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Abstract

Subspace identification for closed loop systems has been recently studied by several authors. A class of new and consistent closed-loop
subspace algorithms is based on identification of a predictor model, in a way similar as prediction error methods (PEM) do. Experimental
evidence suggests that these methods have a behavior which is very close to PEM in certain examples. The asymptotical statistical properties
of one of these methods have been studied recently allowing to show (i) its relation with CCA and (ii) that Cramér–Rao lower bound is not
reached in general. Very little, however, is known concerning their relative performance.

In this paper we shall discuss the link between these “predictor-based” methods; to this purpose we exploit the role which Vector Auto
Regressive with eXogenous input models play in all these algorithms. The results of this paper provide a unifying framework under which all
these algorithms can be viewed; also the link with VARX modeling have important implications as to computational complexity is concerned,
leading to very computationally attractive implementations.

We also hope that this framework, and in particular the relation with VARX modeling followed by model reduction will turn out to be useful
in future developments of subspace identification, such as the quest for efficient procedures and the statistical analysis with finite-data.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Subspace identification has attracted a lot of attention in the
last two decades. It is also fair to say that the last few years
have witnessed a renewed interest in this topic for essentially
two reasons: first the introduction of new methods which have
allowed subspace identification to be applied with closed loop
data (Chiuso & Picci, 2003a, 2003b, 2005a; Jansson, 2003;
Qin & Ljung, 2003a) and second a whole body of results
on the asymptotic statistical properties of subspace methods
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which have allowed, on the one side, to asses accuracy of
subspace estimators (Bauer, 2005a; Bauer & Jansson, 2000;
Chiuso, 2006b; Chiuso & Picci, 2004a; Jansson, 2000) and on
the other to compare different methods (Bauer, 2005a, 2005b;
Bauer & Ljung, 2002; Chiuso, 2006a, 2007b; Chiuso & Picci,
2004b).

Extension of subspace algorithms to closed loop operating
conditions have required, at a certain stage, the introduction of
two step procedures (see Jansson, 2003; Larimore, 2004; Shi &
MacGregor, 2001) which were needed to eliminate undesired
terms due to feedback. This was due to the lack of stochastic
realization procedures indicating how the state space could be
constructed in the presence of feedback. An overview of these
realization procedures can be found in Chiuso and Picci (2003a,
2003b, 2005a) and references therein. The reader is also re-
ferred to Peternell, Scherrer, and Deistler (1996) and Peternell
(1995) for early contributions advocating for two-step proce-
dures even for “open loop” identification. There, an “iterative”

http://www.elsevier.com/locate/automatica
mailto:chiuso@dei.unipd.it


A. Chiuso / Automatica 43 (2007) 1034–1048 1035

CCA which makes use of the Markov parameters estimated in
a preliminary stage was proposed. In Peternell et al. (1996) it
was also conjectured that the two step CCA could possibly lead
to asymptotic efficiency.1

Often the preliminary estimation has been performed using
Vector AutoRegressive with eXogenous inputs (VARX) mod-
els. Some analysis regarding the role of VAR models in sub-
space identification was performed in Dahlén and Scherrer
(2004) where it was shown that the CCA algorithm introduced
in Larimore (1983) is asymptotically equivalent (in the sense
of having the same asymptotic distribution of the estimators) to
a procedure which first estimates a long VAR model and then
does balanced model reduction.

Also some preliminary recent work relating VARX models
with subspace procedures can be found in Onodera, Emoto, and
Qin (2006), Qin and Ljung (2006).

In this paper we shall be concerned with a class of algo-
rithms which we group under the name predictor-based sub-
space identification. This terminology stems from the fact that
these algorithms aim at identifying a “predictor model” in a
way that reminds of prediction error methods (PEM). We re-
fer the reader to the papers Chiuso and Picci, 2005a, 2005b for
a thorough discussion of the basic issues. The algorithms that
shall be discussed here are the SSARX algorithm by Jansson
(2003), the PBSID2 algorithm (introduced in Chiuso & Picci
(2005a) under the name “whitening filter”), its “optimized”
version3 (PBSIDopt hereafter) introduced in Chiuso (2007b)
and the algorithm presented by Ljung and McKelvey (1996).

We shall expand on two recent contributions (see Chiuso,
2006a, 2006c) and discuss the role of VARX models in sub-
space algorithms based on predictor identification; we shall
show that the preliminary step based on VARX models, ex-
plicitly used in Jansson (2003) is actually present, in a way or
another, in all these algorithms. We also observe that the bank
of predictors used in Ljung and McKelvey (1996) to overcome
problems due to feedback were constructed using VARX mod-
els. It turns out, as we shall see later in this paper, that the al-
gorithm proposed in Ljung and McKelvey (1996) is very much
related to the PBSIDopt introduced in Chiuso (2007b). For this
reason, even though PBSIDopt has been developed indepen-
dently from Ljung and McKelvey (1996) and actually derives
from a theoretically sound optimization, we regard the paper
(Ljung & McKelvey, 1996) as a fundamental early contribution
to closed-loop subspace identification.

In particular the main results of this paper can be enumerated
as follows:

(a) SSARX by Jansson (2003), which requires a preliminary
VARX modeling step, is asymptotically equivalent, in the
sense of yielding the same asymptotic distribution of the

1 In this paper we shall always use the word efficient assuming Gaussian
distributions of the data.

2 Short for “Predictor-Based Subspace IDentification”.
3 The word “optimized” refers to the fact that a projection step is

replaced by an “optimally weighted” (Markov) estimator.

estimators, to PBSID. Some preliminary results have ap-
peared in Chiuso (2006a).

(b) The “optimally weighted” projection step involved in
PBSIDopt in Chiuso (2007b) is actually equivalent (here
in the sense of giving the same numerical results) to es-
timating a VARX model followed by the usual steps of
subspace identification.4 Some preliminary results can be
found in Chiuso (2006c).

(c) The algorithm presented by Ljung and McKelvey (1996)
is equivalent to a weighted version of PBSIDopt.

In our opinion the significance of these results with respect to
the current state of the art in subspace identification can be
described as follows:

(a) One contribution of this paper, which can be seen as a natu-
ral continuation of previous works (Bauer, 2005b; Bauer &
Ljung, 2002; Chiuso, 2007b; Chiuso & Picci, 2004b), is to
provide a comparison between recently proposed methods,
trying to obtain a more unified picture of subspace algo-
rithms; we believe this is useful since subspace algorithms
have grown rapidly in number in the last few years (Chiuso
& Picci, 2005a; Jansson, 2003; Ljung & McKelvey, 1996;
Qin & Ljung, 2003b) with very little insight, if any, con-
cerning their relative efficiency.

(b) Second, by showing that PBSIDopt is numerically equiv-
alent to estimating a VARX model followed by the usual
steps of subspace identification, we provide a way to im-
plement the PBSIDopt algorithm with a much lower com-
putational complexity then originally discussed in Chiuso
(2007b). We would like to remind that PBSIDopt share the
advantages of PBSID in that it delivers consistent estima-
tors with closed loop data while comparing favorably, in
the sense of asymptotic variance, to CCA for the open loop
case. In fact it was shown in Chiuso (2007b, Theorem 5.3),
that the asymptotic variance of PBSIDopt is less or equal
than that of CCA for any choice of the input signal. The
fact that CCA is known to be asymptotically efficient5 for
time series identification ( = no inputs) (Bauer, 2005b) and
optimal for white inputs (Bauer & Ljung, 2002) strength-
ens the significance of our result.

(c) Last but not least, the relation with VARX modeling fol-
lowed by model reduction, together with the results in
Bauer (2005a), Bauer and Ljung (2002), Chiuso (2007b)
and Dahlén and Scherrer (2004), might be very helpful,
in the author’s opinion, in future developments of sub-
space identification. We also refer the reader to the pa-
per (Wahlberg, 1989) for a discussion and early references
on the use of high order AR models for identification of

4 Even though some preliminary results along these lines have already
been presented in Chiuso (2006a), the author would like to thank an anony-
mous reviewer of the paper (Chiuso, 2007b) which have underlined the rel-
evance of the comparison performed in this paper; part of the merit of this
paper should also go to him.

5 When both the past and future horizon go to infinity with the number
of data.
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AutoRegressive Moving Average (ARMA) models. In par-
ticular all these results could provide:

(i) suggestions on how subspace procedures could be
modified such as to reach asymptotic efficiency;
recall for instance that in the case of no observed
inputs (Wahlberg, 1989) derives an asymptotically
efficient ARMA parameter estimation method based
on AR modeling followed by model reduction.

(ii) a tool to introduce structure in the identification
problem (delays, inputs which do not affect certain
outputs, etc.) which might turn out to be very use-
ful when handling systems with large numbers of
input–output channels (see e.g. the plenary lecture
given by Zhu (2006) at the recent SYSID in New-
castle and also Hong, Harmse, Guiver, & Canney,
2006).

Concerning the relation of subspace methods with VARX mod-
eling, recall that it was shown in Dahlén and Scherrer (2004)
that, for time series identification (i.e. no inputs) VAR mod-
eling followed by balanced model reduction is asymptotically
equivalent to the CCA method, which is asymptotically efficient
as shown in Bauer (2005b). It has also been shown in Chiuso
(2007b) that PBSID (and therefore its “optimized” version) is
asymptotically equivalent to CCA for time-series identification
and when input signals are white.

Hence, at least for white inputs and time series identification
PBSID “does model reduction right”. The situation is different
when there are inputs, and they are colored. The PBSIDopt per-
forms better than CCA but it is not clear whether it is efficient
in general; note that in Peternell et al. (1996) it was conjec-
tured that pre-estimation of certain Markov parameters might
be a way to obtain efficient subspace procedures.

In Larimore (2004) it is claimed that a procedure which
is very much related to the SSARX algorithm might be effi-
cient; however, in Larimore (2004) it is claimed that efficiency
is reached for both past and future horizon which go to in-
finity. This claim appears to be wrong since, on the contrary,
depending upon the input characteristics, the asymptotic vari-
ance might increase or decrease as a function of the future
horizon (see Chiuso, 2007a, 2007b). Note also that in Chiuso,
(2007a) the algorithm discussed in Larimore (2004) is shown
to be asymptotically equivalent to SSARX and hence, from the
results of this paper, also to PBSID.

We believe existence of an efficient subspace procedure is
worth investigating.

We warn the reader that this paper does not mean to provide
an exhaustive coverage of the state of the art in subspace iden-
tification but rather an analysis of a specific class of algorithms
as mentioned earlier in the introduction. Many algorithms are
not discussed (Jansson, 2005; Katayama, Kawauchi, & Picci,
2005; Katayama, Tanaka, & Enomoto, 2005) or just mentioned
in passing ( Onodera et al., 2006; Qin & Ljung, 2003b, 2006;
Shi & MacGregor, 2001).

The structure of the paper is as follows. In Section 2 we
state the problem and set up notation; Section 3 briefly re-
calls the algorithmic steps while Section 4 states the main

results of this paper contained in Theorems 4.1, 4.2 and
Proposition 4.6 together with some simulation results.
Section 5 contains some conclusions. The most technical parts
of the proofs are postponed to the Appendix.

2. Statement of the problem and notation

Let {z(t)}, t ∈ Z, z := [y�u�]�, be a (weakly) stationary
second-order ergodic stochastic process where y(t) and u(t)

are, respectively, the output (p dimensional) and input (m di-
mensional) signals of a linear stochastic system in innovation
form{x(t + 1) = Ax(t) + Bu(t) + Ke(t),

y(t) = Cx(t) + Du(t) + e(t),
t � t0. (2.1)

We allow for feedback from {y(t)} to {u(t)} (Granger, 1963), i.e.
we consider “closed loop” identification. Without loss of gen-
erality we shall assume that the dimension n of the state vector
x(t) is as small as possible, i.e. the representation (2.1) is mini-
mal. For simplicity we assume that D=0, i.e. there is no direct
feedthrough. For future reference we define Ā := A−KC. We
shall assume that spectral density matrix of z, �(z) is rational
and bounded away from zero on the unit circle z = ej�. Let �i

denote the zeros of the spectral density matrix which are in-
side the closed unit disc. We define � := max(|�i |). From the
assumption �(ej�) > cI > 0 it follows that � < 1. Note in par-
ticular that 1 > �� max(|�i (Ā)|) where �i (Ā) is the ith eigen-
value of Ā.

The white noise process e, the innovation of y given the past
of z, is defined as the one step ahead prediction error of y(t)

given the (strict) past of z up to time t.
Given two sequences of (scalar) random variables xN and

gN , we shall say that xN is OP (gN), which we shall write
xN = OP (gN), if, ∀�, ∃M s.t.

supNP [|xN/gN | > M] < �.

In particular if xN = OP (1) we say that xN is bounded in
probability,6 note that xN = OP (gN) means that xN/gN is
bounded in probability.

Similarly, xN = oP (gN) means that, ∀� > 0,

lim
N→∞ P [|xN/gN | > �] = 0.

If both xN and gN are deterministic sequences, say xN and gN ,
then xN = o(gN) has the usual meaning limN→∞ xN/gN =
0. The symbol

·= shall denote equality in probability up to
oP (1/

√
N) terms, which we shall call asymptotic equivalence.

In fact, from standard results in asymptotic analysis (see for
instance Ferguson, 1996) terms which are oP (1/

√
N) can be

neglected when studying the asymptotic distribution.
We shall use the notations oP (·), OP (·), o(·) or O(·) to de-

note random matrices (of suitable dimensions possibly depend-
ing on N) whose elements are respectively oP (·), OP (·), o(·) or

6 Sometimes this is stated saying that xN is “uniformly tight”. For
instance every sequence of random variables converging in distribution is
uniformly tight.
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O(·) uniformly. Uniformity is needed when the matrices’ sizes
increase with N. In this paper uniformity shall be guaranteed
by stationarity of the processes involved.

Note also, for future reference, that if xN =OP (1/
√

N) and
yN = OP (1/

√
N), then xN yN = oP (1/

√
N).

Our aim is to identify the system parameters (A, B, C, K),
or equivalently the transfer functions F(z) = C(zI − A)−1B

and G(z)=C(sI −A)−1K +I , starting from input–output data
{ys, us}, s ∈ [t0, T + N ], generated by the system (2.1).

Throughout the paper the symbol t shall denote “present”, t0
shall be the initial time from which data are collected, so that
t − t0 is the “past horizon”; T shall be a design parameter so
that T − t is the number of future lags used to form predictors,
commonly known as the “future horizon”,7 while N shall be
the length of the finite tails.8

The analysis reported in this paper requires that both N, and
t − t0 go to infinity. We remind the reader that t − t0 has to
go to infinity at a certain rate depending on the number N of
data available. Details can be found, for instance, in Bauer and
Ljung (2002) where the following assumption is made:

Assumption 1. The past horizon t − t0 goes to infinity with N
while satisfying:

t − t0 � log N−d/2

log |�| , 1 < d < ∞,

t − t0 = o(log(N)	), 	 < ∞.

(2.2)

Under this assumption the effect of terms due to mishandling
of the initial condition at time t0 are oP (1/

√
N) and therefore

can be neglected. Moreover, (2.2) ensures that, when regress-
ing onto past data and taking the limit as N goes to infinity, the
computation of sample covariance matrices of increasing size
(with t − t0) does not pose any complication in the sense that
their limit is well defined and equal to the population counter-
part (see the discussion after Bauer & Ljung (2002, Lemma 4)).

In order to simplify the analysis in this paper we shall keep
the future horizon 
 fixed (and finite). We warn the reader that,
for instance, asymptotic efficiency of the CCA method for time
series identification requires 
 to grow with the sample size
(see Bauer, 2005a). We believe, however, that our results are
significant even under this assumption since the comparison
holds for fixed yet arbitrarily large 
.

According to Assumption 1 the total number of data is T +
N − t0 +1=T − t +N +o(log(N)	); therefore, limN→∞(T +
N − t0 + 1)/N = 1 (which implies, in particular, O(N) =
O(T + N − t0 + 1)). For this reason (and for convenience of
notation) when dealing with asymptotic results, we shall refer
to the length of the finite tails N rather to the total number of
data T + N − t0 + 1 (e.g. we shall use oP (1/

√
N) and not

oP (1/
√

T + N − t0 + 1)).

7 Respectively, the number of block rows in the block Hankel data matrix
containing the past and future data.

8 This is the parameter j in the notation of Van Overschee and De Moor
(1994) i.e. the number of columns in the block Hankel data matrices used
in subspace identification.

Remark 2.1 (On the necessity of Assumption 1). One may
argue that having to deal with an “infinite” past horizon might
not be very attractive. This condition, as discussed in detail
in Chiuso and Picci (2005a), is needed to ensure consistency
in closed loop. There is, however, another important rea-
son to keep this assumption. Essentially subspace algorithms
are “covariance-based” methods9; therefore, as discussed
in Walker (1961) and Porat and Friedlander (1985) for the
MA/ARMA case, it is necessary to estimate an infinite num-
ber of covariances to obtain asymptotically efficient estimators
(see also Wahlberg, 1989, Remark 4, p. 289). This requires
that t − t0 goes to infinity. Therefore, a necessary condition for
a subspace algorithm to reach the Cramér–Rao lower bound
is that t − t0 goes to infinity, as required by Assumption
1. Of course this does not mean that an algorithm allowing
t − t0 → ∞ will automatically be efficient.

We shall use the standard notation of boldface (lowercase)
letters to denote random variables. Lowercase letters denote
sample values of a certain random variable. For example we
shall denote with z(t) the random vector denoting the joint
process and with zt the sample value of z(t). We shall use
capitals to denote the tail of length N. For instance Zt :=
[zt zt+1, . . . zt+N−1]. These are the block rows of the usual
block Hankel data matrices which appear in subspace identifi-
cation.

When dealing with tails of length different from N we shall
add the number of columns as a superscript; for instance ZM

t :=
[zt zt+1, . . . zt+M−1].

For −∞� t0 ��� t �T � + ∞ we define the Hilbert space
of scalar zero-mean random variables

Z[�,t) := span {zk(s); k = 1, . . . , m + p, ��s < t},
where the bar denotes closure in mean square, i.e. in the metric
defined by the inner product 〈�, �〉 := E{��}, the operator E

denoting mathematical expectation. Similar definitions hold for
Y[�,t) and U[�,t).

When �=−∞ we shall use the shorthands Z−
t for Z[−∞,t).

The space generated by z(s), −∞ < s < ∞ shall be denoted
with the symbol Z. For convenience of notation we denote
with 
 := T − t the future horizon.

Given a subspace C ⊆ Z, we shall denote with E[a|C] the
orthogonal projection of the random variable a onto C; in the
Gaussian case the linear projection coincides with conditional
expectation, i.e. E[·|C]=E[·|C]. Let c be a (finite) basis for C.
Using the notation ab := E

[
ab�]

for the covariance matrix
between the zero mean random vectors a and b, in the finite
dimensional case E[a|C] will be given by the usual formula

E[a|C] = ac
−1
cc c. (2.3)

Defining also the projection errors ã := a − E[a|C] and b̃ :=
b − E[b|C], the symbol ab|c will denote projection error co-
variance (conditional covariance in the Gaussian case) ab|c :=

9 One may argue that there are “data-based” methods, but this is just a
computational aspect.
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ãb̃ = ab − ac−1
cc cb. Given two trivially intersecting sub-

spaces C ⊆ Z, B ⊆ Z, C ∩ B = {0}, E‖B[·|C] shall denote
the oblique projection onto C along B (see Golub & Van Loan,
1989) and can be computed by the formula:

E‖B[a|C] = ac|b−1
cc|bc. (2.4)

For column vectors formed by stacking past and/or future ran-
dom variables we shall use the notation: z[t,s] := [z�(t) z�(t+
1) . . . z�(s)]�. Finite (block) Hankel data matrices will be
denoted using capitals, i.e. Z[t,s] := [Z�

t Z�
t+1 . . . Z�

s ]�.
Spaces generated by finite tails, i.e. spaces generated by the

rows of finite block Hankel data matrices, will be denoted with
the same symbol used for the matrix itself. Sample covari-
ances will be denoted with the same symbol used for the cor-
responding random variables with a “hat” on top. For example,
given finite sequences At := [at , at+1 . . . , at+N−1] and Bt :=
[bt , bt+1 . . . , bt+N−1] we shall define the sample covariance
matrix

̂ab := 1

N

N−1∑
i=0

at+ib
�
t+i .

Under our ergodic assumption limN→∞ ̂ab
a.s= ab.

The orthogonal projection onto the row space of a matrix
shall be denoted with the symbol Ê; for instance, given a matrix
Ct := [ct , ct+1, . . . , ct+N−1], Ê[·|Ct ] will be the orthogonal
projection onto the row space of the matrix Ct ; the symbol
Ê[At |Ct ] shall denote the orthogonal projection of the rows of
the matrix At onto the row space of Ct , and is given by the
formula

Ê[At |Ct ] = ̂aĉ
−1
cc Ct . (2.5)

As above, given a matrix Ct , we define the projection errors
Ãt := At − Ê[At |Ct ] and B̃t := Bt − Ê[Bt |Ct ]. The sample
covariance (conditional sample covariance) of the projection
errors is denoted with the symbol ̂ab|c := ̂ãb̃ and computed
by the formula

̂ab|c := ̂ab − ̂aĉ
−1
cc ̂cb.

We shall denote with Ê‖Bt [·|Ct ] the oblique projection along
the space generated by the rows Bt onto the space generated by
the rows of Ct (provided the intersect only at zero). As above,
the oblique projection can be computed using the formula:

Ê‖Bt [At |Ct ] = ̂ac|b̂
−1
cc|bCt . (2.6)

For future reference we also define the extended observability
matrix

�̄
�

 := [C� Ā�C� (Ā�)2C� . . . (Ā�)
−1C� ]. (2.7)

3. State space construction

It is well known (Chiuso & Picci, 2004c; Lindquist & Picci,
1996; Van Overschee & De Moor, 1994) that identification

using subspace methods can be seen as a two step procedure
as follows:

(a) Construct a basis X̂t for the state space via suitable pro-
jection operations on data sequences (block Hankel data
matrices).

(b) Given (coherent) bases for the state space at time t (X̂t )
and t + 1 (X̂t+1) solve

{
X̂t+1 � AX̂t + BÛt + KEt,

Yt � CX̂t + Et

(3.1)

in the least squares sense.

Different subspace algorithms have different implementations
of the first step while the second remains the same for virtually
all algorithms.10 For this reason we compare algorithms on
the basis of step (a). We shall identify procedures which are
(asymptotically) equivalent, modulo change of basis, as the first
step is concerned.

3.1. PBSID algorithm

The construction of the state space using this algorithm
involves several oblique projections. The projection of each
(block) row Yt+h, h = 0, . . . , 
, can be seen as a long VARX
model as follows:

Ŷt+h := Ê[Yt+h | Z[t0,t+h)]
= �̂1,hZt+h−1 + · · · + �̂t+h−t0,hZt0 (3.2)

from which the oblique projections11

Ŷ P
t+h := Ê‖Z[t,t+h)

[Yt+h | Z[t0,t)]

=
t−t0+h∑
i=h+1

�̂i,hZt+h−i � CĀh−1Xt . (3.3)

The last approximate equality has to be understood in the sense
that, asymptotically in N,

ŷP(t + h) := E‖Z[t,t+h)
[y(t + h) | Z−

t ] = CĀh−1x(t) (3.4)

holds. Then one stacks all the predictors

Ŷ P
[t,T ) :=

⎡
⎢⎢⎢⎢⎢⎢⎣

Ŷ P
t

Ŷ P
t+1

...

Ŷ P
T −1

⎤
⎥⎥⎥⎥⎥⎥⎦

� �̄
Xt .

10 In this paper we shall not be concerned with algorithms based on the
so-called “shift invariance” method (Bauer, 2005a).

11 The superscript P reminds that the quantity has to do with the
“predictor-based” algorithm.
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From the singular value decomposition

W−1
p Ŷ P

[t,T ) = PDQ� = [Pn P̃n]
[
Dn 0

0 D̃n

] [
Q�

n Q̃�
n

]
,

(3.5)

where Wp is a weighting matrix which can be chosen appro-
priately, an estimate of the observability matrix �̄
 is obtained
discarding the “less significant” singular values (i.e. pretending
D̃n � 0) from

ˆ̄�
 = WpPnD
1/2
n

and consequently a basis for the state space

X̂PBSID
t := ˆ̄�−L


 Ŷ P
[t,T ),

X̂PBSID
t+1 := ˆ̄�−L


 Ŷ P[t+1,T ], (3.6)

where ˆ̄�−L

 is the left inverse defined by

ˆ̄�−L

 := ( ˆ̄��


 W−�
p W−1

p
ˆ̄�
)

−1 ˆ̄��

 W−�

p W−1
p . (3.7)

3.2. SSARX algorithm

The algorithm described in the previous section can be seen
as a “geometric” version of the SSARX algorithm by Jansson
(2003). Instead of computing the oblique projections (3.3), or,
equivalently, instead of estimating 
 + 1 long VARX models,
Jansson estimates just one (long) VARX model

YT � �̂1ZT −1 + �̂2ZT −2 + · · · + �̂T −t0Zt0 , (3.8)

where without loss of generality we have taken the length of
the VARX model equal to T − t0; then the effect of the future
inputs/outputs is removed using the estimated parameters �̂k

as12 :

Ŷ S
[t,T ) := Ê[Y[t,T ) − ˆ̄H S


Z[t,T ) | Z[t0,t)], (3.9)

where

ˆ̄H S

 :=

⎡
⎢⎢⎢⎢⎢⎣

0 0 ... 0

�̂1 0 · · · 0

...
. . .

. . .
...

�̂
 ... �̂1 0

⎤
⎥⎥⎥⎥⎥⎦ .

The remaining part is essentially the same as in the previous
section provided13 Ŷ S

[t,T ) is substituted to Ŷ P
[t,T ).

3.3. “Optimized” PBSID algorithm

The optimized version of PBSID introduced in Chiuso
(2007b) (PBSIDopt) differs from the original PBSID algo-
rithm in the computation of the predictors (3.2); in fact in the

12 The superscript S stands for “SSARX”.
13 Also a specific choice of Wp is done by Jansson. We leave this choice

unspecified here since equivalence holds for every choice of Wp .

optimized algorithm the estimation of the predictors Ŷt+h is
formulated as a weighted least squares problem as described
in this section.

Let us define K := [Āt−t0−1[K B]Āt−t0−2[K B] · · · [K B]].
Recall that

Yt+h = CĀhXt

+
h∑

i=1

CĀi−1(KY t+h−i + BUt+h−i ) + Et+h

= CĀhKZ[t0,t)

+
h∑

i=1

CĀi−1(KY t+h−i + BUt+h−i )

+ Et+h + oP (1/
√

N)

:= �hZ[t0,t)

+
h∑

i=1

�hiZt+h−i + Et+h + oP (1/
√

N), (3.10)

where the last equality defines the matrices �h and �hi . Stack-
ing the data and using (3.10) (discarding oP (1/

√
N) terms;

this is a delicate matter see Appendix B in Chiuso (2007b) for
details) we obtain:

⎡
⎢⎢⎢⎢⎢⎣

Yt

Yt+1

...

YT

⎤
⎥⎥⎥⎥⎥⎦

·=

⎡
⎢⎢⎢⎢⎢⎣

�0

�1

...

�


⎤
⎥⎥⎥⎥⎥⎦ Z[t0,t)

+

⎡
⎢⎢⎢⎢⎢⎣

0 0 ... 0

�11 0 ... 0

...
...

. . .
...

�

 ... �
1 0

⎤
⎥⎥⎥⎥⎥⎦ Z[t,T ] +

⎡
⎢⎢⎢⎢⎢⎣

Et

Et+1

...

ET

⎤
⎥⎥⎥⎥⎥⎦ .

(3.11)

Observe that the lower triangular matrices in (3.11) are Toeplitz,
since �ij=CĀj−1[K B], ∀i, j . The projection in (3.2) is equiv-
alent to solving (3.11) “row by row”; hence the Toeplitz struc-
ture is not preserved after estimation, i.e. �̂ij �= �̂i′j , i �= i′
almost surely.

This is equivalent to solving the least squares problem ob-
tained vectorizing (3.11):

Y :=

⎡
⎢⎢⎢⎢⎢⎣

vec(Yt )

vec(Yt+1)

...

vec(YT )

⎤
⎥⎥⎥⎥⎥⎦

·= SP�P +

⎡
⎢⎢⎢⎢⎢⎣

vec(Et )

vec(Et+1)

...

vec(ET )

⎤
⎥⎥⎥⎥⎥⎦

= SP�P + E, (3.12)
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where the matrix SP has the form

SP = block diag{(Z�
[t0,t) ⊗ I ), . . . , (Z�

[t0,T ) ⊗ I )} (3.13)

and �P is given by

�P = [vec�(�0) vec�(�1) vec�(�11)

· · · vec�(�
) · · · vec�(�
1)]�, (3.14)

Finding an “optimal” solution �̂Popt (Markov estimator) of

Y
·= SP�P + E, (3.15)

where oP (1/
√

N) terms have been neglected14 , gives an esti-
mator �̂Popt of �P which has the smallest asymptotic variance
among all linear (asymptotically unbiased) estimators based on
(3.12). Incidentally, this has allowed to show in Chiuso (2007b)
that this “optimized” version yields, asymptotically, a lower
variance of the estimators of any system invariant as compared
to the standard PBSID and, more importantly, to the classical
CCA algorithm (Larimore, 1983; Van Overschee & De Moor,
1993).

To this purpose it is very useful to observe that the “noise
term” E can be written in the form

E = Lvec(EN+

t ), (3.16)

where L is a “selection15 matrix” of size pN
×p(
+N). We
refer the reader to the paper (Chiuso, 2007b) for an explicit
expression of L; suffices it to remind that L has full column
rank. We shall later use the specific structure of the column
space of L and of its left kernel. Eq. (3.16) shows that indeed E
has a singular covariance matrix R = Var {E} = L(I ⊗ �)L�.

In the paper (Chiuso, 2007b) it is shown how (3.15) can be
converted into a least squares problem with full rank noise co-
variance and equality constraints (see also Golub & Van Loan,
1989; Rao, 1973; Söderström & Stoica, 1989; Werner & Yapar,
1996). Remarkably, as we shall see in the next Section, this is
equivalent to estimating a long VARX model of length t − t0,
using data in the interval [t0, T + N − 1].

Using the estimator �̂Popt , the oblique projections Ŷ P
t+h (3.3)

can be substituted with Ŷ
Popt
t+h=�̂

Popt
h Z[t0,t) in the SVD step (3.5);

hence, defining Ŷ
Popt
[t,T ) := [(Ŷ Popt

t )�, (Ŷ
Popt
t+1)

�, . . . , (Ŷ
Popt
T −1)

�]�,
an estimator for the state shall be given by

X̂
Popt
t := ( ˆ̄�Popt


 )−LŶ
Popt
[t,T ), (3.17)

where ˆ̄�Popt

 is the estimate obtained substituting Ŷ

Popt
t+k to Ŷ P

t+h

in (3.5).

14 See Chiuso (2007b, Appendix B) for a rigorous discussion.
15 We call “selection matrix” a matrix formed with zeros and ones in

which each row all entries are zero except for one.

Also the “shifted” oblique projections used for the computa-
tion of the state at time t + 1 (see (3.6)) can be substituted by

X̂
Popt
t+1 := ( ˆ̄�Popt


 )−L

⎡
⎢⎢⎢⎢⎢⎢⎣

�̂
Popt
1 �̂

Popt
11

�̂
Popt
2 �̂

Popt
22

...
...

�̂
Popt

 �̂

Popt




⎤
⎥⎥⎥⎥⎥⎥⎦

Z[t0,t+1). (3.18)

Similarly an estimator of the innovation sequence Et can be
found by

Ê
Popt
t := Yt − Ê[Ŷ Popt

t |X̂Popt
t ]. (3.19)

4. Main results

This section contains the main results of this paper; first
we shall discuss the (asymptotic) equivalence between PBSID
and SSARX and later we shall discuss how PBSIDopt can be
implemented using VARX models. Last PBSIDopt is related to
the algorithm of Ljung and McKelvey (1996) which, in some
sense, might be seen as a predecessor of all these methods.

For clarity of exposition we divide this task in three separate
and self-contained subsections, each complemented with some
simulation results.

4.1. Asymptotic equivalence of PBSID and SSARX

The first main result of this paper can be summarized as
follows:

Theorem 4.1. Assume the past horizon t − t0 grows with N
according to Assumption 1. Denote with �̂P and �̂S the esti-
mators of any system invariant � using respectively the PBSID
algorithm and the SSARX algorithm. Then, under standard as-
sumptions (see, e.g. Bauer, 2005a; Chiuso, 2006b) on the in-
novation process e

�̂P ·= �̂S (4.1)

holds.

We first state the following technical lemma which shall be
useful in the proof of this result:

Lemma 4.2. Let the pair (y, u) satisfy the assumptions of Sec-
tion 2. Assume also the coefficients of the following two VARX
models

y(t) =
K1∑
i=1

	iz(t − i) + eK1(t) (4.2)

and

y(t) =
K2∑
i=1

�iz(t − i) + eK2(t) (4.3)
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are estimated (in the least square sense) from data {ys, us},
respectively, in the intervals s ∈ [t − K1, t + N − 1] and s ∈
[t − K2, t + N − 1]. Assume also that K1 �K2 �Kmin go to
infinity with N while K1, Kmin satisfy16 Assumption 1. Then for
any fixed and finite f

	̂j
·= �̂j , j = 1, . . . , f . (4.4)

The same holds if the parameters in (4.2) and (4.3) are esti-
mated using data in the intervals [t1 − K1, t1 + N − 1] and
[t2 − K2, t2 + N − 1], respectively, as long as t1 − t2 is fixed
and finite.

Proof. The proof follows from Eqs. (4.4) and (4.5) in
Kuersteiner (2005), by letting K1 =hmax, K2 = ĥn, Kmin =hmin
and l(h) = [0, . . . , 0, 1, 0, . . . , 0, . . . ]�. Of course, in our case
P [K2 ∈ [Kmin, K1]] = 1. Note that the result in Kuersteiner
(2005) is much stronger and holds for more general linear
combinations l(h) and for data dependent order selection rules
K2 s.t. P [K2 ∈ [Kmin, K1]] → 1 as N → ∞. This is useful
here since it makes it easy to extend our results also to the
case in which the length of past and future horizons are esti-
mated from data provided the conditions in Kuersteiner (2005)
are still verified. However, we shall not discuss this extension
here. �

Proof of Theorem 4.1. Our goal is essentially to show that
Ŷ S

[t,T ) and Ŷ P
[t,T ) can be used interchangeably as far as asymp-

totic properties are concerned.
To this purpose, note that defining

ˆ̄H P

 :=

⎡
⎢⎢⎢⎢⎢⎣

0 0 ... 0

�̂1,1 0 ... 0

...
. . .

. . .
...

�̂
,
 ... �̂1,
 0

⎤
⎥⎥⎥⎥⎥⎦ .

Ŷ P
[t,T ) can be rewritten as

Ŷ P
[t,T ) = Ê[Y[t,T ) − ˆ̄H P


Z[t,T ) | Z[t0,t)] (4.5)

which has the same form as (3.9) provided ˆ̄H P

 is substituted

with ˆ̄H S

 . Using this observation we can write

Ŷ S
[t,T ) − Ŷ P

[t,T ) = ( ˆ̄H P

 − ˆ̄H S


 )Ê[Z[t,T ) | Z[t0,t)]. (4.6)

It is obvious that, provided we can show that

ˆ̄H P



·= ˆ̄H S

 , (4.7)

using Ŷ P
[t,T ) in lieu of Ŷ S

[t,T ) does not change the asymptotic

properties; in fact, under (4.7), also the difference Ŷ S
[t,T )−Ŷ P

[t,T )

will be oP (1/
√

N).

16 Where the role of t0 is played respectively by t1
0 := t − K1 and

tmin
0 := t − Kmin.

Inspecting the structure of the matrices ˆ̄H S

 and ˆ̄H P


 , it is
rather simple to see that showing (4.7) is equivalent to prove
that

�̂i
·= �̂i,h, i = 1, . . . , h, h = 1, . . . , 
. (4.8)

Hence the last part of the proof shall be concerned with (4.8).
Let us fix for a moment h = h̄. Showing that �̂i

·= �̂i,h̄ for

i =1, . . . , h̄ amounts to prove that the estimators (�̂i and �̂i,h̄,
i=1, . . . , h̄) of the first h̄ coefficients of two long VARX models
satisfying:

(a) the orders T − t0 and t − t0 + h̄ differ of exactly 
 − h̄ and
both go to infinity at a rate specified by Assumption 1;

(b) the parameters are estimated essentially using the same data
(essentially here means that there might be a finite number
of data points which are used in one of the two and are
not used in the other and vice versa) are asymptotically
equivalent. This result has been formalized in Lemma 4.2
above. Repeated application of Lemma 4.2 to the VARX
regressions (3.2) and (3.8) allows indeed to prove (4.8)
and hence (4.7), from which the statement of Theorem 4.1
follows. �

We now report some simulation results concerning the equiv-
alence of PBSID and SSARX. We consider two systems in in-
novation from (2.1) where the input given in closed loop

u(t) = r(t) − Hi(z)y(t).

Example 1 is a first order ARMAX system with A1 = 0.7,
B1 =1, K1 =1, C1 =1, D1 =0, Var{e1}=1, with a proportional
controller H1(z) = 1.5 and white reference signal r(t) = 5n(t)

where n(t) is zero mean unit variance white noise uncorrelated
from e(t).

0 0.5 1 1.5 2 2.5 3
10-3

10-2

10-1

100

101

102

Asymptotic Variance vs. Sample Variance

Fig. 1. Example 1. Sample variance (Monte Carlo estimate) vs. normalized
frequency (� ∈ [0,�]). Solid with triangles (�): PEM. Dashed with crosses
(+): PBSID. Dashed with circles (◦): SSARX. Dotted with crosses (+):
asymptotic variance for PBSID.
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Fig. 2. Example 2. Left: “small” t − t0 = 10. Right: “large” t − t0. Variance (and its Monte Carlo estimate) vs. normalized frequency (� ∈ [0,�]). Solid with
triangles (�) PEM. Dashed with crosses (+) PBSID. Dashed with circles (◦) PBSIDopt. Dotted with stars (∗): SSARX. Dotted: asymptotic variance for PBSID.

Table 1
Parameters chosen in the implementation

# t − t0 T − t = 
 N

Fig. 1 10 10 1000
Fig. 2 10 10 1000
Fig. 2 30 10 3000

Example 2 is a second-order ARMAX system with

A2 =
[1.5 −0.7

1 0

]
, B2 =

[1

0

]
, K2 =

[0

0

]
,

C2 = [1 0], D2 = 0, Var{e2} = 1.

The reference signal is unit variance white noise uncorrelated
with the innovation e(t) while the controller is a first order
system of the from

H2(z) = 0.2
0.1z − 0.5

z − 0.5
.

We compare the Monte Carlo estimate (500 Monte Carlo runs)
of the transfer function estimator (F̂ (z) := Ĉ(zI − Â)−1B̂)

variance (normalized by N) of SSARX and PBSID algorithms.
The parameters chosen in the three simulation reported, respec-
tively, in Figs. 1, 2 are summarized in Table 1. The results of
Fig. 1 refer to Example 1 while those in Fig. 2 to Example 2.
SSARX and PBSID are indistinguishable as predicted by the
theory in this paper in Example 1. As far as Example 2 is con-
cerned, while equivalence does not hold for small t − t0 and N,
it does indeed hold (see Fig. 2, right plot) when increasing N
and t − t0.

4.2. Vector AutoRegressive implementation of the PBSIDopt
method

The second main result of this paper shows that, indeed,
the PBSIDopt can be efficiently implemented via VARX esti-
mation. Even though VARX models were introduced also in
previous contributions, among which (Jansson, 2003; Ljung
& McKelvey, 1996; Peternell, 1995), in our framework the
VARX models pop up quite naturally from a theoretically sound
“optimized” method. This consideration constitutes, in the au-
thor’s opinion, a starting point for future investigations.

Theorem 4.3. Consider the infinite VARX model

yt =
∞∑
i=1

�izt−i + et (4.9)

and denote with �̂i , i = 1, . . . , t − t0, the estimators of the first
t − t0 coefficients in (4.9) obtained solving17

Y 
+N
t �

t−t0∑
i=1

�iZ

+N
t−i (4.10)

in the least squares sense.
The “optimally weighted” solution to (3.15), i.e. the one that

yields the least asymptotic variance of the estimators �̂Popt

among all linear, asymptotically unbiased estimators of �P

based on the regression (3.15), is equivalent to estimating the

17 Note that the estimators are function of N and t − t0, which according
to Assumption 1 grows with N. In order to streamline notation this dependence
is not made explicit.
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VARX model (4.10) in the sense that⎡
⎢⎢⎢⎢⎢⎢⎣

�̂
Popt
0

�̂
Popt
1

...

�̂
Popt



⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

�̂t−t0 · · · �̂T −t0 · · · �̂1

0 �̂t−t0 · · · · · · �̂2

...
...

. . .
...

...

0 · · · �̂t−t0 · · · �̂
+1

⎤
⎥⎥⎥⎥⎥⎦ (4.11)

and

�̂
Popt
ji = �̂i . (4.12)

Proof. See the Appendix. �

Remark 4.4. It is worth mentioning that, with the “optimally
weighted” (Markov) estimator of the coefficients �i , �ij , the
estimate of the lower triangular matrix in (3.11) is indeed
Toeplitz (see Eq. (4.12)). It is also interesting to note that the
estimate of the VARX coefficients weighting the “far” past (i.e.
�ji for i > t − t0 in (3.2)) are set to zero by the “optimal” es-

timator (i.e. �̂
Popt
ji = 0 for i > t − t0). This is reasonable since,

according to Assumption 1, for i > t − t0 the �ji’s go to zero
faster than 1/

√
N ; on the contrary, estimating these coefficients

would lead to errors which are of order 1/
√

N in probabil-
ity. This also brings up the question of choosing the length of
the past horizon t − t0; the analysis of this paper gives, to-
gether with the results in Dahlén and Scherrer (2004), a more
theoretically sound foundation to the (usually adopted) prac-
tice of determining t − t0 using standard order selection cri-
terions (Ljung (1997); Hannan & Deistler (1988); Söderström
& Stoica (1989)) for vector autoregressive models (see, e.g.
Bauer (2001)). The reader is also referred to the recent paper
(Kuersteiner, 2005) which discusses automatic inference for in-
finite order autoregressions.

Using the result of Theorem 4.3 the PBSIDopt algorithm can
be implemented as follows:

(a) Estimate the VARX model (4.9) as described in (4.10);
this may include estimation of the appropriate t − t0 using
standard criterions for VARX order estimation.

(b) Use the estimated coefficients as described in formulas
(4.11) and (4.12) to form the predictors

Ŷ
Popt
t+h =

t−t0+h∑
i=h+1

�̂
Popt
hi Zt+h−i =

t−t0∑
i=h+1

�̂iZt+h−i ; (4.13)

the state sequences X̂
Popt
t and X̂

Popt
t+1 are then obtained as

described in formulas (3.17) and (3.18).

This implementation has a much lower computational complex-
ity w.r.t. the implementation described in Chiuso (2007b) which
involves solving the least squares problem (3.15) directly.

In fact, step (a) above involves the estimation of a VARX
model of length t − t0 (which, according to Assumption 1, is
O(log(N))); solving (4.10) has complexity O(N(log N)2) (see

Golub & Van Loan, 1989, p. 248). The order and state estima-
tion (step (b) above) can be performed on the “squared” ver-

sion of the matrix Ŷ
Popt
[t,T ). This second step is common to all

subspace algorithms. Instead step (a) has the same “order” of
complexity than, e.g., CCA and PBSID; however, both these
algorithms essentially estimate 
 long VARX models, increas-
ing the complexity of the first step roughly by a factor 
.

Hence the implementation described above of the PBSIDopt
compares favorably to a variety of subspace procedures (among
which PBSID or CCA) as far computational complexity is con-
cerned while, according to Chiuso (2007b, Theorem 5.3), yield-
ing lower asymptotic variance than CCA. We remind also that
the PBSIDopt algorithm works (i.e. is consistent) regardless of
the presence of feedback.

These considerations make the algorithm described above a
strong alternative to standard used methods for a variety of rea-
sons, among which computational complexity and asymptotic
statistical properties (it is consistent also in closed loop and
gives lower variance than the original PBSID and CCA).

Remark 4.5 (PBSIDopt vs. SSARX). The main differences be-
tween the PBSIDopt and SSARX algorithms are as follows: (i)
the length of the ARX model estimated is (in general) differ-
ent for the two methods; in particular SSARX uses order larger
than 
 (but in Jansson, 2003 it is just required that the order
be “high” to ensure consistency), possibly chosen according to
infinite-order ARX models selection rules (Kuersteiner, 2005)
only the first 
 coefficients are then used; instead PBSIDopt
the order is exactly t − t0; this results in the PBSIDopt filling
with zeros the Toeplitz matrix used to construct the bank of
predictors (see Eq. (4.11)); (ii) the SSARX methods projects
the “corrected future” to form Ŷ S

[t,T ) (see Eqs. (3.9)) while
the PBSIDopt uses directly the estimated coefficients from the

VARX modeling step to form the bank of predictors Ŷ
Popt
t+k (see

eq. (3.17) and (4.11)). This makes PBSIDopt even more advan-
tageous from the computational point of view, since it does not
require computing the projection (3.9).

We consider the following examples, frequently used in the
literature of subspace identification, to illustrate the result.

The first is an“open loop” experiment which contains all the
essential features of the “optimized” method i.e.: (i) it is not ef-
ficient (it does not reach Cramér–Rao) and (ii) it gives (strictly)
lower asymptotic variance than CCA. Of course this example is
performed in “open loop” to allow the comparison with CCA.
In this example the original PBSID and the “optimized” ver-
sion have the same asymptotic behavior.

We consider the first order ARMAX model

y(t) − 0.5y(t − 1) = u(t − 1) + e(t) + 0.5e(t − 1).

The input is unit variance white noise passed through the filter
Hu(z)

Hu(z) = z2 + 0.8z + 0.55

z2 − 0.5z + 0.9

the input spectrum is plotted in Fig. 3.
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Fig. 3. Colored input spectrum: absolute value.

We report in Fig. 4 results concerning the asymptotic vari-
ance and the sample variance estimated over 100 Monte Carlo
runs multiplied by the number N = 1000 of data points used in
each experiment of the deterministic transfer function F(z) =
1/(z − 0.5).

As a second example we consider a fifth-order (marginally
stable) system in state space form (2.1) where (see Van
Overschee & De Moor, 1997; Verhaegen, 1993)

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

4.40 1 0 0 0

−8.09 0 1 0 0

7.83 0 0 1 0

−4 0 0 0 1

0.86 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, C = [1 0 0 0 0 ],

B = [0.00098 0.01299 0.01859 0.0033 −0.00002 ]�,

K = [2.3 −6.64 7.515 −4.0146 0.86336 ]�, D = 0

and e(t) is unit variance white noise. The input u is generated
in closed loop by u(t)= 5r(t)−H(z)y(t); the reference signal
r(t) is unit variance white noise; H(z) is given by

H(z) = 0.63 − 2.083z−1 + 2.8222z−2 − 1.865z−3 + 0.4978z−4

1 − 2.65z−1 + 3.11z−2 − 1.75z−3 + 0.39z−4
.

We have also used t − t0 = 30, 
 = 10 and N = 2000.
In this example PBSIDopt outperforms PBSID in the low-

frequency band and performs slightly better than the innovation
estimation method (IEM hereafter) (Qin & Ljung, 2003b) in the
high-frequency band (see Fig. 4). The algorithm by Ljung and
McKelvey, which as shown in the next section is a weighted
version of PBSIDopt, performs worse than PBSIDopt and IEM
(Qin & Ljung, 2003b).
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Fig. 4. Asymptotic variance (and its Monte Carlo estimate) vs. normalized
frequency (� ∈ [0,�]) (ARMAX of order 1). Solid with triangles (�) PEM,
dashed-dotted with stars (∗): CCA, dotted with crosses (+): (PBSID), dashed
with circles (◦): PBSIDopt; dotted: asymptotic variance for PBSID, solid:
Cramér–Rao lower bound.

It has been checked that the original algorithm presented in
Chiuso (2007b) and its alternative implementation presented in
this paper give indeed the same result. In particular conditions
(4.11) and (4.12) have been verified to hold for the estimated
coefficients of the PBSIDopt described in Chiuso (2007b).

4.3. Relation with the method by Ljung and McKelvey

In this section we shall briefly discuss the relation of
PBSIDopt with the algorithm presented in Ljung and McKelvey
(1996). We shall not enter into a detailed description of the al-
gorithm for which we refer the reader to the original paper; our
description of the algorithm follows the Matlab code provided
in Ljung and McKelvey (1995).

Suffices here to say that the first step is to construct a matrix
Ŷ LK

[t,T ) formed with predictors from which a basis of the state

space is extracted; Ŷ LK
[t,T ) shall play the same role as Ŷ

Popt
[t,T ) and

Ŷ S
[t,T ) in PBSIDopt and SSARX, respectively.
The main result can be stated as follows:

Proposition 4.6. Assume the model orders na and nb in (4.14)
are chosen according to na = nb = t − t0 and the VARX coeffi-
cients Hi := [Hy,i Hu,i] in (4.14) are estimated letting Ĥi :=
�̂i where �̂i are the least squares solution of (4.10). Then the al-
gorithm proposed in Ljung and McKelvey (1996) is a weighted
version of PBSIDopt, in the sense that the two state construc-
tion steps differ only for the choice of a (row) weighting matrix
WLK , as made precise by formula (4.20).

Proof. Consider the VARX model

Ŷt |t−1 =
na∑
i=1

Ĥy,iYt−i +
nb∑
i=1

Ĥu,iUt−i . (4.14)
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Essentially the algorithm in Ljung and McKelvey (1996) con-
struct the state space using a bank of predictors18

Ŷ LK
[t,T ) := [Ŷ�

t |t−1 Ŷ�
t+1|t−1 . . . Ŷ�

T |t−1]� (4.15)

where Ŷt+k|t−1 is computed recursively as

Ŷt+k|t−1 :=
k∑

i=1

Ĥy,i Ŷt+k−i|t−1 +
na∑

i=k+1

Ĥy,iYt+k−i

+
nb∑

i=k+1

Ĥu,iUt+k−i . (4.16)

The remaining steps (i.e. state construction and estimation of
A, B, C, K) follow the same lines as described in the previous
Sections.

In order to make clear the link between the “predictor” used
in PBSIDopt and Ŷ LK

[t,T ), we rewrite (4.16) as follows:

Ŷt+k|t−1 −
k∑

i=1

Ĥy,i Ŷt+k−i|t−1 =
na∑

i=k+1

Ĥy,iYt+k−i

+
nb∑

i=k+1

Ĥu,iUt+k−i . (4.17)

Using the assumption that na = nb = t − t0, letting Ĥi :=
[Ĥy,i Ĥu,i] and defining

WLK :=

⎡
⎢⎢⎢⎢⎢⎣

I 0 . . . 0

−Ĥy,1 I . . . 0

...
. . .

. . .
...

−Ĥy,
 . . . −Ĥy,1 I

⎤
⎥⎥⎥⎥⎥⎦ , (4.18)

Eq. (4.17) can be rewritten in matrix form as follows:

WLKŶLK
[t,T )=⎡

⎢⎢⎢⎢⎢⎣

Ht−t0 . . . . . . . . . . . . H1

0 Ht−t0 . . . . . . . . . H2

...
. . .

. . .
. . .

...
...

0 0 0 Ht−t0 . . . H
+1

⎤
⎥⎥⎥⎥⎥⎦ Z[t0,t),

(4.19)

from the assumption that the VARX model (4.14) has been
estimated using the same data as (4.9) it also follows that Ĥi =
�̂i . Therefore, using (4.19) the stacked predictors in (4.15)

18 This implementation has been taken from the Matlab code reported
in Ljung and McKelvey (1995).
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Fig. 5. Asymptotic variance (and its Monte Carlo estimate) Dashed-dotted
with circles (◦): PBSIDopt. Dashed-dotted with stars (∗): IEM (Qin &
Ljung, 2003b). Dotted with crosses (+): PBSID. Solid with diamonds (♦):
Ljung–McKelvey Ljung and McKelvey (1996). Dotted with triangles (�):
PEM. Solid with stars (green) (∗): asymptotic variance for IEM. Dotted with
crosses (red) (+): asymptotic variance for PBSID.

can be rewritten as

Ŷ LK
[t,T ) =W−1

LK

⎡
⎢⎢⎢⎢⎢⎣

�̂t−t0 . . . . . . . . . . . . �̂1

0 �̂t−t0 . . . . . . . . . �̂2

...
. . .

. . .
. . .

...
...

0 0 0 �̂t−t0 . . . �̂
+1

⎤
⎥⎥⎥⎥⎥⎦Z[t0,t)

=W−1
LKŶ

Popt
[t,T ) (4.20)

where (4.13) has been used in the last equality. �

It is remarkable that the bank of predictors used in the original
paper (Ljung & McKelvey, 1995) is indeed equivalent to a
weighted version of the bank of predictors used in PBSIDopt. It
should not be surprising that the original algorithm in Ljung and
McKelvey (1995, 1996) does not perform as well as PBSIDopt
(see Fig. 5); in fact it is well known that the (row) weighting
does affect the asymptotic statistical properties of the estimators
using the “state sequence” approach (see Bauer, 2005a). Note
that in Qin and Ljung (2006) it was conjectured (even though
not proved) that an algorithm named HOARX is equivalent
(asymptotically) to the algorithm by Ljung and McKelvey. As
shown in this section (see, in particular, the right-hand side of
(4.19) and formula (8) in Qin & Ljung (2006)) this is not exactly
true; instead they differ up to a row weighting. To be precise
also some Markov parameters (those weighting the “far past”)
are set to zero (see (4.19)). Using the techniques in Kuersteiner
(2005) it would be possible to see that this does not make
any difference asymptotically as long as 
 remains fixed (or
bounded above).



1046 A. Chiuso / Automatica 43 (2007) 1034–1048

5. Conclusions

In this paper we have discussed several subspace algorithms
based on predictor model identification. It is shown that all these
algorithms can be formulated as VARX estimation followed by
model reduction.

In particular it has been shown that

(a) SSARX (Jansson, 2003) and PBSID (Chiuso & Picci,
2005a) are asymptotically equivalent;

(b) PBSIDopt (Chiuso, 2007b) is exactly equivalent (i.e. give
the same numerical results on finite data) to estimating a
suitable VARX model followed by the usual steps of sub-
space identification (i.e. state estimation via SVD followed
by estimation of the system matrices)

(c) The algorithm by Ljung and McKelvey (1995) is a weighted
version of PBSIDopt.

Experimental results (on simulated data) are included which
support the theoretical derivations. The results of this paper,
together with the comparison performed in Chiuso (2007b),
indicate that PBSIDopt should be considered as one of the most
appealing in this class of algorithms for the following reasons:

(a) it is consistent under closed-loop operating conditions;
(b) it performs no worse than CCA (regardless of the choice of

input) for open loop data and better than SSARX/PBSID
with feedback;

(c) it is prone to a very simple and computationally attractive
implementation via VARX modeling.

The simulation results reported in this paper seem to support
these statements. Even though PBSIDopt can be verified to be
asymptotically efficient in a number of examples,19 it is not so
in general.

It was conjectured in Larimore (2004) that an algorithm
which is essentially equivalent to PBSID is (asymptotically)
efficient for large 
 (actually for t − t0 = 
 → ∞). Instead, as
clearly seen in Fig. 4 PBSID is not efficient for large 
. We
have verified that indeed the performance does not change in-
creasing 
. Instead PBSID is nearly efficient for this example
with 
 = 1 (see Chiuso, 2007b, Fig. 4 and Chiuso, 2007a).

There is certainly much work to be done; in particular not
completely clear is, at the moment, the relation of these methods
with the new algorithms introduced in Onodera et al. (2006),
Qin and Ljung (2006) and with the IEM of Qin and Ljung
(2003b).

Also the question of finite-data behavior is certainly of in-
terest and deserves, in our opinion, further investigation.
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Appendix A. Proofs

Proof of Theorme 4.3. The proof makes use of the fine struc-
ture of the matrix L. Let us denote with LI a matrix which
columns span the image of L and with LK a matrix span-
ning the left kernel of L, so that [LILK ] is a full rank square
(pN(
 + 1) × pN(
 + 1)) matrix. The least squares problem
(3.15) can be transformed into the equivalent form[

L�
I

L�
K

]
Y =

[
L�

I

L�
K

]
SP�P +

[
L�

I

L�
K

]
E. (A.1)

Note that, by construction, L�
I L has full rank and therefore

L�
I E has full rank covariance. Similarly L�

KL = 0 and hence
L�

KE = 0 (in the mean square sense).
In this way the least squares problem (3.15) with singular

noise covariance (3.15) is transformed into a least squares prob-
lem with full rank noise covariance (the “top” part of (A.1))
and equality constraints (the “bottom” part of (A.1)).

It is easy to show that LI can be chosen to be a selection
matrix so that L�

I Y = vec(YN+

t ) := YI . For future reference

observe that L�
I E = vec(EN+


t ) := EI so that (A.1) can be
rewritten as

YI = L�
I SP�P + EI ,

s.t. L�
KY = L�

KSP�P.
(A.2)

Let us introduce the pair of indexes (j, j̄ ) such that 
� j̄ > j �0
and define � := j̄ − j . Then it is easy to see that there exist
matrices LK(j, j̄ , l) so that

0 = L�
K,(j, j̄ , l)Y = �j

⎡
⎢⎢⎢⎢⎢⎣

zt0+�+l

zt0+�+1+l

...

zt+�−1+l

⎤
⎥⎥⎥⎥⎥⎦ − �j̄

⎡
⎢⎢⎢⎢⎢⎣

zt0+l

zt0+1+l

...

zt−1+l

⎤
⎥⎥⎥⎥⎥⎦

+
j∑

k=1

�jkzt+�−1+k+l −
j̄∑

k=1

�j̄ kzt−1+k+l , (A.3)

where for each pair (j, j̄ ) with j̄ > j ∈ [0, 
 − 1], l ranges in
the interval [0, N − � − 1].

It is possible to extract exactly N
 − (
 + 1) independent
constraints (recall that LK has rank p(N
 − (
 + 1))) of the
form (A.3) by letting j ∈ [0, 
 − 1], j̄ = j

′ := j + 1, (so that
� = 1) and l ∈ [0, N − 2]. With these choices the constraints
(A.3) can be written in the form

[�j �j1 . . . �jj ]ZN−1
[t0+�,t+�+j−1)

= [�
j

′ �
j

′ 1 . . . �
j

′
j

′ ]ZN−1
[t0,t+j̄−1)

. (A.4)
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Recalling that � = j
′ − j = 1, and defining 0� to be the zero

matrix of size p × �(p + m), we can rewrite (A.4) in the form

[01 �j �j1 . . . �jj ]ZN−1
[t0,t+j

′−1)

[Xi
j

′ �
j

′ 1 . . . �
j

′
j

′ ]ZN−1
[t0,t+j

′−1)
. (A.5)

From the assumption that the joint spectrum is coercive, it
follows that, for N large enough (i.e. and hence N−1 large), the
matrix ZN−1

[t0,t+j
′−1)

is of full row rank for all possible choices

of j; therefore (A.5) is equivalent to the “dual” equation for the
coefficients:

[01 �j �j1 . . . �jj ] = [�
j

′ �
j

′ 1 . . . �
j

′
j

′ ].
As mentioned above this should hold for each pair (j, j

′
),


 > j �0; this is equivalent to the following constraints on the
estimated coefficients:[

�̂
Popt
1 �̂

Popt
11

] = [
01 �̂

Popt
0

]
,[

�̂
Popt
2 �̂

Popt
22 �̂

Popt
21

] = [
02 �̂

Popt
0

]
,

...
...[

�̂
Popt

 �̂

Popt


 . . . �̂

Popt

1

] = [
0
 �̂

Popt
0

]
. (A.6)

For convenience, let us define �0 =[�t−t0 . . . �2 �1]. Using
the constraints above, some extra algebra will show that (A.2)
can be written in the form

YI =

⎡
⎢⎢⎣

�t−t0 . . . �1 0 . . .

...
. . .

. . .
. . .

...

. . . 0 �t−t0 . . . �1

⎤
⎥⎥⎦ vec(ZN+


t0
) + EI .

(A.7)

A more compact expression of (A.7) is

YN+

t = [�t−t0 . . . �2 �1]ZN+


[t0,t) + EN+

t . (A.8)

The “optimal” (Markov) solution to (A.7) is obtained by pre-
whitening the residual vector EI , which can be obtained pre-
multiplying by (I ⊗�−1/2) both sides of (A.7) or, equivalently,
pre-multiplying both sides of (A.8) by �−1/2. It is a simple
calculation to check that, indeed, solving in the least squares
sense

�−1/2YN+

t � �−1/2[�t−t0 . . . �2 �1]ZN+


[t0,t)

is equivalent to solving (4.10); this implies that �̂
Popt
0 =

[�̂t−t0 . . . �̂2 �̂1]; conditions (4.11) and (4.12) can then be
obtained using the constraints in (A.6), which completes the
proof. �
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