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Optimal sensor location for distributed-sensor systems
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Abstract

The performance of monitoring and control techniques for distributed-sensor systems is affected by the choice of the measurement sensor
location. In this paper a methodology is suggested to solve the optimal sensor location problem. The suggested algorithm does not require any
explicit knowledge of the plant model, and is based upon a sequential procedure selecting at each iteration the most informative measurement input,
and updating the input and output spaces by subtracting the information explained by the computed regressor. The effectiveness of the proposed
algorithm is assessed by means of two simulated case studies concerning the location of sensors in tubular reactors where product composition
need to be estimated from temperature measurements.
©

K

1

c
v
a
a
s
a
p
c

t
(
b
m
o
I
m
i
f
k
a

ature
ted to-
cess
roduct
em is
osed

s of
mns,
k also
ature
ion of

the
erfor-
oice

oca-
nsors

plest
ll of

nts are
tical
di &
-

0
d

2005 Elsevier Ltd. All rights reserved.

eywords: Optimal sensor location; Distributed sensor systems; Multivariate regression

. Introduction

A common problem in the monitoring of processing systems
oncerns the estimation of product quality variables (primary
ariables) using process operating variables (secondary vari-
bles). In fact, quality variables (e.g. concentration, melt index,
nd viscosity) are often not available on-line at a sufficiently fast
ampling frequency (sometimes they are not available on-line
t all), whereas process variables (e.g. temperature, flow rate,
ressure, and level) can be obtained on-line very frequently, ac-
urately, and at low cost.

Data-driven estimation techniques offer the desirable feature
hat, at least in principle, no a priori knowledge about the process
fundamental mechanisms or model parameters) is needed to
uild a quality variable estimator. In many cases several process
easurement sensors are distributed within an existing system,
r can be potentially installed for a system being designed anew.

n such circumstances, an issue arises regarding which process
easurements should be used, among all the available ones, as

nputs to the primary variable estimator. The problem exists both
or single-unit systems, where several measurements of the same
ind (e.g. temperatures) can be possibly allocated along the unit,
s well as for plantwide systems, where the above issue is further

complicated by the fact that measurements of different n
(e.g. temperature, pressure, and flow rate) must be integra
gether. The topic of this paper is the optimal selection of pro
measurement sensors to be fed as inputs to a data-driven p
quality estimator (soft sensor). The sensor selection probl
addressed for single-unit systems only, although the prop
procedure can be easily extended to plantwide systems.

The inherent distributed nature of two important classe
processing units, i.e. tubular reactors and distillation colu
may make the sensor selection problem a challenging tas
for a single-unit system. For example, when the temper
measurements are used to estimate on-line the composit
the product streams, several different choices for locating
temperature sensors along the units are possible, and the p
mance of the quality estimator is strongly related to the ch
of the temperature input set.

If an existing unit is being considered, the number and l
tions of temperature sensors is usually assigned (i.e. the se
are physically already installed on the unit), and the sim
approach would be to build the estimator by making use of a
the available sensors. Because the available measureme
almost invariably correlated, a suitable multivariate statis
method(e.g. partial least-squares regression (PLS); Gela
Kowalski, 1986; Rao & Toutenburg, 1999)can then be ex
∗ Corresponding author. Tel.: +39 049 827 5468; fax: +39 049 827 5461.
ploited to solve the collinearity issues. Although this approach
(Mejdell & Skogestad, 1991)is sound from a theoretical point
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of view, it may nevertheless be impractical, because using too
many sensors can make the estimator more exposed to sensor
failure. A different way to tackle the problem would be to find
out a subset of the available sensors that (in some sense) prove
to be optimal for the estimation of the primary variables. This is
the approach taken, for example, byKano, Miyazaki, Hasebe,
and Hashimoto (2000)in the estimation of the distillate and
bottoms compositions from tray temperature measurements in
a distillation column. However, no indication is given by the
authors about how the tray temperatures subset can be identified
in a systematic way.

If a new unit is being designed together with its measurement
system, the selection problem can be stated in a slightly more
general way. In principle, one can assume to be able to locate the
measurement sensors wherever along the unit (e.g. on each tray
of a distillation column; evenly spaced along the whole length
of a tubular reactor), and then select which sensor (and how
many sensors) among all the possible ones is the most suitable
for product quality estimation purposes.1 In this perspective,
Kookos and Perkins (1999)proposed an algorithmic approach to
the solution of the optimal sensor location problem in distillation
columns based on a mixed-integer linear programming problem
formulation. The algorithm is very effective, but explicitly
requires a first-principles model of the plant.Zamprogna,
Barolo, and Seborg (2005)used principal component analysis
(PCA) to screen out the optimal temperatures for a PLS-based
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cation of sensors; subsequently, the temperature measurements
that have been identified as optimal are used to design a lin-
ear static estimator via a multivariate regression technique. The
proposed method has two main desirable features. First, it does
not require to use a first-principles model within the selection
algorithm. Second, the method relies on a linear static estimator
that does not require stability assessments and expensive on-line
computations. Furthermore, it has a sequential formulation that
allows to select the sensor location in a step-by-step way, and
it is easy to extend to systems where different types of sensors
have to be integrated. In fact, the sequential formulation makes
it easy to add sensors (in their optimal locations) until some
specified criterion is satisfied. Quite obviously, the price to pay
when working with linear static estimators based on black-box
models is a possible loss of accuracy when the nonlinearity or
the dynamics of the plant are high.

2. Problem statement

The problem under study is the optimal temperature sensor
location for tubular reactors when product composition infor-
mation must be inferred from temperature measurements. The
class of tubular reactors under study is described by a set of non-
linear partial differential equations with algebraic constraints of
the form
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composition estimator in a batch distillation column. T
proposed procedure is completely data-driven, but requ
the calculation of a sensitivity matrix, which has not a stro
statistical interpretation.van den Berg, Hoefsloot, Boelen
and Smilde (2000)found the best temperature sensor locat
for a tubular reactor by specifying different scalar measu
of observability, and selecting the best sensor as the one
maximizes the system observability. However, a single sens
selected by that procedure, and extension to multiple-senso
lection is not straightforward; moreover, the selection proced
is inherently model-based.Vande Wouwer, Point, Porteman
and Remy (2000)found the optimal sensor locations in
tubular reactor by maximizing the independence amongst
sensor responses based on the Gram determinant value.
the selection procedure requires a hard maximum search
discretized surface of dimension (n+ 1), wheren is the number
of sensors, the search becomes complicated whenn > 2.

In the present paper, a data-driven solution is propose
solve the sensor location problem; the optimal locations are
sen by using only a sequence of inputs and outputs. For ea
demonstration, we will refer to two tubular reactor case stud
where the compositions (or flows) of the desired componen
the product streams must be estimated from temperature
surements. It will be supposed that the measurement syste
to be designed anew, i.e. that temperature sensors can b
tentially allocated in any section of the reactors. The selec
procedure is asked to find out the optimal number and optima

1 This relies on the fact that a first-principles model (namely, the same m
that was used to design the unit itself) is available, but cannot be used on
for estimation purposes (e.g. because it is computationally burdensome).
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∂ ξ

∂z2 − g(ξ), ζ = h(ξ, z), (1)

hereξ = ξ(t, z) is the state vector containing component c
entrations (or flows) and temperatures as function of timet and
pacez, ζ the measurement signal related toξ through the non

inear functionh(·, ·). The functiong(ξ) and the parametersv,
, are related to the particular reactor.
In the cases under study, the output signalζ is a set of tempe

ture measurements along the reactor length. An evenly s
istribution of the available locations is assumed, and the

s to select the best ones. In order to avoid the introductio
he infinite dimensional system theory to study systems lik(1)
see Alonso, Kevrekidis, Banga, & Frouzakis, 2004; Cur

Zwart, 1995; El Jäı & Pritchard, 1988; Kubrusly & Male
ranche, 1985; Waldraff, Dochain, Bourrel, & Magnus, 20,
static black-box approach is used. It is important to note

he sensor locations and the class of estimators are intrins
elated. In general, a particular sensor location could be op
or a static linear estimator, but not for a Kalman filter, or fo
onlinear static estimator.

.1. Mathematical framework

As mentioned above, we intend to derive a procedure t
ect a set of temperature measurements along the reactor t

ate the species concentrations and/or flows at the reactor
z = L, whereL is the total reactor length). In order to cho
he optimal locationszj1, . . . , zjnopt

among the available loc
ions z1, . . . , zn (with nopt� n) and to design the estimat
ome well-known facts about linear regression, which wil
sed throughout the paper, are here briefly recalled. The m
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relating temperatures to component concentrations (or flows)
is assumed to be linear around the nominal steady state and is
approximated with the linear stochastic equation:

y(t) = Ax(t)+ b+ e(t) (2)

wherey(t) ∈ Rm is the vector of quality measurements (concen-
trationsξi, i = 1, . . . , m or flows Fi, i = 1, . . . , m), x(t) ∈ Rn

is the vector of process measurements (temperaturesTj, j =
1, . . . , n), the matrixA ∈ Rm×n and the vectorb ∈ Rm are de-
terministic, but unknown, parameters, ande(t) ∈ Rm is the vec-
tor of measurement errors (random vector), which is assumed
to be a white process. In the following the variablesy(t) and
x(t) will be also called the output vector and the input vector,
respectively.

Starting fromN observed samples ofx(·) andy(·) at time
t1, t2, . . . , tN , the following tail matricesX ∈ Rn×N andY ∈
R

m×N :

X = [ x(t1) x(t2) · · · x(tN ) ] (3)

Y = [ y(t1) y(t2) · · · y(tN ) ] (4)

are constructed. Observe that the number of rows of matrixX is
equal to the number of available temperature sensor locations.
By construction, also matricesX andY satisfy Eq.(2), i.e.2

Y = AX+ b+ E, (5)

.
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Note that the product matricesXXT andXYT in (6) are related
to important statistical quantities, i.e.

�X = Ê[XXT] � 1

N
XXT, �XY = Ê[XYT] � 1

N
XYT

where�X is the sample variance ofx and�XY is the sample
covariance ofx andy (Anderson, 1958).

A difficulty in the design of the estimator(6) arises when the
rows of the input matrixX are highly collinear. In this case the
matrix XXT is near to singularity and its inverse is difficult to
compute. A solution to circumvent such problem is to select a
smaller number of rows ofX, nopt� n, in order to have a new
input matrixXopt retaining all the useful information contained
in the original one, but farther from singularity. This means

nopt = arg min
n∗
{rowspan (X) � rowspan (Xopt),

Xopt ∈ Rn∗×Nsubmatrix ofX ∈ Rn×N} (8)

In this manner the singularity problem is solved using a smaller
number of sensors (rows ofX) and disregarding the redundant
information.

It will be shown that the methodology defined in this paper is
such that it also quantifies the approximation introduced in the
simplification of the input matrix. In other words, the proposed
procedure quantifies the symbol "�" in (8).
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whereE = [ e(t1) e(t2) · · · e(tN ) ] is the error matrix. Eq
(5) is the actual regression model, and the objective is to
an estimation̂A for the unknown matrixA, and an estimation̂b
for the unknown vectorb, such that the estimation̂Y = ÂX+ b̂

is optimal in least-squares sense. The symbol ˆ will be us
identify estimated signals or estimated matrices.

The estimation ofY givenX is nothing else that the projectio
of the rows ofY onto the linear spaceL(X) generated by th
rows ofX (Anderson, 1958; Doob, 1990). Such projection wil
be denoted with the symbolÊ[Y |L(X)], whereÊ is the sample
expectation. The estimation takes the form(Rao & Toutenburg
1999):

Ŷ = Ê[Y |L(X)] = YXT(XXT)−1︸ ︷︷ ︸
Â

X+mY − YXT(XXT)−1mX︸ ︷︷ ︸
b̂

(6)

where

mX = Ê[X] � 1

N

N∑
k=1

x(tk), mY = Ê[Y ] � 1

N

N∑
k=1

y(tk)

are the sample means of the inputsX and the outputsY, respec
tively. Starting from the matrix̂A andb̂ defined in Eq.(6), it is
easy to compute the estimate ˆy(t) of a new primary variabley(t)
given the corresponding value of the secondary variablex(t).
The ordinary least squares estimator(Rao & Toutenburg, 1999
is

ŷ(t) = Âx(t)+ b̂. (7)

2 With a slight misuse of notation, we writeY = AX+ b+ E instead ofY =
AX+ B + E with B = [ b b · · · b ] to increase readability.
d

to

2.2. Motivation for the proposed approach

Several methodologies exist which try to solve the opt
sensor selection problem. The most widespread data-drive
cedures are based on a modification of the PLS regressio
proach(see Geladi & Kowalski, 1986; Rao & Toutenburg, 19
Kresta, Marlin, & MacGregor, 1994, and the Appendix A for
algorithm and the nomenclature). The PLS approach compris
the following steps:

(1) perform a PLS regression using all the available senso
(2) choose the optimal numbernopt of sensors and select th

optimal locations according to one of the criteria (a),. . . ,
(d) reported below;

(3) extract the rows of theX matrix corresponding to thenopt
sensors;

(4) compute a regression using only this subset ofX;
(5) check if the estimation is good enough.

However, a major weakness in the above procedure is t
general criterion to carry out the optimal sensor selection
2) cannot be properly defined. Some proposed criteria are

(a) in any of the firstn loadings, extract the component that
the greatest absolute value. By construction, thei-th senso
location corresponds to thei-th component in thew or p
loading vectors(Geladi & Kowalski, 1986);

(b) in the first loading, extract then components that have t
greatest absolute values(Zamprogna et al., 2005);
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(c) select the variable that has the greatest absolute value in
the first loading, then remove it and perform another PLS
regression concerning the remaining rows ofX. Repeat such
procedure untiln sensors have been selected(Kaspar & Ray,
1992);

(d) detect whether clusters among the components of the first
two or three loadings exist and (if so) select a variable for
each clusters(Kaspar & Ray, 1992).

Note that stopping criterion (b) privileges the most significant
direction, since the sensors corresponding to the larger compo-
nents in the first loading vector are selected. Therefore, data with
a score space of dimension greater than one do not have an ac-
curate estimation. Stopping criterion (c) suffers from the same
problem. Stopping criterion (a) appears in principle to be more
effective since it selects a sensor from each of the firstnopt load-
ing vectors. Stopping criterion criterion (d) is quite subjective
and difficult to automate.

The approach presented in this paper is intrinsically sequen-
tial and avoids the ambiguity inside the PLS-based procedures.
The underlying idea is to add sensors (i.e. rows ofX) until the
prediction ofY is “good enough”, i.e. until some accuracy bound
is satisfied.

With respect to the PLS method, the proposed approach has
the following desirable characteristics:
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3. Proposed algorithm

The two underlying features of the proposed selection
procedure concern the stopping criterion and the selection
criterion. The stopping criterion is related to theY-block
explained variance(Geladi and Kowalski, 1986), which gives a
measure on how the secondary variables are able to estimate the
primary variables. When the explained variance increases, the
prediction power of the estimator raises and the estimation error
decreases. The selection criterion is based on the correlation
between the primary and the secondary variables: choosing
at any step the sensor having the larger correlation with the
outputs, but taking also into account the previous selected
sensors, those sensors that are more related to the outputs
and have less common information are singled out. This is
useful in order to reduce the numerical problems related to the
calculation of the estimator matricesÂ andb̂.

The data needed to the selection algorithm are the mea-
surements of the secondary variablesX ∈ Rn×N and of the
primary variablesY ∈ Rm×N ; these values can be obtained (for
example) by past measurements. The measurement selection
algorithm proceeds as a series of iterations (starting from
iteration no. 1), each one characterized by a sequence of steps;
one measurement sensor (input) is selected at each iteration.
Subscripti will be used to identify an iteration. The subscript
i on a matrix (such asXi andYi) is used to indicate that the
m
a p of
t ple
m t
a nce
o

re-
f t
a -
m
m ilable
a
f

m

(

R

Γ

w e
s
a

1) it is sequential in its formulation (sensor-by-sensor
proach);

2) its stopping rule has a strong statistical interpretation;
3) it provides an indication of the correlation between the

lected sensor and the other ones at each iteration o
sequential procedure;

4) no difficulties arise when different types of sensors hav
be integrated. Conversely, when the assigned measure
are different in nature (pressure measurements and/o
centration measurements, for example), it is not easy t
lect the optimal sensor with the PLS method only by look
at the value of the loading components, because inform
is displayed in an aggregated form.

he proposed stepwise regression methodology to addre
ensor selection problem retains some similarities with
ROV algorithm of Shacham and Brauner (2003), and of
rauner and Shacham (2000). For example, also in the SRO
lgorithm the candidate input variables are selected to ent
egression model according to their level of correlation with
ariables to be estimated, and an updating of the input and
ut spaces is carried out by subtraction from those spaces

nformation already explained. However, it should be noted
hacham’s and Brauner’s approach holds true for a singl
endent variable only, while the proposed approach is expl
esigned for multi-outputs systems. Shacham and Braune
est as a stopping criterion that an input variable is removed
onsideration of inclusion in the soft sensor when its residu
ormation is at the noise level. A different stopping criterion
e considered herein, as it will be illustrated in the next sec
e

ts
-
-

e

e

t-
e

t
-

-

.

atrix has been updated after iteration (i− 1); therefore,Xi

ndYi represent the working matrices at the beginning ste
he i-th iteration. Before starting the first iteration, the sam
eansmX ∈ Rn and mY ∈ Rm are removed from the inpu
nd output matrices, and all rows are scaled to unit varia
btaining the normalized matricesX1 andY1.

Thej index is used to identify an input measurement. The
ore, at the start of thei-th iteration, theXi matrix can be though
s a stack of (n− i+ 1) row vectorsXi(ji), each one having di
ensionN. The objective of iterationi is to identify thei-th
ost explanatory input measurement among the ones ava
t that iteration; this measurement will be denoted byj∗i . The

ollowing steps are carried out in sequence at thei-th iteration.
The algorithm’s steps (illustrated inFig. 1) are next com-

ented on.

1) Compute the sample correlation matrix betweenXi andYi

In order to select thei-th sensor (row ofXi) that is the
most predictive with respect to the outputsYi, the sample
correlation matrix3 ΓXiYi ∈ R(n−i+1)×m is first computed as

3 When the data are only mean centered, the sample correlation matrixΓXiYi
∈

(n−i+1)×m is computed as

XiYi
= Λ

−1/2
Xi

�XiYi
Λ
−1/2
Yi

(9)

hereΛXi
= diag{�Xi

} andΛYi
= diag{�Yi

} are the diagonal elements of th
ample variances�Xi

and�Yi
, and�XiYi

is the sample covariance betweenXi

ndYi.
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(Anderson, 1958):

ΓXiYi = Ê[XiY
T
i ] = 1

N
XiY

T
i . (10)

Note that the (j, h) element ofΓXiYi , γj,h = ΓXiYi (j, h), ex-
plains the correlation between thej-th input measurement
and theh-th quality output.

It is important to highlight that the row-dimension of
matrixΓXiYi decreases after an iteration has been completed.
In fact, after an iteration has been completed, an input is
selected and then removed from the set of input sensors
available at the next iteration (ΓX1Y1 ∈ Rn×m at the start
of the first iteration,ΓX2Y2 ∈ R(n−1)×m at the start of the
second iteration,ΓXiYi ∈ R(n−i+1)×m at the start of thei-th
iteration).

(2) Select the inputXi(j∗i ) most correlated with the outputYi

The goal is to choose the input indexj∗i representing the
location of the sensor that is more predictive with respect to
all components of the output vector. To this purpose, the sum
of the absolute values of all correlation coefficients between
each component (input) inXi and all components (outputs)
in Yi is analyzed (

∑m
h=1 |ΓXiYi (j, h)|,∀j = 1, . . . , n− i+

1). Then, the indexj∗i is selected by solving the following
problem

∗
m∑

re
con
ny
ation

(
S),

s

ffer-

s tha
cala

ally

(
ting.
e

)

The input matrix must be updated as well. After defining
Xc

i (j
∗
i ) as the matrix made of the rows ofXi minus the

selectedj∗i row, i.e.

Xc
i (j
∗
i ) =




Xi(1)
...

Xi(j∗i − 1)

Xi(j∗i + 1)
...

Xi(n− i+ 1)




, (14)

the updated input data matrixXi+1 is therefore given by

Xi+1 � Xc
i (j
∗
i )− Ê[Xc

i (j
∗
i )|L(Xi(j

∗
i ))]

= Xc
i (j
∗
i )−

∑
Xc

i
(j∗

i
)Xi(j∗i )

−1∑
Xi(j∗i )

Xi(j
∗
i ). (15)

The above equations state that, in the next iteration, only
the information contained in the output data and not already
explained by the previous regressorsj∗1, j∗2, . . . , j∗i need ex-
plaining.

(5) Stopping rule
is-
ed
h
ed

e

d

T

4

e
s al-
g te
a is
t -
p e
ji = arg max
1≤j≤n−i+1

h=1

|ΓXiYi (j, h)|. (11)

If some components inYi (i.e. some quality variables) a
more important than others, a weighted sum can be
sidered. The selection criterion(11) guarantees that at a
iteration the sensor having the largest cumulative correl
with all the outputs is selected.

3) Compute thei-th regression
Using the principle of ordinary least squares (OL

the OLS estimator̂Yi = Ê[Yi|L(Xi)] is given byâj∗
i
Xi(j∗i ),

where thei-th regression coefficient ˆaj∗
i

is defined as follow
(Rao & Toutenburg, 1999):

âj∗
i
= YiX

T
i (j∗i )(Xi(j

∗
i )XT

i (j∗i ))−1

= arg min
a∈Rm
‖Yi − aXi(j

∗
i )‖. (12)

Note that this regression coefficient is calculated in a di
ent way with respect to the general form shown in Eq.(6). In
fact, the data matrices are mean centered, which implie
the b̂-matrix vanishes, and the soft sensor input is a s
(only one measurement sensor), i.e. theÂ-matrix is a col-
umn vector. This eliminates the numerical issues typic
associated with the calculation of (XXT)−1 in Eq.(6).

4) Update the input and output matrix data
When thei-th estimator is computed, data need upda

This implies the projection of the dataYi onto the spac
orthogonal toL(Xi(j∗i )), or, in other words, to subtract̂Yi

from Yi according to:

Yi+1 � Yi − Ê[Yi|L(Xi(j
∗
i ))] = Yi − Ŷi = Yi − âj∗

i
Xi(j

∗
i )

(13
-

t
r

The above steps are repeated until a stopping rule is sat
fied. This rule should establish whether the accuracy reach
by the estimator is sufficient or not. One possible approac
is to assume that the accuracy is measured by the explain
varianceσi of theY-block at thei-th step, which is estimated
from sensorsj∗1, j∗2, . . . , j∗i :

σi =
{

1−
∑N

k=1 ‖Yi(k, :)− Ŷi(k, :)‖2∑N
k=1 ‖Y (k, :)‖2

}
× 100

=
{

1−
∑N

k=1 ‖Yi+1(k, :)‖2∑N
k=1 ‖Y (k, :)‖2

}
× 100 (16)

where‖ · ‖ is the Euclidean norm andY (k, :) is thek-th row
of Y. The algorithm stops when either the explained varianc
σi for theY-block at thei-th iteration is large enough, or the
incremental variationσi − σi−1 is not sufficient to motivate
a further iteration since adding additional sensors woul
simply make the estimator less robust.

The algorithm ends by giving back thenopt optimal locations.
he estimator is then built using these measurements only.

. Results and discussion

In this section, the optimal sensor location problem for th
elected case studies is solved by applying the proposed
orithm. Two performance indices are introduced to evalua
nd compare the estimators. The first performance index

he explained variance of the input-output signals (which ap
ears also in the stopping rule of the selection algorithm, se
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Fig. 1. Flowchart of the sequential method.

Eq. (16)) and the second one is the root mean square error
(RMS):

RMS=
{

1

N

N∑
k=1

‖yi(k)− ŷi(k)‖2
}1/2

(17)

whereyi(·) and ŷi(·) are thei-th output component and its es-
timation, respectively. Trajectories of measured and estimate
signals are also compared graphically to visualize the estimatio
accuracy and the effect of the temperature measurement nois
variance.

Two case studies are taken into account.

4.1. Hydro-dealkylation of toluene

The hydro-dealkylation (HDA) of toluene is a familiar pro-
cess in chemical engineering. The adiabatic tubular reactor
(HDA reactor in the following), where two vapour-phase re-
actions generate methane (M), diphenyl (D) and benzene (B),
from reactants toluene (T) and hydrogen (H), is considered. The
model equations and parameters are taken fromDouglas (1988)
and Luyben, Tyŕeus, and Luyben (1998)and are reported in
Appendix B. Fig. 2a shows a typical steady-state temperature
profile along the reactor, andFig. 2c shows the evenly spaced
distribution of the available temperature sensors along the re-
actor. Assuming to have 12 available sensorsT1, . . . , T12 num-
bered from 1 (at the reactor inlet) to 12 (at the reactor outlet),
the objective is to find the most favorable locations for a subset
of the available sensors in order to estimate the concentrations
of benzeneξB and diphenylξD at the reactor outlet. The subset
dimension should also be determined.

After the addition of white noise to corrupt the input and
output data, the sequential algorithm was applied to the data
time–series. Two plots are displayed inFig. 3 for each one of
the first three iterations of the selection algorithm. The plots
on the left show the correlations,ΓTiξB , andΓTiξD , between the
temperature measurements along the reactor (Ti, i = 1, . . . , n)
and the concentrations of benzeneξB(t, L) and diphenylξD(t, L)
at the reactor outlet, and the cumulative correlation obtained as
t rrela-
t est
c fore,
t en-
s
t nd it-
e tions
( t
t nsors,
t fact,
a the

F dy
r

ig. 2. (a) Steady-state temperature profile along the HDA reactor; (b) stea
eactor; (d) available sensors for the BMA reactor.
d
n
e

he componentwise sum of the absolute values of such co
ions|ΓTiξB | + |ΓTiξD |. The location corresponding to the larg
umulative correlation is selected at each iteration. There
emperature sensorT11 is selected at the first iteration. This s
or is then removed, and sensor number 12 (T12), which displays
he greatest cumulative correlation, is selected at the seco
ration. The third iteration removes both the previous loca
T11, T12), and selects temperature sensorT10. It is importan
o observe that, by increasing the number of selected se
he magnitude of the correlation coefficients decreases. In
fter each iteration, part of the information contained in

-state temperature profile along the BMA reactor; (c) available sensorsfor the HDA
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Fig. 3. HDA reactor. Left: correlationsΓTiξB , ΓTiξD of the sensorsTi with the outputsξB, ξD and the sum of the absolute value of such correlations, at each iteration
of the algorithm. Right: correlation of the optimal sensor with the others sensors (and also with itself) at each iteration.

already selected sensor measurements is removed by projection
(step (4) of the selection algorithm). At the end (third itera-
tion) only “small” correlation coefficients with approximatively
equal values remain. This is precisely the effect of the noise in
the measurements. The plots on the right ofFig. 3 display the
correlations between the optimal temperature measurement and
the other temperature measurements at each iteration. It can be
observed that, quite reasonably, the sensors having the largest
correlation with the selected sensor are the ones located in its
neighborhood.

Table 1reports the explained variance of the output data (Y-
block) for different sets of input measurements. To provide addi-
tional information, the explained variance is broken up in terms
of latent variables (LVs) so as to display the most significant
directions of the data. The first LV is the linear combination
of the original variables that describes the direction of great-
est variability, the second LV is the linear combination of the
original variables that describes the second direction of greatest
variability orthogonal to the first, and so on(Geladi & Kowal-
ski, 1986). The explained variance of theX block is not reported

since in the proposed approach the number of latent variables is
equal to the dimension of the reducedX space and, accordingly,
the variance explained for theX-block is always 100%. Note
that the variance explained for the calibrationY-block, when
three sensors are used, is only slightly larger than the one ex-
plained when using two sensors. Therefore, a soft sensor with
only the first two temperature sensors (T11, T12) could be built;
adding one more sensor (T10) would mostly result in explain-
ing measurement noise, which can be detrimental for estimation
purposes. In fact,Table 2shows that the RMS error on the cal-
ibration data decreases when three sensors are used, but that

Table 1
Sequential algorithm applied to the HDA reactor: how theY-block explained
variance increases by adding sensors

Explained variances on calibration data (Y-block)

Location(s) First LV Second LV Third LV Total

11 93.41 – – 93.41
11,12 94.07 0.72 – 94.79
11,12,10 94.03 0.85 0.08 94.96
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Table 2
Sequential algorithm applied to the HDA reactor: RMS for the estimation of benzene and dyphenil concentrations on calibration and validation data

Optimal location(s) RMS calibration data RMS validation data

ξB (×103) ξD (×103) Total (×103) ξB (×103) ξD (×103) Total (×103)

11 2.0780 0.2593 2.0800 2.5449 0.3414 2.5500
11, 12 2.0737 0.2050 2.0762 2.5007 0.3194 2.5103
11, 12, 10 2.0276 0.2038 2.0304 2.5468 0.3160 2.5564

Fig. 4. Sequential algorithm applied to the HDA reactor (validation data): (a) benzene concentration, (b) diphenyl concentration (reactor exit).

adding the third sensor worsens the RMS error on the validation
data.

Fig. 4a and b show the trajectories of the actual concentrations
ξB(t, L) andξD(t, L), together with the estimated onesξ̂B(t, L)
andξ̂D(t, L). Note that the variance ofξ̂B(t, L) (andξ̂D(t, L)) is
bigger than the variance ofξB(t, L) (andξD(t, L)). This depends
on the fact that the estimator processes the temperature measure-
ments, which are corrupted by noise (seeTable B.3in Appendix
B). This noise propagates to the composition estimations, giving
rise to an estimation noise larger than the measurement noise.
The trajectories also highlight a small bias in the ‘quasi steady-
state’ conditions. Since the estimator is static, no feedback is
introduced to compensate for steady-state errors as, for exam-
ple, in a Kalman filtering approach.

To check if the selected locations are indeed “optimal” for
estimation purposes, the explained variance for the calibration
Y-block data was calculated for all possible measurement pairs.
The results for the most significant pairs are reported inTable
3. It can be seen that the (T11, T12) pair is actually the optimal
one.

Table 3
HDA reactor: calibrationY-block explained variance for the most significant
pairs of temperature sensors

(Ti, Tj) 8 9 10 11 12

3
4

4.2. Partial oxidation of benzene to maleic
anhydride

The second case study considers the partial oxidation of ben-
zene (B) to maleic anhydride (A). This case study is the same
as the one considered byvan den Berg et al. (2000). The model
equations and parameters are taken from that paper and are re-
ported inAppendix B. Fig. 2b and d show a typical steady-state
temperature profile along the reactor (BMA reactor in the fol-
lowing) and the nine available temperature sensors, respectively.
The objective is to select a suitable number of temperature sen-
sors to obtain the best estimation for molar flow ratesFA and
FB at the reactor outlet.

Fig. 5 shows the correlationsΓTiFA , ΓTiFB between temper-
ature sensors and the component molar flow ratesFA andFB
when three sensors are selected, whereasTables 4 and 5report
the RMS and the explained variances in this case study. They
show that the optimal locations are more spatially distributed
than in the previous case study (seeFig. 2b). This is related to
the particular temperature profile in the BMA reactor. Note that
a sensor is located near the temperature peak (hot spot). This

Table 4
Sequential algorithm applied to the BMA reactor: how theY-block explained
variance increases by adding sensors
6 62.95 75.72 87.21 93.61 92.8
7 63.48 76.83 87.67 93.58 93.0
8 – 77.73 88.37 93.62 93.41
9 – – 88.47 93.64 93.89

10 – – – 93.67 94.54
11 – – – – 94.79
Explained variances on calibration data (Y-block)

Location(s) First LV Second LV Third LV Total

7 89.91 – – 89.91
7,9 87.90 3.09 – 90.99
7,9,4 85.63 8.66 2.25 96.54
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Fig. 5. BMA reactor. Left: correlationsΓTiFA , ΓTiFB of the sensorsTi with the outputsFA , FB and the sum of the absolute value of the correlations, at each iteration
of the algorithm. Right: correlation of the optimal sensor with the others sensors (and also with itself) at each iteration.

result agrees with what was obtained byvan den Berg et al.
(2000).

Fig. 6a and b show the measured and estimated flow rates,
FA, F̂A andFB, F̂B, at the reactor outlet. The same observations
reported for the HDA reactor also hold here, although the esti-
mation accuracy is much better in this case.Table 6compares
theY-block explained variance for the best 10 triples of temper-
ature sensors (out of the 1320 possible ones). In this case, the set
of locations selected by the algorithm (T4, T7, T9) is not the true
“optimal"; however, the variance explained by this set is lower
by less than 1% than the maximum achievable. Note however
that techniques have been developed(e.g. Shacham & Brauner,

2003)to improve the selection sequence by changing the order
in which the input variables enter the sequence itself.

Now let us suppose that only one product flow needs to be
estimated, e.g. the benzene flow rateFB(t, L). Tables 7 and 8
show the explained variances and the RMS obtained in this sub-
case. Note that the optimal locations change with respect to the
previous situation. This implies that the sensors which are more
correlated with the benzene flow rate are located by the reactor
outlet, whereas the sensor located near the hot spot are more
important to estimate the maleic anhydride flow. Moreover, two
sensors are sufficient and the estimation is improved with respect
to the one obtained in the general case (seeTables 7 and 8).

Table 5
Sequential algorithm applied to the BMA reactor: RMS for the estimation of maleic anhydride and benzene molar flow rates on the calibration data

Optimal location(s) RMS calibration data (×105 mol/s) RMS validation data (×105 mol/s)

FA FB Total FA FB Total

7 5.0588 1.8535 5.0601 6.8326 1.9769 6.8335
7, 9 4.8464 1.4720 4.8522 6.6048 1.6102 6.6189
7, 9, 4 2.8431 1.4713 2.8678 2.8327 1.6021 2.8940
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Fig. 6. Sequential algorithm applied to the BMA reactor (validation data): (a) trajectory ofFA(t, L) andF̂A(t, L), (b) trajectory ofFB(t, L) andF̂B(t, L) (reactor
outlet).

Table 6
BMA reactor: calibrationY-block explained variance for the most significant
triples of temperature sensors

Ti Tj Th Explained variance

4 6 8 97.13
4 6 9 97.12
4 6 7 96.97
4 5 7 96.66
4 7 9 96.54
2 4 7 96.43
3 4 7 96.42
4 5 8 96.31
4 7 8 96.31
1 4 7 96.31

Table 7
Sequential algorithm applied to the BMA reactor to estimate the benzene molar
flow rate only: how theY-block explained variances increase by adding sensors

Explained variances on calibration data (Y-block)

Location(s) First LV Second LV Third LV Total

7 98.27 – – 98.27
7,8 99.04 0.02 – 99.06
7,8,9 99.08 0.17 0.004 99.26

Table 8
Sequential algorithm applied to the BMA reactor to estimate the benzene mo-
lar flow rate only: RMS for the estimation of benzene molar flow rate on the
calibration and validation data

Optimal location(s) RMS calibration
dataFB(×103)

RMS validation
dataFB(×103)

7 1.8535 1.9769
7,8 1.3679 1.4450
7,8,9 1.2155 1.3338

5. Conclusions

In this paper a multivariate statistical method has been pre
sented to determine the optimal sensor measurement locati
in distributed sensor systems. The suggested algorithm is bas

upon a sequential procedure selecting at each iteration the most
informative measurement input, and updating the input and out-
put spaces by subtracting the information explained by the com-
puted regressor. A static linear composition estimator is devel-
oped using the selected optimal measurement set. Neither the
measurement selection algorithm nor the estimator require any
explicit knowledge about the plant model. Although optimality
of the input sequence cannot be formally guaranteed, extensive
simulations showed that the proposed selection method is able
to identify the sequence that, for practical purposes, is indeed
the optimal one. Note that, even if two single-unit case stud-
ies have been considered to highlight the features of the pro-
posed selection algorithm, the method can be easily extended
to plantwide systems where several measurements of different
nature must be integrated together to built a data-based property
estimator.
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Appendix A. PLS algorithm

vari-
l least
-
on
ed

Let X andY be the mean-centered and scaled to unit
ance inputs and outputs data. The nonlinear iterative partia
squares (NIPALS) algorithm is(Geladi & Kowalski, 1986):

(1) Start: setu equal to a column ofY,
(2) Regress columns ofX on u to get loadings:wT = uTX

uTu
,

(3) Normalizew to unit length:w← w
wTw

,

(4) Calculate the scores:t = Xw
wTw

,

(5) Regress columns ofY on t : qT = tTY
tTt

,

(6) Calculate new score vector forY: u = Yq

qTq
,

(7) Check convergence ofu: if YES go to 8, if NO go to 2,
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(8) CalculateX matrix loadings by regressing columns ofX

on t : pT = tT X
tTt

,

(9) Calculate residual matrices:E = X− tpT andF = Y −
tqT,

(10) To calculate the next set of latent vectors, replaceX andY
by E andF and repeat.

Remark: the scorestk are orthogonal by construction.

Appendix B. Model parameters

This Appendix reports the characteristic parameters of the
examples under study and describes how the simulations were
performed. The numerical values for the parameters (Table B.2)
and the nominal conditions (Table B.1) are the same reported in
Douglas (1988)andvan den Berg et al. (2000)for the HDA and
BMA reactors, respectively (Table B.2).

B.1. HDA reactor

The following two reactions are considered:

C7H8+ H2→ C6H6+ CH4 (B.1)

2C6H6 � C12H10+ H2. (B.2)

T owing
e

Table B.1
Nominal operating conditions for the reactors

(a) HDA reactor
Gas velocityv (m/s) 0.1977
Feed temperatureT (t, 0) (K) 904
PressureP (kPa) 3468
Feed composition (mole fraction)
ξB(t, 0) 0.0053
ξD(t, 0) 0
ξH(t, 0) 0.4291
ξM(t, 0) 0.4800
ξT(t, 0) 0.0856

(b) BMA reactor
Gas velocityv (m/s) 2.48
Temperature of the fluid phaseTf (t, 0) (K) 733
Temperature of the solid phaseTs(t, 0) (K) 733
Flow rates (mol/s)
FB(t, 0) 0.009
FA(t, 0) 0

cp
∂T

∂t
= −vcp

∂T

∂z
−	H1

RT

P
k1 e−A1/RT (ξTP)(ξH P)0.5

−	H2
RT

P
k2 e−A2/RT (ξBP)2

−	H3
RT

P
k3 e−A3/RT (ξD P)(ξHP) (B.8)

Table B.2
Parameters of the reactor models

(a) HDA reactor
k1 (kmol/(s m3 kPa1.5)) 54352.8
k2 (kmol/(s m3 kPa2)) 336.22
k3 (kmol/(s m3 kPa2)) 1433.79
A1/R (K) 25616
A2/R (K) 25616
A3/R (K) 25616
R ((m3 kPa)/(kmol K)) 8.314
P (kPa) 3468
ρ (kg/m3) 7.87
Cp (kJ/(kmol K)) 68.80
	H1 (kJ/kg) 50009
	H2 0
	H3 0
L (m) 17.4

(b) BMA reactor
A1 (s−1) 86760

Tw (K) 733
cs (s K J−1) 0.729
Deff (×10−3 m2 s−1) 3.17
keff (×10−3 m2 s−1) 3.17
L (m) 3.2
he mass and energy balances are described by the foll
quations:

∂ξB

∂t
= −v

(
∂ξB

∂z
+ ξB

T

∂T

∂z

)
+ RT

P
k1 e−A1/RT (ξTP)(ξHP)0.5

−2
RT

P
k2 e−A2/RT (ξBP)2

+2
RT

P
k3 e−A3/RT (ξDP)(ξHP) (B.3)

∂ξD

∂t
= −v

(
∂xD

∂z
+ xD

T

∂T

∂z

)
+ RT

P
k2 e−A2/RT (ξBP)2

− RT

P
k3 e−A3/RT (ξDP)(ξHP) (B.4)

∂ξH

∂t
= −v

(
∂ξH

∂z
+ ξH

T

∂T

∂z

)
− RT

P
k1 e−A1/RT (ξTP)(ξHP)0.5

+ RT

P
k2e−A2/RT (ξBP)2− RT

P
k3 e−A3/RT (ξDP)(ξHP)

(B.5)

∂ξM

∂t
= −v

(
∂ξM

∂z
+ ξM

T

∂T

∂z

)
+ RT

P
k1 e−A1/RT (ξTP)(ξHP)0.5

(B.6)

∂ξT

∂t
= −v

(
∂ξT

∂z
+ ξT

T

∂T

∂z

)
− RT

P
k1 e−A1/RT (ξTP)(ξHP)0.5

(B.7)
A2 (s−1) 37260
A3 (s−1) 149.4
	H1 (kJ mol−1) -1490
	H2 (kJ mol−1) -2322
	H3 (kJ mol−1) -832
E1 (J mol−1) 71711.7
E2 (J mol−1) 71711.7
E3 (J mol−1) 36026.3
Ufw (s−1) 10.6
Usf (s−1) 84.0
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where ξB, ξD, ξH, ξM, ξT are the mole fractions of benzene,
diphenil, hydrogen, methane, toluene, respectively,P the pres-
sure, andv is the velocity. It is assumed that pressureP and
velocity v are constant through the reactor. The meaning and
the value of the other parameters and the nominal conditions are
reported inTables B.2(a) and B.1(a).

B.2. BMA reactor

The feed stream is air mixed with benzene. Three exother-
mic, irreversible gas-phase reactions take place within a tubular
packed reactor:

C6H6+ 4O2→ C4H2O3+ CO+ CO2+ 2H2O (B.9)

C6H6+ 6O2→ 3CO+ 3CO2+ 3H2O (B.10)

C4H2O3+ 2O2→ 2CO+ 2CO2+ H2O. (B.11)

The first reaction represents the desired outcome, while the other
two the undesired burning of both reactant and product. The heat
balance is defined for both the fluid phase and the stagnant solid-
phase catalyst. The mass and heat balances are as follows:

∂FB

∂t
= −v

∂FB

∂z
+Deff

∂2FB

∂z2 − A1 eE1/RTsFB − A2 eE2/RTsFB

(B.12)

∂Tf

∂t
= −v

∂Tf

∂z
+ keff

∂2Tf

∂z2 − Ufw(Tf − Tw)− Usf(Ts− Tf )

(B.14)

∂Ts

∂t
= −Usf(Ts− Tf )+ cs	H1A1 eE1/RTsFB

+ cs	H2A2 eE2/RTsFB + cs	H3A3 eE3/RTsFA (B.15)

whereFB, FA are benzene and maleic anhydride molar flow
rates, respectively,Tf the temperature of the fluid phase, and
Ts is the temperature of the stagnant solid phase. The other pa-
rameters and the nominal conditions can be found inTables
B.2(b) and B.1(b). Velocityv is assumed to be constant along the
reactor.

B.3. Simulated data

The simulated data were obtained by perturbing the inputs
of the models reported in the above subsections: concentra-
tions/temperature for the HDA reactor (ξB(t, 0),ξD(t, 0),ξH(t, 0),
ξM(t, 0),ξT(t, 0),T (t, 0)) and flow rate/temperature for the BMA
reactor (FB(t, 0), Tf (t, 0)). These perturbations were such that
the reactors never attained a steady state condition. The in-
puts are perturbed around their nominal operating conditions
( ude
a nd
t put–
o data
∂FA

∂t
= −v

∂FA

∂z
+Deff

∂2FA

∂z2 + A1 eE1/RTsFB − A3 eE3/RTsFA

(B.13)
Fig. B.1. HDA reactor: concentrations and te
Table B.1) adding square signals having different amplit
nd length.Figs. B.1 and B.2show the obtained spatial a

emporal behavior of all the interesting variables. The in
utput data were partitioned in two groups: the calibration
mperatures (calibration and validation data).
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Fig. B.2. BMA reactor: molar flow rates and temperatures (calibration and validation data).

Table B.3
Standard deviations for (a) concentrations and temperature measurements for
the HDA reactor; (b) flow rates and temperature measurements for the BMA
reactor

(a) HDA reactor
σξH (×10−3 mole fraction) 3.33
σξB (×10−5 mole fraction) 3.33
σξT (×10−4 mole fraction) 3.33
σξD (×10−5 mole fraction) 3.33
σξM (×10−3 mole fraction) 3.33
σT (K) 1.66

(b) BMA reactor
σFA (×10−6 mol/s) 5
σFB (×10−6 mol/s) 3
σTf (K) 1.66

(which are used to select the optimal sensor locations and
to design the estimators) and the test data (which are used
to validate the estimators). Both data are afterward corrupted
by white Gaussian noises with standard deviations reported in
Table B.3.
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