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Abstract 
Control system performance depends on the actua- 
tors and sensors used in the closed loop. Selection 
of these devices based on an exhaustive candidate- 
by-candidate test is a combinatorial problem. The 
selection problem can be simplified by not using 
a candidate-by-candidate approach, but then it is 
likely to be less rigorous and favorable combinations 
of actuators and sensors can be missed. Here an- 
other approach is taken. The selection is still based 
on a per candidate test, but using an efficient feasi- 
bility test combined with a search strategy that, un- 
der certain conditions, is polynomial in some mea- 
sures of the problem size, large-scale problems can 
be tackled in acceptable time. Although with this ap- 
proach the problem is still combinatorial, in prac- 
tice the complexity behaves polynomially, the com- 
binatorics only coming into play with a problem size 
that is larger than most people want to consider. An 
application with 28  input/output devices to choose 
from, making = 2 6 6 .  lo6 unique combinations pos- 
sible, shows the approach to be feasible. Only 2 70 or 
658 candidate combinations were tested for feasibil- 
ity, to completely determine all combinations of sen- 
sors and actuators that were guaranteed to reach a 
specified level of robust performance. This is almost 
lo6 times less than an exhaustive search would re- 
quire. 
Keywords: mechanical control system, active sus- 
pension, robust control, psynthesis, combinatorial 
optimization, maximal independent set. 

1. Introduction 
Input/output (IO) selection is the phase in the con- 
trol system design cycle where the following ques- 
tion is answered: W c h  actuators have to be used to 
influence the behavior of, and whch sensors have to 
gather knowledge of the plant to be controlled? An- 
swering this question is often not recognized as an 
activity that lends itself well to a systematic study, 
and it is therefore hard to answer systematically with 
the limited theory and tools available. Those tools 
are in general ad-hoc and non-rigorous. They some- 
times lack a strong theoretical foundation, and to 
make them readily applicable, the selection criteria 
used are only loosell, tied to the goals set out for the 
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control system. In practice, the design activities re- 
lated to IO selection, and also similar activities llke 
control structure selection, are based on intuition 
and trial and error. 
The intuitive design is founded on, what can be 
called, an “internal” model the control system de- 
signer has obtained during h s  work with the system 
and h s  related experiences gathered in the past. As 
all human models, this one is a biased and distorted 
view of reality. People working in the same field do 
not share the same model, their knowledge is based 
on different experiences in the past, and they do not 
always agree with each other. This is not a happy 
state of affairs. Therefore, a more systematic and rig- 
orous method, and tools to implement it, are neces- 
sary. 
The main effect of such a systematic IO selectionpro- 
cedure is probably not the resulting “optimal” com- 
bination of input/output devices, but more likely the 
increased knowledge of the system, acquired during 
the procedure. This acts like a two-sided sword. 
One side is that the designer is faced with the need 
to rethink the goals of the control system and the 
lines along whch these goals could be acheved. The 
goals need to be precisely formulated in the case of a 
robust performance selection requirement, e.g., for 
an Hm criterion in the form of weighting functions 
and required performance level. The lines to achieve 
the goals are related to formulating potential con- 
trol structures and actuators and sensors. In these 
formulations no freedom is left for vagueness. 
The other side is that the results obtained may be 
surprising or counter intuitive. This again forces one 
to reassess one’s internal model of the behavior of 
the system, and to update that model. 
From those renewed insights naturally a more ma- 
ture view of the problem follows, maybe leading to 
the conclusion that an intuitive or a standard solu- 
tion was good enough. This does not mean the whole 
exercise was in vain: the activity at least delivered the 
satisfaction knowing the job was done well initially. 
To improve the current state of affairs, the main goal 
of t h s  paper is to provide a rigorous, theoretically 
well founded, control goal oriented, selection crite- 
rion, and an, in some way, efficient selection algo- 
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rithm. See [l] for an overview of existing methods 

Section 2 supplies theoretical background of the se- 
lection algorithm and criterion, while Section 3 dis- 
plays the tool that implements the selection proce- 
dure. An application of the proposed method to a 
large-scale tractor-semitrailer active suspension de- 
sign in Section 4 illustrates the use of the tool that 
was developed. Section 5 concludes the paper. 

for IO selection. w :  ;pJ 
2. Theory ................................ 

The development of any systematic and rigorous 
IO selection procedure faces two major problems. 
First, the selection is a combinatorial feasibility or 

Figure 1: Standard plant 

optimization problem. When there are nu actuators 
and ny sensors to choose from, the possible num- 
ber of ways they can form different combinations is 
( 2 " ~  - 1)(2"y - 1) + 1. Ths  number accounts for the 
fact that when the open loop is tested there is no 
need to test combinations without sensors or actua- 
tors, because in those cases the loop is still open. For 
any reasonably sized problem, this number is huge, 

p-optimal controller for the i-th IO set, II . l l c l  the 
peak value of p across frequency, and y the desired 
performance level. Robustness is guaranteed by em- 
ploying p,  the structured singular value. This crite- 
rion depends on the controller, which is not desired 
nor always needed. So, in the following the criterion 
is, at least partially, adapted to only depend on Gi. 

and an exhaustive search is out of the question. More 
ingenious ways to solve the problem are called for. 
Second, to make the selection rigorous, a quanti- 
tatiVe measure, indicating irrefutably that a Certain 
combination of actuators and Sensors is Waranteed 
to meet the specifications, is needed. For control sys- 
tern design a rigorous Specification iS a robust per- 
f0rInanCe requirement. Almost dl effects that dimin- 
ish performance, i.e., structural limitations Of  the 
plant, disturbances, noise, plant-model mismatch, 
can be brought into the problem formulation. Ths  
means that a combination that meets the require- 
ment can be expected to work in practice with high 
probability. There are several design methods, e.g., 
Hm controller design or p-synthesis, that address 
this specification. A selection criterion that is based 
on a full controller design is not attractive time wise. 
So, a more compact and efficient criterion has to be 
set up. 
The following sections discuss the methods devised 
to, more or less, beat the curse of dimensionality, 
and to assess robust performance efficiently. 
2.1. Preliminaries 
TO formulate the selection procedure use is made of 
the standard plant in Fig. 1. The variables W and Z 
represent performance and uncertainty related Sig- 
nals. 
The goal is to select all combinations of actuators 
and sensors, called IO sets, for whch a controller 
exists that gives the closed loop system the desired 
level of robust performance. This leads to the crite- 
rion 

llH(Gi, Ci)llp < ~1 

where H is the closed loop plant, Gi the general- 
ized plant corresponding to the i-th IO set, Ci the 

2.2. Search method 
All possible IO sets can be mapped one-to-one on 
the power set of nu + ny pairs of {0, I}, where the 1 
indicates that a device is used. The subset inclusion 
relation between the possible IO sets establishes a 
partial order and gives the power set the structure of 
a partial ordered set (poset). This poset c m  be graph- 
ically represented in a Hasse diagram, see Fig. 2. At 
the top of the diagram is the full 10 set, using d l  PO- 
tential IO devices. At the bottom is the empty IO set, 
that is just the open loop. 

Figure 2:  Hasse diagram for n = 4 

The goal is to split up the Hasse diagram or poset 
in two parts, one part all 10 sets that are 
feasible, the other with those that are not, with only 
performing a, preferably small, number of feasibility 
tests. If an IO set i, with its associated generalized 
plant G ~ ,  optimal controller ci, and fitness function 
f ( G i ,  ci), meets a certain criterion f ( G i ,  Ci) < y ,  it is 
feasible. Better performance is translated into lower 
levels of y. 
When the fitness function f has the property that 
if a certain IO set is not feasible, all its subsets are 
not feasible also, we call the function monotonous. 
Formally, 
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Definition 1 
A fitness function f ( G j ,  Cj) is called monotonous if 
for all IO sets k,  and for all IO sets j that are subsets 
of IO set k,  holds 

The monotonous function property proposed above 
establishes the structure of an independence system 
on the poset. This means that the break-up in feasi- 
ble/infeasible can be characterized by all so-called 
maximal independent or minimal dependent sets. It 
is therefore sufficient to establish one of these sets. 
In terms of IO selection, the dependent sets are fea- 
sible, so they meet the selection criterion, and the 
independent ones are not. A minimal dependent set 
is a combination of actuators and sensors that, when 
any one of the elements of the set is excluded, does 
not meet the criterion. A maximal independent set 
is such that including any input/output device, that 
is not already in the set, makes it feasible. 
For a general independence system it is known that 
it is not possible to determine all maximal indepen- 
dent or minimal dependent sets in time polynomial 
in n = n,  + n y .  Stronger, it is not even possible in 
time polynomial in n and K + M, where K is the num- 
ber of maximal independent sets and M the number 
of minimal dependent sets [2]. This means that it is 
unlikely that large-scale problems can be solved ef- 
ficiently: the problem is called intractable. 
There are certain classes of independence systems 
that are tractable, because they have additional 
properties. For instance, matroids have one addi- 
tional property that make them easily solvable by 
greedy algorithms [3]. Unfortunately, the IO selec- 
tion based on a robust performance requirement 
cannot be formulated as a problem using matroids. 
Perhaps with other fitness functions it is possible, 
while still keeping the fitness function physically rel- 
evant, but that is unknown up-till now. 
However, in this case there is another additional 
property, namely a kmd of time separation, where 
the feasibility test takes much more time than all 
other operations needed to establish all maximal in- 
dependent or minimal dependent sets for n not too 
large. In an implementation of the tool to solve the 
IO selection problem the other operations are mainly 
bitstring comparisons. A single feasibility test takes 
approximately l o 7 .  . . 1 O 1 O  more time than a single 
bitstring comparison for moderately sized systems. 
Solving an IO selection problem is therefore domi- 
nated by the feasibility tests if n is not too large. 
Fortunately, it is possible to solve the problem with 
a number of feasibility tests that is polynomial in n,  
K ,  and M, due to the following proposition [4]. 

Proposition 1 
All minimal dependent sets or all maximal inde- 
pendent sets of a power set with partial order and 

independence system structure can be found with 
O(nK + M) or O(nM + K )  visits to an oracle that de- 
cides whether a set is independent or not. 

Remark 1 
This result may look better than it really is, because 
both K and M may depend combinatorially on n. If 
only a partial solution is needed, e.g., a single mini- 
mal dependent set, the problem is much simpler and 
no longer intractable, requiring only n + 1 tests, but 
such a solution may not be the one that is asked 
for: it just meets the performance requirement, but 
may still employ an unnecessarily large number of 
actuators and sensors. Looking for the minimal de- 
pendent sets that are the smallest ones makes the 
problem intractable. 

Remark 2 
The proof of the proposition is based on the analysis 
of an algorithm for a recursive search that traverses 
the Hasse diagram. If the search is started from the 
top (full10 set) at most (n+l)M+Kvisits to the oracle 
are needed. If the search is started from the bottom 
(empty IO set) the number of visits is bounded by 
(n  + l )K + M .  Depending on the values of M and K ,  
one of the two search directions is preferred. 

2.3. Fitness function 
To use the previous results and to get a more or less 
efficient method to select IO sets that are feasible, 
i.e., that meet the robust performance requirement, 
use is made of the following. 

Proposition 2 
Let the design problem be formulated in such a 
way that for all IO sets i, including the empty 
one, the closed loops H(Gj,O) are identical. Then, 
lIH(Gj, Cj)llp is a monotonous fitness function. 

Proof With the assumption that all H(Gj ,O)  are 
equal, the only difference in the closed loop for all 
possible IO sets is the controller. It is enough to note 
that, for all IO sets j that are subsets of IO set k ,  
the controllers Cj are contained in the class of con- 
trollers covered by ck. For a suitable ordering of in- 
puts and outputs ck can be chosen as 

Cj 0 
C k =  l o  01’ 

and the closed loop is equal to that for C j ,  for all j .  
So, controller ck has more freedom to acheve a 
lower peak value of p ,  but is at least able to keep 
p the same as is possible with controllers Cj. 

Remark 3 
In practice p nor a poptimal controller can be com- 
puted efficiently and exactly. Almost exclusively a 
method based on the p upper bound and so-called 
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D-scales is used, intertwined with the computation 
of an Hm-optimal controller in an iterative manner. 
To establish feasibility based on this approximate 
method is not necessarily monotonous. In practice 
this appeared to be not that much a problem, be- 
cause the p upper bound is generally tight and, even 
if it is not, the selection is conservative because it 
will accept IO sets for which the p upper bound is 
smaller than the selection level y, so p itself will be 
smaller also. 

Remark 4 
Not all fitness functions employed in IO selection 
have the monotonous property defined above. For 
instance, a fitness function based on the condition 
number, that is often used in approximate meth- 
ods for IO selection, is not necessarily monotonously 
non-decreasing if actuators or sensors are removed 
from a given IO set. 

Remark 5 
The assumption made in the proposition excludes 
the use of actuators and sensors that require, e.g., a 
structural or parametric change in the model of the 
system. Those devices cannot be included in or ex- 
cluded from an IO set by simply changing the input 
and output matrices of a state space representation 
of the generalized plant, possibly generating other 
differences in the closed loop than those caused by 
the use of another controller only. The assumption 
is only sufficient. It may be relaxed in some cases, 
but the assumption in its present form has the ad- 
vantage of not depending on the controller, that will 
not be available at this stage in the design process. 

From the previous discussion the main result now 
follows 

Theorem 1 
Let for all IO sets i the closed loops H(Gi, 0) be iden- 
tical. Then, the sets characterizing the full solution 
of  the IO selection problem using as fitness function 
llH(Gi,Ci)IIp canbefound with atmostO(nK+M) or 
O(nM -t K )  feasibility tests. 

3. Tool 
A tool has been developed to select feasible IO sets. 
It consists of two major components. The first part 
is a search strategy and computer routine to com- 
pute the complete independence system structure. 
All minimal dependent and maximal independent 
sets are searched for. The second part is a routine 
to compute the fitness function based on p and Hm 
theory and to check feasibility. 
3.1. Search strategy 
The search algorithm mentioned in Remark 2 and 
detailed in [4] is implemented in the program v i  sor 
(vast independence system optimization routine). It 

is called an optimization routine, not a feasibility 
one, because it computes all maximal independent 
sets, so also the largest ones, the maximum, and all 
minimal dependent sets, so also the smallest ones, 
the minimum. This program enables the IO selection 
process to be carried out for large-scale problems. 
Investigations for some artificial worst-case prob- 
lems have shown it to be efficient for at least prob- 
lems with up to 24 binary items to choose from. For 
randomly chosen independence system structures, 
thought to be more representative of real world 
problems, a size of 34 items is also solvable in rea- 
sonable time. For special, simple cases the maximum 
number of 64 items for the current implementation, 
being the word size on 64-bit computers, is also pos- 
sible. In the foregoing, a time to solve the problem is 
reasonable if it is dominated by the feasibility test, 
so still shows a “polynomial” growth rate. 

3.2. Feasibility test 
To get a criterion that does not depend on a con- 
troller and to further reduce the time needed to de- 
termine the sets characterizing the solution, it is ad- 
vantageous to make the feasibility test as far as pos- 
sible controller-independent and efficient. This has 
been carried out for a test based on sufficient and 
necessary conditions for the existence of a controller 
achieving a specified Hm norm, see [ 5,6]. Those con- 
ditions can be based on Riccati equations, or on fea- 
sibility of a related linear matrix inequality problem. 
The first option is preferred based on running time, 
because it is faster, the second is preferred based on 
general applicability, because it removes some tech- 
nical assumptions. 
Here, the problem is not a straightforward Hm con- 
trol one, but it can be cast into t h s  form by employ- 
ing D-scales that are based on data from approxi- 
mating p by its upper bound and that are normally 
used in generating p-optimal controllers. 
The feasibility test for an IO set i now proceeds as 
follows. 
1. 

2. 

3. 

4. 
5 .  

6. 

7. 

8. 
9. 

Set up the generalized plant Gj corresponding to 
IO set i. 
Expand the plant with the most recently com- 
puted D-scale transfer functions or with those 
successfully used for the previous IO set. 
Check if the Hm existence conditions for a level 
y are met, if yes, return TRUE. 
Compute an Hm-optimal controller. 
Form closed loop and compute p for a grid of 
frequencies. 
Check if peak value of p is less than y ,  if yes, 
return TRUE. 
Check if iteration with D-scales has converged, if 
yes, return FALSE. 
Compute new D-scale transfer functions. 
Proceed with 2. 
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Remark 6 
In practice, quite often the Hm existence conditions 
check is the only thing done, no controller needs to 
be computed. Only IO sets that fail these conditions 
need to go through the whole rigmarole of controller 
computation to rigorously verify if they are feasible. 

Remark 7 
The test procedure outlined above is reminiscent of 
the iterative method used to design p-optimal con- 
trollers. The main diflerences are that it starts with 
D-scales that are already available and is terminated 
prematurely if the test level is met. It is known that p 
optimal controller design is a non-convex optimiza- 
tion problem, so reaching a global optimum cannot 
be guaranteed. This is another factor why in practice 
a monotonous fitness function is not really realized. 

4. Example 
The methods outlined above, and their correspond- 
ing implementation, have withstood the test of a 
practical, large-scale problem with n,  = 7 actuators 
and ny = 21 sensors to choose from for an active 
suspension control problem of a tractor-semitrailer 
model with ten degrees-of-freedom. The vehicle is a 
multi-body system, with as main bodies three axles, 
semitrailer, tractor chassis, engine, and cabin. See 
Fig. 3 for an overview of the system and the poten- 
tial actuators and sensors. Force generators act on 
the system and position and acceleration are sensed. 
The part of the variables w and z related to the per- 
formance specifications are indicated also. More in- 
formation on the model, the model parameters, and 
the control problem formulation, including the mo- 
tivation for the choice of weighting functions, can be 
found in [7]. 
The uncertainty considered is the load of the semi- 
trailer. The semitrailer mass and inertia vary be- 
tween 0.1 and l times the values for the fully loaded 
semitrailer, whde the stiffness of the rear suspension 
changes proportionally with its load due to the use of 
self-leveling air springs. Pulling the uncertainties out 
of the plant requires four uncertainty-related signals 
in w and in z. The load variations of the semitrailer 
are modeled as a complex repeated uncertainty. This 
implies that both the left and right D-scales are four 
by four full transfer function matrices. 
The number of states for the generalized plant, 
tractor-semitrailer model plus weighting functions, 
was 26. The order of the model for 3fm controller de- 
sign, i.e., the generalized plant with D-scales, varied 
between less than 50 and more than 200, depending 
on the maximal order of the entries of the D-scale 
transfer functions, whch has been varied between 
three and eight. The closed loop used for p computa- 
tion, i.e., the generalized plant with the Nm-optimal 
controller, contained between 50 and 200 states, de- 
pending on the order of the controller. 

The large number of states posed some problems 
in the D-scales and 3fm-controller computation and 
required some trickery to avoid numerical errors: 

0 sprinkling around calls to a function that bal- 
ances the system representation, to avoid ill con- 
ditioned matrices and hardly controllable or ob- 
servable poles 

0 fiddling with numerical tolerances. 
It also became clear that the iteration with D-scales 
did not always converge to a global minimum, see 
Remark 7. If the iteration got stuck close to the test 
level y it was restarted with different initial D-scales. 
Remark that the iterative test is normally started 
with the D-scales that were computed for the last 
tested IO set that was feasible. Those D-scales may 
be optimal for that IO set, but not for the current one 
by any margin. 
Results for this problem were obtained for several 
values of the test level y .  Although the search strat- 
egy appeared to be rather efficient, the feasibility test 
for an IO set that is not feasible requires several iter- 
ations with controller and p computations. This test 
is thus rather involved, but manageable when K and 
M are not too large. Those values depend, among 
other factors, on y .  A value of y has been used that 
still velds feasible IO sets with only one actuator 
and one sensor and that improves the peak p value 
by at least a factor 1.7 compared with the passive 
suspension. 
A search starting with the full IO set gives M = 58, 
K = 9. Thenumber of IO sets actually testedwas 658. 
This represents a fraction 2.5 . of all IO sets. 
The selection procedure was completed in exactly 
15 hours computing time. Table 1 gives the results 
of the 10 selection. 

Table 1: Feasible IO sets with n, = 1 and ny = 1 
Actuator Sensor 

Rear suspension trailer u3 
Rear suspension trailer u3 
Rear suspension trailer U? 

Suspension deflec. trailer y3 
Acceleration trailer axle ylo 
Acceleration rear trailer YI 

As can be seen from Table 1 there were three min- 
imal IO sets with one actuator and one sensor. Fur- 
thermore, there were five IO sets with one actuator 
and two sensors and 50 IO sets with one actuator and 
three sensors among the minimal dependent sets. 
The table also shows that actuation and sensing at 
the rear of the semitrailer is advantageous. This is 
explained by considering the uncertainty in the semi- 
trailer load, that is most evident and easiest to tackle 
at or near the semitrailer itself. 
From the values of M and K it may appear that a 
search starting from the empty IO set would be more 
efficient, see Remark 2. The number of feasibility 
tests for this case is much reduced to 270. Neverthe- 
less, the time needed for the computation was twice 
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f : acceleration 1 :displacement e ;center of mass 

Figure 3: Tractor-semitrailer with actuators Uj, i = 1,. . . , 7  and sensors yi, i = 1,. . . ,21 

as large, namely = 28 hours, so in average 10 tests 
per hour are handled. The reason is that the fraction 
of tested IO sets that are termed infeasible is much 
larger now and those IO sets need more time in the 
feasibility test. 
It also appeared that for the search starting at the 
empty IO set one obtains M = 64 and K = 13 ,  which 
differ from the previous values. A few cases where 
the test level y can hardly be met, leading to erro- 
neous results by convergence to a local optimum in 
the iterative feasibility test, see Remark 7, are the 
cause. A few of those cases are remedied by restart- 
ing the iteration with other D-scales, but not all. The 
three smallest feasible IO sets are still generated, 
however. 

5.  Conclusions 
A selection strategy and a feasibility test were de- 
signed for a class of IO selection problems. A tool, 
enabling a rigorous assessment of all possible com- 
binations of actuators and sensors, without perform- 
ing a feasibility test for all of them, but only for a 
very small fraction, was developed. The approach 
is therefore called efficient. It may still require an 
amount of work that is combinatorial in terms of the 
number of input and output devices, but it is polyno- 
mial in terms of this number and of the cardinality 
of the sets that completely characterize the solution. 
Application to a large-scale IO selection problem, for 
a medium sized plant with 28 input/output devices 
to choose from, shows the method and the corre- 
sponding tool to be able to tackle this problem, with 
enough potential to make application to even larger 
problems a realistic option. 
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