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Abstract:
In this paper we study different strategies for identifying thermodynamic models of buildings
using experimental data collected from large scale wireless sensor networks. Wireless sensor
networks can easily provide temperature, humidity, and solar radiation measurements from tens
to hundreds of sensors, thus potentially providing a fine grain spatial-temporal resolution. In
order to cope with such a large number of inputs and outputs, we tested sub-space identification
algorithms which are particularly suitable for identifying large scale MIMO systems. The
identified model can be used to evaluate the thermodynamic efficiency of the building. We
also explore different sensor selection strategies in order to choose among all sensors the most
informative ones. The use of a small set of sensors not only greatly reduces the computational
burden in the identification algorithms, but also allows to predict with high accuracy the
measurements of the other sensors using Kalman filtering techniques. The adopted identification
and Kalman filtering algorithms, as well as the sensor selection strategies have been tested and
analyzed using experimental data collected from 65 sensors deployed in a 80m2−200m3 building
over an 11 day period.
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1. INTRODUCTION

There is an ever growing attention on energy conserva-
tion policies and technologies that can improve energy
efficiency with low negative environmental effects, due to
the steadily increasing prices of energy resources and envi-
ronmental concerns about climate changes. In particular,
energy expenditure for temperature control in buildings
account for up to 30% of total budget and it is doomed to
increase with the proliferation of air conditioning systems.
Therefore, there is a need to use energy more efficiently
and in a cleaner manner in both new and old buildings, as
testified also by a recent European Community Directive
2002/91/EC which imposes several actions in these direc-
tions. Therefore, there is a strong need to develop both
technologies and tools that can provide:

• a-posteriori evaluation of the thermal efficiency of a
building, i.e. energy labelling based on experimental
data;

• thermal monitoring and comfort control systems es-
pecially in large building

• energy saving quantification after remodeling and
energy-specific retrofitting of existing buildings

? This work was partially supported by EU fund MIRC-6-CT-2005-
014815 “SENSNET” and by the national project New techniques and
applications of identification and adaptive control funded by MIUR.

• automatic fault-detection and monitoring of Heating
Ventilation and Air Conditioning (HVAC) systems

Wireless sensor networks (WSNs) seem to be a particularly
useful and suitable technology in this prospect. In fact, a
WSN is a network of small devices, called motes, provided
with sensors (such as temperature, humidity and solar ra-
diation sensors), a microcontroller, some memory and I/O
ports, and a wireless antenna which allow them to commu-
nicate with their neighbors. WSNs are easy to deploy since
they are battery powered, they do not need to be placed
in specific locations since the network is self-configurable
and adaptive, they are non-intrusive since each device is
smaller than a cigarette packet, and finally they are quite
inexpensive. As a consequence a WSN, by avoiding the
need of cabling, can be rapidly installed also in existing
buildings with minor costs and intrusion, and collect mea-
surements from hundreds of locations for long periods of
time. Such measurements thus provide an unprecedented
quantity of information that can be used to identify a fine
grain model of the building and to certificate its thermal
efficiency. Moreover, it is possible to envision the use of
WSNs not only for thermal efficiency certification, but also
for collecting data for realtime thermal monitoring and
regulation systems especially in large buildings. However,
the effective use of WSNs for thermodynamic identification
requires the development of novel mathematical tools that
can cope with such a large number of sensors. So far ther-



modynamic identification of buildings have been developed
based on data collected from a small number of sensors,
mainly due to the fact that measurement collection is
expensive and time-consuming. The most popular tools
adopted for thermodynamics identifications of buildings
are based on ARX, ARMAX and Neural Networks models
(see Dodier and Henze (2004)); these two latter model
classes turn to be particularly difficult to handle when the
number of inputs and outputs grow very large, leading also
to ill-conditioned estimation problems when the inputs
and outputs are highly correlated, as it is the case for
measurements collected from sensors which are closely
located. Moreover, the choice of the location of sensors
from which data for identification is collected, is generally
based on experience and rule of thumbs, and little has
been done to experimentally evaluate which are the most
informative locations where to place the sensors. With
respect to this, WSN can prove to be an extremely valuable
resource. In fact, it is easy to place a large number of
sensors, therefore systematic analysis can be performed
and possibly experiment-based sensor placement guide-
lines can be derived. Finally, it is of great interest also to
be able to select among all sensors in the WSNs initially
adopted to identify a model, a small set from which we
can still predict the measurement of all the others with
high accuracy. These sensors, for example, could be used
for collecting real-time measurements for thermoregulation
systems, which have been shown to grant an increase of
the energy performance when good predictive models of
the building thermodynamical evolution are available, see
AA. VV. (1994).

In this work, we propose to use WSNs for collecting data
for thermodynamic identification of building, since they
can be used to rapidly collect measurements from a large
number of sensors. In order to cope with the large number
of available measurements we adopted recently developed
sub-space identification tools that, when compared to the
traditional methods mentioned above, have the advantage
to be numerically efficient also for large scale MIMO sys-
tems. To our knowledge, this is the first attempt to apply
sub-space methods for identification of thermodynamical
models of buildings. Then we deal with the problem of
optimal sensor selection in terms of extracting the most in-
formative sensors from an identification perspective. With
this respect we propose some selection heuristics that
seem to provide good performance. Finally, we also show
how a small number of sensors, if appropriately chosen,
can predict with very high accuracy the readings of all
the other sensors by using Kalman filtering techniques,
thus providing a useful tool that can be used to close
the loop around a thermoregulation systems. The pro-
posed methodologies were tested using experimental data
collected from 65 sensors deployed in a 80m2 − 200m3

building over an 11 day period. The main limitation of
these experiments is that data where collected in open-
loop thermodynamical conditions of the building, i.e. the
temperature inside the building was not regulated by any
heating/cooling system therefore the state of the building
is affected by the external temperature, humidity and solar
insulation only. Although the very goal of identification of
building thermodynamic models is the energy efficiency of
the building under closed-loop conditions, i.e. when the
heating/cooling regulation is in place, we believe that the
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Fig. 1. Map of the building used as test case.

Fig. 2. Front face of the building.

methodologies proposed can be readily extended by simply
including as inputs also the external loads associated with
the heating/cooling system.

2. EXPERIMENTAL TESTBED AND DATA
COLLECTION

As mentioned in the previous section, we tested the iden-
tification techniques based on experimental data collected
from a real building. The edifice we took into exam is a
small, two-story residential building of about 80 m2 and
200 m3 (see Figs. 1 and 2.) The building is located in
Padova (Italy) at a latitude of 45.41 ◦N. The experimental
data was collected through a WSN made of 65 Tmote-Sky
nodes produced by Moteiv Inc. Each Tmote-Sky 1 is pro-
vided with a temperature sensor, a humidity sensor, and
1 Datasheet available at http://www.moteiv.com/products/docs/

tmote-sky-datasheet.pdf



a total solar radiation photoreceptor (visible + infrared).
Measurements from the humidity sensors were not used in
the identification schemes.

The data were collected under ideal conditions. In partic-
ular, during the data collection period, the building was
not inhabited, and all external windows and doors were
closed. This prevented the natural thermal dynamics to
be disturbed by nonlinear and unpredictable phenomena
due to air exchange with the external environment. Also,
the building thermoregulation system was not in service.
As a consequence, the system dynamics were subject to
external, climatic inputs only. On the other hand, we have
not been able to derive a thermodynamic model of the
building in closed-loop with the thermoregulation system,
so that it is not possible to analyze the energy efficiency
of the building. Also, it has not been possible to use
the building heating/cooling system to produce strongly
exciting inputs to be used for system identification.

As far as the initial placement of the 65 available sensor
nodes is considered, one sensor measuring temperature and
one sensor measuring total solar radiation were placed
on each wall on the outer surface of the building at an
height of about 4.5 m. The remaining 57 sensors, used
as temperature sensor only, were positioned inside the
building. In particular, they were uniformly distributed in
space so that the resulting model could describe precisely
the temperature in each part of the building, and some of
them were placed in the proximity of windows and doors
where most part of the heat exchange takes place.

A single experimental measurement session has been per-
formed, covering a period of 11 days (from June 15th,
2007 to June 26th, 2007.) We used a sampling time of 10
minutes. As mentioned above, data have been collected in
poor model input excitation conditions (constant weather
conditions with sun shining every day.) The external high
temperature was always around 31 ◦C while the low tem-
perature was about 24 ◦C. The mean internal temperature
of the building increased every day passing from about 25
◦C on the first day to about 28 ◦C on the last day.

3. SUB-SPACE MODEL IDENTIFICATION WITH
INPUT SELECTION

The goal of this section is to model the building thermal
dynamics in terms of a discrete time, linear, time invariant
model in state space form with both exogenous input
and stochastic zero-mean additive noise. Model Inputs
u(t) ∈ Rm are a subset chosen from one or more classes of
sensors such as

• 4 external temperature sensors
• 4 external total solar radiation (visible and infrared

spectrum)
• 4 internal temperature sensors placed on the ground

floor

while outputs y(t) ∈ Rl are the (remaining) internal
temperature measurements in the various rooms of the
building. All inputs have been properly scaled in order
to avoid numerical issues. The rationale behind the use of
temperature sensors as inputs is that they are indirectly
related to the heat exchange between the build and the air
and the building and the ground.

Assuming we have N measurements for each sensor, we
used the linear model in forward innovation form{

x(t + 1) = Ax(t) + B u(t) + K e(t)
y(t) = C x(t) + e(t) (1)

where t = 1, 2, . . . , N , e(t) is the zero-mean white noise, i.e.
E[e(t)] = 0 and E[e(t)eT (t)] is known. We also assumed
that there is at least a one-step time delay between input
and output, i.e. the output y(t) is not directly affected by
u(t). The dimension of the state space is denoted by n, i.e.
x(t) ∈ Rn, and the model matrices are sized accordingly.

The number of inputs and outputs is large and hence we
decided to use subspace identification techniques. These
methods are based on robust, non iterative and numeri-
cally efficient linear algebra tools which, contrary to other
methods based on the optimization of some cost function
(e.g. Prediction Error Methods, see Ljung (1997)) do not
require performing costly iterative minimization thus also
avoiding the risk of getting stuck in local minima, see
e.g. Van Overschee and De Moor (1996),Chiuso (2007). In
particular, we employed the N4SIS algorithm 2 available
in the MATLABr System Identification Toolbox, and the
recursive version of the PBSIDopt algorithm in Chiuso
(2007).

As mentioned in the introduction, using a large number
of inputs and outputs data can potentially provide a great
wealth of information to obtain a detailed model for the
building thermodynamics. However, if the inputs and the
outputs of the model are very similar, i.e. they are highly
correlated, as is the case when the sensors are closely
positioned, we may incur in severe numerical problems due
to collinearity. This means that the estimated models will
be very sensitive to the available data (i.e. the estimators’
variance will be large). Indeed, some preliminary identifi-
cation tests confirmed that the model identified with the
full set of inputs provided lower prediction performance
in fitting the validation data, as compared to models
identified with only a subset of total inputs. This is a
classic problem in model identification where there is a
tradeoff between bias and variance. To cope with this
problem the model can forced to be “simple” by adding
some regularization terms or by imposing that the model
has only a small number of parameters. Another strategy is
to select only a fraction of all possible inputs and outputs.
Here we follow this latter approach, it being more suitable
for subspace identification algorithms.

Note that, if the linear model were known (as is clearly
not the case in system identification problems), one could
obtain a measure of relative importance of each single
input (see the survey by van de Wal and de Jager (2001)
for a presentation of various methodologies). Methods
for avoiding the collinearity problems include extensions
of Principal Component Regression (see e.g. Greenberg
(1975)), of PLS (see Wold (1966)) and its dynamic ex-
tensions (see e.g. Qin (1998) and references therein).

In this preliminary work we take a simple route which
we describe next, leaving to future work the analysis
and development of more sophisticated techniques. The

2 The current implementation in Matlab is actually a mixture of the
most well known methods, see Van Overschee and De Moor (1994),
Verhaegen (1994) and Larimore (1990).
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Fig. 3. Temperature measured by one internal sensor,
i.e. one entry of output vector y, and simulated
temperature yu using the models identified by N4SID
and PBSIDopt.

input selection has been achieved by constructing, for
each candidate subset, a linear state space model and by
choosing the best fitting one with respect to a performance
index, that in the situation at hand is the scalar variance
of the simulation error, that is, for model M

fit(M) = trace
(
E[eu(t)eT

u (t)]
)
. (2)

Of course we approximate E[eu(t)eT
u (t)] with the sample

variance of the fitting error, i.e. eu(t) = y(t) − yu(t) =
y(t)−C xu(t), where xu(t) is the state obtained by setting
e(t) = 0 and by using the identified initial condition x̂(0)
in the model dynamics given by 1.

Clearly, an extensive research of every combination of
inputs is not conceivable because the number of instances
is very large and, even assuming a fixed cost for the iden-
tification algorithm, it can not be performed in reasonable
time. So we adopted an iterative greedy approach to the
selection problem. First of all, we divided our candidate
inputs in three classes: external temperatures, external
solar radiation, and internal temperatures. We start with
an empty input set to be used for the identification. For
each class of candidate inputs we choose the best input in
term of the performance measure proposed above. Then,
such input is removed from the candidate input set and
placed into the input set selected for identification. Then,
we either repeat the process to select another input from
the remaining inputs in the same class or we pass to an-
other class if we have already reached the desired number
of inputs from that class. During this process we use the
inputs which have been previously selected in the inter-
mediate identification process. This selection algorithm is
heuristic and the ordering for the class selection as well
as the number of inputs per each class can be chosen by
the user. Experimental evidences showed that the chosen
subset is mostly independent from the class ordering. The
results based on the previous identification methodologies
on validation data set are shown in Figure 3 and Figure 4.
In particular, in Figure 3, we compared the predictive
performance of the two models identified with N4SID and
PBSIDopt algorithms by using the best input for each of
the three classes. In order to have acceptable performance
from N4SID implementation we had to force both the
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Fig. 4. Simulation error fit(M) based on the model identi-
fied by PBSIDopt using 2 and 3 inputs.

use of an high order model (namely at least as big as
output length) and the matrix A to be asymptotically
stable. Differently, the model identified by PBSIDopt was
always asymptotically stable and showed limited output
error even with a low order model (namely about one fifth
of output dimension). Besides these numerical issues, the
PBSIDopt identified a model that performed consistently
better than the N4SID algorithm under different testing
conditions, therefore we focus only on PBSIDopt in the
following experimental analysis. In Figure 4 we show the
predictive performance of PBSIDopt identified model as
the number of inputs is increased. In the 2-input model we
used the most informative external temperature sensor and
internal ground temperature sensor, while in the 3-input
model we added the most informative radiation sensor. It
is interesting to mention that the input selection algorithm
found that most informative external temperature sensor
was the one placed on the south side and not on the north
side as commonly suggested (see e.g. AA. VV. (1994)).
This might be the result of the particular data-set we
used, however most common sensor placement strategies
are based more on experience rather than mathematical
analysis, so that this aspect deserves more investigation.

4. PREDICTION ENHANCEMENT VIA KALMAN
FILTERING

One limitation of the linear model previously identified is
that it has unsatisfactory prediction performance. In fact,
small environmental changes in the training data strongly
affect the outcome of the identification algorithm, and even
if the initial conditions can be perfectly estimated, the
predicted output of the model becomes unreliable within
few days.

One way to overcome this problem is to use of more sensors
in the identification phase and longer training data sets.
Another possible solution is to use few sensors to improve
the prediction of the output for all the other sensors using
a filtering approach. That is, we use the linear model
previously identified to design a Kalman estimator with a
small subset of the output vector y(t). This filter estimates
the state vector with a given confidence and then we obtain
the full set of outputs using the original linear relation



y(t) = C x̂(t). In particular, we use a time varying Kalman
filter, Kalman (1960), since it provides the best output
estimate at any time-step.

Let us denote with l̂ ∈ {1, 2, . . . , l} the subset of outputs
which will be used to recover the state in the Kalman
filter. Let M[r,c] be the matrix obtained by choosing the
rows in the set r ∈ {1, 2, . . . , p} and columns in the set
c ∈ {1, 2, . . . , q} from matrix M ∈ Rp×q. Similarly, Vr will
be the vector obtained by choosing entries in set r of the
column vector V . The dot inside a square bracket, as in
M[r,·], indicates that all columns of the original matrix
have been retained; a similar notation holds for the rows.
Based on Equation 1, we build the reduced linear system{

x(t + 1) = Ax(t) + B u(t) + K e(t)
y[l̂](t) = C[l̂,·] x(t) + e[l̂](t)

(3)

with model error covariance matrix Z[l̂,l̂], Z = E[e(t)eT (t)].
The filter requires some initial tuning, in particular it is
necessary to define the initial state estimate and error
covariance. The former is obtained in a rather arbitrary
way by using the Moore-Penrose matrix pseudo-inverse
of C, C†, and the mean of the effective internal sensor
readings at zero-time y[l̂](0). That is, if n̂ = dim(l̂) we
have

ȳ0 =
1
n̂

∑

i∈l̂

yi(0)

µ0 = C† [ȳ0 . . . ȳ0]
T

.

The initial state covariance matrix P0 was instead chosen
by a trial and error procedure. Further improvements
could be achieved by applying some whiteness tests. How-
ever, these tuning are only necessary to improve the esti-
mate performance during the initial transient period, since
the filter always converges to the same steady-state error
independently of the initial conditions.

Again we face the problem of selecting a small subset of
outputs from a large set, yet providing good predictive
performance. That is, we have to select l̂ in such a way
that the global error on internal temperature estimates
is reduced. First of all, we need to define a metric in
order to compare different sensors choices. We adopted two
natural metrics to evaluate the quality of sensors subsets.
The first one is based on the discrete algebraic Riccati
equation (DARE): starting from the solution of DARE we
calculated the theoretical variance of the outputs

P (l̂) = P̄ − P̄ CT
[l̂,.]

(C[l̂,.] P CT
[l̂,.]

+ R)−1 C[l̂,.] P̄

Φ(l̂) = C P (l̂)C ′ .

The cost function to minimize is then
Jd(l̂) = tr(Φ(l̂)). (4)

The second metric is based on the empirical error and the
cost function is the sum of square deviation on each sensor
at each time

Jf (l̄) =
∑

t

||ŷ(t)− y(t)||2. (5)

Finding the optimal set of output sensors which minimizes
one of the previous metrics is a combinatorial problem,

therefore some efficient suboptimal strategy is required.
In this work we explored three different strategies:

Greedy Search (GrS) This strategy splits the sensors
into two sets: the selected sensor set S and the remain-
ing ones R. It starts with an empty set S and then
sequentially finds among all the sensors in R the one
that provides best performance when added to the set
S. Once this sensor is found, it is removed from R and
placed in S. The algorithm iteratively proceeds as above
by finding the next best sensor from the set R till S has
reached the desired sensor number.

Local Search (LS) This strategy, similarly to the pre-
vious one, splits the sensors into two sets: the selected
sensor set S and the remaining ones R. The algorithms
start with a candidate sensor sets S chosen at random
from R or obtained by running the GeS algorithm.
Then it sequentially swaps one sensor between the two
sets R and S and finds among all possible swapping
combinations the one that leads to the best perfor-
mance improvement. Then the best swapping is actu-
ally performed between the two sets and the process
proceeds similarly avoiding to search previous swapping
combination. This procedure is guaranteed to improve
performance at every step and it stops when a local
minimum is reached and a certain number of iterations
have been performed.

Genetic Search (GeS) The previous strategy based on
LS is likely to end up in local minima. To reduce this
risk we adopted a genetic algorithm, see e.g. Goldberg
(1989), to find good sensors swapping between the sets
R and S. In particular, it starts with several candidate
sets S, called populations, and then it swaps sensors
among them (breeding and mutation) and the only the
best performing new populations are likely to survive.
This process is continued till no major improvements
are observed or a certain number of iterations have
been performed. Although these algorithms are based
on heuristics and are not guaranteed to find the global
minimum, they often lead to good performance.

We applied the three algorithms in sequence, i.e. we used
the solution of GrS to initialize LS, and the solution of LS
to initialize GeS. The optimal solution has been used to
compare the performance between simulation based only
on inputs u(t) and prediction using the Kalman filter based
on the outputs y[ l̂]. The dynamical model used for both
the simulation and the Kalman predictor was obtained
using the PBSIDopt algorithm with three inputs chosen
based on the greedy algorithm described in the previous
section. Figure 5 shows the real temperature of a sensor
not included in the 5 outputs yl̂ used by the Kalman filter
and the corresponding yu and ŷ given by the open-loop
simulation based only on the input u and the kalman
predictor, respectively. The improvements given by the
Kalman filter are evident, in fact the use of only 5 sensors
is sufficient to reconstruct the temperature of all 57 sensors
with high precision.

Figures 6 (single sensor output) and 7 (mean square error)
show that the prediction error improves as the number
of sensors increases, in particular during the transient
period. However, even with only two sensors the mean
square error is smaller than half a degree during transient
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Fig. 6. Comparison of the true output y of a single sensor
not included in the set l̂, and the predicted output ŷ
obtained from Kalman filter based on 2 and 5 outputs
l̂.

period and smaller than a tenth of degree at steady-
state. Of course, such a small error is also a consequence
of the specific experimental conditions, i.e. high sensor
density and unpopulated building. However, it suggests
that the linear model identified by the PBSIDopt algorithm
is rather effective to describe the behavior of building
thermodynamics, in particular when paired with Kalman
filtering.

Finally, Figure 8 show the mean square error using the
3 best output sensors selected by the three strategies
described above. The LS algorithm always offers great
enhancements while the GeS presents some problems con-
nected to parameters calibration. We also noticed that
sometimes the application of a random starting solution
to the local search produced better results if compared
with the ones given by the solution of greedy algorithm.
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The previous results are based on the metric Jd(l̂), however
we observed that there was substantial agreement with the
empirical cost Jf (l̂).

5. CONCLUSION AND FUTURE WORK

In this paper, we proposed the use of WSNs as a useful
technology for identification of building thermodynamics.
In fact, they provide the means to rapidly and inexpen-
sively collect measurements from hundreds of temperature,
humidity and light radiation sensors for long period of
times. Although such a great wealth of data potentially
provides fine grain information about building thermo-
dynamics, it also poses novel challenging problems, in
particular in terms of model identification. In fact, the
number of inputs and outputs provided by WSNs are
at least an order of magnitude larger than the number
that can be handled by traditional identification tools for
building thermodynamics (AA. VV. (1994)). In this paper
we proposed to address this problem by adopting subspace
identification tools which have been recently developed for
identifying large scale MIMO systems. Indeed, we believe
that identification of building thermodynamics can be
a very useful testbed to evaluate and possibly improve
subspace identification algorithms. In this work we tested
a standard subspace method (the Matlab N4SID) and a
recently developed subspace method (PBSIDopt, Chiuso
(2007)) and we observed that the latter systematically
outperformed the former, however a more detailed inves-
tigation is still required. Also we found that these tools do
not perform well when the number of inputs and outputs
are very large, mainly due to the fact that inputs and
outputs are highly correlated. Therefore we proposed some
heuristics for input and output selection for identification
purposes, however we believe that more systematic and
mathematically sound tools are necessary. We feel that
systematic extension of principal component regression
(PCR) and Partial Least Squares (PLS) can give signif-
icant improvements and hence will be subject of future
research.

The simulation and prediction performance obtained by
using only a properly chosen subset of inputs and outputs
are remarkable. Although this is also a result of the par-
ticular experimental conditions, we believe that subspace
identification techniques provide a viable and effective
solution, and we are currently performing more realistic
experiments.
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