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15–3 §15.2 THE LINEAR TETRAHEDRON

§15.1. Introduction

In this Chapter we study the construction of shape functions for three-dimensional solid elements,
beginning with the 4-node tetrahedron. We start with this particular element for two reasons: the
geometry is the simplest one, and no numerical integration is needed.

§15.2. The Linear Tetrahedron

The linear tetrahedron, shown in Figure 15.1(a), is not used often for stress analysis because of its
poor performance.1 Its main value in structural and solid mechanics is educational: it serves as
a vehicle to introduce the basic steps of formulation of 3D solid elements, particularly as regards
use of natural coordinate systems and node numbering conventions. It should be noted that 3D
visualization is notoriously more difficult than 2D, so we need to proceed somewhat slowly here.

z

x
y

1 (x  ,y ,z )1  1  1

2 (x  ,y ,z )2 22

3 (x  ,y ,z )3 33

4 (x  ,y ,z )4 44

(a) (b)

1

23

face 1-2-3
as seen
from node 4

Figure 15.1. (a) The linear tetrahedron element: also called the 4-node
tetrahedron; (b) Node numbering convention.

§15.2.1. Tetrahedron Geometry

Figure 15.1 shows a typical 4-node tetrahedron. Its geometry is fully defined by giving the location
of the four corner nodes with respect to the global RCC system (x, y, z):

xi , yi , zi (i = 1, 2, 3, 4). (15.1)

The volume measure of the tetrahedron is denoted2 byV and is given by the following determinant:

V = 1
6 det




1 1 1 1
x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4


 . (15.2)

1 Derivative of shape functions are constant over the element volume. Strains and stresses recovered in this manner can
be highly inaccurate. This makes the element dangerous for stress analysis. On the other hand, when the objective is
merely to get values of primary variables, as in thermal analysis and computational gas dynamics, the linear tetrahedron
is acceptable.

2 This symbol (Upsilon) is used to avoid confusion withV , which denotes the volume of a generic body.
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Chapter 15: THE LINEAR TETRAHEDRON 15–4

This volume is asignedquantity. It is positive if the corners are numbered in such a way that the
volume is positive. A numbering rule that achieves this goal is as follows:

(I) Pick a corner as initial one. In Figure 15.1(a) this is numbered 1.

(II) Pick a face that will contain the first three corners. The excluded corner will be the last one.

(III) Number these three corners in acounterclockwisesense when looking at the face from the
excluded corner. See Figure 15.1(b).

In what follows we shall always assume that the numbering has been done in that manner so that
V > 0.3
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2 
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P(ζ ,ζ ,ζ ,ζ )1

ζ  = 1 1

ζ  = 3/4 1

ζ  = 1/2 1
ζ  = 1/4 1

ζ  = 0 1

2 3 4

Figure 15.2. Tetrahedron natural coordinates:ζ1, ζ2, ζ3, ζ4.

§15.2.2. Tetrahedral Coordinates

The set of tetrahedral coordinatesζ1, ζ2, ζ3, ζ4 is the three-dimensional analog of the triangular
coordinate set discussed in Chapter 15 of IFEM. The value ofζi is one at corneri , zero at the other
3 corners (i.e. on the opposite face) and varies linearly as one traverses the distance from the corner
to the face. The sum of the four coordinates is identically one:

ζ1 + ζ2 + ζ3 + ζ4 = 1. (15.3)

Any functionlinear in x, y, z, sayF(x, y, z), that takes the valuesFi (i = 1, 2, 3, 4) at the corners
may be interpolated in terms of the tetrahedron coordinates as

F(ζ1, ζ2, ζ3, ζ4) = F1ζ1 + F2ζ2 + F3ζ3 + F4ζ4 = Fi ζi . (15.4)

Example 15.1. Suppose thatF(x, y, z) = 4x + 9y − 8z + 3 and that the coordinates of corners 1,2,3,4 are
(0, 0, 0), (1, 0, 0), (0, 1, 0) and(0, 0, 1), respectively. The values ofF at the corners areF1 = 3, F2 = 7,
F3 = 12 andF4 = −5. ConsequentlyF(ζ1, ζ2, ζ3, ζ4) = 3ζ1 + 7ζ2 + 12ζ3 − 5ζ4.

3 The tetrahedron volume can be zero only if the four corners are coplanar. This case will be excluded.
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15–5 §15.2 THE LINEAR TETRAHEDRON

§15.2.3. Coordinate Transformations

The geometric definition of the element in terms of these coordinates is obtained by applying the
geometry definition (15.4) tox, y andz, and appending the sum-of-coordinates constraint (15.3):




1
x
y
z


 =




1 1 1 1
x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4







ζ1

ζ2

ζ3

ζ4


 . (15.5)

Inverting this relation gives




ζ1

ζ2

ζ3

ζ4


 = 1

6V




6V1 a1 b1 c1

6V2 a2 b2 c2

6V3 a3 b3 c3

6V4 a4 b4 c4







1
x
y
z


 , (15.6)

where the coefficients of this matrix can be calculated by forming the adjoints of the matrix in
(15.5).

Remark 15.1. The values ofai , bi andci obtained by explicit inversion are

a1 = y2z43 − y3z42 + y4z32,

a2 = −y1z43 + y3z41 − y4z31,

a3 = y1z42 − y2z41 + y4z21,

a4 = −y1z32 + y2z31 − y3z21.

b1 = −x2z43 + x3z42 − x4z32,

b2 = x1z43 − x3z41 + x4z31,

b3 = −x1z42 + x2z41 − x4z21,

b4 = x1z32 − x2z31 + x3z21,

c1 = x2y43 − x3y42 + x4y32,

c2 = −x1y43 + x3y41 − x4y31,

c3 = x1y42 − x2y41 + x4y21,

c4 = −x1y32 + x2y31 − x3y21.

(15.7)

in which the abbreviationsxi j = xi − xj , yi j = yi − yj andzi j = zi − zj are used. The volume is given
explicitly by

6V = x21(y31z41 − y41z31) + y21(x41z31 − x31z41) + z21(x31y41 − x41y31). (15.8)

The values ofVi are of no interest in what follows.

§15.2.4. *Geometric Interpretation

Figure 15.2 illustrates two geometric interpretation of coordinateζ1. In Figure 15.2(a),ζ1 = C, whereC is
a number between 0 and 1, is the equation of a plane parallel to the face 234. The plane coincides with that
face if ζ1 = 0, it passes through corner node 1 ifζ1 = 1, and is interpolated linearly in between.

Figure 15.2(b) illustrates another interpretation that appears in many FEM books. Consider a pointP of
coordinates(ζ1, ζ2, ζ3, ζ4) inside the tetrahedron. JoiningP to the corners we obtain four sub-tetrahedra
234P, 341P, 412P and 123P, whose volumes areV1, V2, V3 andV4, respectively. Thenζi is the ratio
Vi /V. Figure 15.2(b) pictures the sub-tetrahetron 234P of volumeV1 On account of this relation, tetrahedral
coordinates are also called volume coordinates.

Remark 15.2. The interpretation as volume coordinates only holds for the tetrahedron defined by 4 corner
nodes. It fails for higher order tetrahedra defined by additional nodes (e.g., midpoints). For this reason, the
second interpetration, as well as the name “volume coordinates,” will not be used here.
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Chapter 15: THE LINEAR TETRAHEDRON 15–6

§15.2.5. Partial Derivatives

From equations (15.5) and (15.6) we can easily find the following relations for the partial derivatives
of Cartesian and tetrahedral coordinates

∂x

∂ζi
= xi ,

∂y

∂ζi
= yi ,

∂z

∂ζi
= zi . (15.9)

6V ∂ζi

∂x
= ai , 6V ∂ζi

∂y
= bi , 6V ∂ζi

∂z
= ci . (15.10)

The derivatives of a functionF(ζ1, ζ2, ζ3, ζ4) with respect to the Cartesian coordinates follows from
(15.10) and the chain rule:

∂F

∂x
= ∂F

∂ζi

∂ζi

∂x
= 1

6V
( ∂F

∂ζ1
a1 + ∂F

∂ζ2
a2 + ∂F

∂ζ3
a3 + ∂F

∂ζ4
a4

)
= 1

6V
∂F

∂ζi
ai .

∂F

∂y
= ∂F

∂ζi

∂ζi

∂y
= 1

6V
( ∂F

∂ζ1
b1 + ∂F

∂ζ2
b2 + ∂F

∂ζ3
b3 + ∂F

∂ζ4
b4

)
= 1

6V
∂F

∂ζi
bi .

∂F

∂z
= ∂F

∂ζi

∂ζi

∂z
= 1

6V
( ∂F

∂ζ1
c1 + ∂F

∂ζ2
c2 + ∂F

∂ζ3
c3 + ∂F

∂ζ4
c4

)
= 1

6V
∂F

∂ζi
ci .

(15.11)

§15.3. The Linear Tetrahedron

The simplest tetrahedron finite element for problems of variational orderm = 1 is the four-node
tetrahedron withlinear shape functions. The shape functions are simply the tetrahedral coordinates:
Ni = ζi , i = 1, 2, 3, 4. This finite element is derived now for the elasticity problem, using the Total
Potential Energy principle as source variational form.

§15.3.1. Displacement Interpolation

The displacement field over the tetrahedron is defined by the three componentsux, uy anduz. These
are linearly interpolated over the element from their nodal values

[ ux

uy

uz

]
=

[ ux1 ux2 ux3 ux4

uy1 uy2 uy3 uy4

uz1 uz2 uz3 uz4

] 


ζ1

ζ2

ζ3

ζ4


 . (15.12)

Putting this together with the geometric definition (15.4) we have the isoparametric definition of
the 4-node tetrahedron as an elasticity element:



1
x
y
z

ux

uy

uz




=




1 1 1 1
x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

ux1 ux2 ux3 ux4

uy1 uy2 uy3 uy4

uz1 uz2 uz3 uz4







ζ1

ζ2

ζ3

ζ4


 . (15.13)
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15–7 §15.3 THE LINEAR TETRAHEDRON

§15.3.2. The Strain Field

The strain field within the element is strongly connected to the displacement by the strain-
displacement equations, which in indicial notation read

ei j = 1
2(ui, j + u j,i ). (15.14)

We transliterate this to matrix notation as follows. First, the six independent components of the
stress tensor are arranged into a 6-component strain vector as follows:

e = [ e11 e22 e33 2e12 2e23 2e31 ]T

= [ exx eyy ezz γxy γyz γzy ]T
. (15.15)

The second expression shows the engineering notation for the shear strains. Second, displacement
componentsu1, u2 andu3 are rewritten asux, uy anduz, collected into a vector and linked to the
displacement field by (15.14):

e =




exx

eyy

ezz

2exy

2eyz

2ezx


 =




∂/∂x 0 0
0 ∂/∂y 0
0 0 ∂/∂z

∂/∂y ∂/∂x 0
0 ∂/∂z ∂/∂y

∂/∂z 0 ∂/∂x




[ ux

uy

uz

]
= D �u. (15.16)

Combining this with (15.12) and using the differentiation rules (15.11) we obtain the matrix relation
between strains and nodal displacements:

e = B ue. (15.17)

If the element nodal displacement vector is arranged component-wise:

ue = [ ux1 ux2 ux3 ux4 uy1 uy2 · · · uz4 ]T , (15.18)

the matrixB has the following configuration

B = 1

6V




a1 a2 a3 a4 0 0 0 0 0 0 0 0
0 0 0 0 b1 b2 b3 b4 0 0 0 0
0 0 0 0 0 0 0 0 c1 c2 c3 c4

b1 b2 b3 b4 a1 a2 a3 a4 0 0 0 0
0 0 0 0 c1 c2 c3 c4 b1 b2 b3 b4

c1 c2 c3 c4 0 0 0 0 a1 a2 a3 a4


 . (15.19)

If the node displacements are arranged node-wise:

ue = [ ux1 uy1 uz1 ux2 uy2 uz2 · · · uz4 ]T , (15.20)

the columns ofB must be re-shuffled to yield

B = 1

6V




a1 0 0 a2 0 0 a3 0 0 a4 0 0
0 b1 0 0 b2 0 0 b3 0 0 b4 0
0 0 c1 0 0 c2 0 0 c3 0 0 c4

b1 a1 0 b2 a2 0 b3 a3 0 b4 a4 0
0 c1 b1 0 c2 b2 0 c3 b3 0 c4 b4

c1 0 a1 c2 0 a2 c3 0 a3 c4 0 a4


 . (15.21)
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Chapter 15: THE LINEAR TETRAHEDRON 15–8

The node-wise arrangement (15.20) ofue is more common in practice because it facilitates the
assembly process.

Note that both matrices (15.19) and (15.21) are constant over the element.

§15.3.3. The Stress Field

The stress field is related to the stress field by the strong connection

σi j = Ei jk�ek� (15.22)

To convert this to matrix notation we rearrange the 6 independent stress components to correspond
to the strains (15.12) and link them by a 6× 6 matrix of elastic moduli:

σ = [ σ11 σ22 σ33 σ12 σ23 σ31 ]T =
= [ σxx σyy σzz σxy σyz σzx ]T

(15.23)

If the material is linearly elastic and no initial strains are considered, the constitutive equation may
be compactly expressed as

σ = E e. (15.24)

where the elasticity matrixE is symmetric. For a general anisotropic material the expanded form
of (15.24) is 



σxx

σyy

σzz

σxy

σyz

σzx


 =




E11 E12 E13 E14 E15 E16

E22 E23 E24 E25 E26

E33 E34 E35 E36

E44 E45 E46

E55 E56

symm E66







exx

eyy

ezz

2exy

2eyz

2ezx


 , (15.25)

in which Ei j are constitutive moduli. For an isotropic material of elastic modulusE and Poisson’s
ratioν the foregoing relation simplifies to




σxx

σyy

σzz

σyz

σzx

σxy


 = E

(1 + ν)(1 − 2ν)




1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0
0 0 0 1

2 − ν 0 0
0 0 0 0 1

2 − ν 0
0 0 0 0 0 1

2 − ν




. (15.26)
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15–9 §15.5 THE CONSISTENT NODE FORCE VECTOR

§15.4. The Element Stiffness Matrix

Introducinge = Bu andσ = Ee into the strain energy functional restricted to the element volume
and rendering the resulting algebraic form stationary with respect to the node displacementsue we
get the usual expression for the element stiffness matrix

Ke =
∫

Ve

BT E B dV. (15.27)

Assuming that the elastic moduli are constant inside the element, the foregoing integrand is constant
because matrixB is constant — cf. (15.19) or (15.21). Consequently

Ke = V BT E B. (15.28)

This stiffness matrix is 12× 12. It can be directly evaluated in closed form using the above
expression or, equivalently, by a one-point (centroid) integration rule.

§15.5. The Consistent Node Force Vector

A terahedral mesh may be subjected to given body forces in the volume and/or specified boundary
tractions. Both have to be converted to node forces through an energy-based lumping procedure.

§15.5.1. Body Forces

Consider a body force field over the element, such as gravity of centrifugal forces, defined by its
components

b = [ bx by bz ]T . (15.29)

Inserting this into the TPE principle, the body force contribution gives

fe =
∫

Ve

NT b dV. (15.30)

HereN is the 3× 12 matrix of shape functions that relates element field displacements to node
displacements:

�u =
[ ux

uy

uz

]
= N ue. (15.31)

For the component-wise node displacement ordering (15.18),

N =
[

ζ1 ζ2 ζ3 ζ4 0 0 0 0 0 0 0 0
0 0 0 0 ζ1 ζ2 ζ3 ζ4 0 0 0 0
0 0 0 0 0 0 0 0 ζ1 ζ2 ζ3 ζ4

]
(15.32)

For the node-wise displacement ordering (15.20),

N =
[

ζ1 0 0 ζ2 0 0 ζ3 0 0 ζ4 0 0
0 ζ1 0 0 ζ2 0 0 ζ3 0 0 ζ4 0
0 0 ζ1 0 0 ζ2 0 0 ζ3 0 0 ζ4

]
(15.33)
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Even if the body forces are constant the integral is not constant over the element. Some useful
formulae for such calculations are ∫

Ve

ζi dV = 1
4V, (15.34)

and ∫
Ve

ζi ζ j dV =
{

1
10V if i = j,
1
20V if i �= j .

(15.35)

The general rule for such integrals, which can be derived from the Beta function, is∫
Ve

ζ i
1 ζ

j
2 ζ k

3 ζ �
4 dV = i ! j ! k! �!

(i + j + k + � + 3)!
6V. (15.36)

in which i , j , k and� are nonnegative integers. This formula is only valid for tetrahedra with planar
faces.

§15.5.2. Surface Tractions

The most practically important case is that of surface tractions normal to an element face. This
models the effect of pressure loads. The calculation of node forces for the case of a constant pressure
acting on a tetrahedron face is the matter of one exercise.

§15.5.3. Element Implementation

The implementation of the linear tetrahedron in any programming language is very simple. An
implementation in the form of aMathematicamodule is shown in Figure 15.3. The module is
invoked as

Ke=Trig3IsoPMembraneStiffness[ncoor,Emat,{ },options]; (15.37)

The arguments are

encoor Element node coordinates, arranged as a list:
{ { x1,y1,z1 },{ x2,y2,z2 },{ x3,y3,z3 },{ x4,y4,z4 } }.

Emat A two-dimensional list storing the 6× 6 matrix of elastic moduli as
{ { E11,E12,E13,E14,E15,E16 }, ... { E61,E62,E63,E64,E65,E66 } }.

options A list of formation options. For this element it is simply{ numer }, wherenumer
is a logical flag. Flag isTrue to request floating point numeric work,False to
request exact calculations.

The third argument is a placeholder and should be set to the empty list{ }.
The stiffness module calls moduleIsoTetr4ShapeFunCarDer, which is listed in Figure 15.4, to
get the shape function Cartesian partial derivatives. These return in the 12 x 1 arraysBx, By andBz.
The module also returns the jacobian determinantJdet, which is six times the element volume.

ModuleIsoTetr4ShapeFunCarDer is written in a more complicated style than needed for this
particular element. For exampleJ11 is simply x1, etc. It is actually configured to serve as a
shape function derivative “template” for more refined tetrahedron elements, as described in the next
Chapter. r
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15–11 §15.5 THE CONSISTENT NODE FORCE VECTOR

IsoTetr4Stiffness[ncoor_,Emat_,{},options_]:= Module[{i,n=4,nf=12,
   k,c,w,Jdet,zetalist,xyzlist,numer,Bx,By,Bz,Be,Ke}, 
  If [Length[options]>0, numer=options[[1]]];
  xyzlist={Table[ncoor[[i,1]],{i,n}],Table[ncoor[[i,2]],{i,n}], 
           Table[ncoor[[i,3]],{i,n}]}; Ke=Table[0,{nf},{nf}]; 
  {Bx,By,Bz,Jdet}=IsoTetr4ShapeFunCarDer[xyzlist,{},numer]; 
  Be={Flatten[Table[{Bx[[i]],0,      0      },{i,n}]],
      Flatten[Table[{0,      By[[i]],0      },{i,n}]],
      Flatten[Table[{0,      0,      Bz[[i]]},{i,n}]],
      Flatten[Table[{By[[i]],Bx[[i]],0      },{i,n}]],
      Flatten[Table[{0,      Bz[[i]],By[[i]]},{i,n}]],
      Flatten[Table[{Bz[[i]],0,      Bx[[i]]},{i,n}]]};
   Ke=(Jdet/6)*Transpose[Be].(Emat.Be);
   If [!numer,Ke=Simplify[Ke]]; Return[Ke] 
   ];

Figure 15.3. Module to form the stiffness matrix of a linear tetrahedron (Tetr4) and outputs.

IsoTetr4ShapeFunCarDer[{xn_,yn_,zn_},zetalist_,numer_]:= 
  Module[{dNz1,dNz2,dNz3,dNz4,Jmat,J11,J12,J13,J14,
   J21,J22,J23,J24,J31,J32,J33,J34,Jinv,Jdet,Bx,By,Bz}, 
   {dNz1,dNz2,dNz3,dNz4}={{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}}; 
   J11=dNz1.xn; J12=dNz2.xn; J13=dNz3.xn;  J14=dNz4.xn;
   J21=dNz1.yn; J22=dNz2.yn; J23=dNz3.yn;  J24=dNz4.yn;
   J31=dNz1.zn; J32=dNz2.zn; J33=dNz3.zn;  J34=dNz4.zn;
   Jmat={{1,1,1,1},{J11,J12,J13,J14},
         {J21,J22,J23,J24},{J31,J32,J33,J34}};
   Jdet=(J13*J22-J12*J23+J14*J23-J14*J22+J12*J24-J13*J24)*J31-
        (J13*J21-J11*J23+J14*J23-J14*J21+J11*J24-J13*J24)*J32+
        (J12*J21-J11*J22+J14*J22-J14*J21+J11*J24-J12*J24)*J33-
        (J12*J21-J11*J22+J13*J22-J13*J21+J11*J23-J12*J23)*J34;
   Jinv={{J22*(J34-J33)-J23*(J34-J32)+J24*(J33-J32), 
         -J12*(J34-J33)+J13*(J34-J32)-J14*(J33-J32), 
          J12*(J24-J23)-J13*(J24-J22)+J14*(J23-J22)}, 
        {-J21*(J34-J33)+J23*(J34-J31)-J24*(J33-J31), 
          J11*(J34-J33)-J13*(J34-J31)+J14*(J33-J31), 
         -J11*(J24-J23)+J13*(J24-J21)-J14*(J23-J21)}, 
        { J21*(J34-J32)-J22*(J34-J31)+J24*(J32-J31), 
         -J11*(J34-J32)+J12*(J34-J31)-J14*(J32-J31), 
          J11*(J24-J22)-J12*(J24-J21)+J14*(J22-J21)}, 
        {-J21*(J33-J32)+J22*(J33-J31)-J23*(J32-J31), 
          J11*(J33-J32)-J12*(J33-J31)+J13*(J32-J31), 
         -J11*(J23-J22)+J12*(J23-J21)-J13*(J22-J21)}};      
   {Bx,By,Bz}=Transpose[Jinv].{dNz1,dNz2,dNz3,dNz4}/Jdet;
   Return[{Bx,By,Bz,Jdet}]
   ];

Figure 15.4. Module to compute shape function partial derivatives for linear tetrahedron (Tetr4). As
noted in the text, it is deliberated written in a more general fashion than needed for this particular element.
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ClearAll[Em,ν]; Em=96; ν=1/3;
Emat=Em/((1+ν)*(1-2*ν))*{{1-ν,ν,ν,0,0,0},
  {ν,1-ν,ν,0,0,0},{ν,ν,1-ν,0,0,0},{0,0,0,1/2-ν,0,0},
  {0,0,0,0,1/2-ν,0},{0,0,0,0,0, 1/2-ν}};
Print["Emat=",Emat//MatrixForm];
ncoor={{2,3,4},{6,3,2},{2,5,1},{4,3,6}};
Ke=IsoTetr4Stiffness[ncoor,Emat,{},{False}];
Print["Ke=",Ke//MatrixForm];
Print["eigs of Ke=",Chop[Eigenvalues[N[Ke]]]];

Figure 15.5. Test statements to exercise the module of Figure 15.3.

144 72 72 0 0 0
72 144 72 0 0 0
72 72 144 0 0 0
0 0 0 36 0 0
0 0 0 0 36 0
0 0 0 0 0 36

149 108 24 −1 6 12 −54 −48 0 −94 −66 −36
108 344 54 −24 104 42 −24 −216 −12 −60 −232 −84
24 54 113 0 30 35 0 −24 −54 −24 −60 −94
−1 −24 0 29 −18 −12 −18 24 0 −10 18 12
6 104 30 −18 44 18 12 −72 −12 0 −76 −36

12 42 35 −12 18 29 0 −24 −18 0 −36 −46
−54 −24 0 −18 12 0 36 0 0 36 12 0
−48 −216 −24 24 −72 −24 0 144 0 24 144 48

0 −12 −54 0 −12 −18 0 0 36 0 24 36
−94 −60 −24 −10 0 0 36 24 0 68 36 24
−66 −232 −60 18 −76 −36 12 144 24 36 164 72
−36 −84 −94 12 −36 −46 0 48 36 24 72 104

eigs of Ke = {777.175,  201.363,  197.273,  42.9431,  21.3643,  19.8821,  0,  0,  0,  0,  0,  0}

Ke =

Emat =

Figure 15.6. Results from running test of Figure 15.5.

The stiffness module is exercised by the statements listed in Figure 15.5, which forms a tetrahedron
with corner coordinates{x1, y1, z1} = {2, 3, 4}, {x2, y2, z2} = {6, 3, 2}, {x3, y3, z3} = {2, 5, 1} and
{x4, y4, z4} = {4, 3, 6}. Its volume is+24. The material is isotropic with elastic modulusE = 96
and Poisson’s ratioν = 1/3. The results are shown in Figure 15.6. The computation of stiffness
matrix eigenvalues is always a good programming test, since 6 eigenvalues (associated with rigid
body modes) must be exactly zero and the other 6 real and positive. This is verified by the results.
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15–13 Exercises

Homework Exercises for Chapter 15

The Linear Tetrahedron

EXERCISE 15.1 [A:5] The tetrahedron element does not have fabrication properties, such as the thickness
in the case of a plane stress element. Why?

EXERCISE 15.2 [A:15] Work out the formulas forai , bi , ci in terms of the corner coordinatesxi , yi andzi

(i = 1, 2, 3, 4). Then write a compact formula for the volumeV. Hint: use the following script:

J={{1,1,1,1},{x1,x2,x3,x4},{y1,y2,y3,y4},{z1,z2,z3,z4}};

V6=Det[J]; Jinv=Simplify[Inverse[J]*V6];

{{R1,a1,b1,c1},{R2,a2,b2,c2},{R3,a3,b3,c3},{R4,a4,b4,c4}}=Jinv;

Print["{a1,a2,a3,a4}*V6=",{a1,a2,a3,a4}];

Print["{b1,b2,b3,b4}*V6=",{b1,b2,b3,b4}];

Print["{c1,c2,c3,c4}*V6=",{c1,c2,c3,c4}];

Print["V6=",V6];

EXERCISE 15.3 [A:20] Work out by hand the consistent node force vectorfe for the body force system
bx = bx1ζ1 + bx2ζ2 + bx3ζ3 + bx4ζ4, by = 0, bz = 0, in whichbxi are given values at the nodes. Hint: use the
integration rule (15.36). Specialize the result tobx1 = bx2 = bx3 = bx4 = bx.

EXERCISE 15.4 [A:25] Face 1-2-3 of the 4-node tetrahedron is under pressurep acting normal to the face
(positive pressure:+p means it points into the body). Computefe. [Hint: find the direction cosinesnj (needed
to get the prescribed surface tractionst̂i ) of the unit normal by developing the normal equation of plane 1-2-3].
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