased by using more than 5
latent variables.
In order to evaluate the steady-state inferential mod-

els, they were applied to the time-series validation data.
The resulting MSEPs are shown in Table 3 with results
for other inferential models. It is found from Table 3
that the estimation accuracy can be much improved by
using pressure measurements. However, the MSEPs of
the steady-state model (A2) are about ®ve times larger
than the results for the dynamic inferential model
developed in the following section. It can be safely con-
cluded that the performance of the steady-state PLS
model is quite poor. The unacceptable performance of
the steady-state PLS model is due to neglecting dynam-
ics.

3.3. Static and dynamic PLS models

In this subsection, static and dynamic inferential
models are built from time-series data which can be
easily obtained in industrial plants. The conditions for
the dynamic simulations are described in the previous
section.
In previous studies, temperatures on all trays are used

for designing inferential models [10±12]. In the present
work, however, a more practical approach is proposed
where the product compositions are estimated from

fewer temperatures together with re¯ux ¯ow rate,
reboiler heat duty, and pressure. Furthermore, in order
to incorporate process dynamics into inferential models,
not only measurements at each sampling instant but
also past measurements are used as input variables.
In order to put an inferential model to a practical use,

the necessary number of tray temperatures for estimat-
ing product compositions should be determined. For
this purpose, the following seven cases are studied.

B1. 2 trays (D:4,11 or B:20,27)
B2. 3 trays (D:4,9,22 or B:9,22,27)
B3. 4 trays (4,9,22,27)
B4. 5 trays (4,9,18,22,27)
B5. 6 trays (4,9,13,18,22,27)
B6. 9 trays (3,6,9,12,15,19,22,25,28)
B7. all 30 trays

where D refers to distillate and B to bottom. As a gen-
eral rule, the same tray temperatures are used for esti-
mating both the distillate and bottom product
compositions. It was found that the estimation accuracy
was much worse when only two or three tray tempera-
tures were used. Therefore, the appropriate trays were
selected separately for estimating the distillate (D) and
bottom (B) product compositions when only two or
three tray temperatures were used. The tray selection in
these seven cases are almost optimal, because the trays
are determined from simulation results including many
other cases. Furthermore, for incorporating process
dynamics into inferential models, the following 23 cases
are investigated. Temperatures at the current sampling
instant are used with the following previous value:

C0. no previous values
Ck (k � 1,...,20). k min before
C21. 5, 10, and 15 min before
C22. 3, 6, 9, 12, 15 and 18 min before

PLS models were built for many cases with di�erent
numbers of trays and sampling intervals. These models
are evaluated on the basis of MSE given by a cross
validation test.

3.4. Selection of tray temperatures

Figs. 2 and 3 show the in¯uence of measurement
selection on the performance of the inferential models.
The results using the following variables are shown in
each graph.

a. Tray temperatures (T)
b. T and re¯ux ¯ow rate (L)
c. T and reboiler heat duty (Q)
d. T and pressure at the reboiler (P)
e. T, L, Q, and P.

Table 2

The steady-state training data

F(EtOH)

[kmol/h]

F(PrOH)

[kmol/h]

xD
(PrOH)

[ÿ]
xB

(EtOH)

[ÿ]
F

[kmol/h]

xD
(PrOH)

[ÿ]
xB

(EtOH)

[ÿ]
25.6 25.6 0.0005 0.0005 102.4 0.0005 0.0005

32.0 32.0 0.0010 0.0010 153.6 0.0010 0.0010

38.4 38.4 0.0020 0.0020 0.0020 0.0020

Table 3

Comparison of inferential models

Model MSEP�108 (EPV [%])

xD
(PrOH) xB

(EtOH)

Steady-state

A1 3.75 (ÿ5.4) 1.39 (85.6)

A2 1.45 (59.2) 1.26 (86.9)

Static

B4e,C0 1.12 (68.6) 0.90 (90.6)

Dynamic

B4e,C21 0.22 (93.8) 0.25 (97.4)

+noise 0.59 (83.3) 0.49 (94.9)
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These ®gures clarify the e�ectiveness of using process
variables such as re¯ux ¯ow rate, reboiler heat duty,
and pressure, with tray temperatures. The estimation
accuracy can be much improved by using not only tem-
peratures but also other process variables. In addition,
there seems to be little improvement by using more than
®ve trays, when all process variables (T, L, Q, and P)
are used. Similar results have been reported for a binary

distillation column [13]. On the basis of these results,
®ve tray temperatures with three other variables (B4e)
are adopted in the following sections.
It should be noted that the manipulated variables (L

and Q) are determined by using controllers and cannot
a�ect the product compositions without delay. Thus,
measurements of the manipulated variables at the cur-
rent sampling instant may not contribute to the

Fig. 2. In¯uence of measurement selection for estimating the propanol mole fraction in the distillate product xD
(PrOH). Case C0 (top) and C21

(bottom) are compared.

Fig. 3. In¯uence of measurement selection for estimating the ethanol mole fraction in the bottom product xB
(EtOH). Case C0 (top) and C21 (bottom)

are compared.
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improvement of the estimation accuracy. Therefore,
these measurements are not used as input variables in
cases C1±C22.

3.5. Selection of sampling intervals

The in¯uence of sampling interval selection for past
measurements on the performance of the inferential
models is shown in Table 4. Comparing case C0 to C20,
the use of temperatures at 16 min earlier (C16) and at 8
min earlier (C8) greatly contributes to the improvement
of the accuracy for estimating xD

�PrOH� and xB
�EtOH�,

respectively. This supports the desirability of using past
temperature measurements.
The performance of the inferential models can be

improved by increasing the number of measurements.
However, case C21 is adopted here, because there seems
to be little improvement by choosing C22. From these
results, the inferential model (B4e, C21) with 30 input
variables was chosen. The number of the latent variables
was selected to be 10. The results of applying both the
static model (B4e, C0) and the dynamic model (B4e, C21)
to the validation data are shown in Fig. 4. The resulting
MSEPs are shown in Table 3. The e�ectiveness of using
past measurements is clear from Fig. 4 and Table 3.
Simulated results for other distillation column condi-

tions indicate that the optimal sampling intervals
depend on the dynamic characteristics of the column.
Table 5 shows the optimal sampling intervals for several
column conditions with di�erent holdups of the re¯ux
drum and the reboiler. It should be noted that the levels
of the re¯ux drum and the reboiler are assumed to be
kept constant at their set-points and the gains of tem-
perature controllers are constant at their base value
when simulated time-series data are generated. It is
found that the optimal sampling intervals for estimating
xD
�PrOH� and xB

(EtOH) increase with the holdups of the
re¯ux drum and the reboiler.

3.6. In¯uence of measurement noise

In the previous sections, the ideal case of no mea-
surement noise was studied. In this subsection, for
investigating the in¯uence of measurement noise, time
series data are generated by adding random noise to the
temperature, re¯ux ¯ow rate, reboiler heat duty, and
pressure measurements. The standard deviation of the
Gaussian noise is assumed to be 0.1�C for temperature
measurements and 10% of standard deviation of time-
series data for other measurements. The inferential
model (B4e, C21) is rebuilt by using the data with noise.

Table 4

E�ect of using past measurements

Case MSE�108

xD
(PrOH) xB

(EtOH)

C0 0.957 0.576

C2 0.726 0.318

C4 0.587 0.260

C6 0.492 0.195

C8 0.497 0.153

C10 0.405 0.158

C12 0.339 0.184

C14 0.299 0.228

C16 0.274 0.257

C18 0.327 0.305

C20 0.582 0.422

C21 0.252 0.113

C22 0.236 0.113

Fig. 4. Estimation results of product compositions by using static and

dynamic PLS models. Case (B4e, C0) and Case (B4e, C21) are com-

pared.

Table 5

Optimal sampling intervals for di�erent column conditions

Holdup Optimal interval

Re¯ux drum [m3] Reboiler [m3] xD
(PrOH) [min] xB

(EtOH) [min]

0.314 0.314 7 1

0.314 3.142 7 8

0.314 6.284 7 10

1.571 1.571 10 6

1.571 3.142 10 8

1.571 6.284 9 10

3.142 0.314 12 1

3.142 1.571 12 6

3.142 3.142 12 8

3.142 6.284 12 10

6.284 0.314 15 1

6.284 1.571 15 6

6.284 3.142 16 8

6.284 6.284 16 10
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The resulting MSEPs are shown in Table 3. The per-
formance is deteriorated by measurement noise. How-
ever, it seems to be acceptable, because the dynamic
model constructed by using noisy data is better than the
steady-state and static models constructed by using data
without noise. Furthermore, the in¯uence of measure-
ment noise can be suppressed by ®ltering or scaling data
appropriately. Several scaling methods have been com-
pared [11].

4. Inferential control

The dynamic PLS model is now used for composition
control. In this section, conventional tray temperature
control, inferential composition control, and cascade
control are compared on the basis of MSEs of the con-
trolled variables. For control simulations, the feed dis-
turbances described in the previous section are
introduced.

4.1. Tray temperature control

The performance of the tray temperature control sys-
tem in Fig. 1 is shown in Table 6. The product mole
fraction xB

�EtOH� deviates from its set-point when large
disturbances are introduced into the process. This result
proves that the temperature control is not su�cient for
controlling product compositions. The control perfor-
mance for xB

�EtOH� can be improved by tuning control
parameters. However, in such a case, the control per-
formance for xD

�PrOH� will deteriorate due to interaction
between the top and bottom control loops.

4.2. Inferential composition control

The inferential control system, in which the estimates
of xD

�PrOH� and xB
�EtOH� are controlled by manipulating

the re¯ux ¯ow rate and the reboiler heat duty, is inves-
tigated. Multi-loop PI control is used for this purpose.
The parameters of the controllers are tuned by trial and
error. The simulation results of this control system are
shown in Fig. 5.
Comparing the control performance of the tempera-

ture control with that of the inferential composition
control (cf. Table 6), the inferential control does not

seem to function well. In addition, the accuracy of the
estimation is much worse when the inferential control is
applied. In order to improve the control performance, the
controller gain should be increased. However, it is impos-
sible because the in¯uence of estimation error is ampli®ed
and as a result the control performance is deteriorated.
The inferential model was built using time-series data,

which were obtained by changing the temperature con-
troller gains every hour. In order to clarify the e�ect of
changing controller gains, another inferential model,
which was built using time-series data obtained from
temperature control with constant parameters, is
applied for inferential control. However, this inferential
control system was unstable when the same control
parameters were used. This unacceptable control per-
formance is due to the deterioration of the estimation
accuracy. Since the time-series data are obtained when
applying temperature controllers, the data do not
include the operational conditions such that the con-
trolled temperatures change signi®cantly. Therefore,
when the inferential model is used for composition
control, it cannot work well.
These results show that changing the temperature

control gains is e�ective in generating time-series data
covering various operational conditions. Such time-series
data can also be obtained by changing set-points of
controlled variables.

4.3. Cascade control

In general, a controller gain should be increased for
improving control performance. However, it is quite

Table 6

Comparison of the performance of three control strategies

Control strategy MSE of control �108 (MSEP�108)
xD

(PrOH) xB
(EtOH)

Tray temperature 2.5 (0.14) 8.5 (0.26)

Inferential 4.4 (2.86) 4.3 (1.25)

Cascade 2.6 (1.67) 2.2 (0.56) Fig. 5. Closed-loop responses of inferential composition control

system.
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di�cult when the inferential composition control is
adopted, because such a high gain control system tends
to su�er from estimation errors. Therefore, another
approach must be taken for improving the control per-
formance.
In distillation columns, responses from feed dis-

turbances and a control action of the other control loop
L Q� � to the product composition xB xD� � have large
delays. Since in¯uence of such disturbances and control
actions can be detected earlier by monitoring an appro-
priate tray temperature, the delay can be compensated
by using temperature control. However, as the tem-
perature control is not su�cient, the cascade control
system shown in Fig. 6 is taken up. In this cascade
control system, the same temperature controllers as
described before are used for the inner loops, and the
set-points of the 9th and 22nd tray temperatures are
used as manipulated variables in the outer loops, which
are the inferential composition control loops. The com-
position controllers are PI controllers and their para-
meters are tuned by trial and error. The simulation
results for this control system are shown in Fig. 7. It is
found that the performance of this cascade control sys-
tem is better than the other two control systems (cf.
Table 6). In addition, the accuracy of the estimation is
much improved in comparison with that of the infer-
ential composition control.
If the control performance as well as the prediction

accuracy is not acceptable, the inferential model needs
to be rebuilt using time-series data, which are obtained
from cascade control system. By executing this iterative
modeling, the inferential model will be updated and its
performance will be improved. This type of iterative
modeling has been proposed by Kresta et al. [10].

5. Conclusion

In the present research, the inferential model, which
can estimate the product compositions of the multi-
component distillation column from on-line measured
process variables such as tray temperatures, re¯ux ¯ow
rate, reboiler heat duty, and pressure, was built by using
PLS regression. By using re¯ux ¯ow rate, reboiler heat
duty, and pressure as input variables, a fairly accurate
estimation can be attained with fewer temperature
measurements. The examples in this paper indicate that
®ve tray temperatures are su�cient for estimating both
top and bottom product compositions. It has been
found that the performance of an inferential model can
be greatly improved by using a dynamic model, i.e. the
model based on time-series data, in place of the steady-
state or static models.
The application of the inferential model for control-

ling product compositions was investigated. The cas-
cade control system consisting of inner temperature
control loops and outer inferential composition control
loops was found to function extremely well. In addition,
some simulation results not described in this paper show
that the performance of inferential control system based
on a dynamic model is much better than that based on a
steady-state model demonstrating the advantage of
using a dynamic model.
Needless to say, dynamic PLS regression can be

applied to various processes in building inferential
models. However, we should not try to eliminate the
step of developing ®rst principle models, which is
important for fully understanding the characteristics of

Fig 6. Cascade control scheme with composition estimator.

Fig. 7. Closed-loop responses of cascade control system with compo-

sition estimator.
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the process. Without such e�orts, any results obtained
from a statistical method±be it PLS, PCA, or neural
network±are unlikely to be truly signi®cant and useful.
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