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15-3 815.2 THE LINEAR TETRAHEDRON

§15.1. Introduction

In this Chapter we study the construction of shape functions for three-dimensional solid elements,
beginning with the 4-node tetrahedron. We start with this particular element for two reasons: the
geometry is the simplest one, and no numerical integration is needed.

§15.2. ThelLinear Tetrahedron

The linear tetrahedron, shown in Figure 15.1(a), is not used often for stress analysis because of its
poor performancé. Its main value in structural and solid mechanics is educational: it serves as

a vehicle to introduce the basic steps of formulation of 3D solid elements, particularly as regards
use of natural coordinate systems and node numbering conventions. It should be noted that 3D
visualization is notoriously more difficult than 2D, so we need to proceed somewhat slowly here.

4 (X %12
O

(b) face 1-2-3
as seen
from node 4

«<

X y 2 (sz)évzz)

Ficure 15.1. (a) The linear tetrahedron element: also called the 4-node
tetrahedron; (b) Node numbering convention.

815.2.1. Tetrahedron Geometry

Figure 15.1 shows a typical 4-node tetrahedron. Its geometry is fully defined by giving the location
of the four corner nodes with respect to the global RCC sysiem, (2):

Xi, Vi, z (=1 2 3, 4. (15.1)
The volume measure of the tetrahedron is derfdtgd’ and is given by the following determinant:

1 1 1 1

V=1ldet| X X2 X X (15.2)
Yi Y2 Y3 Ya

Zy Zp I3 L

1 Derivative of shape functions are constant over the element volume. Strains and stresses recovered in this manner can
be highly inaccurate. This makes the element dangerous for stress analysis. On the other hand, when the objective is
merely to get values of primary variables, as in thermal analysis and computational gas dynamics, the linear tetrahedron
is acceptable.

2 This symbol (Upsilon) is used to avoid confusion withwhich denotes the volume of a generic body.
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Chapter 15: THE LINEAR TETRAHEDRON 154

This volume is asignedquantity. It is positive if the corners are numbered in such a way that the
volume is positive. A numbering rule that achieves this goal is as follows:

() Pick a corner as initial one. In Figure 15.1(a) this is numbered 1.
(I Pick a face that will contain the first three corners. The excluded corner will be the last one.

(1) Number these three corners ircaunterclockwissense when looking at the face from the
excluded corner. See Figure 15.1(b).

In what follows we shall always assume that the numbering has been done in that manner so that
Y >03

(b)
P(¢:¢2C500)

Ficure 15.2. Tetrahedron natural coordinates; ¢2, ¢3, Za.

§15.2.2. Tetrahedral Coordinates

The set of tetrahedral coordinates ¢», ¢3, ¢4 is the three-dimensional analog of the triangular
coordinate set discussed in Chapter 15 of IFEM. The valygisfone at corner, zero at the other

3 cornersice. on the opposite face) and varies linearly as one traverses the distance from the corner
to the face. The sum of the four coordinates is identically one:

l1+ 8+ i3+t =1 (15.3)

Any functionlinearin x, y, z, sayF (X, y, z), that takes the valuds (i = 1, 2, 3, 4) at the corners
may be interpolated in terms of the tetrahedron coordinates as

F(¢1, ¢, C3, Ca) = F1o1 + Folo + Fegs + Fata = Fig. (15.4)

Example 15.1. Suppose thaf (X, y, z) = 4x + 9y — 8z + 3 and that the coordinates of corners 1,2,3,4 are
(0,0,0), (1,0,0), (0,1,0) and(0, 0, 1), respectively. The values d¢f at the corners aré; = 3, F, = 7,
Fs = 12 andF, = —5. Consequentl¥ (41, &2, &3, §4) = 31 + 742 + 12¢3 — 5¢a.

3 The tetrahedron volume can be zero only if the four corners are coplanar. This case will be excluded.
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15-5 815.2 THE LINEAR TETRAHEDRON

§15.2.3. Coordinate Transfor mations

The geometric definition of the element in terms of these coordinates is obtained by applying the
geometry definition (15.4) t, y andz, and appending the sum-of-coordinates constraint (15.3):

1 1 1 1 17r1ra
X1 _ [ X X2 X3 X4 &2 ' (155)
y YiI Y2 Y3 Vs {3
z 1 2 I3 L Ca

Inverting this relation gives

&1 Vi a1 b ¢ 1
$2 1 6, a, b, o X

= , 15.6
{3 6V | 6V3 a3 bz c3 y (156
84 6Vs as bs 4 z

where the coefficients of this matrix can be calculated by forming the adjoints of the matrix in
(15.5).

Remark 15.1. The values o&, b, andc; obtained by explicit inversion are

& = YoZaz — Y3Za2 + YaZ3z, D1 = —XoZ4z3 + X3Zaz — XaZzz,  C1 = XaYa3 — X3Yaz2 + X4Y32,
A = —Y1Z13+ YaZ41 — YaZa1, D2 = X1Z43 — X3Z41 + X4Zas, C2 = —X1Ya3 + X3Ya1 — X4Ya1,
A3 = Y1242 — YoZa1 + YaZp1, D3 = —X1Z42 + XoZa1 — XaZo1,  C3 = X1Yaz2 — XoYa1 + XaYo1,
= —Y1Z32 + Y2Za31 — Y3Zo1. D4 = X1Z32 — X2Z31 + X3Za1, Cs = —X1Y32 + X2Y31 — X3Y21.

(15.7)

in which the abbreviations;; = X — Xj, ¥ij = ¥i — y; andz; = z — z; are used. The volume is given
explicitly by

6V = Xo1(Y31Z41 — Ya1Z31) + Yo1(X41Z31 — X31Z41) + Z21(X31Ya1 — Xa1Y31)- (15.8)

The values o, are of no interest in what follows.

§15.2.4. *Geometric Interpretation

Figure 15.2 illustrates two geometric interpretation of coordigatdn Figure 15.2(a);; = C, whereC is
a number between 0 and 1, is the equation of a plane parallel to the face 234. The plane coincides with that
face ifz; = 0, it passes through corner node Ljif= 1, and is interpolated linearly in between.

Figure 15.2(b) illustrates another interpretation that appears in many FEM books. Consider B pbint
coordinates¢1, &2, 3, ¢4) inside the tetrahedron. Joinirfg to the corners we obtain four sub-tetrahedra
234P, 341P, 412P and 123, whose volumes ar®y, V,, Vi andV,, respectively. Ther; is the ratio

Vi /V. Figure 15.2(b) pictures the sub-tetrahetron 234P of volWin®n account of this relation, tetrahedral
coordinates are also called volume coordinates.

Remark 15.2. The interpretation as volume coordinates only holds for the tetrahedron defined by 4 corner

nodes. It fails for higher order tetrahedra defined by additional nodes (e.g., midpoints). For this reason, the
second interpetration, as well as the name “volume coordinates,” will not be used here.
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Chapter 15: THE LINEAR TETRAHEDRON 156

815.2.5. Partial Derivatives

From equations (15.5) and (15.6) we can easily find the following relations for the partial derivatives
of Cartesian and tetrahedral coordinates

X ay 0z
— =X, —=V, —=1. 159
e Y yi Tk (15.9)
a¢i 9 ¢
— a 2L —p — =c. 15.1
6V x g, 6V 3y b, 6V ™ Ci (15.10

The derivatives of a functioR (¢1, ¢2, ¢3, £4) With respect to the Cartesian coordinates follows from
(15.10) and the chain rule:

8F_8F8§i_1(8F oF oF oF )_18F‘
% N

X ag ax 3 3 3¢3 A4 6V 9
oF oF 9¢ 1 /0F oF oF oF 1 oF
o (L ) = =, 1511
3y _ oz ay 6V<a;1 T T T ) = & T (151

8F_8F8§i_1(8FC+8FC+8FC+8FC)_18F‘
9z 9g 9z 6Vv\ag - 0 0 ez o g VT

§15.3. ThelLinear Tetrahedron

The simplest tetrahedron finite element for problems of variational ender 1 is the four-node
tetrahedron withinear shape functionsThe shape functions are simply the tetrahedral coordinates:
Ni = ¢i,i =1, 2, 3,4. Thisfinite element is derived now for the elasticity problem, using the Total
Potential Energy principle as source variational form.

§15.3.1. Displacement Interpolation

The displacement field over the tetrahedron is defined by the three compopentandu,. These
are linearly interpolated over the element from their nodal values

&1

Uy Ux1 Ux2 Ux3 Uxsg 4_2
uz Uz1 Uz Uz Uzn
Ca

Putting this together with the geometric definition (15.4) we have the isoparametric definition of
the 4-node tetrahedron as an elasticity element:

m 1] ! 1 1 17
X X1 X2 X3 X4 &
y Yi Y2 Y3 Va ‘&
Z |\=| 21 Zo Zz I . (15.13)
Ux Uxi Ux2 Uxz Uxa gj
Uy Uys Uy2 Uyz Uys
| Uz L Uz Uz Uz3 Uzg4 _
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157 815.3 THE LINEAR TETRAHEDRON

815.3.2. The Strain Field

The strain field within the element is strongly connected to the displacement by the strain-
displacement equations, which in indicial notation read

aj = 3(Uij +Uj,). (15.14)
We transliterate this to matrix notation as follows. First, the six independent components of the
stress tensor are arranged into a 6-component strain vector as follows:
e=[en €&, €3 2, 2e3 2ey]"
=[ex €y €z Wy Wz sz]T .

The second expression shows the engineering notation for the shear strains. Second, displacement
componentsl;, U, andus are rewritten asly, Uy andu,, collected into a vector and linked to the
displacement field by (15.14):

(1515

™ Ex d/0X 0 0 7
eyy 0 a/ay 0 U,
| ez | 0 0 9/oz AR
e= 26, | = | 970y 8/0x 0 uy | =Du. (15.16)
y u
2e,; 0 9/0z /3y z
| 2e,x | | 0/0z 0 d/0x

Combining this with (15.12) and using the differentiation rules (15.11) we obtain the matrix relation
between strains and nodal displacements:

e=Bu°. (1517
If the element nodal displacement vector is arranged component-wise:
U =[Ux1 Uxz Uyxz Uxa Uyr Uy2 - Uz4]T ) (15.18)

the matrixB has the following configuration

raq a» a3z a4 0 O O O O O O O
O O O O by b, bg bb O 0 0 O
110 0 0 O O O O Owc ©C C C4
B= @ bl b2 b3 b4 a ad az a4 0 0 0 0 (1519)
0 0 0 0 ¢ o C3 C b1 b2 b3 b4
Lcg ¢ ¢c3 ¢ O 0 0 0 a4 a az a4
If the node displacements are arranged node-wise:
u® = [ Uxi Uyr Uz Ux2 Uy Uz - Uz4]T > (15-20)
the columns oB must be re-shuffled to yield
rag 0 O a O 0 a3 0 0 a O 07
O bp 0 O b 0O O bs 0 O by O
. 1 0 0 ¢ O 0 ¢ O 0 C3 0 0 ¢
B= @ b1 a O b2 a 0 b3 as 0 b4 0 (1521)
0 ¢ b]_ 0 o b2 0 c3 b3 0 o b4
Lcc 0 a ¢ 0 a ¢c3 0 a3 ¢ 0 asld
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Chapter 15: THE LINEAR TETRAHEDRON 15-8

The node-wise arrangement (15.20)usfis more common in practice because it facilitates the
assembly process.

Note that both matrices (15.19) and (15.21) are constant over the element.

815.3.3. The StressField

The stress field is related to the stress field by the strong connection
0ij = Eijkeee (1522

To convert this to matrix notation we rearrange the 6 independent stress components to correspond
to the strains (15.12) and link them by a<66 matrix of elastic moduli:

-
o=[o11 022 033 012 023 031] =

. (15.23)
:[Cfxx Oyy Ozz Oxy Oyz szx]

If the material is linearly elastic and no initial strains are considered, the constitutive equation may
be compactly expressed as

oc=Ee (15.24)

where the elasticity matri is symmetric. For a general anisotropic material the expanded form
of (15.24) is

[~ Oxx ] TE11 Ei12 Eiz Eus Eis Es7 [ &x ]
Oyy Ex» Ezxz Ezxs Ezs Eoe eyy
077 Ess Eszs Ezs Esg €7
= , 15.2
Oxy Ess Ess Eus 2eyy (1529
Oyz Ess  Ess 2ey,
| 07y | symm Ees | L 2e,4

in which E;; are constitutive moduli. For an isotropic material of elastic mod&sd Poisson’s
ratio v the foregoing relation simplifies to

~ Oxx ] 11— v v 0 0 0 7
Oyy ", 1—v v 0 0 0
022 E v v 1—v 0 0 0
= 15.26
o |- @tm@A-20| 0 O 0 f-v 0 0 (1529
O2x 0 0 0 0 -v O
| oyy | 0 0 0 0 0 %—V_
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159 8§15.5 THE CONSISTENT NODE FORCE VECTOR

§15.4. TheElement Stiffness M atrix

Introducinge = Bu ando = Eeinto the strain energy functional restricted to the element volume
and rendering the resulting algebraic form stationary with respect to the node displacefveats
get the usual expression for the element stiffness matrix

Ke:/ BTEBdAV. (15.27)
Ve

Assuming that the elastic moduli are constantinside the element, the foregoing integrand is constant
because matriB is constant — cf. (15.19) or (15.21). Consequently

Ke=VBTEB. (15.28)

This stiffness matrix is 1% 12. It can be directly evaluated in closed form using the above
expression or, equivalently, by a one-point (centroid) integration rule.

§15.5. The Consistent Node Force Vector

A terahedral mesh may be subjected to given body forces in the volume and/or specified boundary
tractions. Both have to be converted to node forces through an energy-based lumping procedure.

815.5.1. Body Forces

Consider a body force field over the element, such as gravity of centrifugal forces, defined by its

components
b - [bx by bz]T . (15.29)

Inserting this into the TPE principle, the body force contribution gives

fe = / N bdV. (15.30)
Ve

HereN is the 3x 12 matrix of shape functions that relates element field displacements to node
displacements:

Ux

U= {uy} = Nu®. (15.31)
Uz

For the component-wise node displacement ordering (15.18),

&1 &2 &3¢ 0 0 0O O O O O
N=|0 0 O O & & ¢ ¢& 0 0 0 O (15.32
0O 0 0 0 0 0 O 0 & &3 &
For the node-wise displacement ordering (15.20),
¢t 0 0 &2 0 0 ¢ 0 0 ¢ O O
N = [ O &2 0 0 & 0 0 ¢ 0 0 ¢ O } (1533
O 0 &2 0 0 & 0 0 ¢ 0 0 ¢4
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Chapter 15: THE LINEAR TETRAHEDRON 1510

Even if the body forces are constant the integral is not constant over the element. Some useful
formulae for such calculations are

/ GdVv =2V, (15.34)
Ve
and
Ly ifi=j,
i {j dVv = 1 o ] (15.35)
ve LN
The general rule for such integrals, which can be derived from the Beta function, is
il jrkl el

i o] okt .
/Vegl;z 63620V = (i+j+k+¢+3)! (1536)

in whichi, j, kand¢ are nonnegative integers. This formula is only valid for tetrahedra with planar
faces.

815.5.2. Surface Tractions

The most practically important case is that of surface tractions normal to an element face. This
models the effect of pressure loads. The calculation of node forces for the case of a constant pressure
acting on a tetrahedron face is the matter of one exercise.

§15.5.3. Element Implementation

The implementation of the linear tetrahedron in any programming language is very simple. An
implementation in the form of Mathematicamodule is shown in Figure 15.3. The module is
invoked as

Ke=Trig3IsoPMembraneStiffness[ncoor,Emat,{ },options]; (15.37)

The arguments are

encoor Element node coordinates, arranged as a list:
{{x1,y1,2z1},{x2,y2,22},{x3,y3,23},{x4,y4,z4} }.

Emat A two-dimensional list storing the & 6 matrix of elastic moduli as
{{E11,E12,E13,E14,E15,E16}, ... {E61,E62,E63,E64,E65,E66}}.

options A list of formation options. For this element itis simdlyumer }, wherenumer

is a logical flag. Flag iSrue to request floating point numeric workalse to
request exact calculations.

The third argument is a placeholder and should be set to the empty list

The stiffness module calls moduleoTetr4ShapeFunCarDer, which is listed in Figure 15.4, to
get the shape function Cartesian partial derivatives. These return in the 12 x 1Baf,rBysindBz.
The module also returns the jacobian determirdaet:, which is six times the element volume.

Module IsoTetr4ShapeFunCarDer iS written in a more complicated style than needed for this
particular element. For examplE 1 is simply x1, etc. It is actually configured to serve as a
shape function derivative “template” for more refined tetrahedron elements, as described in the next
Chapter. r

15-10



1511 8§15.5 THE CONSISTENT NODE FORCE VECTOR

| soTetr4Stiffness[ncoor_, Emat_, {}, options_]:= Mdul e[{i, n=4, nf =12,
k,c,w, Jdet, zetal i st, xyzlist, numer, Bx, By, Bz, Be, Ke},
I f [Length[options]>0, numer=options[[1]]];
xyzlist={Tabl e[ ncoor[[i,1]],{i,n}], Tabl e[ncoor[[i,2]],{i,n}],
Tabl e[ ncoor[[i,3]],{i,n}]}; Ke=Table[O,{nf},{nf}];
{ Bx, By, Bz, Jdet } =l soTet r 4ShapeFunCar Der [ xyzl i st, {}, numer] ;

Be={Fl atten[ Tabl e[ {Bx[[i]], O, 0 }.{i,n}1l,
Fl atten[ Tabl e[ {0, By[[i]],O }.{i,n}l],
Fl att en[ Tabl e[ { O, 0, Bz[[i]]1},{i,n}]],
Flatten[ Tabl e[ {By[[i]],Bx[[i]],O }.{i,n}1l,
Fl att en[ Tabl e[ {0, Bz[[i]].By[[i]]l},{i,n}]11,
Fl atten[ Tabl e[ {Bz[[i]], O, Bx[[i11},{i.n}]1]1};

Ke=(Jdet/ 6) * Transpose[ Be] . (Emat . Be) ;
If [!nunmer, Ke=Sinplify[Ke]]; Return[Ke]
1

F1cUure 15.3. Module to form the stiffness matrix of a linear tetrahedron (Tetr4) and outputs.

| soTet r 4ShapeFunCar Der [ {xn_,yn_, zn_}, zetalist_, nuner_]: =
Modul e[ {dNz1, dNz2, dNz3, dNz4, Jmat, J11,J12, J13, J14,

J21, 322,323, 324,331, 332, J33, J34, Ji nv, Jdet , Bx, By, Bz},

{dNz1, dNz2, dNz3, dN\Nz4} ={{ 1, O, O, 0}, {O, 1, 0, 0}, {0, 0, 1,0},{0, 0,0, 1} };

J11=dNz1. xn; J12=dNz2.xn; J13=dNz3. xn; J14=dNz4. xn;

J21=dNz1l.yn; J22=dNz2.yn; J23=dNz3.yn; J24=dNz4.yn;

J31=dNz1l. zn; J32=dNz2.zn; J33=dNz3.zn; J34=dNz4. zn;

Jmat ={{1, 1, 1, 1}, {J11, 312, J13, J14},

{J21, 322,323, J24}, {J31, J32, J33, J34}};

Jdet =(J13*J22-J12*J23+J14*J23- J14*J22+]12*J24- J13*J24) *J31-
(J13*J21-J11*323+J14*J23-J14*J21+J11*J24-J13*J24)*J32+
(J12*J321-J11*322+314*J22-J14*J21+J11*J24-J12*J24) *J33-
(J12*J21-J11*J322+J13*J22-J13*J21+J11*J23-J12*J23) *J34;

Ji nv={{J22*(J34-J33)-J23*(J34-J32) +J24*(J33-J132),

-J12*(J34-J33) +J13*(J34-J32)-J14*(J33-J32),
J12*(J24-J323)-J13*(J24-322) +J14*(J23-J22)},
{-321*(J34-J333) +J23*(J34-J31)-J24*(J33-J31),
J11*(J34-J33)-J13*(J34-J31) +J14*(J33-J31),
-J11*(J24-J23) +J13*(J24-J321)-J14*(J23-J21)},
{ J21*(J34-J332)-J22*(J34-J31)+J24*(J32-J31),
-J11*(J34-J332) +J12*(J34-J31)-J14*(J32-J31),
J11*(J24-J322)-J12*(J24-J321) +J14*(J22-J21)},
{-J321*(J33-J32) +J22*(J33-J31)-J23*(J32-J31),
J11*(J33-J32)-J12*(J33-J31) +J13*(J32-J31),
-J11*(J23-J22) +J12*(J23-J21)-J13*(J22-J21)}};
{ Bx, By, Bz} =Tr anspose[ Ji nv] . {dNz1, dNz2, dNz3, dNz4}/ Jdet ;
Ret ur n[ { Bx, By, Bz, Jdet }]

Ficure 15.4. Module to compute shape function partial derivatives for linear tetrahedron (Tetr4). As
noted in the text, itis deliberated written in a more general fashion than needed for this particular element.
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Chapter 15: THE LINEAR TETRAHEDRON 1512

ClearAll[EmvVv]; Em96; v=1/3;

Emat =Entf ((1+v) *(1-2*v))*{{1-v,v, v, 0,0, 0},
{v,1-v,v,0,0,0},{v,v, 1-v,0,0,0},{0,0,0, 1/ 2-v, 0, 0},
{0,0,0,0,1/2-v,0},{0,0,0,0,0, 1/2-v}};

Print["Emat =", Emat// Matri xForni;

ncoor={{2, 3,4},{6, 3,2},{2,5,1},{4, 3,6}};

Ke=l soTetr4Stif f ness[ ncoor, Emat, {}, {Fal se}];

Print["Ke=",Ke//MNMtrixForni;

Print["ei gs of Ke=", Chop[Ei genval ues[N[Ke]]]l]:

Ficurke 15.5. Test statements to exercise the module of Figure 15.3.

44 72 72 0 0 0
72 144 72 0 0 0
Ematel 72 72 144 0 0 0
0O 0 0 3 0 O
0O 0 0 0 36 0
O 0 0 0 0 36
149 108 24 -1 6 12 -54 -48 0 -94
108 344 54 -24 104 42 -24 -216 -12 -60
24 54 113 0 30 35 0 -24 -54 -24
-1 -24 0 29 -18 -12 -18 24 0 -10
6 104 30 -18 44 18 12 -72 -12 O
keo| 12 42 35 -12 18 20 0 -24 -18 O
-54 -24 0 -18 12 0 3 0O 0 36
-48 -216 -24 24 -72 -24 0 144 0 24
0 -12 -54 0 -12 -18 0 0 36 0
-94 -60 -24 -10 O O 36 24 0 68
-66 -232 -60 18 -76 -36 12 144 24 36
-36 -84 -94 12 -36 -46 O 48 36 24

eigs of Ke = {{77.175, 201.363, 197.273, 42.9431, 21.3643, 19.8821, 0, 0, 0, P, 0, O

FIGURE 15.6. Results from running test of Figure 15.5.

The stiffness module is exercised by the statements listed in Figure 15.5, which forms a tetrahedron
with corner coordinate§y, vi, z1} = {2, 3, 4}, {X2, Y2, 2o} = {6, 3, 2}, {X3, V3, Z3} = {2, 5, 1} and

{X4, Va, 24} = {4, 3, 6}. Its volume is+24. The material is isotropic with elastic modulds= 96

and Poisson’s ratio = 1/3. The results are shown in Figure 15.6. The computation of stiffness
matrix eigenvalues is always a good programming test, since 6 eigenvalues (associated with rigid
body modes) must be exactly zero and the other 6 real and positive. This is verified by the results.
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1513 Exercises

Homework Exercisesfor Chapter 15

ThelLinear Tetrahedron

EXERCISE 15.1 [A:5] The tetrahedron element does not have fabrication properties, such as the thickness
in the case of a plane stress element. Why?

EXERCISE 15.2 [A:15] Work out the formulas fog;, by, ¢; in terms of the corner coordinatgs y; andz
(i =1,2,3,4). Then write a compact formula for the voluiie Hint: use the following script:

J={{1,1,1,1},{x1,x2,x3,x4},{y1,y2,y3,y4},{z1,22,23,2z4}};

V6=Det [J]; Jinv=Simplify[Inverse[J]*V6];
{{R1,a1,b1,c1},{R2,a2,b2,c2},{R3,a3,b3,c3},{R4,ad,bd,c4}}=Jinv;
Print["{al,a2,a3,a4}*V6=",{al,a2,a3,ad}];
Print["{b1,b2,b3,b4}*V6=",{b1,b2,b3,b4}];
Print["{c1,c2,c3,c4}*V6=",{c1,c2,c3,cd}];

Print["V6=",V6];

EXERCISE 15.3 [A:20] Work out by hand the consistent node force vedfofor the body force system
by = bxag1 + by28o 4 bysls + byals, by = 0, b, = 0, in whichb,; are given values at the nodes. Hint: use the
integration rule (15.36). Specialize the resulbfp = by, = bz = by = by.

EXERCISE 15.4 [A:25] Face 1-2-3 of the 4-node tetrahedron is under presgueting normal to the face
(positive pressuret p means it points into the body). Comptite[Hint: find the direction cosines; (needed
to get the prescribed surface tractidnf the unit normal by developing the normal equation of plane 1-2-3].
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