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SUMMARY

The paper deals with the discretization of any given multi-connected volume into a set of tetrahedral
elements. A simple but robust tetrahedrization scheme based on a two-stage advancing front technique is
presented. The method evolves from the triangulated domain bounding surfaces for which geometry
representations are derived from triangular BeÄ zier patches. Tetrahedral elements are then generated which
®ll the domain volume based on the set of distributed interior nodes. A new and e�cient procedure is
introduced for the distribution of the mesh interior nodes which uses an inverse-power interpolation
technique. The proposed scheme is robust in that it is capable of tetrahedrizing a given arbitrary domain of
any degree of irregularity, and allows the distribution of its interior nodes to be speci®ed by the user. Results
are presented typical of those which might be encountered in hydrodynamics modelling involving ¯ows with
a free surface.
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1. INTRODUCTION

The task of decomposing a problem domain into a set of discrete elements, which is the ®rst step
in the numerical solution of sets of partial di�erential equations using ®nite element, ®nite
di�erence, or ®nite volume based methods, is by no means trivial. In many applications, the
geometry of the problem domain is arbitrary in shape and has irregular bounding surfaces. In
order to achieve an accurate representation of such domain geometries one often requires tens of
thousands of discrete elements with straight sides. As a result, the availability of a robust and
versatile automatic mesh generator has become a prerequisite in current numerical modelling
e�orts.
Numerous semiautomatic and automatic mesh generation techniques are available. A review

of such techniques can be found in the papers by Thacker1 and Ho-Le.2 A discussion of the
relative merits and shortcomings of the available methods for two- and three-dimensional
problem domains has been presented by Lo.3 The Delaunay triangulation technique,4±6 the ®nite
octree technique,4±6 and the advancing front technique3;10±11 are the most widely used tech-
niques, and they are all well described in the literature. In the present work, the advancing front
technique is selected in view of its relatively simple algorithm, its e�ectiveness in element shape
control,3;10 and its proven track record in large scale computational modelling.10;11
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It is well known in practice that the extent to which `tediousness' in numerical modelling work
can be alleviated largely depends upon the degree of automation of the adopted mesh generator,
and also on how well its features ®t the requirements of a particular problem domain. It is noted
in the literature4;5;8;12 that the available automatic mesh generation packages are often tailored to
the task of solid modelling, where geometrically complicated engineering parts are modelled
using a combination of well de®ned primitive objects such as cubes, spheres, cylinders, and solid
patches. These packages are quite sophisticated and particularly suitable for numerical
modelling related to mechanical engineering.
The motivating force for the work presented herein arises from a particular interest in the

application of ®nite volume based analysis techniques to the modelling of hydrodynamics in
coastal engineering problems. The problem domains encountered in such applications are
typi®ed by a continuously varying geometry, with the domain bounding surfaces exhibiting a
characteristically high degree of irregularity. The present work is therefore carried out with the
objective to construct an e�cient and robust tetrahedral mesh generator which is generally
applicable and su�ciently versatile for modelling coastal ¯ows with a free surface.
The application of the tetrahedral mesh generation algorithm involves two distinct stages.

They are:

1. triangulation of the domain bounding surfaces
2. tetrahedrization of the domain volume based on the triangulated bounding surfaces.

A detailed discussion of the features and implementation of the ®rst stage of the algorithm has
been presented by Anastasiou and Chan.13 This paper therefore focuses on the second stage,
which deals with the domain tetrahedrization process. Section 3 of the paper is a brief review of
the steps involved in triangulating the volume bounding surface, together with the ordering
process required for the surface triangular meshes. In Section 4 the distribution of domain interior
nodes by an inverse-power interpolation technique is discussed. Unlike the conventional methods
whereby interior nodes are distributed on a speci®ed set of cutting planes of the problem domain,
the present procedure distributes the interior nodes in 3D space in accordance with user speci®ed
mesh density requirements. Finally, the domain tetrahedrization process is presented in Section 5,
where also the performance of the algorithm is accessed and results are presented and discussed.

2. TRIANGULATION OF DOMAIN BOUNDING SURFACES AND ORDERING
OF SURFACE MESHES

The ®rst stage of the volume tetrahedrization process using the advancing front method involves
the triangulation of the domain bounding surfaces. The surface triangulation process entails the
following steps:

1. distribution of boundary nodes along the boundaries of the surface domain
2. generation of an initial mesh based on the distributed boundary nodes, and user input

interior nodes, if present
3. derivation of boundary geometry representation based on the generated triangular initial

mesh. This is achieved using triangular BeÄ zier patches with G1 continuity
4. distribution of interior nodes within the surface domain
5. generation of a triangular mesh on the surface domain by linking together the distributed

interior nodes.

The distribution of boundary nodes and interior nodes in steps 1 and 4 is based on user
speci®ed values of node spacing control parameters of an associated pre-established node
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Figure 1. Generation of triangular mesh on domain bounding surfaces

spacing function. The advancing front technique is used in steps 2 and 5 for the triangular mesh
generation. Figure 1 gives a schematic diagram of the surface mesh generation process. Local
remeshing of the triangulated surface can be carried out, if desired, over regions speci®ed by the
user. This is accomplished by carrying out steps 2, 4 and 5 locally over the speci®ed regions.
The ®rst stage of the overall tetrahedrization process is completed when all the bounding

surfaces are duly triangulated. It is important to highlight that by following the above procedure
for surface triangulation, before the triangulation process actually begins, a given domain closed
surface is already segmented into subregions, each of which is projectable onto a plane. As a
result of this surface decomposition, bounding surface triangulation is accomplished subregion-
by-subregion with the connections between them carefully matched.
Although it is straightforward to decompose a given closed surface into a combination of

projectable subregions and triangulate them independently, the resulting set of triangulated
surfaces will possess triangular facets with incompatible order and numbering system when the
subregions are combined. In order to carry out volume tetrahedrization by the advancing front
method, the triangular facets must be consistently arranged and their normals properly identi-
®ed. Following a similar procedure as outlined by Lo,14 the ordering of the triangular facets is
accomplished in the following steps:

1. deletion of the duplicate lines of the triangular mesh. Duplication of lines occurs when two
neighbouring triangulated subregions are merged

2. calculation of the element sizes of the triangular mesh in order to determine the node
spacing distribution on the bounding surfaces. Node spacing information is used for the
subsequent distribution of interior nodes

3. ordering of the triangular mesh. The triangular facets are ordered according to a consistent
numbering system so that their normals always point outwards from the interior of the
domain, as depicted in Figure 2.

3. DISTRIBUTION OF INTERIOR NODES

In order to discretize a given volume into a set of well conditioned tetrahedral elements with
arbitrary gradation, a ¯exible procedure is adopted for the distribution of the interior nodes in
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accordance with a speci®cation provided by the user. This is accomplished in the following
steps:

1. the node spacing distribution on the domain bounding surfaces is established based on the
calculated element sizes of the bounding surface meshes, as described earlier

2. `clustering nodes' are introduced into the domain volume at user speci®ed locations in
order to control mesh density in their vicinity. Each such node is prescribed with node
spacing control parameters, from which node spacing information is evaluated according
to a user de®ned node spacing function. It is noted that the clustering nodes are `phantom
nodes' and will not be included in the set of nodes of the ®nal generated mesh

3. at any location in the domain node spacing information is interpolated from the nodes on
the domain bounding surface and the clustering nodes

4. an interior node is generated when, within the circumsphere de®ned by the node spacing
function, no other mesh points are encountered

5 steps 3 and 4 are repeated at all locations in the domain and the distribution of interior
nodes is terminated when the domain volume is completely interrogated.

It is worth highlighting that the information required in order for step 2 above to be carried
out is input by the user and is necessary only when speci®c clustering or distribution of mesh
points at arbitrary locations within the interior of a problem domain is required. The intro-
duction of a clustering node requires the speci®cation of the coordinates of the clustering node
�xc; yc; zc�, together with the corresponding set of values of the spacing control parameters
ftp1; tp2; . . . ; tpng, which are used to evaluate the node spacing function. In general, the spacing
parameters and the associated node spacing function are problem dependent. In the context of
modelling ¯ows with a free surface, for example, the spacing control parameters may be set equal
to fC; g; h;�tg, where C is the Courant number, g is the gravitational acceleration, h is the local
water depth, which is a function of the clustering node coordinates, and �t is the time step. In
this case the associated node spacing function may be de®ned as the Courant number
relationship given by �l � �t=�Cp�gh��.
The external limits of the problem domain, de®ning the embodying cuboid, must ®rst be

established before the distribution of interior nodes is carried out. This cuboid is segmented into
a collection of cubes with side dimension �, which is de®ned as the `interrogation interval'. The
corners of the cubes are correspondingly termed `interrogation points'. The generation of
interior nodes is investigated at each of the interrogation points by carrying out steps 3 and 4 as
de®ned above. The process of interior nodes generation is carried out plane by plane, sweeping
through all the interrogation points, starting from the bottom plane of the cuboid and moving
progressively upwards towards its top.

Figure 2. Ordering of triangular facets on a bounding surface mesh



In order to avoid having interior nodes distributed outside the problem domain, an `entrance'
test is carried out at each interrogation point, in order to invalidate any interrogation point that
is located outside of the problem domain. This entrance test is accomplished by requiring that the
dot product between the vectors P andN is always less than zero (Figure 3), where P is the vector
from the interrogation point to the centroid of the nearest triangle facet on the domain surface,
and N is the normal to the corresponding triangle facet as de®ned earlier in Section 3.

3.1. Inverse-power interpolation for node spacing information

An important process in the above procedure which requires more explanation is the inter-
polation of node spacing information in step 3 above. In satisfying the requirement for ¯exibility
and simplicity, the interpolation process is accomplished using the inverse-power interpolation
technique as described below.
At a given interrogation point �x; y; z� in the domain volume, node spacing information is

given as a function of the inverse power of the distance to each of the surrounding spacing
information nodes (i.e. nodes prescribed with node spacing information). This is expressed as

f �x; y; z� �
Xn
i�1

f �xi; yi; zi�
d m
i

.Xn
i�1

1

d m
i

where f �x; y; z� is the node spacing function which provides the information dictating the
tetrahedra edge length to be generated, di are the distances from the interrogation point �x; y; z�
to the spacing information nodes �xi; yi; zi�, m is an integer specifying the power of interpolation
and n is the number of points used in the interpolation. High values of m will result in sharper
variation in node spacing distribution, and vice versa. In the present algorithm,m is set to 2 and n
is set to 4.
In order to achieve better e�ciency, the interpolation process is accomplished in two passes. In

the ®rst pass a coarse interrogation interval is used and the interpolated node spacing
information is stored at each of the interrogated points. Consequently, node spacing information
is available at every interrogated interval of the volume domain. In the second pass the volume
domain is interrogated with a ®ne interrogation interval and the interpolation of node spacing
information is carried out `locally'. This is accomplished in view of the fact that at any given
position in the domain its neighbourhood is already ®lled with node spacing information
established during the ®rst pass. As a result of following this procedure the interpolation process
is expedited and the distribution of interior nodes can be accomplished using as ®ne an
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Figure 3. Interrogation point is inside the domain when P �N < 0



38 C. T. CHAN AND K. ANASTASIOU

Figure 4. Distribution of interior nodes is done by two rounds of inverse-power interpolation process

interrogation interval as desirable without consuming excessive processing time. Figure 4
illustrates this process.

3.2. Location of neighbouring spacing information nodes

In order to ensure a good interpolation of node spacing information the current interrogation
point should be surrounded `evenly' by spacing information nodes. For a four points inverse-
power interpolation this requires the selected spacing information nodes to form a tetrahedron
enclosing the interrogation point.
The location of the ®rst spacing information node is simply the nearest one to the inter-

rogation point (Figure 5(a)). The second spacing information node is chosen so that an obtuse
angle is formed between the ®rst selected node and the second one at the interrogation position
(Figure 5(b)). This is achieved by selecting the second node as the nearest point to the inter-
rogation point satisfying the relationship

r01 � r02 4 0

where r01 and r02 denote the vectors from the interrogation point to the selected ®rst and second
nodes, respectively. The third spacing information node is chosen so that it is the closest one
located within the region which lies between the back extension of the two planes each of which
passes through the line formed either by the ®rst or the second selected nodes with the inter-
rogation point and perpendicular to the plane formed by them (Figure 5(c)). This requires the
satisfaction of the relationship

j a01 � a02 � a03 j 4 1

where a01; a02 and a03 denote the unit vectors from the interrogation position to the respective
selected nodes. Finally, the fourth spacing information node is selected as the nearest node
which, together with the three already selected nodes, form a tetrahedron enclosing the inter-
rogation point (Figure 5(d)). In order to establish whether the interrogation point P is within the
tetrahedron ABCD, the volumes V1, V2, V3 and V4 must ®rst be computed, as follows:

V1 � PA � �PB� PC �
V2 � PA � �PD� PC �
V3 � PA � �PB� PD�
V4 � PB � �PD� PC �



Figure 5(a). Location of ®rst spacing information
node

Figure 5(b). Location of second spacing information
node

Figure 5(c). Location of third spacing information
node

Figure 5(d). Location of fourth spacing information
node

Point P is within the tetrahedron when

min�V1V2;V1V3;V1V4;V2V3;V2V4;V3V4�5 0

It should be noted that, when a given interrogation point lies on the plane formed by the ®rst
three selected nodes of a tetrahedron, the selection of the fourth node is not straightforward
owing to the uncertainty associated with determining the `enclosing tetrahedron'. This problem
can be resolved by ®rst perturbing the interrogation point out of the plane on which it is attached
before the selection of the fourth node is carried out. The perturbation has to be done twice in
two opposite directions perpendicular to the plane, and the selection of the fourth node is carried
out twice. In this case, the fourth node selected is the one associated with the smallest tetrahedron
out of the two.

4. DOMAIN TETRAHEDRIZATION

Following the distribution of interior nodes, the advancing front technique is used to link the
generated nodes so as to form tetrahedral elements. In a way similar to that adopted for the
triangulation of the domain bounding surfaces, the generation of tetrahedral elements starts
from the bounding surfaces and proceeds inwards. The generation process terminates when the
whole of the domain volume is ®lled with tetrahedral elements. The initial generation front is
composed from the set of triangular facets making up the domain bounding surfaces. A tetra-
hedron element is generated when a triangular facet from the generation front successfully
locates an additional node to form a tetrahedron. The generation front is updated whenever a
new tetrahedron element is formed. As a result, the generation front changes continuously
throughout the process of tetrahedrization.
Let 	 be the set of nodes on the generation front and � be the set of interior nodes remaining

inside the polyhedron formed by the generation front. The objective is to locate a node P such
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that P 2 	 [ � so that the resulting tetrahedron is completely located within the region enclosed
by the generation front. This requirement can be satis®ed by allowing

C1C3 � C1C2 � C1P > 0

where C1;C2;C3 are the vertices of a triangular facet on the generation front, and the order of
the vertices is such that the normal vector to the triangular facet is pointing outward from the
interior of the domain (Figure 6). In order to ensure that the potential tetrahedron does not cut
across the generation front and does not enclose any existing tetrahedra, an extra check must be
made so that no node from the set f	 [ � ÿ fC1;C2;C3;Pgg is enclosed by it.
Two additional constraints must be satis®ed for a node to be chosen to form a new tetrahedron

with a triangular facet. The ®rst is that the potential tetrahedron should not intersect with any of
the existing tetrahedra, and the second is that it possesses an optimum tetrahedron shape factor.
Detection of possible intersection between the facets of a potential tetrahedron and already

formed tetrahedra is done by ®rst establishing whether the line of intersection between a pair of
triangular facets cuts through the edges of the two facets. If this is the case then the two facets
from the potential and already formed tetrahedra will be ¯agged for further examination, where
one of the following four intersection cases would be identi®ed. These are the `remote' inter-
section, the `touching' intersection, the `cutting' intersection and the `edge' intersection (Figure 7).
If no intersection between two triangular facets is detected, the triangular facets will be ¯agged
for further examination for `overlapping' intersection (Figure 7). Intersection between a
potential and already formed tetrahedron is said to have occurred if one of the triangular facets
of the potential tetrahedron has incurred either touching, cutting or overlapping intersection.
In order to optimize the tetrahedron shape, the radius shape factor as de®ned by Liu and Joe15

is used to control the potential node selection

�0 � 3� Rin=Rcirc

where Rin and Rcirc denote the in-sphere radius and circumsphere radius of a tetrahedron,
respectively. For a regular tetrahedron, �0 assumes the maximum value of 1. Following a
procedure similar to that adopted by Lo,3 future tetrahedron shape factors associated with the
triangular facets of the potential tetrahedron are also considered during the selection of a
potential node. Consequently, the determining tetrahedron shape factor is de®ned as


 � �o � �1 � �2 � �3
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Figure 6. Formation of tetrahedron C1C2C3P



where �1, �2 and �3 are the future tetrahedron radius shape factors associated with the triangular
facets of the potential tetrahedron. A potential node is actually selected when its associated 

value is the maximum obtainable.
After the potential node selection, a new tetrahedron is formed and the generation front has to

be updated. Referring to Figure 6, the four triangular facets of the tetrahedron C1C2C3P have to
be considered in turn, and the generation front can be updated by:

1. removing triangular facet C1C2C3 from the generation front
2. removing triangular facet C2C1P from the generation front if it is part of it, adding PC1C2

to it otherwise
3. removing triangular facet C1C3P from the generation front if it is part of it, adding PC3C1

to it otherwise
4. removing triangular facet C3C2P from the generation front if it is part of it, adding PC2C3

to it otherwise.

Upon completion of the mesh generation process local mesh re®nement can be carried out on
the generated tetrahedral mesh by an octree type cell division strategy, as proposed by Vijayan
and Kallinderis.11 Essentially, an element ¯agged for re®nement is further divided into eight
children through inserting mid-edge nodes into the element edges as shown in Figure 8(a). As a
result of this process, hanging nodes are generated on some or all of the edges of the neigh-
bouring tetrahedra abutting the divided elements. In order to eliminate these hanging nodes, the
abutting tetrahedra are then divided using a directional division strategy. Three di�erent cases
for element directional division can be encountered. In the ®rst case where all the hanging nodes
appear on the same face of the element, it is directionally divided into four children elements
(Figure 8(b)). In the second case where only one hanging node appears on the element edges, the
element is divided into two children elements as shown in Figure 8(c). Finally, when the hanging
nodes do not produce the patterns of either one of the ®rst two cases, a centroidal node is
introduced in the element, which is then divided into tetrahedral child elements by connecting the
vertices of the element and the hanging nodes to the centroidal node (Figure 8(d)).
Following the completion of the tetrahedrization process, mesh smoothing is carried out. This

is done using the standard Laplacian smoothing technique, whereby each of the interior nodes is
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Figure 7. Di�erent cases of triangular facets intersection



shifted to the centre of the surrounding polyhedron.3 The iteration for smoothing is terminated
when no further signi®cant improvement of the overall tetrahedra shape measure ��1=ni is
achievable.
Two examples of the tetrahedrization process based on the present scheme are illustrated in

Figures 9(a)±9(d) and Figures 10(a)±10(c). It is noted that the generated tetrahedral elements are
of high quality with element radius shape factors 0�76 and 0�78 respectively. These values are very
similar to those reported by Lo3 where an average value of 0�73 of the mean shape factor � was
obtained. It is worth highlighting that the radius shape factors should not be compared directly
with the mean shape factor reported above as they are obtained from domains with di�erent
boundary surfaces. However, for a large class of tetrahedral with radius shape factor � greater
than 0�5, the mean shape factor � will be correspondingly higher.15 As a result, it is concluded
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Figure 8(a). Mesh re®nement by splitting an element
into eight child elements

Figure 8(b). Element is directionally divided into four
child elements

Figure 8(c). Element is directionally divided into two
child elements

Figure 8(d). Element is split by introducing a centroidal
node. Figure showing three child elements produced by

face `bcd'

Figure 9(a). Example of triangulated upper bounding surface of a basin



that the present scheme is capable of discretizing highly irregular problem domains with very
satisfactory results.

4.1 Assessment of tetrahedrization using the advancing front technique

It is well known that the main advantages of the advancing front method are its e�ectiveness in
element shape control and the simplicity of the algorithm. Nevertheless, a robust advancing front
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Figure 9(b). Example of triangulated lower bounding surface of a basin

Figure 9(c). Upper and lower bounding surfaces are combined to form a volume domain in 3D space

Figure 9(d). A secion through the tetrahedrized domain



mesh generator should also be endowed with the capability to discretize any given domain
regardless of the distribution of its interior nodes. However, it is noted from present experience
that, unlike 2D triangulation, it is not formally certain that a given volume domain can be
arbitratrily discretized into tetrahedra using the point-based two-stage advancing front method.
In other words one may encounter `unclosurable gaps' during the process of tetrahedrization.
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Figure 10(a). Example of triangulated bottom pro®le of a river system

Figure 10(b). A section through the tetrahedrized domain

Figure 10(c). Mesh re®nement at a reach of the river system



This situation is particularly encountered in regions where the variation of node spacing
distribution is acute. One example of such a problem is depicted in Figure 11(a), where the
triangular facets a; b; c are trapped by triangular facets d; e; f . Connections between points 1,2
and points 1,3 are blocked by triangular facet d and connection between points 1,4 is blocked by
triangular facet e. Another example is illustrated by a cubicle gap with triangular facets as
arranged in Figure 11(b). To overcome this problem, local mesh regeneration is required when-
ever such 'unclosurable gaps' are detected.
Local mesh regeneration is achieved by ®rst `digging out' all the triangular facets a�ected by

the unclosurable gap, leaving behind a cavity with size slightly larger than the gap. This process is
done by de®ning a sphere with its centre located at the centroid of the gap and with radius of
length reaching the most distant a�ected node. All triangular facets that are enclosed or
intersected by this sphere are `dug out'. Local mesh regeneration is then carried out inside the
cavity. This process may be accomplished in conjuction with local perturbation of the interior
nodes within the cavity.
When the advancing front method is used for volume discretization, generation of slivers is not

common as the tetrahedron shape factor is carefully accessed during each step of the mesh
generation process. However, when the pattern of the interior nodes is arbitrary and far from
uniform, the generation of slivers is usually unavoidable. In order to remove as many generated
slivers as possible, one may either activate local mesh regeneration or adopt the conventional
sliver removal strategies.
Conventionally, a sliver can be removed by using one of the following two strategies. For the

case of the type (a) sliver shown in Figure 12, where two of the abutting tetrahedra share a
common vertex, the sliver is removed by replacing the tetrahedra ABDE and BCDE with ABCE
and ACDE, respectively. For the cases of the type (b) sliver where ABDE and BCDE cannot be
replaced by ACDE and ABCE, and the type (c) sliver where none of the sliver abutting
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Figure 11(a). Triangular fronts `a,b,c' are trapped by
fronts `d,e,f '

Figure 11(b). `Unclosurable problem' depicted by a
cubicle space

Figure 12. Typical formations of sliver `ABCD'



tetrahedra share a common vertex, the slivers are opened up by moving a vertex of the
corresponding sliver to a new position. For example, vertex D may be moved to �D� E �=2.
However, this process should be done with care as moving a vertex of a sliver arbitrarily may
cause intersection among the tetrahedra connected to the moved vertex. In order to ensure that
no intersection results when opening up a sliver, the volume of the polyhedron, formed by the
tetrahedra connected to the to-be-moved sliver vertex, must be calculated before and after the
opening up process. Therefore, a sliver will be opened up only when there is no intersection as a
result of the vertex movement, as indicated by no increase in the corresponding calculated
polyhedron volume.

5. CONCLUSIONS

In this paper a scheme for 3D volume tetrahedrization using the advancing front technique is
presented. The method ®rst triangulates the bounding surfaces of the given problem domain,
followed by the tetrahedrization of the domain volume. A simple but e�cient algorithm is
proposed for the distribution of interior nodes using the inverse-power interpolation technique.
This technique allows distribution of mesh points in an arbitrary manner according to user
speci®cation. The robustness of the scheme has been demonstrated by discretizing domains with
a high degree of geometry irregularity and nonuniform distribution of interior nodes. The results
presented show that the generated meshes are well conditioned and suitable for ®nite volume or
®nite element based analysis.
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