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Abstract

This article is concerned with a classical problem of how to design an inferential control system for enhancing the performance of

distillation composition control. In this article, a new inferential control, termed ‘‘predictive inferential control,’’ is proposed. In the

predictive inferential control system, future compositions predicted from on-line measured process variables are controlled instead

of the estimates of current compositions. The key concept of the predictive inferential control is to realize feedback control with a

feedforward effect by the use of the inherent nature of a distillation column. The detailed dynamic simulation results show that the

proposed predictive inferential control scheme integrated with cascade control works considerably better than other control

schemes. Furthermore, the improvement of the control performance through iterative modeling or control-relevant identification is

also demonstrated.

r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the last decade or so, inferential control of
distillation compositions has been investigated by many
researchers. Inferential control became more popular to
realize on-line composition control, as chemical pro-
cesses became more heavily instrumented and process
data were more frequently recorded. The design of an
inferential control system is a good example to extract
useful information from process data and use it for
improving process operation. To build an inferential
model, which can estimate a product composition from
on-line measured process variables, least-squares regres-
sion is the simplest approach. However, this method
may be unsuccessful due to the highly correlated nature
of process data. To solve the collinearity problem,
composition estimators using partial least squares (PLS)
have been widely used (Kresta, Marlin, & MacGregor,
1994; Mejdell & Skogestad, 1991a, b). In their work,
steady-state inferential models of product compositions

were built. Mejdell and Skogestad (1993) compared
three different estimators using a linear model of a
binary distillation column. They concluded that good
control performance could be achieved with the steady-
state principal component regression (PCR) estimator,
which was almost as good as the dynamic Kalman filter,
because the steady-state estimator has a small inherent
feedforward effect. An application of a composition
estimator to an industrial packed-bed column was
reported by Fujii, Lakshminarayanan, and
Shah (1997). Their inferential model is a static PLS
model based on pressure, flow rate, and temperature
measurements.
Later, Kano, Miyazaki, Hasebe, and Hashimoto

(2000) further investigated PLS-based inferential mod-
els, which can estimate the product compositions of the
multicomponent distillation column from on-line mea-
sured process variables, such as tray temperatures, reflux
flow rate, reboiler heat duty, and pressure. They
compared steady-state, static, and dynamic inferential
models and found that the estimation accuracy could be
greatly improved by the use of dynamic models.
Furthermore, a cascade control system, which consisted
of an inner temperature control loop and an outer
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inferential composition control loop, was shown to
function well.
This article is concerned with a classical problem of

how to design an inferential control system for enhan-
cing the performance of distillation composition control.
The problem is decomposed into two subproblems: (1)
the selection of an inferential model and (2) the selection
of a control configuration. These problems are addressed
with special emphasis on the inherent feedforward effect
of inferential models. Then, a novel control system,
based on an inferential model—not for estimating the
current product composition but for predicting future
product composition—is proposed. This control scheme
is termed ‘‘predictive inferential control.’’ It is expected
that disturbances can be compensated before they affect
the product composition by controlling the future
composition instead of the current composition. The
proposed control system and conventional inferential
control systems are compared with applications to a
multicomponent distillation column.

2. Problem definition

In this section, the example distillation column (Kano
et al., 2000) and the conditions of dynamic simulations
are illustrated.

2.1. Example distillation column

The schematic diagram of the column is shown in
Fig. 1. The column consists of 30 theoretical trays
including the reflux drum and the reboiler. The diameter
of the column is 1 m: The liquid holdups of the reflux

drum and the reboiler are 1.57 and 3:14 m3; respectively.
The feed stream enters the column at the 15th tray and is
equimolal flow of methanol, ethanol, propanol, and n-
butanol. The total flow rate is 128 kmol=h: The set points
of the key components in the distillate and bottom
compositions are mole fractions of 0.0010 of propanol
and ethanol, respectively. A rigorous SPEEDUPTM

model is used for dynamic simulations. The flow
dynamics on each tray are expressed by the Francis weir
formula. In this study, pressure in the reflux drum is
assumed to be kept constant at 1:013� 105 Pa: That is,
the pressure is perfectly controlled by using a total
condenser. The pressure drop at each tray changes
depending on the vapor flow rate in the column. The base
steady-state condition is summarized in Table 1. Two
temperature control loops are used to keep the product
compositions at their set points. Temperatures on the
9th and 22nd trays are used as controlled variables.
Reflux flow rate and reboiler heat duty are used as the
corresponding manipulated variables. The parameters
of temperature controllers are tuned by trial and error.
Holdups of the reflux drum and the reboiler are
controlled by manipulating distillate and bottom
product flow rates, respectively. In the simulations,
process variables, such as tray temperature, flow rate,
pressure, and level, are assumed to be measured every
minute. It is also assumed that the propanol mole
fraction in the distillate product XD3 and the ethanol
mole fraction in the bottom product XB2 are measured
every 10 min:

2.2. Simulated data for modeling

The pseudo-random binary signals of bounded and
varying amplitude (within 710% of the steady-state
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Fig. 1. Tray temperature control scheme of the example distillation

column.

Table 1

Base steady-state condition

Feed

F 128.00 kmol/h

T 358.15 K

P 1:150� 105 Pa

xF 0.25/0.25/0.25/0.25

Reflux drum

L 110.66 (5.899) kmol=h ðm3=hÞ
D 64.00 (3.412) kmol=h ðm3=hÞ
T 343.77 K

P 1:013� 105 Pa

XD3 0.0010 —

Reboiler

V 160.26 kmol/h

B 64.00 (5.965) kmol=h ðm3=hÞ
Q 6.755 GJ/h

T 386.47 K

P 1:332� 105 Pa

XB2 0.0010 —
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value) with different frequencies are introduced as
component flow rate changes in the feed stream during
simulations. To realize slow composition changes, each
signal is filtered by a first-order lag model. In addition to
these random disturbances, the feed flow rate changes
stepwise by 710% every 2 h; while the maximum
deviation of the flow rate from its steady-state value is
restricted within 720%: The total simulation time is
20 h: Simulated data for validating inferential models
are obtained under the same conditions as described
above.
When inferential composition control is applied

instead of temperature control, the tray temperatures
will greatly fluctuate. Thus, the estimation accuracy may
deteriorate when an inferential model, which is based on
the data collected from the process with temperature
control, is used for composition control. To improve the
accuracy, the inferential model must be built from
appropriate data, which include large fluctuations in the
temperatures. For this purpose, the set points of
temperatures were changed while identification data were
generated. The size of set point changes was carefully
determined so that the product mole fractions do not
exceed the range from zero to 0.003. Changing a set point
is an approach used for closed-loop identification.

2.3. Evaluation indexes for estimation and control

performance

Inferential models are evaluated on the basis of the
explained prediction variance (EPV), which is calculated
by the application of the models to the validation data:

EPV ¼ 1�
PN

n¼1 ðxðnÞ � #xðnÞÞ2PN
n¼1 ðxðnÞ � %xÞ2

( )
� 100; ð1Þ

where x denotes a measurement of the product
composition, #x and %x are its estimate and mean value,
respectively, and N is the number of measurements.
The performance of control systems is evaluated with

the mean squared error (MSE) defined as

MSE ¼
1

N

XN

n¼1

ðxðnÞ � xspðnÞÞ
2; ð2Þ

where xsp is the set point of x:

3. PLS-based inferential model

In the last decade, chemometric techniques, such as
principal component analysis (PCA) and PLS (Glen,
Dun III, & Scott, 1989), have been widely applied for
process modeling, monitoring, and control (for example,
Wise & Gallagher, 1996; Nomikos & MacGregor, 1994;
Kano et al., 1997; Lakshminarayanan, Shah, &
Nandakumar, 1997). The main advantage of these

methods is that they can cope with correlated input
variables. This characteristic is suitable for analyzing
data from chemical processes, because chemical pro-
cesses are multivariable systems and a great number of
variables are mutually correlated.
In the present work, PLS is used for estimating the

product compositions from correlated process variables.
All variables are mean centered and their standard
deviations are scaled to be unity. No nonlinear
transformation is used for dealing with nonlinearity
between input variables and the product compositions
because well-known logarithmic transformation of the
product compositions did not improve the estimation
accuracy in this example. In addition, the number of
latent variables is determined on the basis of the results
of applying models to validation data. A PLS model in a
single output case can be written as

#y ¼
Xr

i¼1

aivi ¼
Xm

i¼1

biui; ð3Þ

where #y is a predicted output variable, ui is the ith input
variable, and vi is the ith latent variable given as a linear
combination of inputs. ai and bi are regression
coefficients to be estimated. m is the number of input
variables and r is the number of latent variables. When
input variables are correlated, r should be less than m:

3.1. Steady-state PLS model

The output variables to be estimated are the propanol
and ethanol mole fractions in the products (XD3 and
XB2). For building a steady-state PLS model, 99
different steady-state data are generated by changing
feed flow rate ðF Þ and product compositions. All 30 tray
temperatures and a reboiler pressure are used as input
variables, and the number of the latent variables is
selected to be 5. This model is referred to as SS.

3.2. Static/dynamic PLS model

Both static and dynamic PLS models are built from
time-series data, which can be obtained more easily than
steady-state data at many different operating condi-
tions. Kano et al. (2000) thoroughly investigated the
selection of input variables and sampling intervals. The
estimation accuracy can be improved by using not only
tray temperatures but also other process variables such
as reflux flow rate, reboiler heat duty, and pressure. In
addition, there seems to be little improvement by using
more than five tray temperatures. Based on these results,
five tray temperatures (4th, 9th, 18th, 22nd, and 27th
trays) with reflux flow rate, reboiler heat duty, and
pressure are used as input variables. In addition,
measurements at the current sampling instant are used
together with those at 5, 10, and 15 min before when
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dynamic PLS models are built. It should be noted that
the manipulated variables, i.e., reflux flow rate and
reboiler heat duty, cannot affect the product composi-
tions without delay. Thus, the manipulated variables at
the current sampling instant are not used as input
variables in dynamic models. The following four kinds
of models are investigated:
STATIC1: static model using all eight variables;
STATIC2: static model using five tray temperatures

and a pressure at the bottom;
DYNAMIC1: dynamic model using all eight variables

(total 30 input variables);
DYNAMIC2: dynamic model using five tray tem-

peratures and a pressure at the bottom (total 24 input
variables).

3.3. Predictive inferential model

Mejdell and Skogestad (1993) pointed out that the
temperatures in the middle of the column generally
changed slightly faster than at the ends, and therefore
the steady-state estimator had a small inherent feedfor-
ward effect. In fact, the estimates with STATIC2
precede the measurements as shown in Fig. 2. The
cross-correlation r at lag k is defined as E½xðtÞ #xðt þ kÞ�:
The similar cross-correlation plot, in which estimates
precede measurements, is obtained when SS model is
used. On the other hand, as shown in Fig. 3, there is
no lag between measurements and estimates when
DYNAMIC1 is used. In addition, the very high cross-
correlation at lag zero indicates that DYNAMIC1 can
estimate the product compositions with great accuracy.
Kano et al. (2000) proposed the cascade control

system, which consisted of an inner temperature control
loop and an outer inferential composition control loop.
The cascade control system functions better than the
conventional inferential control system because the
disturbances can be detected and compensated earlier
by controlling a tray temperature. In the present work,
to detect disturbances before they affect the product
compositions and to improve the control performance,
an inferential model not for estimating the current
product compositions but for predicting future product
compositions is proposed. Such an inferential model is
termed ‘‘predictive inferential model.’’ Conventional
and predictive inferential models can be written in
general forms as

#yðtÞ ¼ fcðuðtÞ; uðt � s1Þ; uðt � s2Þ;yÞ; ð4Þ

#yðt þ aÞ ¼ fpðuðtÞ; uðt � s1Þ; uðt � s2Þ;yÞ; ð5Þ

where #y is a predicted output vector, and u is an input
vector. In addition, si and a denote intervals for
sampling and prediction, respectively.
By using the proposed predictive inferential model

instead of a conventional inferential model in an

inferential control system, the control system will be
able to compensate the effect of disturbances before they
affect product compositions.

4. Inferential control

The inferential models designed in the last section are
now used for composition control.
At first, to investigate the selection of inferential

models, inferential control systems are introduced for
controlling the bottom composition XB2 while the top
temperature control system remains. The control results
are shown in Fig. 4. The MSEs of both product

Fig. 2. Cross-correlation between measurements and estimates of the

top and bottom product compositions (Model: STATIC2).

Fig. 3. Cross-correlation between measurements and estimates of the

top and bottom product compositions (Model: DYNAMIC1).
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compositions are calculated by changing a proportional
gain and an integral time of the inferential controller at
the bottom. Several MSEs resulted from each control
system are plotted to show the interaction between the
top and bottom control loops. The use of inferential
control can improve the performance of bottom
composition control while the control performance of
top product composition deteriorates due to the
interaction. The improvement of control performance
with SS is limited in comparison with other models. It
should be noted that STATIC2 is considerably better
than STATIC1. This result indicates that manipulated
variables should not be used as inputs when a static
model is used for inferential control. On the other hand,
DYNAMIC1 is better than DYNAMIC2. Therefore,
manipulated variables in the past should be used in a
dynamic model to capture the process dynamics and
improve the control performance. In addition, STA-
TIC2 outperforms DYNAMIC1. This result contra-
venes the supposition that better estimation accuracy
results in better control performance. The advantage of
using static models results from their inherent feedfor-
ward effect. Based on these results, STATIC2 and
DYNAMIC1 are further investigated in the following
sections.

4.1. Conventional inferential control

The inferential control systems, in which the estimates
of XD3 and XB2 are controlled by manipulating the
reflux flow rate and the reboiler heat duty, are
investigated. Multiloop proportional-integral (PI) con-
trol is used for this purpose. The simulation results are
summarized in Table 2. The inferential control systems
do not function well in comparison with TC. To

improve the control performance, the inferential model
need to be rebuilt by using time-series data, which are
obtained from the corresponding inferential control
system. Therefore, the inferential control system with
the updated inferential model is designed and applied.
Executing this iterative modeling updates the inferential
model and improves estimation accuracy and control
performance. In this example, two iterations are
sufficient. However, even after iterative modeling, which
is time and effort consuming, inferential control is not at
all attractive.

4.2. Predictive inferential control

Predictive inferential models with a different predic-
tion time (a ¼ 5; 10, and 15 min) as well as conventional
inferential models ða ¼ 0 minÞ are built and compared.
The simulation results are summarized in Table 3. The
same control parameters are used in all cases to
neutralize the effect of tuning.
Table 3 shows that the estimation accuracy becomes

worse as prediction time a becomes larger. DYNAMIC1
has considerably better estimation accuracy than STA-
TIC2. However, the control performance of the
predictive inferential control systems with DYNAMIC1
and STATIC2 are not significantly different. It should
be noted that the best control performance could not be
achieved by the use of the most accurate inferential
model. These results contradict the presumption that
better estimation accuracy results in better control
performance. The control performance of the predictive
inferential control, however, is worse than that of the
temperature control shown in Table 2.
To improve both the estimation accuracy and the

control performance, an iterative modeling technique is
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Fig. 4. Control results of the top and bottom product compositions.

XD3 is indirectly controlled by TC and XB2 by inferential control.

Table 2

Comparison of temperature control system and inferential control

systems using static and dynamic models: MSE� 107 (EPV [%]);
control performance improvement through iterative modeling

Iteration 0 1 2

Temperature control (TC)

XD3 6.35

XB2 9.41

Total 15.76

Inferential control with STATIC2

XD3 9.14 (70.4) 9.02 (72.5) 8.86 (76.6)

XB2 9.15 (75.3) 8.97 (77.4) 8.75 (79.2)

Total 18.29 17.99 17.61

Inferential control with DYNAMIC1

XD3 8.67 (96.2) 7.94 (97.7) 7.43 (98.0)

XB2 8.75 (98.5) 8.05 (99.1) 7.84 (99.2)

Total 17.42 15.99 15.27

M. Kano et al. / Control Engineering Practice 11 (2003) 927–933 931



used. The simulation results are summarized in Table 4.
Table 4 shows the advantage of using predictive
inferential control with the DYNAMIC1 model. After
two iterations, the control performance of predictive
inferential control with DYNAMIC1 becomes certainly
better than that of TC.

4.3. Cascade control

For further improvement of the control performance,
the cascade control system suggested by Kano et al.
(2000) is investigated. The cascade inferential control
scheme is shown in Fig. 5. The results summarized in
Table 5 clearly show the advantage of using cascade
control together with predictive inferential control. The
cascade control system can achieve the excellent control
performance, which is almost the same as that of the
ideal composition control, in which the product
compositions are assumed to be measured online with-
out delay or noise. Furthermore, it is very important

from the practical viewpoint that good performance can
be given without iteration.
The basic idea of the iterative modeling is that the

inferential model must be built from appropriate data.
In the present work, the set points of tray temperatures
are changed while identification data are generated in
order to make the data include large fluctuation of the
temperatures. This situation is quite similar to the
situation realized by cascade control, because an
inferential controller changes a set point of a tray
temperature. Therefore, the cascade control system can
give good performance without iteration.

Table 3

Comparison of conventional and predictive inferential control systems

using static and dynamic models: MSE� 107 (EPV [%]); effects of
prediction horizon a

a (min) 0 5 10 15

Model: STATIC2

XD3 9.14 8.97 8.94 10.31

(70.5) (66.4) (64.3) (63.2)

XB2 9.15 8.02 9.14 11.22

(75.3) (75.1) (74.8) (73.7)

Total 18.29 16.99 18.08 21.53

Model: DYNAMIC1

XD3 8.67 9.03 7.97 8.48

(96.2) (94.3) (93.2) (92.1)

XB2 8.75 8.98 8.02 9.16

(98.5) (83.3) (80.2) (78.1)

Total 17.42 18.01 15.99 17.54

Table 4

Comparison of predictive inferential control systems using static and

dynamic models: MSE� 107 (EPV [%]); control performance im-
provement through iterative modeling

Iteration 0 1 2

Predictive inferential control with STATIC2 ða ¼ 5 minÞ
XD3 8.97 (66.4) 8.74 (68.1) 8.59 (70.0)

XB2 8.02 (75.1) 7.82 (77.2) 7.69 (79.5)

Total 16.99 16.56 16.28

Predictive inferential control with DYNAMIC1 ða ¼ 10 minÞ
XD3 7.97 (93.2) 7.54 (94.6) 6.99 (94.8)

XB2 8.02 (80.2) 7.88 (81.5) 7.41 (82.1)

Total 15.99 15.42 14.40
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Fig. 5. Cascade inferential control scheme.

Table 5

Evaluation of cascade control systems integrated with conventional

and predictive inferential control: MSE� 107 (EPV [%]); control
performance improvement through iterative modeling

Iteration 0 1 2

Inferential control with DYNAMIC1

XD3 6.94 (96.2) 6.88 (96.6) 6.82 (96.8)

XB2 7.15 (98.5) 7.11 (98.7) 7.09 (98.9)

Total 14.09 13.99 13.91

Predictive inferential control with DYNAMIC1 ða ¼ 10 minÞ
XD3 6.62 (93.2) 6.60 (94.0) 6.56 (94.2)

XB2 6.54 (80.2) 6.43 (80.9) 6.42 (81.0)

Total 13.16 13.03 12.98

Ideal composition control (ideal CC)

XD3 5.15

XB2 7.77

Total 12.92
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At the end of this section, it should be emphasized
that the proposed predictive inferential control is
essentially different from model predictive control
(MPC). MPC needs a dynamic process model, which
can describe the influence of manipulated variables on
controlled variables. Predictive inferential control,
however, does not require such a dynamic model. In
fact, any measured variable can be used as an input
variable in an inferential model. Furthermore, an
inferential model can be static. A dynamic model is
recommended simply because of its high estimation
accuracy.

5. Conclusion

This article is concerned with a classical problem of
how to design an inferential control system for enhan-
cing the performance of distillation composition con-
trol. By comparing several inferential control systems, it
has been demonstrated that the better control perfor-
mance cannot always be achieved with dynamic models
although dynamic models can outperform static models
from the viewpoint of estimation accuracy. The advan-
tage of using static models results from their inherent
feedforward effect, which is confirmed through cross-
correlation plots.
To detect disturbances before they affect the product

compositions, an inferential model for predicting the
future product compositions, not for estimating
the current product compositions, has been proposed.
The proposed control scheme, in which the predicted
compositions are used as controlled variables, is termed
‘‘predictive inferential control.’’
The inferential control does not function well in

comparison with conventional temperature control. To
improve control performance, the iterative modeling
approach has been tested. As expected, control perfor-
mance has been improved through the iterations.
However, even after iterative modeling, which is time
and effort consuming, inferential control is not attrac-
tive except for the predictive inferential control with the
dynamic model.
For further improvement of the control performance,

the cascade control system has been investigated. The
advantage of using cascade control together with
predictive inferential control has been clearly shown.
Furthermore, it is very important from the practical
viewpoint that the cascade control system can give good
performance without iteration of modeling and control
system design.

The results of the present research suggest to use
predictive inferential control with a dynamic inferential
model within the cascade control configuration to
achieve good performance without demanding iterative
modeling approach. The proposed control system is a
feedback control system with a feedforward control
effect.
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