WILEY-
BLACKWELL

The Interpretation of Mallows's $C_p$-Statistic

Author(s): Steven G. Gilmour

Source: The Statistician, Vol. 45, No. 1 (1996), pp. 49-56

Published by: Blackwell Publishing for the Royal Statistical Society
Stable URL: http://www.jstor.org/stable/2348411

Accessed: 07/01/2009 11:37

Y our use of the JSTOR archive indicates your acceptance of JISTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of ajournal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of thiswork. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=black.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is anot-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the
scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that
promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

Blackwel| Publishing and Royal Statistical Society are collaborating with JSTOR to digitize, preserve and
extend access to The Satistician.

http://www.jstor.org


http://www.jstor.org/stable/2348411?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=black

The Statistician (1996)
45, No. 1, pp. 49-56

General Papers

The interpretation of Mallows's C,-statistic

By STEVEN G. GILMOURY
University of Reading, UK

[Received October 1994. Revised July 1995]

SUMMARY

When selecting variables in multiple-regression studies, the model with the lowest value of Mallows’s C,-statistic
is often chosen. It is shown here that when the estimate of ¢° comes from the full model an adjusted C,, Cp, has the
property that E(C,) = p. It is suggested that a procedure be adopted which involves testing whether the model with
minimum C,, is really better than a simpler model. Tables approximating the null distribution of the test statistics are
given.

Keywords: Multiple regression; Multivariate F-distribution; Variable selection

1. The problem

Many procedures are available for selecting a subset of a set of k candidate regressors in multiple
linear regression problems. One of the commonly used methods is to perform all possible
regressions and to compare the results on the basis of Mallows’s C,-statistic. For a particular model
with p parameters

SSE,
Cp=—6_-2—p—n+2p, (1)

where SSE,, is the error sum of squares from the model being considered, 62 is an estimate of the
error variance, o2, and n is the number of observations. The mean-square error (MSE) from the full
model is often used as the estimate of 2. The standard texts, such as Draper and Smith (1981),
Montgomery and Peck (1992) and Myers (1992), recommend plotting C, against p for all possible
regressions and choosing an equation with low C, or with C, close to p. If o? is known, any model
which provides unbiased estimates of the regression coefficients, i.e. which contains all important
regressors, has E(C,) = p.

Fig. 1 shows a plot of C, against p for a set of 24 observations, given in Table 1, originally
published by Narula and Wellington (1977), which is used to relate nine variables, x, . .. , Xy, to the
sale price, y, of houses. Only models with C, < 15 are shown. From this plot the three-parameter
model

y = Bo + Bix1 + foxz )]

would probably be chosen since it has the lowest C, and looks clearly better than the two-parameter
model

y = Bo + Byx1. (3)
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Fig. 1. C, versus p for the house price data

One pattern in the above plot is the large number of models with C, < p. This pattern can be
observed for most data sets with a reasonably large number of regressors when many of them are
unimportant. The comments in the above reference works are not very helpful. Draper and Smith
(1981) say

‘because of random variation, points representing well-fitting equations can also fall below the C, = p
line’.

Myers (1992) says
‘Since the residual mean square for the complete model need not be the smallest estimate of 6> among those

for the candidate models, it is quite possible that the equation will yield a C, < p for a few of the candidate
models’.

Montgomery and Peck (1992) say

‘If the full model has several regressors that do not contribute significantly to the model, then MSE,,; will
often overestimate ¢, and consequently the values of C, will be small’.

Montgomery and Peck’s comment is misleading. MSEy.,; will underestimate ¢ slightly more
often than it will overestimate it, as MSE,,; is an unbiased estimator of ¢, with a skewed
distribution. The comments of Draper and Smith and Myers are true but miss the main point that, if
there are several models of a particular size which all contain all the important regressors, then the
model with the lowest C, is very likely to have C, <p.

Another point which i 1s oﬁen ignored is that, if the MSE from the full model is used to estimate
o2, the distribution of SSE, /o 62 can be obtained and gives an expected value of C, which is not p.
Both of these issues aré addressed in this paper. In Section 2 the expected value of C is given and a
modified statistic, Cp, is defined. The correct interpretation of this statistic, allowmg for the fact
that there may be several models with p parameters, all of which allow unbiased estimation of
parameters, is described in Section 3. The relationship of these results to other recent work on
selection of variables is discussed in Section 4.

2. Modification of C,

2.1.  Expected value of C,
The definition of the C,-statistic was intended to ensure that, for a model including all important
regressors, C, had expected value p. Such a model will have
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TABLE 1
House price datat

y X1 X2 X3 X4 Xs

X6 X7 Xg X9
259 49176 1.0 3.4720 0.9980 1.0 7 4 42 0
29.5 5.0208 1.0 3.5310 1.5000 2.0 7 4 62 0
279 4.5429 1.0 2.2750 1.1750 1.0 6 3 40 0
259 4.5573 1.0 4.0500 1.2320 1.0 6 3 54 0
29.9 5.0597 1.0 4.4550 1.1210 1.0 6 3 42 0
29.9 3.8910 1.0 4.4550 0.9880 1.0 6 3 56 0
309 5.8980 1.0 5.8500 1.2400 1.0 7 3 51 1
28.9 5.6039 1.0 9.5200 1.5010 0.0 6 3 32 0
35.9 5.8282 1.0 6.4350 1.2250 2.0 6 3 32 0
31.5 5.3003 1.0 4.9883 1.5520 1.0 6 3 30 0
31.0 6.2712 1.0 5.5200 0.9750 1.0 5 2 30 0
30.9 5.9592 1.0 6.6660 1.1210 2.0 6 3 32 0
309 5.0500 1.0 5.0000 1.0200 0.0 5 2 46 1
36.9 8.2464 1.5 5.1500 1.6640 2.0 8 4 50 0
419 6.6969 1.5 6.9020 1.4880 1.5 7 3 22 1
40.5 7.7841 1.5 7.1020 1.3760 1.0 6 3 17 0
439 9.0384 1.0 7.8000 1.5000 1.5 7 3 23 0
37.5 5.9894 1.0 5.5200 1.2560 2.0 6 3 40 1
379 7.5422 1.5 5.0000 1.6900 1.0 6 3 22 0
44.5 8.7951 1.5 9.8900 1.8200 2.0 8 4 50 1
379 6.0831 1.5 6.7265 1.6520 1.0 6 3 44 0
389 8.3607 1.5 9.1500 1.7770 2.0 8 4 48 1
36.9 8.1400 1.0 8.0000 1.5040 2.0 7 3 3 0
45.8 9.1416 1.5 7.3262 1.8310 1.5 8 4 31 0

1y, sale price ($/1000); x;, taxes ($/1000); x,, number of baths; x3, lot size 6idl 1000); x4, living space (ﬁ2/1000); X5, number
of garage stalls; xg, number of rooms; x;, number of bedrooms; xs, age (years); xo, number of fireplaces.

E(SSE,) = (n — p)a*. @
If 62 is a ‘good’ estimate of ¢ then, approximately,
BGy =D _i2p=p, )
However, if 62 is the MSE from the full model, it is possible to work out the distribution of Cp.
It is shown in Appendix A that, for a model which includes all important regressors,
Co=k—-p+1)F+2p—k—1, 6)

where F~Fy_,.1,_k—1, the F-distribution with k—p + 1 and n—k— 1 degrees of freedom.
This result was given by Mallows (1973) and Hocking (1976) who did not, however, note the
following implications for the expected value of C, and the interpretation of the C,-plots. Since

n—k—1
E(Cp)=(k—p+1)m_—3+2p—k—1 ®)
_ 2k—p+1)
=Pt k3 ®

n—k-3
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Fig. 2. C, versus p for the house price data

This expectation can be considerably greater than p when n — k is small, i.e. when the number of
candidate regressors is not much fewer than the number of observations. For example, if there are
28 observations and 20 candidate regressors,

3 42
EG)=3p+%
In this case E(C;) = 9, not 1, but E(C5;) = 21, as it should be. This is the general pattern. E(C,) is
further from p for small values of p. Thus choosing the model with lowest C,, will tend to overfit, i.e.
to suggest the inclusion of at least one unimportant regressor.

2.2. Cp-statistic

Smce the expected value of C, for models which include all important regressors is not p, but
p+2k—p+ D(n—k-3),ifa plot is to be interpreted in the way described earlier, we should
use not C, but

2k—p+1)
= (11)

Clearly E(Cp) = p, so plotting C against p should show models which include all important
regressors falling near the line C, = p. Fig. 2 shows a plot of C, against p for the introductory
examp;e on the house price data. It shows a large number of models with C, close to p and others
with C, much greater than p.

—ép‘_‘cp_

3. Interpretation of C,

3.1. Joint distribution of Cps

In the previous section it was shown that using C, instead of C, ensured that the expected value
of C, for any particular model which includes all 1mportant regressors is p. It might then be thought
that choosmg the model with the minimum C,, would be a good selection criterion, as was originally
envisaged with C,. However, even this is 11ke1y to overfit.

Consider an art1ﬁclal example, where there are 20 candidate regressors, five of which have large
effects and 15 of which have no effect. Then any model containing the five important regressors
provides unbiased estimates of the regression coefficients, but the model containing only the
important regressors provides the lowest variances of the regression coefficients. There are 15
models with six regressors which provide unbiased estimates, but only one such model with five
regressors. The ‘correct’ model has E(Cg) = 6 and each of the 15 six-variable models has E(C) =
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7. It would not be surprising if at least one of these models had C; < 6. Thus a model with more
regressors than the best model is likely to have minimum C,.

In this example the important question is how small the minimum C; from the 15 six-variable
models is compared with what would be expected. This suggests using the distribution of min(C5),
but it is more convenient to use the distribution of max(Cs — C;7) where both models include all
important regressors. In general, assume that there arg g — 1 important regressors from the k
candidates. Consider C, for the ‘correct’ model and q' 1 for the ith model with one redundant
regressor. Then

— (n—k—1)s2+SS(Bq,...,ﬂk|B1,...,ﬁq_l) 2k —qg+1)
C= 2 B e
where SS(B; | B,) is the extra sum of squares for B, allowing for §8,, and
1) (n—k—l)s2+SS(ﬂ 17'~~vﬁk|ﬁl!"'?ﬂ) Z(k_q)

Partitioning the sum of squares, as in a standard analysis of variance, we obtain

SS(Bq? R ﬂklﬂl’ LR ﬂq—l) = SS(Bq+1’ LR ﬂklﬂlv LR ﬁq) + SS(BqIﬂl’ e ﬂq—l) (14)

and so

-1 = 81 2m—-k-=-2)
Con=Co—F+—— 3 (15)
where Sy = SS(B,| By, - .., Bg—1). Similarly
S; 2n—k-2)
Efm—c —S—2+m, (16)

i=1,...,k—q+ 1, where S; = SS(B;_1+:]B1, ..., By—1). Under the null hypothesis, S;~
AR GE=1,...,k—qg+1),n—k—1) ~o* 02y and Siy -+ s St—gy1 and s> are all mutually
independent.

Define

) 2(n—k—2)
R

The F; jointly have a multivariate F-distribution with a common denominator, having n —k — 1
degrees of freedom, and independent numerators, each having 1 degree of freedom. In the
interpretation of C,, interest is in the minimum Cg. 1, and hence in the maximum F;. If this is below
the critical value in the distribution of the maximum of k—¢q + 1 random variables with a
multivariate F-distribution, then the null hypothesis that all important regressors have been included
in the model would be rejected.

The critical points of the distribution of the maximum F; were tabulated for a few special cases
by Finney (1941) and an approximation was recommended for the general problem. This
approximation, however, does not work well when the numerators are based on 1 degree of
freedom, the case which must be considered here. A much better approximation to the p-value can
be obtained by simulating from the null distribution of the F This is easily done by simulating from
the null distributions of Sy, ..., Sx_, +1and (n —k— 1)s* which are all independent. Table 2 gives
the 10%, 5% and 1% points of this distribution.

3.2. Example

_ To illustrate the procedure, we shall analyse the house price data. Fig. 2 shows a plot of
* Cp against p and Fig. 3 shows the same for models with p < 5 and C,, < 10. The model with the
lowest C,, is the three-parameter model with x; and x,. The model with only x, has a slightly higher
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TABLE 2
Critical points in distribution of the maximum of r random variables, each having an F-distribution with a common
denominator having ¢ degrees of freedom and independent numerators each having 1 degree of freedom

t=n—k—1 % points for the following values of r =k—q + 1:
1 2 3 4 6 8 10 15 20 30

10% point

4 4.53 7.08 8.82 10.2 123 14.0 15.2 17.5 19.2 21.2

5 4.05 6.19 7.65 8.79 10.5 11.7 12.7 14.5 16.1 18.0

6 3.78 5.66 6.96 7.97 9.44 10.6 115 134 144 16.5

8 347 5.11 6.22 7.03 8.32 9.23 9.89 113 12.2 13.6
10 3.27 479 5.82 6.53 7.72 8.52 9.17 10.2 114 12.6
12 3.18 4.62 5.56 6.29 7.34 8.06 8.69 9.85 10.6 119
15 3.10 4.40 532 5.96 6.94 7.66 8.18 9.19 9.97 11.0
20 297 424 5.08 5.74 6.57 7.25 7.75 8.68 9.44 104
30 2.86 4.11 4.87 5.43 6.24 6.85 7.30 8.20 8.88 9.80
5% point

4 7.70 114 14.0 16.01 19.0 215 233 26.6 29.0 32.0

5 6.61 9.55 11.5 13.01 154 17.2 18.7 21.1 23.1 25.8

6 5.99 8.43 10.2 11.51 13.5 15.0 16.2 18.7 20.2 233

8 5.32 7.40 8.78 9.77 114 124 13.2 15.0 16.1 17.7
10 4.93 6.80 8.05 8.87 10.2 11.2 12.0 13.1 14.6 15.9
12 472 6.45 7.58 8.41 9.64 104 112 124 13.5 15.1
15 4.58 6.07 7.16 7.89 9.01 9.77 104 11.5 124 13.6
20 433 5.75 6.74 7.44 8.42 9.16 9.65 10.7 11.6 12.8
30 4.15 5.53 6.39 6.95 7.89 8.46 8.93 9.91 10.7 11.6
1% point

4 21.1 29.6 357 40.6 47.0 52.8 57.5 653 72.4 75.0

5 16.4 223 26.0 29.0 338 375 40.1 44.2 48.9 53.6

6 13.6 18.0 214 235 27.0 29.5 32.6 374 38.8 44.7

8 11.1 14.5 16.7 183 20.9 222 24.0 254 29.2 30.6
10 9.91 12.6 14.4 15.8 17.7 19.1 20.1 21.9 23.8 26.2
12 9.37 115 13.1 14.5 15.9 17.1 18.0 20.1 213 23.8
15 8.72 10.7 12.2 13.1 14.4 15.2 16.2 17.4 18.6 21.1
20 8.04 10.0 11.0 11.1 132 14.1 14.8 15.6 17.0 18.5
30 7.55 9.27 10.1 10.8 11.9 12.6 13.1 14.1 15.0 16.0

C,, so here the hypothesis that 8, = 0, i.e. that x, has no explanatory power, can be tested.
For these two models, C, = 0.8474 and min(C3) = —0.3410, so that

2x1
max(F;) = 0.8474 + 0.3410 + —’1‘73 —3.355.

Comparing this with the tables for » = 8 and ¢ = 14, it can be seen that there is little evidence that
x, contributes anything to the regression.
The model with only the intercept has C; = 71.83 and so

max(F;) = 71.83 — 0.8474 + % =73.15.

Comparing this with the tables for » = 9 and ¢ = 14, there is very strong evidence that x; is an
important explanatory variable. Therefore the most appropriate model appears to be the model
containing only the intercept and x;. .

Fig. 3 illustrates very clearly the problem with simply choosing the model with lowest C,. The
eight models including x, and one other regressor have the following values of Cp:
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Fig. 3. C, versus p for the house price data

—0.341 1.268 2.087 2.620 2.636 2.849 2.866 2.985.

These are scattered randomly about their expected value, given C, from the model with only x;,
which is 1.8474 and with a skewed (F-) distribution. So, although the lowest C, is quite low, the
distribution of the eight points is no different from what would be expected if none of the variables
other than x; has an effect.

4. Discussion

The C,-statistic was first proposed by Mallows (1964) and first published by Gorman and Toman
(1966). They noted that a ‘good’ estimate of o had to be obtained and suggested that the MSE from
the full model be used. Mallows (1973) first noted the distributional implications of using the MSE
from the full model and Hocking (1976) discussed the relationship between these and distributional
results for other statistics. None of these researchers noted the implications for the interpretation of
C, discussed in this paper.

The results in this paper show that an improved interpretation of the C,-statistic can be made by
adjusting it and then interpreting the plots more conservatively than is usual. This avoids the
overfitting which is almost inevitable when there is a large number of candidate regressors, many of
which do not have any explanatory power. An interactive approach to variable selection is often
useful; for example some of the variable-by-variable interactions can be added to the model to see
what difference they make. The final choice of model will depend on subject-matter knowledge, as
well as conclusions drawn from the C,-plot. However, the results in this paper show that overfitting
is always likely if a model is chosen mainly because it has a low C,. It is often worthwhile to
perform a hypothesis test like that described in Section 3 to decide whether there is really much
evidence that a candidate model is better than a more parsimonious model.

Ronchetti and Staudte (1994) defined a robust version of C,, which also has 6 6? as a divisor and
so may be expected to behave similarly to C,. However, the numerator in their statistic is a weighted
residual sum of squares, the weights being calculated from the data, so it is not possible to work out
distributional results.

Much other recent work on selection of variables procedures has involved studying the bias
induced in the estimated parameters by the selection procedure. This work was described by Miller
(1990). Because C, selects different subsets from C, the selection bias will not be the same.
However, selection blas still exists and can be studied in the same way for C,, as for C,, for example

" by bootstrapping the residuals from a fitted model.

In conclusion, C should be plotted instead of C, when the estimate of error is the MSE from the

full model. Then each model containing all important regressors has expected value p. However, a
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model should not be chosen simply because it has the lowest Q,. Instead a test should be performed
to check that this model is indeed better than a simpler model with fewer regressors.
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Appendix A: distribution of C,
When the residual mean square from the full model is used as the estimate of o’

_ ssE,
~ SSEpy1/(n—k—1)

To obtain the distribution of C,, in the case where all important regressors are included in the model, assume,

G +2p —n. a7

without loss of generality, that f, = ... = Br =0, ie. that x,,.. ., x; are unimportant regressors. Then
SSE;41 + SS(B, . .. B,
Cp=(n—k— 1) (gg Pilbo - By ‘)+2p-n (18)
Er+1
SS(B, . .. e,
=(n—k— 1){1 + (ﬁp Bklﬁo ﬁp l)} +2p_‘_n (19)
SSE+1
SS(B, .- -BelBo---Bp-1)/k—p+ 1)
=(k-p+1 ? 2 —k-1 2
(k—p+1) SSEe/i—k—1) +2p (20)
U/k - 1
c—p+ )L EZPHD ki @1)

Vim—k—1)
where U ~ xi_p +10 ¥V ~ x2_4_, and U and V are independent. Hence
Co=(k-p+1)F+2p—k-1

where FNFk_p +1ln—k—1-
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