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Abstract

Identification of sparse high dimensional linear systems pose sever challenges to off-the-shelf techniques for system identification. This
is particularly so when relatively small data sets, as compared to the number of inputs and outputs, have to be used.

While input/output selection could be performed via standard selection techniques, computational complexity may however be a critical
issue, being combinatorial in the number of inputs and outputs. Parametric estimation techniques which result in sparse models have
nowadays become very popular and include, among others, the well known Lasso, LAR and their “grouped” versions Group Lasso and
Group LAR.

In this paper we introduce two new nonparametric techniques which borrow ideas from a recently introduced Kernel estimator called
“stable-spline” as well as from sparsity inducing priors which use �1-type penalties. Numerical experiments regarding estimation of large
scale sparse (ARMAX) models show that this technique provides a definite advantage over a group LAR algorithm and state-of-the-art
parametric identification techniques based on prediction error minimization.

Key words: linear system identification; sparsity inducing priors; kernel-based methods; Bayesian estimation; regularization; Gaussian
processes

1 Introduction

Black-box identification approaches are widely used to
learn dynamic models from a finite set of input/output
data [24,38]. In particular, in this paper we focus on the
identification of large scale linear systems that involve a
wide amount of variables and find important applications
in many different domains such as chemical engineering,
econometrics/finance, computer vision, systems biology,
social networks and so on [29,23].

In engineering applications, when data are collected from a
physical plant, it is often the case that there is an underlying
interconnection structure; for instance the overall plant could
be the interconnection via cascade, parallel, feedback and
combinations thereof, of many dynamical systems. In this
scenario any given variable may be directly related to only a
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few other variables. In the static Gaussian case, the “relation”
is expressed in terms of conditional independence conditions
between subsets of variables, see e.g. [9].

In the dynamic case, i.e. when observed data are trajectories
of (possibly stationary) stochastic processes, conditional in-
dependence conditions encode the fact that the prediction of
(the future of) one variable (which we shall call “output vari-
able”) may require only the past history of few other vari-
ables (which we shall call “inputs”) plus possibly its own
past. This can be represented with a graph where nodes are
variables and (directed) edges are (non zero) transfer func-
tions, self-loops encoding dependence on the “output” own
past 1 . In general both the dynamical systems and the in-
terconnection structure is unknown and have to be inferred
from data.

When the number of of measured variables is very large

1 In the language of classical System Identification, dependence
of the predictor on the past outputs will result in ARMAX models,
lack of dependence in Output Error (OE) models.
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and possibly larger than the number of data available (i.e.
the number of “samples” available for statistical inference),
even though there is no “physical” underlying network, then
constructing meaningful models which are useful for pre-
diction/monitoring/intepretation requires trading off model
complexity vs. fit. In a parametric setup this complexity de-
pends on the number of parameters which is related to both
the complexity of each “subsystem” (e.g. measured via its
order) as well as to their number (i.e. the number of dynam-
ical systems which are “non zero”).

Problems of this sort have been recently studied in the liter-
ature, see for instance [40,30,26,27] and references therein.
In the paper [40] coupled nonlinear oscillators (Kuramoto
type) are considered where the coupling strengths are to be
estimated; in [30] nonlinear dynamics are allowed and the
attention is restricted to the linear term 2 in the state update
equation, equivalent to a vector autoregressive (VAR) model
of order one. In both cases it is assumed that the entire state
space is measurable and an �1-penalized regression prob-
lem is solved for estimating the coupling strenghts/linear
approximations. Instead, [26,27] consider linear models and
the methodology is based on smoothing a la Wiener, where
interconnections are found by putting a threshold on the es-
timated transfer functions.

In this paper we shall focus on modeling the relation be-
tween one node in this network (the “output” variable) and
all the other variables measured (the “inputs” ) in a “predic-
tion error” framework. Beyond linearity, we shall not make
any assumption on each subsystem (e.g. no knowledge of
system orders). Our focus is both on finding the underlying
connection structure (if any) as well as obtaining reliable and
easily interpretable models which can be used, e.g. for pre-
diction/monitoring etc. Of course, the problem of modeling
an “output” y as a function of certain inputs u is meaning-
ful per se, and one may not be interested at all in building
a complete “network of dependences” for the joint process
(u,y) but just to perform variable selection in linear system
identification when many “exogenous” variables are present.

In this scenario a key point is that the identification proce-
dure should be sparsity-favoring, i.e. able to extract from the
large number of subsystems entering the system description
just that subset which influences significantly the system
output. Such sparsity principle permeates many well known
techniques in machine learning and signal processing such
as feature selection, selective shrinkage and compressed
sensing [20,11].
In the classical identification scenario, Prediction Error
Methods (PEM) represent the most used approaches to opti-
mal prediction of discrete-time systems [24]. The statistical
properties of PEM (and Maximum Likelihood) methods are
well understood when the model structure is assumed to be
known. However, in real applications, first a set of compet-
itive parametric models has to be postulated. Then, a key

2 Thinking of a first order Taylor expansion around the trajectory

point is the selection of the most adequate model structure,
usually performed by AIC and BIC criteria [1,36]. Not sur-
prisingly, the resulting prediction performance, when tested
on experimental data, may be distant from that predicted by
“standard” (i.e. without model selection) statistical theory,
which suggests that PEM should be asymptotically efficient
for Gaussian innovations. If this drawback may affect stan-
dard identification problems, a fortiori it renders difficult
the study of large scale systems where the elevated number
of parameters, as compared to the number of data available,
may undermine the applicability of the theory underlying
e.g. AIC and BIC.
Some novel estimation techniques inducing sparse models
have been recently proposed. They include the well known
Lasso [39] and Least Angle Regression (LAR) [12] where
variable selection is performed exploiting the �1 norm. This
type of penalty term encodes the so called bi-separation
feature, i.e. it favors solutions with many zero entries at the
expense of few large components. Consistency properties
of this method are discussed e.g. in [50,51]. Extensions
of this procedure for group selection include Group Lasso
and Group LAR (GLAR) [49] where the sum of the Eu-
clidean norms of each group (in place of the absolute value
of the single components) is used. Theoretical analysis of
these approaches and connections with the multiple kernel
learning problem can be found in [4,28]. However, most of
the work has been done in the “static” scenario while very
little, with some exception [45,21], can be found regarding
the identification of dynamic systems.
In this paper we adopt a Bayesian point of view to pre-
diction and identification of sparse linear systems. Our
starting point is the new identification paradigm developed
in [34] that relies on nonparametric estimation of impulse
responses (see also [32] for extensions to predictor estima-
tion). Rather than postulating finite-dimensional structures
for the system transfer function, e.g. ARX, ARMAX or
Laguerre [24], the system impulse response is searched for
within an infinite-dimensional space. The intrinsical ill-
posed nature of the problem is circumvented using Bayesian
regularization methods. In particular, working under the
framework of Gaussian regression [35], in [34] the system
impulse response is modeled as a Gaussian process whose
autocovariance is the so called stable spline kernel that in-
cludes the BIBO stability constraint.
We extend this nonparametric paradigm to the design of
optimal linear predictors for sparse systems. Without loss of
generality, analysis is restricted to MISO systems, where the
variable to be predicted is called “output variable” and all
the other (say m−1) available variables are called “inputs”.
In this way we interpret the predictor as a system with m
inputs (given by the past outputs and inputs) and one out-
put (output predictions). Thus, predictor design amounts to
estimating m impulse responses modeled as realizations of
Gaussian processes. We set their autocovariances to stable
spline kernels with unknown scale factors.

We consider two approaches: the first, which we shall call
Stable-Spline GLAR (SSGLAR), is based in the GLAR al-
gorithm in [49] and can be seen as a variation of the so-
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called “elastic net” [52]; the second, which we shall call
Stable-Spline Exponential Hyperprior (SSEH) uses a hierar-
chical prior which assigns exponential hyperpriors having a
common hypervariance to the scale factors. This second ap-
proach has connections with the so-called Relevance Vector
Machine in [41]; see also the discussion on scale-mixture
distributions in [17]. In this way, while SSGLAR uses the
sum of the �1 norms of the single impulse responses, the hy-
erarchical hyperprior favors sparsity through an �1 penalty
on kernel hyperparameters. Inducing sparsity by hyperpriors
is an important feature of our approach. In fact, this permits
to obtain the marginal posterior of the hyperparameters in
closed form and hence also their estimates in a robust way.
Once the kernels are selected, the impulse responses are ob-
tained by a convex Tikhonov-type variational problem.

As we shall see, however, SSEH requires solving a non-
linear optimization problem which may benefit from a
“good” initialization. We shall argue that, indeed, SSGLAR
provides a robust and computationally attractive way on
initializing SSEH.

Numerical experiments involving sparse ARMAX systems
show that this approach provides a definite advantage over
both the standard GLAR (applied to ARX models) and
PEM (equipped with AIC or BIC) in terms of predictive
capability on new output data while also effectively captur-
ing the “structural” properties of the dynamic network, i.e.
being able to identify correctly, with high probability, the
absence of dynamic links between certain variables.

The paper is organized as follows: TO BE DONE

Notation

The symbols E[·] denotes expectation while Ê[·|·] denotes
the best linear estimator (conditional expectation in the
Gaussian case). In addition for A ∈ Rn×m, A[i j] will denote
the element of A in position (i, j). If A is a vector the
notation A[i] will be used in place of A[i1] or A[1i]; in addi-
tion A[−i] denotes the vector A with the i− th component
suppressed. The symbol I denotes the identity matrix of
suitable dimensions, A� is the transpose of the matrix A and
�x�p is the p−norm of the vector x. The symbol �1(Z+)
will denote the space of real infinite sequences (indexed by
Z+) having finite �1 norm, i.e. the infinite column vector
g := [g1,g2, ..,gk, ..]� ∈ �1(Z+) iff ∑∞

i=1 |gi|< ∞.

2 Statement of the problem and notation

Let {zt}t∈Z, zt ∈ Rm be a stationary stochastic processes
which models the joint time evolution of some variables of
interests. With some abuse of notation the symbol zt will both
denote a random variable (from the random process {zt}t∈Z)
and its sample value. We can think of each component of
the vector process {zt} as being attached to the node of a

network. Our purpose is to build linear dynamical models
which describe dynamically each of the components of {zt}
as a function of the others. To this purpose we define yt := z[i]t
(the i− th component of zt ) as “output” and all the others
ut := z[−i]

t ∈ Rm−1 as “inputs”. Of course the argument can
be repeated for i = 1, ..,m thus obtaining a description of all
the variables in zt as a function of the others. Throughout the
paper we shall make a specific choice of i which, w.l.o.g.,
can be taken equal to 1 so that

zt :=

�
yt

ut

�
(1)

This sort of notation is standard in modeling feedback inter-
connections (see e.g. [15,14,7]) where one concentrates on
one variable viewing the others as “inputs”, with the assump-
tion that the overall interconnection is such that the joint
process is stationary. Also the absence of direct feedthrough
terms (i.e. f0 = 0 in (2)) makes life a bit easier (see e.g.
[42]) in that under mild excitation conditions it guarantees
identifiability.

In particular we define the sets of past measurements at time
t

Y t = [yt−1 yt−2 . . .] , Ut = [ut−1 ut−2 . . .]

From stationarity of {zt}t∈Z it follows that {yt}t∈Z and
{ut}t∈Z are jointly stationary stochastic processes which can
be thought of, respectively, as the output and input of an
unknown time-invariant dynamical system 3 :

yt =
∞

∑
k=1

fkut−k +
∞

∑
k=0

gket−k (2)

were fk ∈ R1×m and gk ∈ R are (matrix) coefficients of the
unknown impulse responses and et is the innovation se-
quence, i.e. the one step ahead linear prediction error

et := yt − ŷt|t−1 := yt −E[yt |Yt ,Ut ]

E[yt |Yt ,Ut ] := ∑m−1
j=1

�
∑∞

k=1 h[ j]k u[ j]t−k

�
+∑∞

k=1 h[m]
k yt−k.

(3)
The sequences hk := [h[1]k , ..,h[m−1]

k ,h[m]
k ]∈R1×m, k ∈Z+ are

the predictor impulse response coefficients and are required
to describe (BIBO) stable systems, i.e. h[m] ∈ �1(Z+).

In the prediction error minimization (PEM) framework iden-
tification of the dynamical system in (2) can be framed as

3 In order to streamline notation we shall assume one delay from
ut to yt . If this is true for all possible decompositions yt = z[i]t ,
ut = z[−i]

t , i = 1, ..,m, it can be shown that the interconnection is
well posed. Of course to achieve stationarity further restrictions
have to be imposed.
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Fig. 1. A dynamical network representing the interaction between
m = 6 variables. The solid edges represent the links related to the
dynamical model for node yt := z[1]t given all the others. With ref-
erence to equation (3), absence of links from u[i]t = z[i+1]

t , i = 1,5
to yt := z[1]t means that h[1]k = h[5]k = 0, ∀k ∈Z+. The node contain-
ing yt has an “entering” arrow which represents the influence of et
(the one step ahead prediction error of yt ). The dotted edges refer
to other decompositions of the form (1) where yt = z[ j]t , ut = z[− j]

t
for j �= 1.

estimation of the predictor impulse responses hk in (3) from
a finite set of input-output data {ut ,yt}t=1,..,N . We specif-
ically address situations in which m is very large as com-
pared to the number of available data N and only few vari-
ables are in fact needed to predict yt . Mathematically this
means that h[i]k = 0, ∀k ∈ Z+. In a graphical representation
there will be a directed link from the node representing u[i]k

to that representing yk if and only if ∃k ∈ Z+ : h[i]k �= 0,
i = 1, ..,m−1; in addition there is a self loop if and only if
∃k ∈Z+ : h[m]

k �= 0. For instance for the network represented
in Figure 1, h[5]k = h[1]k = 0, ∀k ∈ Z+ while h[2]k ,h[3]k ,h[4]k and
h[6]k are not identically zero, meaning that for prediction of
yt one needs (only) the past of u[2],u[3],u[4] and of y itself.

In practice one does not know whether a measured signal
is significant for prediction of yt . Standard PEM methods
[24,38] do not attempt to perform input selection and esti-
mate a “full” model which uses all inputs. As we shall see
this may yield poor results when the number of inputs be-
comes large as compared to the data available. Variable se-
lection methods has been subject of intense research; clas-
sical methods can be found in the books [46,19] while we
refer to the survey [18] for a more recent overview.

In this paper we shall be specifically concerned with method-
ologies which, favoring sparsity, will be able to capture the
structure of a dynamical network, like the one Figure 1,
and at the same time estimate all the (non-zero) impulse re-
sponses h[i]k in (3).

3 Preliminaries: kernels for system identification and
sparsity inducing priors

3.1 Kernel-based regularization

A widely used approach to reconstruct a function from indi-
rect measurements {yt} consists of minimizing a regulariza-
tion functional in a reproducing kernel Hilbert space (RKHS)
H associated with a symmetric and positive-definite kernel
K [3]. Given N data points, least-squares regularization in
H estimates the unknown function as

ĥ = argmin
h

N

∑
t=1

(yt −Γt [h])2 +η�h�2
H (4)

where {Γt} are linear and bounded functionals on H re-
lated to the measurement model while the positive scalar η
trades off empirical error and solution smoothness [44].
Under the stated assumptions and according to the repre-
senter theorem [22], the minimizer of (4) is the sum of N
basis functions defined by the kernel filtered by the opera-
tors {Γt}, with coefficients obtainable solving a linear sys-
tem of equations. Such solution enjoys also an interpretation
in Bayesian terms. It corresponds to the minimum variance
estimate of h when h is a zero-mean Gaussian process with
autocovariance K and {yt −Γt [h]} is white Gaussian noise
independent of h [37]. Often, prior knowledge is limited to
the fact that the signal, and possibly some of its derivatives,
are continuous with bounded energy. In this case, f is often
modeled as the p-fold integral of white noise. If the white
noise has unit intensity, the autocorrelation of h is Wp where

Wp(s, t) =
� 1

0
Gp(s,u)Gp(t,u)du, (5)

Gp(r,u) =
(r−u)p−1

+

(p−1)!
, (u)+ =

�
u if u ≥ 0

0 if u < 0
(6)

This is the autocovariance associated with the Bayesian in-
terpretation of p-th order smoothing splines [43]. In partic-
ular, when p = 2, one obtains the cubic spline kernel.

3.2 Kernels for system identification

In the system identification scenario, the main drawback of
the kernel (5) is that it does not account for impulse response
stability. In fact, the variance of h increases over time. This
can be easily appreciated by looking at Fig. 2 (left) which
displays 100 realizations drawn from a zero-mean Gaussian
process with autocovariance proportional to W2. One of the
key contributions of [34] is the definition of a kernel specif-
ically suited to linear system identification leading to an es-
timator with favorable bias and variance properties. In par-
ticular, it is easy to see that if the autocovariance of h is
proportional to Wp, the variance of h(t) is zero at t = 0 and
tends to ∞ as t increases. However, if f represents a stable
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Fig. 2. Realizations of a stochastic process h with autocovariance
proportional to the standard Cubic Spline kernel (left), the new
Stable Spline kernel (middle) and its sampled version enriched
by a parametric component defined by the poles −0.5±0.6

√
−1

(right).

impulse response, we would rather let it have a finite vari-
ance at t = 0 which goes exponentially to zero as t tends to
∞. This property can be ensured by considering autocovari-
ances proportional to the class of kernels given by

Kp(s, t) =Wp(e−β s,e−β t), s, t ∈ R+ (7)

where β is a positive scalar governing the decay rate of the
variance [34]. In practice, β will be unknown so that it is
convenient to treat it as a hyperparameter to be estimated
from data.
In view of (7), if p = 2 the autocovariance becomes the
Stable Spline kernel introduced in [34]:

K2(t,τ) =
e−β (t+τ)e−β max(t,τ)

2
− e−3β max(t,τ)

6
(8)

Proposition 1 [34] Let h be zero-mean Gaussian with au-
tocovariance K2. Then, with probability one, the realizations
of h are continuous impulse responses of BIBO stable dy-
namic systems.

The effect of the stability constraint is visible in Fig. 2 (mid-
dle) which displays 100 realizations drawn from a zero-
mean Gaussian process with autocovariance proportional to
K2 with β = 0.4.

In practice we shall be working in discrete time and therefore
we shall consider sampled versions of h(t) (say hk) so that
{hk}k∈Z+ can be seen as realizations from the “sampled’
Kernel K(i, j) i, j ∈ Z+, so that h ∈ �1(Z+) almost surely.

3.3 Prior for predictor impulse responses

We shall model {h[i]} as independent Gaussian processes
whose kernels share the same hyperparameters apart from

the scale factors. In particular, each h[i] is proportional to the
convolution of a zero-mean Gaussian process, with autoco-
variance given by the sampled version of K2, with a para-
metric impulse response r, used to capture dynamics hardly
represented by a smooth process, e.g. high-frequency oscil-
lations. For instance, the zeta-transform R(z) of r can be
parametrized as follows

R(z) =
z2

Pθ (z)
, Pθ (z) = z2 +θ1z+θ2, θ ∈ Θ ⊂ R2

(9)
where the feasible region Θ constraints the two roots of Pθ (z)
to belong to the open left unit semicircle in the complex
plane. To better appreciate the role of the finite-dimensional
component of the model, Fig. 2 (right panel) shows some
realizations (with samples linearly interpolated) drawn from
a discrete-time zero-mean normal process with autocovari-
ance given by K2 enriched by θ = [1 0.61] in (9). Notice
that, in this way, an oscillatory behavior is introduced in the
realizations by enriching the Stable Spline kernel with the
poles −0.5±0.6

√
−1.

The kernel of h[k] defined by K2 and (9) is denoted by
K : N×N �→ R and depends on β ,θ . Thus, letting E[·] de-
note the expectation operator, the prior model on the impulse
responses is given by

E[h[i]� h[i]k ] = λ 2
i K(�,k;θ ,β ), i = 1, . . . ,m, �,k ∈ N (10)

3.4 Sparsity inducing priors

Let us consider the problem of estimating the parameter
θ ∈ Rm in the linear model

Y = Xθ +W (11)

where Y ∈ RN is the output vector data, X ∈ RN×m is the
“regression vector” and W ∈ RN is a noise term which we
shall assume to be a zero mean vector with E[WW�] = σ2I.

When the number m of regressors is very large (e.g. as com-
pared to the number N of data available), obtaining accu-
rate and stable predictors and easily interpretable models be-
comes a challenging issue which has been quite extensively
addressed in the statistical literature in the last decade, see
e.g. [39,5,41,19,12,13,6] and references therein.

A pioneering work in this direction has been the so called
Lasso (Least Absolute Shrinkage and Selection Operator)
[39] in which regressor selection has been performed by
solving a problem of the form

θ̂ := arg min
θ

�Y −Xθ�2
2 s.t. �θ�1 ≤ t (12)

or, equivalently, the �1-penalized problem

θ̂ := arg min
θ

�Y −Xθ�2
2 + γ1�θ�1. (13)
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which in turn can also be seen as the Maximum a Posteriori
(MAP) estimator in a Bayesian framework by assuming that
W has a Gaussian distribution and θ a double exponential-
type prior

p(θ) ∝ e−λ�θ�1 . (14)

Despite its nice properties it has been argued (see [25]) that
Lasso had not had a significant impact in statistical practice
due to its relative computational inefficiency. The Least An-
gle Regression (LAR) algorithm [12] has provided a new
approach to regressor selection and, with minor modifica-
tions (the “Lasso modification”, [12]), also an efficient im-
plementation of the Lasso.

Recently the Lasso has been proposed for estimation of re-
gression models with autoregressive noise [45] and for Vec-
tor Autoregressive with eXogenous inputs (VARX) models
[21]. This is a rather straightforward application once the
regressor matrix X in (13) is formed with past inputs and
outputs and θ contains the parameters of the finite memory
predictors (ARX models).

Another avenue which has been put forward in the statistics
literature adopts a Bayesian point of view by modeling the
components of θ as independent Gaussian random variables
p(θ [i]|λi) =N(θ [i];0,λ 2

i ) where

N(θ ;m,λ 2) =
1√

2πσ2
e−

1
2
(θ−m)2

λ2 .

A second layer is then added to the model by assuming that
also the λi’s are random variables with a certain density
p(λi). It follows that

p(θ) = ∏
i

�
p(θ [i]|λi)p(λi)dλi (15)

which is a so-called “scale-mixture” distribution [2,47,31,17].
It is well known [2,47,31] that, if σ2

i has an exponential
distribution itself, then p(θ) in (15) has the “double ex-
ponential” form (14). This is also related to the so called
“Relevance Vector Machine” introduced in [41] which,
however, uses a Gamma-type of prior on λ−2

i .

In this paper we shall be concerned with a version of the
problem (11) where each of the components θi of θ lives
in fact in an infinite dimensional RKHS with kernel K(s, t)
as in (7) or, equivalently, θi is a Gaussian Process [35] with
covariance K(s, t). The regressor matrix X (which to be pre-
cise will be a linear operator whose representation has in-
finitely many columns) will contain the past histories of u
and y. Details are found in the next section.

4 Variable selection as group sparsity

In this section we shall see how variable selection can be
posed as the problem of obtaining sparse solution of a linear

problem similar to (11) discussed in Section 3.4. There are,
however, a few notable differences which makes this, in
our opinion, a non-trivial extension of previous results. In
particular:

(a) Since we are interested in performing variable selection,
we would like that certain impulse responses to be iden-
tically zero. This is a sort of “group” problem, similar to
those discussed in [49]; however our “groups” are the im-
pulse responses h[i]. In a parametric scenario (i.e. when
the impulse response are modeled in finite dimensional
model classes, see e.g. [24,38]) each group of parameters
would describe one impulse response. If we restrict our
interest to ARX/FIR models this naturally yield to an al-
gorithm for variable selection which we shall call “ARX-
GLAR” (since we shall used the “group LAR” algorithm;
one could have of course used the “group Lasso” [49]). In
general however, the parametrization is non-linear and, in
addition, a further model selection problem would have to
be faced related to the complexity of the parametric class
describing each impulse response. We prefer to work in
the nonparametric scenario described in Section 3 so that
the “groups” live in an infinite dimensional space.

(b) The unknown “parameters” live in an RKHS which can
be handled, as discussed in Section 3 via regulariza-
tion/priors. This yields to formulations similar to multiple
kernel learning [4].

In order to be more precise we need now to set up some
notation: let us define

y+t :=





yt
...

yt+N−1



 e+t :=





et
...

et+N−1



 h :=





h[1]
...

h[m]



 ;

(16)
where h[i] ∈ �1(Z+), i = 1, ..,m. The predictor in (3) can be
rewritten 4 as:

y+t =
�

At1 . . . Atm

�

� �� �
:=At

h+ e+t (17)

where Ati ∈ RN×∞, i = 1, ..,m are defined as

A[ jk]
ti := u[i]t− j−k, i = 1, ..,m−1, j,k ∈ Z+

A[ jk]
tm := yt− j−k, j,k ∈ Z+

(18)

Our identification problem can be stated as that of estimat-
ing h in (17),(16), subject to h[i] ∈ �1(Z+), i = 1, ..,m. Re-
call that we are interested in estimators which automatically

4 The product of semi-infinite matrices should be intended as the
limit of finite sequences. However, given the assumption h[i] ∈
�1(Z+) the limit operation is well posed and, as such, we can
formally work with the limiting expressions (see [32]).
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selects, among u[1], ..,u[m−1],y, the variables which are use-
ful for predicting y and which are not. This is equivalent
to saying that certain impulse responses ĥ[i] are expected to
be exactly zero. Solving this problem entails estimation in
“grouped” variables [49,48]; however a peculiarity here is
that each “group” lives in an infinite dimensional space (or
equivalently has infinitely many components) as in Multiple
Kernel Learning [4].

The two approaches we consider in this paper are:

(i) SS-GLAR: a “group version” [49] of (12) extended to a
non-parametric setup where the “groups” h[i] (see (17))
live in an infinite dimensional space; in order to include
the penalty in the infinite dimensional space we have to
solve a mixed �1 − �2 regularization problem which can
be seen as a “group” version of the so-called “elastic-net”
[52]. It is well known that the �2 penalty in the elastic
net helps in selecting groups of correlated variables [52].
Note that this is different from the standard formulation
of Multiple Kernel Learning [4]. Details will be given in
Section 6.

(ii) SSEH: a hierarchical model where h[i] is a Gaussian Pro-
cess with covariance λiK(s, t) and the scale factors λi’s
have an exponential distribution, which will favor spar-
sity on the space of scale factors. As mentioned in [8]
(see also [10]) this is also related to multiple kernel learn-
ing. This second approach will actually allow to intro-
duce more flexibility in the Kernels enriching them with
a parametric component as done in Section 3.3; as argued
in [32] this may be advantageous in situations where the
impulse responses contain “fast” dynamics which are pe-
nalized by the regularization term, see also [33]. Details
will be given in Section 7.

5 Predictor estimation in RKHS and finite dimensional
approximation

Let us assume now that the impulse responses h[i] are (sam-
pled versions of) functions in HK , the reproducing Kernel
Hilbert space associated to the sampled Kernel 5 K in (10).
The can be equivalently be stated saying that h[i] are Gaus-
sian process with covariance function K.

The problem of estimating the impulse responses h[i] from
measured data can be formulated as the following Tikhonov-
type regularization problem:

{ĥ[i]}= arg min
h[i]∈HK

N

∑
t=t0

(yt − ŷt|t−1)
2 + γ2

2

�
m

∑
i=1

�h[i]�2
HK

�
(19)

5 When not needed, in order to simplify notations we shall omit
the explicit dependence on θ and β .

subject to

ŷt|t−1 =
m−1

∑
i=1

�
∞

∑
k=1

h[i]k u[i]t−k

�
+

∞

∑
k=1

h[m]
k yt−k (20)

The parameter γ2 is the so called regularization parameter
which has to trade fit yt − ŷt|t−1 vs. regularity of h[i].

In order to reframe this problem in a finite dimensional
setup we modify the Kernel K so that realization from the
modified Kernel satisfy h[i]k = 0 (a.s.), ∀k > J . It is simple
to see that the Kernel/covariance (say KJ) which guarantees
this condition satisfies KJ(h,k) = 0, ∀(h,k): k > J or h > J.

The truncated impulse response coefficients are collected in
a column vector as:

h[i] := [h[i]1 ,h
[i]
2 , ...,h

[i]
t0 ]

�

The number J does not have to trade bias vs. variance but
is just related to computational issues. With some abuse of
notation we shall also denote with KJ ∈ RJ×J the symmet-
ric positive definite matrix formed with the sampled Ker-
nel coefficients up to lag J. Under this condition the norm
�h[i]�2

HKJ
can be written as:

�h[i]�2
HKJ

=
�

h[i]
��

K−1
J h[i]

Hence the one-step-ahead predictor ŷt|t−1 is written in the
form

ŷt|t−1 =
m−1

∑
i=1

�
J

∑
k=1

h[i]k u[i]t−k

�
+

J

∑
k=1

h[m]
k yt−k (21)

Hence, under the restriction h[i] ∈HKJ , the solution to prob-
lem (19) is found as

arg min
h[i]∈Rt0

N

∑
t=t0

(yt − ŷt|t−1)
2 + γ2

2

m

∑
i=1

��
h[i]

��
K−1

J h[i]
�

(22)

subject to (21).

Hence, the problem can be reformulated as that of estimat-
ing a (long) ARX model where a regularization penalty is
included in the estimation criterion (see also the discussion
in the paper [?]).

6 Stable Splines Group LAR (SSGLAR) algorithm

In this section we shall discussed how (22) can be solved
enforcing sparsity on the groups h[i]t0 using the GLAR algo-
rithm [49]. In order to do so we shall have to assume the
parameter θ in (9) has been fixed; without any prior infor-
mation it will be fixed equal to zero.
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Problem (22) is an �2-penalized linear regression problem
which can be rewritten in the form

ȳ+t0 =
m

∑
i=1

ĀJih
[i]
t0 +W (23)

provided we define

ȳ+t0 :=

�
y+t0

01×(t0·m)

�

,

ĀJi :=
�

AJi vi ⊗Λ
�

Λ := γ2K−1/2
J

vi := [ 0 . . . 0� �� � 1 0 . . . 0� �� � ]�

i−1 m− i

(24)

Performing input selection can be tackled, as discussed in
Section 3.4, via the Group Least Angle Regression algorithm
in [12] applied to the regression problem (23). We shall call
SS-GLAR (Stable Spline Group Least Angle Regression)
the resulting algorithm which we now summarize:

Algorithm: Stable Spline Group Least Angle Regression
(SS-GLAR)

(1) fix the parameter β in (10);
(2) fix the parameter γ2 in (19) and (24); form the regressor

ĀJi in (23) as described in formulas (24), (18);
(3) estimate h[i] applying the LAR algorithm to problem

(23);

6.1 Estimation of the hyper-parameters

Note that, in order to run the previous algorithm, the follow-
ing parameters have to be chosen:

(a) the �2 penalty γ2
2 in (24) (regularity of [h[i]1 , ..,h

[i]
t0 ] in

the space HKt0
)

(b) the parameter β in (10) (decay rate of the Kernel)
(c) the number of non-zero blocks estimated via the GLAR

algorithm.

These can be estimated using sa validation based ap-
proach as follows: Let {yt ,ut}t=1,..,N be the available data.
We split the data set in two parts. We call identifica-
tion data set {yt ,ut}t=1,..,�2N/3� and validation data set
{yt ,ut}t=�2N/3�,..,N . We run the identification algorithms for
fixed hyperparameters on the identification data set and
validate the identified model on the validation data set. We
grid the hyperparameter space (β ∈ R+, γ2 ∈ R+) so that
only a finite (and possibly small) number of alternatives

is tested 6 . Also different level of sparsity (i.e. different
number of non-zero groups i = 1, ..,m) are tested. We fi-
nally select the identified model which performs best (as
measured by the root-mean-squared error in one-step-ahead
prediction error RMS1 in (25)) on validation data.

RMSk :=

���� 1
500

500

∑
i=1

(yt − ŷt|t−k)2 (25)

Then the hyperparameter vector and the level of spar-
sity are fixed and the model is re-estimated with all data
{yt ,ut}t=1,..,N .

7 Stable Splines with Exponential Hyperprior (SSEH)
Algorithm

In this section the predictor in equation (20) if formulated in
a Bayesian framework assuming that the impulse responses
h[i] are Gaussian Processes [35] with covariance λiK(t,s). In
order to fully specify the joint probability density function
of data y and predictor impulse responses h[i] we now need
to specify the hyperparameters β , θ and {λi} and the noise
variance σ2.

7.1 Hyperprior for the hyperparameters

The noise variance σ2 will always be estimated via a pre-
liminary step using a low-bias ARX model, as described in
[16]. Thus, this parameter will be assumed known in the de-
scription of our Bayesian model. The hyperparameters β , θ
and {λi} are instead modeled as mutually independent ran-
dom vectors. β is given a non informative probability den-
sity on R+ while θ has a uniform distribution on Θ. Each λi
is an exponential random variable with inverse of the mean
(and SD) ξ ∈ R+, i.e.

p(λi) = ξ exp(−ξ λi)χ(λi ≥ 0), i = 1, . . . ,m

with χ the indicator function. We also interpret ξ as a
random variable with a non informative prior on R+. Fi-
nally, ζ indicates the hyperparameter random vector, i.e.
ζ := [λ1, . . . ,λm,θ1,θ2,β ,ξ ].

Note that the parameters λi, which play the same role of
σ2

γ2
2

where γ2 appears in equation (19) and σ2 is the noise
variance, are now allowed to be all different thus increasing
the flexibility of our model.

6 Experimental evidence shows that the results are not very sen-
sitive to choice of hyperparameters, so that a rather rough grid
suffices.
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7.2 The full Bayesian model

Let Ati ∈ RN×∞ defined in (18), i ∈ {1, ...,m}. In view of
(17) the future outputs y+ := y+1

y+ =

�
m

∑
i=1

A1ih[i]
�
+ e+ (26)

where
e+ = e+1 (27)

In practice, y- := [y0,y−1,y−2, . . .]T is never completely
known and a solution is to set its unknown components to
zero, see e.g. Section 3.2 in [24]. Further, the following
approximation is exploited:

p(y+,{h[i]},y-,u|ζ ) =
∝
�
∏N

t=1 p(yt |{h[i]},y-
t ,ζ u−t )

�
p(y-,{h[i]},u−|ζ )

≈
�
∏N

t=1 p(yt |{h[i]},y-
t ,ζ u−t )

�
p({h[i]}|ζ )p(y-,u−)

(28)

The first ∝ stems from the fact that the predictor of ut given
the past u−t and y−t+1 is assumed not to depend on ζ . The last
approximated equality follows from the assumption that the
past y-, u- does carry information on the predictor impulse
responses and the hyperparameters. Our stochastic model is
described by the Bayesian network in Fig. 3 (left side). ALE:
modificare la figura per ammettere feedback in accordo
con l’equazione precedente

In addition to this, for computational reasons, the impulse
responses h[i] have to be truncated to a certain length t0,
as done in Section 5. We stress again that there is no bias-
variance tradeoff in this truncation and, provided enough
computational resources are available, t0 can be made as
large as needed in order to account for the “practical” length
of the impulse responses. As we have discussed in Section
3.3, see [33,32] for more details, this is related to the hyper-
parameter β .

7.3 Estimation of the hyper-parameters

The dependence on y- is hereafter omitted. We start reporting
a preliminary lemma, whose proof can be found in [32],
which will be needed in propositions 3 and 4.

Lemma 2 Let the roots of Pθ in (9) be stable. Then, if {yt}
and {ut} are zero mean, finite variance stationary stochastic
processes, each operator {A1i} is almost surely (a.s.) con-
tinuous in HK.

We estimate the hyperparameter vector ζ by optimizing its
marginal posterior, i.e. the joint density of y+,ζ and {h[i]}
where all the {h[i]} are integrated out. This is described in
the next proposition that derives from simple manipulations
of probability densities whose well-posedness is guaranteed

Fig. 3. Bayesian network describing the new nonpara-
metric model for identification of sparse linear systems
where y−l := [yl−1,yl−2, . . .] and, in the reduced model,
λ := λ1 = . . .= λm.

by lemma 2. Below, IN is the N ×N identity matrix while,
with a slight abuse of notation, K is now seen as an element
of R∞×∞, i.e. its i-th column is the sequence K(·, i), i ∈ N.

Proposition 3 Let {yt} and {ut} be zero mean, finite vari-
ance stationary stochastic processes. Then, under the ap-
proximation (28), the maximum a posteriori estimate of ζ
given y+ is

ζ̂ = argminζ J(y+;ζ ) s.t. θ ∈ Θ, ξ ,β > 0, λi ≥ 0

(i = 1, . . . ,m)
(29)

where J is almost surely well defined pointwise and given by

J(y+;ζ ) = 1
2 log

�
det[2πV [y+]]

�
+ 1

2 (y
+)T (V [y+])−1y++

+ξ ∑m
i=1 λi − log(ξ )

(30)
with V [y+] = σ2IN +∑m

k=1 λiA1iKAT
1i.

The objective (30), including the �1 penalty on {λi}, is a
Bayesian modified version of that connected with multi-
ple kernel learning, see Section 3 in [10]. Additional terms
are log

�
det[V [y+]]

�
and log(ξ ) that permits to estimate the

weight of the �1 norm jointly with the other hyperparame-
ters.
An important issue for the practical use of our numerical
scheme is the availability of a good starting point for the
optimizer. Below, we describe a scheme that achieves a sub-
optimal solution just solving an optimization problem in R4

related to the reduced Bayesian model of Fig. 3 (right side).

i) Obtain {λ̂i}, θ̂ and β̂ solving the following modified ver-
sion of problem (29)

argminζ
�
J(y+;ζ )−ξ ∑m

i=1 λi + log(ξ )
�

s.t. θ ∈ Θ, β > 0, λ1 = . . .= λm ≥ 0
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ii) Set ξ̂ = 1/λ̂1 and ζ̂ = [λ̂1, . . . , λ̂m, θ̂ , β̂ , ξ̂ ]. Then, for i =
1, . . . ,m: set ζ̄ = ζ̂ except that the i-th component of ζ̄ is
set to 0 and, if J(y+; ζ̄ )≤ J(y+; ζ̂ ), set ζ̂ = ζ̄ .

The procedure we have outlined in step ii) may suffer when
the inputs are highly correlated, possibly making it very
sensitive to the order in which the components of ζ̂ are set
to zero. In order to circumvent this difficulty, we propose
using the SS-GLAR algorithm to perform this selection. In
particular we can substitute item ii) above with:

ii’) Set γ2
2 = σ2/λ̂1, and fix the Kernel K used in Section 6

to K(:, :, θ̂ , β̂ ). Run the SS-GLAR algorithm in Section
6, selecting the number of non-zero components using a
validation based approach, as described in Section 6.1.
At this point the components { j1, .., jk}⊆ {1, ..,m} of ζ̂
which correspond to ĥ[ j] = 0, j ∈ { j1, .., jk} are set to zero.

The final value ζ̂ can be used as a starting point for the
optimization problem (30).

7.4 Estimation of the predictor impulse responses for
known ζ

Let HK be the RKHS associated with K, with norm � ·�HK .
Let also ĥ[i] =E[h[i]|y+,ζ ]. The following result comes from
the representer theorem whose applicability is guaranteed
by lemma 2.

Proposition 4 Under the same assumptions of Proposi-
tion 3, almost surely we have

{ĥ[i]}m
i=1 = arg min

{ f i∈HK}m
i=1

�y+ −
m

∑
i=1

A1i f i�2 +σ2
m

∑
i=1

� f i�2
HK

λ 2
i

where � ·� is the Euclidean norm. Moreover, almost surely
we also have for k = 1, . . . ,m+1

ĥ[i] = λ 2
i KAT

1ic, c =

�
σ2IN +

m+1

∑
k=1

λiA1iKAT
1i

�−1

y+

(31)

After obtaining the estimates of the {h[i]}, simple formulas
can then be used to derive the system impulse responses f
and g in (2) and hence also the k-step ahead predictors, see
[24] for details.
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