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Abstract

The performance of monitoring and control techniques for distributed-sensor systems is affected by the choice of the measurement se
location. In this paper a methodology is suggested to solve the optimal sensor location problem. The suggested algorithm does not require
explicit knowledge of the plant model, and is based upon a sequential procedure selecting at each iteration the most informative measurement i
and updating the input and output spaces by subtracting the information explained by the computed regressor. The effectiveness of the prop
algorithm is assessed by means of two simulated case studies concerning the location of sensors in tubular reactors where product compo
need to be estimated from temperature measurements.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction complicated by the fact that measurements of different nature

. o ) (e.g. temperature, pressure, and flow rate) must be integrated to-
A common problem in the monitoring of processing SystemMsyether. The topic of this paper is the optimal selection of process

concerns the estimation of product quality variables (primanyyeasyrement sensors to be fed as inputs to a data-driven product

variables) using process operating variables (secondary variajity estimator (soft sensor). The sensor selection problem is

ables). In fact, quality variables (e.g. concentration, melt index,yqressed for single-unit systems only, although the proposed

and viscosity) are often not available on-line at a sufficiently fasbrocedure can be easily extended to plantwide systems.
sampling frequency (sometimes they are not available on-line e inherent distributed nature of two important classes of
at all), whereas process variables (e.g. temperature, flow ratg;ocessing units, i.e. tubular reactors and distillation columns,

pressure, and level) can be obtained on-line very frequently, a¢p 4y make the sensor selection problem a challenging task also
curately, and at low cost. _ _ for a single-unit system. For example, when the temperature
Data-driven estimation techniques offer the desirable featurg, o asurements are used to estimate on-line the composition of

that, atleastin principle, no a priori knowledge aboutthe procesg,q product streams, several different choices for locating the

(fundamental mechanisms or model parameters) is needed {gmperature sensors along the units are possible, and the perfor-

build a quality variable estimator. In many cases several procesgance of the quality estimator is strongly related to the choice
measurement sensors are distributed within an existing systengs ihe temperature input set.

orcan be_potentially installe_d foras_ystem being desig_ned anew. f an existing unit is being considered, the number and loca-

In such circumstances, an issue arises regarding which procegsns of temperature sensors is usually assigned (i.e. the sensors
measurements should be used, among all the available ones, 48 hhysically already installed on the unit), and the simplest
inputs to the primary variable estimator. The problem exists bo“&pproach would be to build the estimator by making use of all of
for single-unit systems, where several measurements of the safig, gyailable sensors. Because the available measurements are
kind (e.g. temperatures) can be possibly allocated along the unily ot jnvariably correlated, a suitable multivariate statistical
as well as for plantwide systems, where the above issue 'Sfurth?ﬁethod(e.g. partial least-squares regression (PLS); Geladi &
Kowalski, 1986; Rao & Toutenburg, 199@pnn then be ex-
ploited to solve the collinearity issues. Although this approach
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of view, it may nevertheless be impractical, because using tooation of sensors; subsequently, the temperature measurements
many sensors can make the estimator more exposed to sengloat have been identified as optimal are used to design a lin-
failure. A different way to tackle the problem would be to find ear static estimator via a multivariate regression technique. The
out a subset of the available sensors that (in some sense) progeposed method has two main desirable features. First, it does
to be optimal for the estimation of the primary variables. This isnot require to use a first-principles model within the selection
the approach taken, for example, Kgno, Miyazaki, Hasebe, algorithm. Second, the method relies on a linear static estimator
and Hashimoto (2000n the estimation of the distillate and thatdoes not require stability assessments and expensive on-line
bottoms compositions from tray temperature measurements igcomputations. Furthermore, it has a sequential formulation that
a distillation column. However, no indication is given by the allows to select the sensor location in a step-by-step way, and
authors about how the tray temperatures subset can be identifigds easy to extend to systems where different types of sensors
in a systematic way. have to be integrated. In fact, the sequential formulation makes
If a new unit is being designed together with its measuremerit easy to add sensors (in their optimal locations) until some
system, the selection problem can be stated in a slightly morgpecified criterion is satisfied. Quite obviously, the price to pay
general way. In principle, one can assume to be able to locate tlvehen working with linear static estimators based on black-box
measurement sensors wherever along the unit (e.g. on each tnaypdels is a possible loss of accuracy when the nonlinearity or
of a distillation column; evenly spaced along the whole lengthithe dynamics of the plant are high.
of a tubular reactor), and then select which sensor (and how
many sensors) among all the possible ones is the most suitalile Problem statement
for product quality estimation purposésn this perspective,
Kookos and Perkins (1998yoposed an algorithmic approachto  The problem under study is the optimal temperature sensor
the solution of the optimal sensor location problem in distillationlocation for tubular reactors when product composition infor-
columns based on a mixed-integer linear programming problemrmation must be inferred from temperature measurements. The
formulation. The algorithm is very effective, but explicitly class of tubular reactors under study is described by a set of non-
requires a first-principles model of the plardamprogna, linear partial differential equations with algebraic constraints of
Barolo, and Seborg (200%ised principal component analysis the form

(PCA) to screen out the optimal temperatures for a PLS-base - ok 5%
composition estimator in a batch distillation column. The = = —va— + Dﬁ —g(®, ¢ =h(§ 2), (1)
proposed procedure is completely data-driven, but requiregt < <

the calculation of a sensitivity matrix, which has not a strongwhereé = &(z, z) is the state vector containing component con-

statistical interpretationvan den Berg, Hoefsloot, Boelens, centrations (or flows) and temperatures as function of tiame

and Smilde (2000jound the best temperature sensor locationsPaces, ¢ the measurement signal relatecstthrough the non-

for a tubular reactor by specifying different scalar measurednear functioni(., -). The functiong(¢) and the parametenrs

of observability, and selecting the best sensor as the one th& are related to the particular reactor.

maximizes the system observability. However, a single sensor is Inthe cases under study, the output sigriala set of temper-

selected by that procedure, and extension to multiple-sensor sgture measurements along the reactor length. An evenly spaced

lection is not straightforward; moreover, the selection proceduréistribution of the available locations is assumed, and the goal

is inherently model-based/ande Wouwer, Point, Porteman, is to select the best ones. In order to avoid the introduction of

and Remy (2000¥ound the optimal sensor locations in a the infinite dimensional system theory to study systems(lie

tubular reactor by maximizing the independence amongst thésee Alonso, Kevrekidis, Banga, & Frouzakis, 2004; Curtain

sensor responses based on the Gram determinant value. SifeeZwart, 1995; El Ja & Pritchard, 1988; Kubrusly & Male-

the selection procedure requires a hard maximum search onf4anche, 1985; Waldraff, Dochain, Bourrel, & Magnus, 2000)

discretized surface of dimensiom { 1), wheren is the number @ static black-box approach is used. It is important to note that

of sensors, the search becomes complicated wher®. the sensor locations and the class of estimators are intrinsically
In the present paper, a data-driven solution is proposed teelated. In general, a particular sensor location could be optimal

solve the sensor location pr0b|em; the 0ptima| locations are Ch(jor a static linear estimator, but not for a Kalman filter, or for a

sen by using only a sequence of inputs and outputs. For ease @@nlinear static estimator.

demonstration, we will refer to two tubular reactor case studies,

where the compositions (or flows) of the desired components ig.1. Mathematical framework

the product streams must be estimated from temperature mea-

surements. It will be supposed that the measurement system is As mentioned above, we intend to derive a procedure to se-

to be designed anew, i.e. that temperature sensors can be pect a set of temperature measurements along the reactor to esti-

tentially allocated in any section of the reactors. The selectiomnate the species concentrations and/or flows at the reactor outlet

procedure is asked to find out the optimal number and optimal lokz = L, whereL is the total reactor length). In order to choose

the optimal locations ;. .. .. z,,,, among the available loca-
1 This relies on the fact that a first-principles model (namely, the same modo:-z‘iIons 2L 2n (Wlth Nopt K n) _and to de5|g_n the e_stlma_tor,
that was used to design the unit itself) is available, but cannot be used on-lins0me well-known facts about linear regression, which will be
for estimation purposes (e.g. because it is computationally burdensome).  used throughout the paper, are here briefly recalled. The model
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relating temperatures to component concentrations (or flows)iote that the product matricésx" andX YT in (6) are related
is assumed to be linear around the nominal steady state andttsimportant statistical quantities, i.e.

approximated with the linear stochastic equation:

y(t) = Ax(t) + b + e(r) 2

wherey(t) € R™ is the vector of quality measurements (concen-

trationsg;,i=1,...,morflows F;,i=1,...,m), x(t) e R"
is the vector of process measurements (temperatfes=
1,...,n), the matrixA € R"*" and the vectob € R™ are de-
terministic, but unknown, parameters, aitd € R™ is the vec-

tor of measurement errors (random vector), which is assumeg

to be a white process. In the following the variablds) and

x(¢) will be also called the output vector and the input vector,

respectively.
Starting fromN observed samples aof(-) and y(-) at time

t1,to, ..., ty , the following tail matricesy € R"*"N andY e
Rme:

X =[x(t) x(r2) x(tn)] 3)
Y =[y(1) y() y(tn)] (4)

are constructed. Observe that the number of rows of matigx

equal to the number of available temperature sensor locations.

By construction, also matriceésandY satisfy Eq.(2), i.e?

Y=AX+b+E, (5)

whereE =[e(r1) e(t2) e(ty)] is the error matrix. Eq.

Ty = E[XX"] £ iXXT, Tyy = E[XYT] £ LxyT

N N
whereXy is the sample variance afand Xy is the sample
covariance of andy (Anderson, 1958)

A difficulty in the design of the estimat@6) arises when the
rows of the input matriXX are highly collinear. In this case the
matrix XX is near to singularity and its inverse is difficult to
ompute. A solution to circumvent such problem is to select a
smaller number of rows of, nopt < 1, in order to have a new
input matrix X opt retaining all the useful information contained
in the original one, but farther from singularity. This means

nopt = arg minfrowspan (X) ~ rowspan (Xopy),
n*

Xopt € R *Nsubmatrix ofx € R"*V) (8)

In this manner the singularity problem is solved using a smaller
number of sensors (rows &f and disregarding the redundant
information.

It will be shown that the methodology defined in this paper is
such that it also quantifies the approximation introduced in the
simplification of the input matrix. In other words, the proposed
procedure guantifies the symbat™in (8).

(5) is the actual regression model, and the objective is to find

an estimatiom for the unknown matrid, and an esti[natioizz
for the unknown vectab, such that the estimatidh= AX + b

2.2. Motivation for the proposed approach

is optimal in least-squares sense. The symbol~will be used to Several methodologies exist which try to solve the optimal

identify estimated signals or estimated matrices.

The estimation of givenX is nothing else that the projection
of the rows ofY onto the linear spac€(X) generated by the
rows of X (Anderson, 1958; Doob, 1990%uch projection will
be denoted with the symb#][Y|£(X)], whereE is the sample
expectation. The estimation takes the fdRao & Toutenburg,
1999)

¥ =B[Y|£(X)] = YXT(XXT) L X +my — ¥XT(XXT) Ly

A b
(6)
where
. 1 N R 1 N
my =E[X] £ = x(w), my =EY] =13 v
k=1 k=1

are the sample means of the inpitand the output¥, respec-
tively. Starting from the matrixd andb defined in Eq(6), it is
easy to compute the estimatg) of a new primary variable(r)
given the corresponding value of the secondary variafre
The ordinary least squares estimgi®ao & Toutenburg, 1999)
is

() = Ax(t) + b. (7)

2 With a slight misuse of notation, we write= AX + b + E instead ofY =
AX+ B+ EwithB=[b b b]to increase readability.

sensor selection problem. The most widespread data-driven pro-
cedures are based on a modification of the PLS regression ap-
proach(see Geladi & Kowalski, 1986; Rao & Toutenburg, 1999;
Kresta, Marlin, & MacGregor, 1994, and the Appendix A for the
algorithm and the nomenclatur@he PLS approach comprises
the following steps:

(1) perform a PLS regression using all the available sensors;
(2) choose the optimal numbegy: of sensors and select their
optimal locations according to one of the criteria (a),,

(d) reported below;

(3) extract the rows of th& matrix corresponding to theopt
sensors;

(4) compute a regression using only this subseX;of

(5) check if the estimation is good enough.

However, a major weakness in the above procedure is that a
general criterion to carry out the optimal sensor selection (step
2) cannot be properly defined. Some proposed criteria are:

(a) inany of the first loadings, extract the component that has
the greatest absolute value. By constructionjitilesensor
location corresponds to theth component in thev or p
loading vectorgGeladi & Kowalski, 1986)

(b) in the first loading, extract the components that have the
greatest absolute valuégamprogna et al., 2005)
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(c) select the variable that has the greatest absolute value % Proposed algorithm
the first loading, then remove it and perform another PLS

regression concerning the remaining row¥oRepeat such The two underlying features of the proposed selection
procedure untik sensors have been selectgdspar & Ray, procedure concern the stopping criterion and the selection
1992) criterion. The stopping criterion is related to thé&block

(d) detect whether clusters among the components of the firgixplained variancéGeladi and Kowalski, 1986hich gives a
two or three loadings exist and (if so) select a variable formeasure on how the secondary variables are able to estimate the
each clustergKaspar & Ray, 1992) primary variables. When the explained variance increases, the
prediction power of the estimator raises and the estimation error

Note that stopping criterion (b) privileges the most Signiﬁ(,’amdecreases. The_ selection criterion is based on the correlatllon
direction, since the sensors corresponding to the larger comp8&tween the primary and the secondary variables: choosing
nents in the firstloading vector are selected. Therefore, data wit 1Y Step the sensor having the larger correlation with the
a score space of dimension greater than one do not have an QUtPuts, but taking also into account the previous selected
curate estimation. Stopping criterion (c) suffers from the sam&€NSOrs, those sensors that are more related to the outputs
problem. Stopping criterion (a) appears in principle to be mor@”d he_lve less common |nformat|o_n are singled out. This is
effective since it selects a sensor from each of therfiggiioad- useful in order to reduce the numerical problems related to the

ing vectors. Stopping criterion criterion (d) is quite subjectivec@lculation of the estimator matricéisandb.
and difficult to automate The data needed to the selection algorithm are the mea-
. : \
The approach presented in this paper is intrinsically sequersurements of the seczg(ljvgry variablgsz R**" and of the
tial and avoids the ambiguity inside the PLS-based procedureBrimary variables” e R™*™; these values can be obtained (for
The underlying idea is to add sensors (i.e. row&péntil the example) by past measurements. The measurement selection

prediction ofY is “good enough”, i.e. until some accuracy bound algorithm proceeds as a series of iterations (starting from
is satisfied. iteration no. 1), each one characterized by a sequence of steps;

With respect to the PLS method, the proposed approach h&€ measurement sensor (input) is selected at each iteration.
the following desirable characteristics: Subscripti vylll be used to |dent|fy an |terat|qn. _The subscript
i on a matrix (such aX; andY;) is used to indicate that the
matrix has been updated after iteratian-(1); therefore,X;
by-Sensor ap-,nqy; represent the working matrices at the beginning step of

proach); o _ the i-th iteration. Before starting the first iteration, the sample
(2) its stopping rule has a strong statistical interpretation; meansmy € R" andmy € R” are removed from the input

(3) it provides an indication of the correlation between the sez 4 output matrices, and all rows are scaled to unit variance
lected sensor and the other ones at each iteration of th@otaining the normalized matrices andY;.

sequle.ntiall procc_adure; ) Thej index is used to identify an input measurement. There-
(4) no difficulties arise when different types of sensors have (qyrg at the start of theth iteration, thex; matrix can be thought

be intggrateq. Conversely, when the assigned measuremenys 5 stack of{ — i + 1) row vectorsX;(j;), each one having di-
are different in nature (pressure measurements and/or CORsensionn. The objective of iteration is to identify thei-th

centration measurements, for example), it is not easy 10 Sq st explanatory input measurement among the ones available
lect the optimal sensor with the PLS method only by lookingt that iteration; this measurement will be denotedjhyThe
atthe value of the loading components, because informatiogy|owing steps are carried out in sequence atittteiteration.

is displayed in an aggregated form. The algorithm’s steps (illustrated iRig. 1) are next com-
mented on.

The proposed stepwise regression methodology to address the
sensor selection problem retains some similarities with the
SROV algorithm of Shacham and Brauner (2003nd of (1) Compute the sample correlation matrix betweerndY;
Brauner and Shacham (200@pr example, also in the SROV In order to select théth sensor (row ofY;) that is the
algorithm the candidate input variables are selected to enter the Most predictive with respect to the outpuis the sample
regression model according to their level of correlation with the ~ Correlation matrix I',y, € RO'—+1>m s first computed as
variables to be estimated, and an updating of the input and out-
put spaces is carried out by subtraction from those spaces of the
information already explained. However, it should be noted that s yypen the data are only mean centered, the sample correlation igtyixe
Shacham’s and Brauner’s approach holds true for a single de:—i+bxm is computed as
pendent variable only, while the proposed approach is explicitly
designed for m.uIti—ogtp.uts systems. Shacham a_nd Brauner sug; , — AR Py 472 ©)
gestas astopping criterion thatan input variable is removed from
consideration of inclusion in the soft sensor when its_res_idual_in\-NhereAX’_ — diag(Ty,} andAy, = diag(Zy,} are the diagonal elements of the
formationis at the noise level. A different stopping criterion Will sampie variancesy, and=y,, andsy,y, is the sample covariance betwekn
be considered herein, as it will be illustrated in the next sectionandy;.

(1) it is sequential in its formulation (sensor-
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(Anderson, 1958)

FX,‘Y;‘ = E[XiYiT] = %XiYiT‘ (10)
Note that the {, /) element of x,y,, v;.» = I'x,v:(j, h), ex-
plains the correlation between tl¢h input measurement
and theh-th quality output.

It is important to highlight that the row-dimension of
matrix I 'y,y, decreases after aniteration has been completed.
In fact, after an iteration has been completed, an input is
selected and then removed from the set of input sensors
available at the next iteration,y, € R"*™ at the start
of the first iteration,Ix,y, € R"~Dx" at the start of the
second iterationly,y, € RO~ F1xm at the start of the-th
iteration).

Select the inpuk;(;¥) most correlated with the outpiit

The goal is to choose the input indgkrepresenting the
location of the sensor that is more predictive with respect to
all components of the output vector. To this purpose, the sum
of the absolute values of all correlation coefficients between
each component (input) iki; and all components (outputs)
inY; is analyzed X"} IIx,v, (). Vj=1,....n —i+
1). Then, the index; is selected by solving the following
problem

(5)

m
max I'x.yv.(j, h)|.
15‘/§n_l,+1hz_:1| x,v;(J B

If some components ilii; (i.e. some quality variables) are
more important than others, a weighted sum can be con-
sidered. The selection criterigfil) guarantees that at any
iteration the sensor having the largest cumulative correlation
with all the outputs is selected.
Compute the-th regression

Using the principle of ordinary least squares (OLS),
the OLS estimator; = E[Yi|£(X,~)] is given byczf,-;in(j;‘),
where the-th regression coefficieny;? is defined as follows
(Rao & Toutenburg, 1999)

Jji=arg (11)

ap =YX GHXGHXT G

= arg min||Y; — aX;(ji)ll. 12)

acRm
Note that this regression coefficient is calculated in a differ-
entway with respect to the general form shown in @®}.In
fact, the data matrices are mean centered, which implies that
the b-matrix vanishes, and the soft sensor input is a scalar
(only one measurement sensor), i.e. thenatrix is a col-
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The input matrix must be updated as well. After defining
X¢{(j¥) as the matrix made of the rows &f; minus the
selected;’ row, i.e.

[ X)) T

Xi(jf —1)

X +1) | a4

Xi (i) =

L Xi(n —i+1)]
the updated input data matrk; 1 is therefore given by

Xiv1 2 XS0G7) — EIXSGOILXGG)]

-1
=Xi(GH—- >, Y X))

XGNX:G7) X Gy)

(15)

The above equations state that, in the next iteration, only
the information contained in the output data and not already
explained by the previous regressgfs;s, . .., j need ex-
plaining.
Stopping rule

The above steps are repeated until a stopping rule is satis-
fied. Thisrule should establish whether the accuracy reached
by the estimator is sufficient or not. One possible approach
is to assume that the accuracy is measured by the explained
variances; of theY-block at the-th step, which is estimated

itk 2) = Bk, )12

from sensorsy, j3, ..., ji
x 100
S 1Yk, )2 }

o; = {1
N .
_ { - S Witk .)||2} 100
St 1Y (K, )12

where|| - || is the Euclidean norm anid(k, :) is thek-th row

of Y. The algorithm stops when either the explained variance
o; for the Y-block at thei-th iteration is large enough, or the
incremental variation; — o;_1 is not sufficient to motivate

a further iteration since adding additional sensors would
simply make the estimator less robust.

(16)

The algorithm ends by giving back thgp; optimal locations.

umn vector. This eliminates the numerical issues typicallyThe estimator is then built using these measurements only.

associated with the calculation ot & 7)1 in Eq. (6).
Update the input and output matrix data

When the-th estimator is computed, data need updating.
This implies the projection of the dat onto the space
orthogonal to£(X;(;)), or, in other words, to subtradf
from Y; according to:

Y1 2 Y - E[VILOGU] = Y — T = ¥ — 4 Xi(j7)
(13)

4. Results and discussion

In this section, the optimal sensor location problem for the
selected case studies is solved by applying the proposed al-
gorithm. Two performance indices are introduced to evaluate
and compare the estimators. The first performance index is
the explained variance of the input-output signals (which ap-
pears also in the stopping rule of the selection algorithm, see
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4.1. Hydro-dealkylation of toluene

The hydro-dealkylation (HDA) of toluene is a familiar pro-

scalmg X1 11 cess in chemical engineering. The adiabatic tubular reactor
(HDA reactor in the following), where two vapour-phase re-
X Vi actions generate methane (M), diphenyl (D) and benzene (B),
compute the correlation matrix pro jection step from reactants toluene (T) and hydrogen (H), is considered. The
Lrir, Yoy = ¥, =T model equations and parameters are taken fdomglas (1988)
1 Xin = X -1, and Luyben, Tyeus, and Luyben (1998)nd are reported in
welect the i—th semsor Appendix B Fig. 2a shows a typical steady-state temperature
ji=are max SNy G0l profile along the reactor, arfig. 2c shows the evenly spaced
o ‘1‘ distribution of the available temperature sensors along the re-
actor. Assuming to have 12 available sensgyrs . ., 712 num-
| compuie the I regesion bered from 1 (at the reactor inlet) to 12 (at the reactor outlet),
bp = WXTGD (GUDXTGD) the objective is to find the most favorable locations for a subset

of the available sensors in order to estimate the concentrations
of benzenég and diphenykp at the reactor outlet. The subset
dimension should also be determined.

After the addition of white noise to corrupt the input and
output data, the sequential algorithm was applied to the data
time—series. Two plots are displayedhig. 3 for each one of

Fig. 1. Flowchart of the sequential method. the first three iterations of the selection algorithm. The plots
on the left show the correlationsy,e;, andI7;s,, between the
temperature measurements along the rea@of £ 1, ..., n)
Eqg. (16)) and the second one is the root mean square erraand the concentrations of benzégér, L) and diphenyép(z, L)
(RMS): at the reactor outlet, and the cumulative correlation obtained as
the componentwise sum of the absolute values of such correla-
1N 172 tions|I'r,g5| + |16 |- The location corresponding to the largest
RMS = { Z llyi(k) — Szi(k)Hz} (17)  cumulative correlation is selected at each iteration. Therefore,
N k=1 temperature sens@l is selected at the first iteration. This sen-
sor is then removed, and sensor number72)( which displays
wherey;(-) andy;(:) are thei-th output component and its es- the greatest cumulative correlation, is selected at the second it-
timation, respectively. Trajectories of measured and estimateeration. The third iteration removes both the previous locations
signals are also compared graphically to visualize the estimatiof¥11, T12), and selects temperature sendgs. It is important
accuracy and the effect of the temperature measurement noite observe that, by increasing the number of selected sensors,

rejected

stopping rule

verified

variance. the magnitude of the correlation coefficients decreases. In fact,
Two case studies are taken into account. after each iteration, part of the information contained in the
930 X 820,
e o) 1o
L 4
o 9201 S
2 T 790
£ 9151 =
@ = 780
2 910 ;“5_ 770
E 905 o 760
=1
900+ & 7501
895 g 740
000 435 870 1305 1740 & 00 0.8 16 2.4 3.2
reactor length [m] reactor length [m]
(a) HDA reactor (b) BMA reactor
+ * & & & & & & 0 0 + + L] L ] { ] L] [ ] [ ] L] +
123456 7 8 91011 12 1 2 3 4 5 6 7 8 9
(©) available sensors (d) available sensors

Fig. 2. (a) Steady-state temperature profile along the HDA reactor; (b) steady-state temperature profile along the BMA reactor; (c) availafueteendomi
reactor; (d) available sensors for the BMA reactor.
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Fig. 3. HDA reactor. Left: correlationbr,s;, I'1;¢, Of the sensor§; with the outputsg, £p and the sum of the absolute value of such correlations, at each iteration
of the algorithm. Right: correlation of the optimal sensor with the others sensors (and also with itself) at each iteration.

already selected sensor measurements is removed by projectisimce in the proposed approach the number of latent variables is
(step (4) of the selection algorithm). At the end (third itera-equal to the dimension of the reducédpace and, accordingly,
tion) only “small” correlation coefficients with approximatively the variance explained for thé-block is always 100%. Note
equal values remain. This is precisely the effect of the noise ithat the variance explained for the calibratiBiblock, when
the measurements. The plots on the righFigf. 3display the three sensors are used, is only slightly larger than the one ex-
correlations between the optimal temperature measurement apthined when using two sensors. Therefore, a soft sensor with
the other temperature measurements at each iteration. It can bely the first two temperature sensof4, 712) could be built;
observed that, quite reasonably, the sensors having the largestding one more sensafip) would mostly result in explain-
correlation with the selected sensor are the ones located in itsg measurement noise, which can be detrimental for estimation
neighborhood. purposes. In facffable 2shows that the RMS error on the cal-

Table 1reports the explained variance of the output d&ta ( ibration data decreases when three sensors are used, but that
block) for different sets of input measurements. To provide addi-
tional information, the explained variance is broken up in termsTable L . . .

Sequential algorithm applied to the HDA reactor: how #block explained

of latent variables (LVs) so as to display the most significan{ _ .. . increases by adding sensors
directions of the data. The first LV is the linear combination
of the original variables that describes the direction of great-

Explained variances on calibration datal{lock)

est variability, the second LV is the linear combination of the Location(s) First LV Second LV Third LV Total
original variables that describes the second direction of greatest. 9341 - - 93.41
variability orthogonal to the first, and so ¢Geladi & Kowal- 11,12 9407 Q72 - 9479

ski, 1986) The explained variance of ttgblock is not reported ~ 112,10 9403 085 008 94.96
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Table 2
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Sequential algorithm applied to the HDA reactor: RMS for the estimation of benzene and dyphenil concentrations on calibration and validation data

Optimal location(s) RMS calibration data

RMS validation data

& (x10°) £ (x10%) Total (x10°) & (x10%) & (x10°) Total (x10°)
11 2.0780 0.2593 2.0800 2.5449 0.3414 2.5500
11,12 2.0737 0.2050 2.0762 2.5007 0.3194 2.5103
11,1210 2.0276 0.2038 2.0304 2.5468 0.3160 2.5564
0.085 —— estimated 000457 — estimated
0.080 -
5 T
2 0075+ s
g T e
= 0,070 £
e o
[=]
E,0.065 £
2 =
& 0.060- c
& s
200554 5
0.050
T T T T T T 1 T T T T T T ™
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
(a) time [s] (b) time [s]

Fig. 4. Sequential algorithm applied to the HDA reactor (validation

data): (a) benzene concentration, (b) diphenyl concentration (reactor exit).

adding the third sensor worsens the RMS error on the validatiod.2. Partial oxidation of benzene to maleic

data.

Fig. 4aand b show the trajectories of the actual concentratio
&s(t, L) andép(z, L), together with the estimated ongs(z, L)
andéD(t, L). Note that the variance ég(t, L) (andéD(t, L))is
bigger than the variance ég(¢, L) (andép(z, L)). This depends

anhydride
ns
The second case study considers the partial oxidation of ben-
zene (B) to maleic anhydride (A). This case study is the same
as the one considered bgn den Berg et al. (2000yhe model

onthe fact that the estimator processes the temperature measueguations and parameters are taken from that paper and are re-

ments, which are corrupted by noise (3able B.3in Appendix

ported inAppendix B Fig. 2b and d show a typical steady-state

B). This noise propagates to the composition estimations, givingemperature profile along the reactor (BMA reactor in the fol-
rise to an estimation noise larger than the measurement noidewing) and the nine available temperature sensors, respectively.

The trajectories also highlight a small bias in the ‘quasi stead
state’ conditions. Since the estimator is static, no feedback

yThe objective is to select a suitable number of temperature sen-
isors to obtain the best estimation for molar flow rakasand

introduced to compensate for steady-state errors as, for exani at the reactor outlet.

ple, in a Kalman filtering approach.

Fig. 5shows the correlationsr, £, , I'7;ry between temper-

To check if the selected locations are indeed “optimal” forature sensors and the component molar flow r&esind Fg
estimation purposes, the explained variance for the calibratiowhen three sensors are selected, whefehtes 4 and $eport
Y-block data was calculated for all possible measurement pairshe RMS and the explained variances in this case study. They

The results for the most significant pairs are reportetiaible
3. It can be seen that th@y;, T12) pair is actually the optimal
one.

Table 3
HDA reactor: calibrationt-block explained variance for the most significant
pairs of temperature sensors

show that the optimal locations are more spatially distributed
than in the previous case study (9€g. 2b). This is related to

the particular temperature profile in the BMA reactor. Note that
a sensor is located near the temperature peak (hot spot). This

Table 4
Sequential algorithm applied to the BMA reactor: how thblock explained

(T;, T)) 8 9 10 11 12 variance increases by adding sensors

6 62.95 75.72 87.21 93.61 92.83 Explained variances on calibration datak{lock)

7 63.48 76.83 87.67 93.58 93.04 . - -

8 _ 77.73 88.37 03.62 03.41 Location(s) First LV Second LV Third LV Total

9 - - 88.47 93.64 93.89 7 8991 - - 89.91
10 - - - 93.67 9454 7,9 8790 3.09 - 90.99
11 - - - - 94.79 7,94 85.63 8.66 2.25 96.54
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Fig. 5. BMA reactor. Left: correlationsr, £, , I'r; /s Of the sensorg; with the outputsFa, Fg and the sum of the absolute value of the correlations, at each iteration
of the algorithm. Right: correlation of the optimal sensor with the others sensors (and also with itself) at each iteration.

result agrees with what was obtained ¥gn den Berg et al. 2003)to improve the selection sequence by changing the order
(2000) in which the input variables enter the sequence itself.

Fig. 6a and b show the measured and estimated flow rates, Now let us suppose that only one product flow needs to be
Fa, Fa andFg, Fg, atthe reactor outlet. The same observationsestimated, e.g. the benzene flow rds(s, L). Tables 7 and 8
reported for the HDA reactor also hold here, although the estishow the explained variances and the RMS obtained in this sub-
mation accuracy is much better in this casable 6compares case. Note that the optimal locations change with respect to the
theY-block explained variance for the best 10 triples of temper{previous situation. This implies that the sensors which are more
ature sensors (out of the 1320 possible ones). In this case, the setrelated with the benzene flow rate are located by the reactor
of locations selected by the algorithify( 77, Tg) is notthe true  outlet, whereas the sensor located near the hot spot are more
“optimal”; however, the variance explained by this set is lowerimportant to estimate the maleic anhydride flow. Moreover, two
by less than 1% than the maximum achievable. Note howevesensors are sufficient and the estimation is improved with respect
that techniques have been developed. Shacham & Brauner, to the one obtained in the general case (&da#es 7 and B

gztz:jeitial algorithm applied to the BMA reactor: RMS for the estimation of maleic anhydride and benzene molar flow rates on the calibration data
Optimal location(s) RMS calibration data {£0° mol/s) RMS validation datax{(10° mol/s)
Fa Fg Total Fa Fg Total
7 5.0588 1.8535 5.0601 6.8326 1.9769 6.8335
7,9 4.8464 1.4720 4.8522 6.6048 1.6102 6.6189

7,94 2.8431 1.4713 2.8678 2.8327 1.6021 2.8940
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Fig. 6. Sequential algorithm applied to the BMA reactor (validation data): (a) trajectafy @f L) and Fa(z, L), (b) trajectory ofFs(z, L) and Fa(r, L) (reactor

outlet).

Table 6

BMA reactor: calibrationy-block explained variance for the most significant

triples of temperature sensors

T;

!
&

Explained variance

97.13
97.12
96.97
96.66
96.54
96.43
96.42
96.31
96.31
96.31

PABDONBAAERAEDdD
A~NODMDMNJOO OO
N0 00NN ONN OO

Table 7

Sequential algorithm applied to the BMA reactor to estimate the benzene molar
flow rate only: how the&/-block explained variances increase by adding sensors

Explained variances on calibration daial{lock)

upon a sequential procedure selecting at each iteration the most
informative measurement input, and updating the input and out-
put spaces by subtracting the information explained by the com-
puted regressor. A static linear composition estimator is devel-
oped using the selected optimal measurement set. Neither the
measurement selection algorithm nor the estimator require any
explicit knowledge about the plant model. Although optimality
of the input sequence cannot be formally guaranteed, extensive
simulations showed that the proposed selection method is able
to identify the sequence that, for practical purposes, is indeed
the optimal one. Note that, even if two single-unit case stud-
ies have been considered to highlight the features of the pro-
posed selection algorithm, the method can be easily extended
to plantwide systems where several measurements of different
nature must be integrated together to built a data-based property
estimator.

Location(s) First LV Second LV Third LV Total
7 98.27 - - 98.27
7,8 99.04 0.02 - 99.06
7,8,9 99.08 0.17 0.004 99.26
Table 8

Sequential algorithm applied to the BMA reactor to estimate the benzene m
lar flow rate only: RMS for the estimation of benzene molar flow rate on the
calibration and validation data

Optimal location(s) RMS calibration RMS validation

dataFg(x10°) dataFg(x10°)
7 1.8535 1.9769
7,8 1.3679 1.4450
7,8,9 1.2155 1.3338 ()
(2)
3)
5. Conclusions 4)

In this paper a multivariate statistical method has been pre-(S)
sented to determine the optimal sensor measurement locatiof6)
in distributed sensor systems. The suggested algorithm is base(lr)
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0Appendix A. PLS algorithm

Let X andY be the mean-centered and scaled to unit vari-
ance inputs and outputs data. The nonlinear iterative partial least
squares (NIPALS) algorithm i&Geladi & Kowalski, 1986)

Start: seis equal to a column of,
Tx

Regress columns &f onu to get loadingsw' = h
Normalizew to unit lengthw <« wlT"w,

Calculate the scores:= Q‘T%

w

Regress columns dfonz : ¢" = ’;TT’{
Calculate new score vector foru = qYT—qq,
Check convergence af if YES go to 8, if NO go to 2,
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(8) CalculateX matrix loadings by regressing columnsXf Table B.1
T D¢ Nominal operating conditions for the reactors
: . v _ T _v_ a reactor
(9) IC$1IcuIate residual matrice& = X —tp’ andF =Y Gas velocitys (m/s) 0.1977
q Feed temperaturg(z, 0) (K) 904
(10) To calculate the next set of latent vectors, repfeadY Pressure? (kPa) 3468
by E andF and repeat. Feed composition (mole fraction)
&s(1,0) 0.0053
- th hogonal b i (1 0) 0
Remark: the scoreg; are orthogonal by construction. £n(t, 0) 0.4291
m(t, 0) 0.4800
Appendix B. Model parameters £1(1.0) 0.0856
(b) BMA reactor
This Appendix reports the characteristic parameters of the Gas velocity (m/s) 2.48
examples under study and describes how the simulations were Temperature of the fluid phadg(z, 0) (K) 733
performed. The numerical values for the paramefeable B.9 l‘forcvp;aet:?fnzvsr;e solid phagg(r, 0) (K) 733
and the nominal conditiongéble B.J are the same reportedin ., 0.009
Douglas (1988andvan den Berg et al. (200®r the HDA and Fa(t,0) 0
BMA reactors, respectivelyTable B.9.
L. oT aT RT
B.1. HDA reactor Cpg _ —vcpa* . AHl?kl e—Al/RT(STP)(EH P)O.S
Z
The following two reactions are considered: RT
— AHo—kp & 42/ R (55 P)?
C/Hg + Hy — CgHg + CHg (B.1) P
RT _
2CsHe = C12H10 + Ha. (B.2) — AHz— ke AS/RT (&p P)(EnP) (B.8)
The mass and energy balances are described by the following
equations:
Table B.2
d 0 aT RT
4B _ <$B n EB) + BT e AURT (1 py(g, P)OS Parameters of the reactor models
ot 0z T 0z P (a) HDA reactor
RT k1 (kmol/(s m? kPal-5)) 54352.8
— 25 ky e A2/RT (g p)2 k2 (kmol/(s n? kP&?)) 336.22
P k3 (kmol/(s n# kP&)) 1433.79
RT A1/R (K) 25616
+2——k3 e 43/ RT (&5 P)(n P) (B.3) A2/R (K) 25616
P Az/R (K) 25616
R ((m® kPa)/(kmol K)) 8.314
dép oxp xp oT RT _ 2 P (kPa) 3468
o =Y (8 + Ta) + 7](29 A2/KT (g5 P) o (kgim®) 7.87
< < ¢, (kJ/(kmol K)) 68.80
RT _ AH; (kJ/kg) 50009
— 5 kae™ /M (&p P)(En P) (B4)  am 0
AHs3 0
L (m) 17.4
T RT
%n = —v % | SnITN —ky e AVRT (g1 P) (g4 P)OD (b) BMA reactor
ot aZ T 8Z P A1 (S_l) 86760
RT RT Az (Sﬁl) 37260
+ —-koe 2/ K (gg P)? — —k3e /K (6p P)(En P) As (s 149.4
p P AH; (kJmolY) -1490
(B.5) AHy (kI mol?1) -2322
AHz (kJmol1) -832
E1 (Jmol?t 71711.7
Bm __ (%m  EmIT  RT, e~ A1/RT (g1 P (64 P)0S £ EJ m0F1; 71711.7
5 9z T oz p L TH/ASH E3 (Jmolb) 36026.3
U (571 10.6
(B.6) Ust (59 84.0
Tw (K) 733
P Py aT RT cs(sKJI1 0.729
®r__, (ET + éT) — k1 e AVRT (g1 P) (g P)D Desr (x10-3m2s71) 317
o d T oz P ket (x10-3m2s™1) 3.17
3.2

(B.7) L(m)
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where &g, &p, &n, ém, &7 are the mole fractions of benzene, 57;

diphenil, hydrogen, methane, toluene, respectivelthe pres- 7~

sure, andv is the velocity. It is assumed that press#and
velocity v are constant through the reactor. The meaning and
the value of the other parameters and the nominal conditions are

reported inTables B.2(a) and B.1(a) Ts

ot
B.2. BMA reactor

= v 4k

T 92T
3z eﬁ? - Ufw(Tf - Tw) - Usf(Ts - Tf)

(B.14)

= —Usi(Ts — Ty) + csAH1A1 P/ RTs g

+csAH2A2 eEZ/RTSFB + csAH3A3 eE3/RTSFA (B.15)

The feed stream is air mixed with benzene. Three exothemwhere Fg, Fao are benzene and maleic anhydride molar flow
mic, irreversible gas-phase reactions take place within a tubulaates, respectivelyl; the temperature of the fluid phase, and
packed reactor: Ts is the temperature of the stagnant solid phase. The other pa-

rameters and the nominal conditions can be foundables

CoHe + 40, — CaH203 + CO+ CO, + 2H,0 (B.9) B.2(b) and B.1(h)Velocityv is assumed to be constant along the
CeHgs + 60, — 3CO+ 3CO, 4 3H0 (B.10)  reactor.
C4H203 + 20, — 2CO+ 2COy + HoO0. (B.11)

B.3.

The first reaction represents the desired outcome, while the other

Simulated data

two the undesired burning of both reactantand product. The heat The simulated data were obtained by perturbing the inputs
balance is defined for both the fluid phase and the stagnant soligf the models reported in the above subsections: concentra-
phase catalyst. The mass and heat balances are as follows:  tjons/temperature for the HDA react@g(z, 0),£p(z, 0),&n(z, 0),

2
9Fs  0Fg b #Fs A EURTs e _ 4 Fol BT &m(t, 0),&1(z, 0), T(z, 0)) and flow rate/tempgrature forthe BMA
Py v Py + eﬁTZz 1€ B 2€ B reactor ¢g(z, 0), T:(¢, 0)). These perturbations were such that
the reactors never attained a steady state condition. The in-
(B.12) puts are perturbed around their nominal operating conditions
2 (Table B.) adding square signals having different amplitude
9FA = _Uaﬂ + Deﬁa I;A + A efVRTs By Ag eE3/RTs By and length.Figs. B.1 and B.Xhow the obtained spatial and
or 9z 9z temporal behavior of all the interesting variables. The input—
(B.13)  output data were partitioned in two groups: the calibration data
5 §
g 5
o 3
E E
@ =
- £
5 5
o y:
£’ g
© ©
g g
& £
& 2
—  x10
S _
g s =
&= v .
L =]
5 £ 900 ‘¥
z 0 £ 800 Ao TN
O sttt
£ 2000 v S 2000 e
= t[s] 00 z[m] t[s] 00 z[m]

Fig. B.1. HDA reactor: concentrations and temperatures (calibration and validation data).
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Fig. B.2. BMA reactor: molar flow rates and temperatures (calibration and validation data).

Table B.3 Brauner, N., & Shacham, M. (2000). Considering precision of data in reduction
Standard deviations for (a) concentrations and temperature measurements for of dimensionality and PCAComputers & Chemical Engineering, 24, 2603—
the HDA reactor; (b) flow rates and temperature measurements for the BMA  2611.

reactor Curtain, R. F., & Zwart, H. (1995)An Introduction to Infinite—Dimensional
(a) HDA reactor Linear Systems Theory. New York: Springer-Verlag.
o5, (1072 mole fraction) 3.33 Doob, J. L. (1990)Stochastic Processes. New York: A Wiley/Interscience Pub-
ot (x107° mole fraction) 3.33 lication. John Wiley & Sons, Inc.
g (x10% mole fraction) 3.33 Douglas, J. M. (1988)Conceptual Design of Chemical Processes. Singapore:
ogp (x107° mole fraction) 3.33 McGraw-Hill International.
oy (X 10-3 mole fraction) 3.33 ElJd, A, & Pritchard, A. J. (1988)Sensors and Controls in the Analysis of
ot (K) 1.66 Distributed Systems. Chichester: Ellis Horwood Ltd.

Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: A tutorial.
Analytica Chimica Acta, 185, 1-17.

Kano, M., Miyazaki, K., Hasebe, S., & Hashimoto, I. (2000). Inferential con-
trol system of distillation compositions using dynamic partial least squares
ot (K) 1.66 regression/ournal of Process Control, 10, 157-166.

Kaspar, M. H., & Ray, W. H. (1992). Chemometric method for process monitor-
ing and high-performance controller desighChE Journal, 38, 1593—-1608.
Kookos, I. K., & Perkins, J. D. (1999). A systematic method for optimum sensor

selection in inferential control systemadustrial and Engineering Chem-

(which are used to select the optimal sensor locations and istry Research, 38, 4299-4308.

to design the estimators) and the test data (which are usegesta.J.V.,Marlin, T. E.,&MacGregor,J. F. (1994). Development of inferential

to validate the estimators). Both data are afterward corrupted Process models using PL8omputers & Chemical Engineering, I8, 597—

_ll)_yt\)ll\/hléesGaUSSIan noises with standard deviations reDorted Ir<‘ubrusly, C. S., & Malebranche, H. (1985). Sensors and controllers location in
aple b.

(b) BMA reactor
or, (x1075mol/s) 5
org (x10~® mol/s) 3

distributed systems—A surveutomatica Journal IFAC, 21, 117-128.
Luyben, W. L., Tyeus, B. D., & Luyben, M. L. (1998)Plantwide Process
Control. New York, USA: McGraw-Hill.
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