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Abstract

In this paper we consider the problem of building a linear prediction model when

the number d of candidate covariates is large and the data possibly contains anoma-

lies that are difficult to visualize and clean. We aim at predicting the non-outlying

cases. Therefore, we need a method that is robust and scalable at the same time.

We consider the stepwise algorithm LARS which is computationally very efficient,

but is sensitive to outliers. We introduce two different approaches to robustify

LARS. The plug-in approach replaces the classical correlations in LARS by ro-

bust correlation estimates. The cleaning approach first transforms the dataset by

shrinking the outliers toward the bulk of the data (which we call multivariate Wind-

sorization), and then applies LARS on the transformed data. In particular, the

plug-in approach is a time-efficient and scalable procedure for robust linear model

selection, which we call robust LARS. We propose to use bootstrap to stabilize the

results obtained by robust LARS. We recommend the use of robust bootstrapped

LARS to sequence a number of predictors to form a reduced set from which a more

refined model can be selected.
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1 INTRODUCTION

Robust model selection has not received much attention in the robustness literature. Sem-

inal papers that address this issue include Ronchetti (1985) and Ronchetti and Staudte

(1994) which introduced robust versions of the selection criteria AIC and Cp, respec-

tively. Yohai (1997) proposed a robust Final Prediction Error (FPE) criterion (for Splus

documentation). Morgenthaler, Welsh, and Zenide (2003) constructed a selection tech-

nique to simultaneously identify the correct model structure as well as unusual observa-

tions. Ronchetti, Field, and Blanchard (1997) proposed robust model selection by cross-

validation. A major drawback of most robust model selection methods is that they are

very time consuming, as they require robust fitting of a large number of submodels. One

exception is a model selection procedure based on the Wald test (Sommer and Huggins

1996) which requires the computation of estimates only from the full model. However,

often the purpose is to select a subset of a large number d of possible predictors, and the

fitting of the ‘full model’ may not be feasible.

Our goal is to develop a selection procedure that can find the important predictors in

a large list of candidate predictors. Our model selection strategy proceeds in two steps.

The first step - which we call sequencing - quickly screens out unimportant variables

to form a “reduced set” for further consideration. The second step - which we call

segmentation - carefully examines the predictors in the reduced set for possible inclusion

in the prediction model. For the segmentation in the second step the aforementioned

robust selection techniques can be used because the set of candidate predictors has been

reduced to a feasible size. Thus, the goal of the first step is a drastic reduction of the

number of candidate predictors. The input variables are sequenced to form a list such

that the good predictors appear in the beginning. The first m variables of the list then

form the reduced set from which the prediction model will be obtained. This paper

focuses on the construction of the sequence and the determination of appropriate values

of m for the reduced set. The probability that the reduced set contains all the important

variables increases with m. Unfortunately, also the computational cost of the second step

increases with m. Therefore, we aim to determine a “reasonable ” value of m which is

large enough to include most important variables but not so large as to make the second

2



step impractical or unfeasible.

One strategy for sequencing the candidate predictors is to use one of the several avail-

able stepwise or stagewise procedures such as forward selection (FS) (see, e.g., Weisberg

1985, chap. 8) or stagewise forward selection (SFS) (see Hastie, Tibshirani, and Fried-

man 2001, chap. 10). We focus on a powerful technique recently proposed by Efron,

Hastie, Johnstone, and Tibshirani (2004) called least angle regression (LARS) which is

computationally very efficient.

Since LARS is based on sample means, variances and correlations (as will be shown

later), it yields poor results when the data is contaminated. This is a potentially seri-

ous deficiency. Therefore, we propose several approaches to strengthen the robustness

properties of LARS without affecting its computational efficiency too much and compare

their behavior.

The rest of the paper is organized as follows. In Section 2 we express the LARS

procedure in terms of the correlation matrix of the data. In Section 3, we illustrate LARS’

sensitivity to outliers and introduce two different approaches to robustify LARS. A small

simulation study is also presented here to compare the performance and the computing

time of LARS to those of the two robust approaches. In Section 4, we investigate the

selection of the size of the reduced set of candidate predictors. Section 5 proposes to

use bootstrap to stabilize the results obtained by robust LARS. Section 6 introduces

“learning curves” as a graphical tool to choose the size of the reduced set. Section 7

contains some real-data applications. Section 8 concludes and the Appendix contains

some technical derivations.

2 LEAST ANGLE REGRESSION

Efron et al. (2004) proposed Least Angle Regression which is closely related to the stage-

wise forward selection (SFS) and LASSO (Tibshirani 1996) procedures. LARS provides

an ordering in which the variables enter the model. This sequence is usually the same as

in LASSO or SFS but obtained in a computationally efficient way.

The SFS procedure enters variables in small steps in the regression model to prevent
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correlated predictors from being excluded from the top of the sequence. However, this

method is often time consuming due to the fact that often a large number of small steps

are taken in the direction of the same variable. LARS solves this problem by analytically

determining the optimal step size for each variable.

Another convenient feature of LARS is that the resulting sequence of the covariates

can be derived from the correlation matrix of the data (without the observations them-

selves). Let Y, X1, . . . , Xd be the variables, standardized using their mean and standard

deviation. Let rj denote the correlation between Xj and Y , and RX be the correlation

matrix of the covariates X1, . . . , Xd. Suppose that Xm has the maximum absolute corre-

lation r with Y and denote sm = sign(rm). Then, Xm becomes the first active variable

and the current prediction µ̂ ← 0 should be modified by moving along the direction of

smXm upto a certain distance γ that can be expressed in terms of correlations between

the variables (see Appendix A for details). By determining γ, LARS simultaneously

identifies the new covariate that will enter the model, that is the second active variable.

As soon as we have more than one active variable, LARS modifies the current predic-

tion along the equiangular direction, that is the direction that has equal angle (correlation)

with all active covariates. Moving along this direction ensure that the current correlation

of each active covariate with the residual decreases equally. Let A be the set of subscripts

corresponding to the active variables. In Appendix B the standardized equiangular vector

BA is derived. Note that we do not need the direction BA itself to decide which covariate

enters the model next. We only need the correlation of all variables (active and inactive)

with BA. These correlations can be expressed in terms of the correlation matrix of the

variables as shown in Appendix B. LARS modify the current prediction by moving along

BA upto a certain distance γA which, again, can be determined from the correlations of

the variables (see Appendix C).

We now summarize the LARS algorithm in terms of correlations rj between Xj and

Y , and the correlation matrix RX of the covariates:

1. Set the active set, A = ∅, and the sign vector sA = ∅.

2. Determine m = argmax|rj|, and sm = sign{rm}. Let r = smrm.
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3. Put A ← A ∪ {m}, and sA ← sA ∪ {sm}.

4. Calculate a = [1′A(DARADA)−11A]−1/2, where 1A is a vector of 1’s, DA = diag(sA),

and RA is the submatrix of RX corresponding to the active variables. Calculate

wA = a (DARADA)−11A, and aj = (DArjA)′wA, for j ∈ Ac, where rjA is the

vector of correlations between Xj and the active variables. (Note that, when there

is only one active covariate Xm, the above quantities simplify to a = 1, w = 1, and

aj = rjm.)

5. For j ∈ Ac, calculate γ+
j = (r − rj)/(a − aj), and γ−j = (r + rj)/(a + aj), and let

γj = min(γ+
j , γ−j ). Determine γ = min{γj, j ∈ Ac}, and m, the index corresponding

to the minimum γ = γm. If γm = γ+
m, set sm = +1. Otherwise, set sm = −1. Modify

r ← r − γa, and rj ← rj − γaj, for j ∈ Ac.

6. Repeat steps 3, 4 and 5.

3 ROBUST LARS

From the results in Section 2, it is not surprising to see that LARS is sensitive to con-

tamination in the data. To illustrate this, we use a dataset on executives obtained from

Mendenhall and Sincich (2003). The annual salary of 100 executives is recorded as well

as 10 potential predictors (7 quantitative and 3 qualitative) such as education, experience

etc. We label the candidate predictors from 1 to 10. LARS sequences the covariates in

the following order: (1, 3, 4, 2, 5, 6, 9, 8, 10, 7). We contaminate the data by replacing one

small value of predictor 1 (less than 5) by the large value 100. When LARS is applied to

the contaminated data, we obtain the following completely different sequence of predic-

tors: (7, 3,2,4, 5,1,10,6,8,9). Predictor 7, which was selected last (10th) in the clean

data, now enters the model first. The position of predictor 1 changes from first to sixth.

Predictors 2 and 4 interchange their places. Thus, changing a single number in the data

set completely changes the predictor sequence, which illustrates the sensitivity of LARS

to contamination.
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We now introduce two approaches to robustify the LARS procedure which we call the

plug-in and cleaning approaches respectively.

3.1 Robust Plug-in

The plug-in approach consists of replacing the non-robust building blocks of LARS (mean,

variance and correlation) by robust counterparts. The choices of fast computable robust

center and scale measures are straightforward: median (med) and median absolute devi-

ation (mad). Unfortunately, good available robust correlation estimators are computed

from the d-dimensional data and therefore are very time consuming (see Rousseeuw and

Leroy 1987). Robust pairwise approaches (see Huber 1981) are not affine equivariant and

therefore are sensitive to two-dimensional outliers. One solution is to use robust correla-

tions derived from a pairwise affine equivariant covariance estimator. A computationally

efficient choice is a bivariate M-estimator as defined by Maronna (1976). Alternatively, a

bivariate correlation estimator can be computed from bivariate Windsorized data. Both

methods will be explained in detail below.

3.1.1 M Plug-in

Maronna’s bivariate M-estimator of the location vector t and scatter matrix V is a highly

robust and computationally efficient estimator. It is defined as the solution of the system

of equations:

1

n

∑
i

u1(di)(xi − t) = 0,

1

n

∑
i

u2(d
2
i )(xi − t)(xi − t)′ = V ,

where d2
i = (xi − t)′V −1(xi − t), and u1 and u2 are functions satisfying a set of general

assumptions. The estimator is affine equivariant and has breakdown point 1/2 in two

dimensions. To further simplify computations, we use the coordinatewise median as the

bivariate location estimate and only use the second equation to estimate the scatter ma-

trix and hence the correlation. In this equation we used the function u2(t) = min(c/t, 1)

with c = 9.21, the 99% quantile of a χ2
2 distribution. The bivariate correlations are then
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Figure 1: Limitation of separate univariate Windsorizations (c = 2).

ensembled to form a d× d correlation matrix R. Finally, LARS is applied to this robust

correlation matrix. We call this the M plug-in method.

3.1.2 W Plug-in

For very large, high-dimensional data we need an even faster robust correlation esti-

mator. Huber (1981) introduced the idea of one-dimensional Windsorization of the

data, and suggested that classical correlation coefficients be calculated from the trans-

formed data. Alqallaf, Konis, Martin, and Zamar (2002) re-examined this approach

for the estimation of individual elements of a large-dimension correlation matrix. For

n univariate observations x1, x2 . . . , xn, the transformation is given by ui = ψc((xi −
med(xi))/mad(xi)), i = 1, 2, . . . , n, where the Huber score function ψc (x) is defined as

ψc (x) = min{max{−c, x}, c}, with c a tuning constant chosen by the user, e.g., c = 2

or c = 2.5. This one-dimensional Windsorization approach is very fast to compute but

unfortunately it does not take into account the orientation of the bivariate data. It
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merely brings the outlying observations to the boundary of a 2c× 2c square, as shown in

Figure 1. This plot clearly shows that the univariate approach does not resolve the effect

of the obvious outliers at the bottom right which are shrunken to the corner (2, −2), and

thus are left almost unchanged.

To remedy this problem, we propose a bivariate Windsorization of the data based

on an initial tolerance ellipse for the majority of the data. Outliers are shrunken to the

border of this ellipse by using the bivariate transformation u = min(
√

c/D(x), 1) x

with x = (x1, x2)
t. Here D(x) is the Mahalanobis distance based on an initial bivariate

correlation matrix R0. For the tuning constant c we used c = 5.99, the 95% quantile

of the χ2
2 distribution. We call this the W plug-in method. The choice of R0 will be

discussed below.

Figure 2 shows bivariate Windsorizations for both the complete data set of Figure 1

and the data set excluding the outliers. The ellipse for the contaminated data is only

slightly larger than that for the clean data. By using bivariate Windsorization the outliers

are shrunken to the boundary of the larger ellipsoid.

The initial correlation estimate. Choosing an appropriate initial correlation ma-

trix R0 is an essential part of bivariate Windsorization. For computational simplicity

we can choose the estimate based on univariate Windsorization explained above. How-

ever, we propose an adjusted Windsorization method that is more resistant to bivariate

outliers. This method uses two tuning constants. A tuning constant c1 for the two quad-

rants that contain the majority of the standardized data and a smaller tuning constant

c2 for the other two quadrants. For example, c1 is taken equal to 2 or 2.5 as before and

c2 = hc1 where h = n2/n1 with n1 the number of observations in the major quadrants

and n2 = n− n1. We use c1 = 2 in this paper.

Figure 3 shows how the adjusted Windsorization deals with bivariate outliers, which

are now shrunken to the boundary of the smaller square. Thus, adjusted-Windsorization

handles bivariate outliers much better than univariate Windsorization. The initial corre-

lation matrix R0 is obtained by computing the classical correlation matrix of the adjusted

Windsorized data.

Note that the correlations based on both univariate- and adjusted-Windsorized data

8
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Figure 2: Bivariate Windsorizations for clean and contaminated data.

can be computed in O(n log n) time. The adjusted-Windsorized estimate takes slightly

more time for a particular n, but is much more accurate in the presence of bivariate

outliers as shown above. Bivariate-Windsorized estimate and Maronna’s M-estimate also

require O(n log n) time, but Maronna’s M-estimate has a larger multiplication factor de-

pending on the number of iterations required. Thus for large n, the bivariate-Windsorized

estimate is much faster to compute than Maronna’s M-estimate. Figure 4 shows for each

of the four correlation estimates the mean cpu times in seconds (based on 100 repli-

cates) for 5 different sample sizes: 10000, 20000, 30000, 40000 and 50000. These results

confirm that the bivariate-Windsorized estimate is faster to compute than Maronna’s M-

estimate and the difference increases with sample size. Numerical results (not presented

here) showed that the bivariate-Windsorized estimate is almost as accurate as Maronna’s

M-estimate also in the presence of contamination. Note that both the univariate Wind-

sorized and adjusted Windsorized correlations are very fast to compute.
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Figure 3: Adjusted Windsorization (for initial estimate r0) with c = 2.

3.2 Robust Data Cleaning

If the dimension d is not extremely large, an alternative approach to robustifying LARS is

to apply it on cleaned data. For example, each standardized d-dimensional data point x =

(x1, . . . , xd)
t can be replaced by its Windsorized counterpart u = min(

√
c/D(x), 1) x in

the d-dimensional space. Here D(x) = xtV −1x, is the Mahalanobis distance of x based

on V , a fast computable, robust initial correlation matrix. A reasonable choice for the

tuning distance c is c = χ2
d(0.95), the 95% quantile of the χ2

d distribution.

The initial correlation matrix V . The choice of the initial correlation matrix V

is an essential part of the Windsorization procedure. Most available high-breakdown,

affine-equivariant methods are inappropriate for our purposes because they are too com-

putationally intensive. Therefore, we resort to pairwise approaches, that is methods in

which each entry of the correlation matrix is estimated separately (see Alqallaf et al.

2002). As before we will use a bivariate M-estimator or the bivariate windsorized esti-

mator to calculate the correlations in V . The resulting methods are called M-cleaning
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Figure 4: Numerical complexity of different correlation estimates.

and W-cleaning respectively.

3.3 Simulations

To investigate the performance and stability of the four proposed methods we consider

a simulation study involving a small number of variables. We used the following design

(see Ronchetti et al. 1997). The error distributions considered are (e1) standard normal,

(e2) 93% from standard normal and 7% from N(0, 52), (e3) slash, that is standard nor-

mal divided by a uniform on (0, 1), and (e4) 90% from standard normal and 10% from

N(30, 1).

Two design matrices are considered: the uniform design for which the columns are

generated from a uniform distribution on (0, 1), and the leverage design which is the same

as the uniform design except that it contains a leverage point. Six variables are used

from which the first three are nonzero and in order of importance. The true regression

11



Table 1: Percentage of correct sequences.

Uniform Leverage

Method e1 e2 e3 e4 e1 e2 e3 e4

LARS E 97 86 11 8 0 1 1 2

LARS G 100 89 26 24 0 2 5 7

M plug-in E 95 97 53 87 96 96 49 87

M plug-in G 99 99 74 95 99 99 68 95

W plug-in E 96 97 58 78 92 85 46 59

W plug-in G 99 99 77 89 94 86 61 68

M cleaning E 96 98 55 89 96 97 50 87

M cleaning G 99 99 77 97 100 98 73 97

W cleaning E 96 98 54 82 96 94 52 83

W cleaning G 99 99 76 92 98 96 71 92

coefficients for the nonzero variables are 7, 5 and 3, respectively. The sample size equals

n = 60 and we generated 200 data sets for each setting. We used two performance

measures which we call exact (E) and global (G). The exact measure gives the percentage

of times a procedure sequences the important variables in front and in their true order.

The global measure gives the percentage of times a procedure sequences the important

variables in front in any order.

Table 1 shows the simulation results. For error distribution e1 (standard normal),

the performance of the robust methods is almost as good as that of LARS. For the heavy

tailed distributions the robust methods drastically outperform LARS. Overall we see

from Table 1 that the plug-in approaches are almost as stable as the computationally

more expensive data cleaning approaches. Comparing the M and W approaches for both

the plug-in and data cleaning procedures, it is reassuring to see that the computationally

faster W approach (see Figure 5 below) is almost as stable as the M approach.

Finally, we compare the computational complexity of the different methods. The

standard LARS procedure sequences all d covariates in only O(nd2) time. The plug-in

12



and cleaning procedures based on M-estimators both require O((n log n)d2) time. Based

on Windsorization these procedures also require O((n log n)d2) time, but with a much

smaller multiplication factor. Moreover, if we are only interested in sequencing the top

fraction of a large number of covariates, then the plug-in approach will be much faster

than the cleaning approach, because the plug-in approach only calculates the required

correlations along the way instead of the ‘full’ correlation matrix. In this case, the

complexity for plug-in methods reduces to O((n log n)dm), where m is the number of

variables being sequenced.

Figure 5 shows the mean cpu times based on 10 replicates for LARS, W plug-in and M

plug-in for different dimensions d with a fixed sample size n = 2000. The times required

by the cleaning methods are not shown because they were similar to the plug-in times

since we sequenced all the covariates. As in Figure 4, we see that the approaches based

on M-estimators are more time consuming than the Windsorization approaches. The

difference increases fast with dimension.
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Figure 5: Complexity of the different techniques.
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The cleaning approaches perform slightly better than the plug-in approaches when

the number of variables is relatively small, and much smaller than the number of cases

(see Table 1). However, plug-in approaches are less time-consuming when only a part of

the predictors are sequenced. Since W plug-in has a reasonable performance compared to

the other methods and has favorable computing times, this method is to be preferred for

large, high-dimensional datasets. The performance of W plug-in will be studied further

in the next sections and we will call this method robust LARS from now on.

4 SIZE OF THE REDUCED SET

To obtain a good final model, it is important to choose an appropriate value of m,

the size of the reduced set that is kept from the sequencing step and will be used for

segmentation. The reduced set should be large enough to include most of the important

variables, but not so large as to make the segmentation step impractical. Several factors

can be important when determining the size m such as d, the total number of variables,

the sample size n, the unknown number of non-zero variables in the optimal model,

the correlation structure of the covariates, and of course also time and feasibility of the

segmentation step. For example, for high-dimensional datasets, including only 1% of the

variables in the reduced set may make the segmentation step already infeasible.

To investigate what values of m are appropriate, we carry out a simulation study

similar to Frank and Friedman (1993). We consider 3 independent ‘unknown’ processes,

represented by latent variables li, i = 1, 2, 3, which are responsible for the systematic

variation of both the response and the covariates. The model is

y = 5l1 + 4l2 + 3l3 + ε = Signal + ε, (1)

where li ∼ N(0, 1), and ε is a normal error not related to the latent variables. The

variance of ε is chosen such that the signal-to-noise ratio equals 2, that is Var(ε) = 50/4.

The total number of variables equals d = 100. A small number a = 9 or a = 15 of

these covariates are linked with the latent variables in (1). These covariates are divided

in 3 equal groups, with each group related to exactly one of the latent variables by the

14



following relation

xi = lj + δi,

where δi ∼ N(0, σ2
i ). The value of σ2

i determines the correlation structure of the nonzero

covariates. We consider 3 correlation structures: “high correlation” case (a true correla-

tion of 0.9 between the covariates generated with the same latent variable), “moderate

correlation” case (a true correlation of 0.5), and “no correlation” case. For each simula-

tion we generated 100 samples of size n = 150. Outliers were added by giving the noise

term a large positive mean (asymmetric error). We considered four different levels of

contamination: 0, 5, 10 and 20%.

For the high-correlation and moderate-correlation cases, though “a” of the covariates

are linked to the response y through the latent variables, it is not clear which of these

covariates should be considered important for explaining y. Even when the true pairwise

correlations of the covariates are zero (no-correlation case), the “best” model not nec-

essarily includes all of the a non-zero coefficients because of the bias-variance trade-off.

Therefore, for each simulated dataset we first find the “best” model among all possible

subsets of the non-zero covariates that has the minimum prediction error estimated by

5-fold cross-validation.

For each simulated dataset, we determine the “recall proportion”, i.e., the proportion

of important variables (in the sense that they are in the “best” model by cross-validation)

that are captured (recalled) by LARS/robust LARS for a fixed size of the reduced se-

quence.

For a = 9, Figure 6 plots the average recall proportion against the size of the reduced

set for the three correlation structures. In each plot, the 4 curves with the same line type

correspond to the 4 levels of contamination, higher curves correspond to lower levels of

contamination. These plots show that, for each correlation structure considered, we can

capture the important variables if the percentage of variables in the reduced set is 9 or

10. Robust LARS performs as good as LARS for clean data, and much better than LARS

for contaminated data.

Figure 7 plots the average recall proportion against the size of the reduced set for

the moderate-correlation case with a = 15. This plot can be compared with Figure 6b

15
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Figure 6: Recall curves for a = 9 and (a) no correlation; (b) low correlation; (c) high

correlation. 16



to see how the increase in the number of nonzero variables affects the recall proportions.

In both cases, we observe that the average recall proportions stop increasing even before

the size m of the reduced set exceeds the number a of non-zero variables.
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Figure 7: Recall curves for a = 15 and moderate correlation.

5 BOOTSTRAPPED SEQUENCING

To obtain more stable and reliable results we can combine robust LARS with bootstrap.

Therefore, we generate a number B of bootstrap samples from the dataset, and use

(robust) LARS to obtain the corresponding sequence of covariates for each of these boot-

strap samples. Each sequence ranks the covariates from 1 to d. For each covariate we

can take the average over these B ranks, and the m covariates with the smallest average

ranks then form the reduced set.

When resampling from a high-dimensional dataset (compared to the sample size, e.g.

17



n = 150, d = 100) the probability of obtaining singular samples becomes very high. Note

that even the original sample may already be singular or the dimension d of the data may

exceed the sample size. In these cases it will be impossible to sequence all covariates. We

can easily overcome this problem by sequencing only the first m0 < d of the covariates for

each bootstrap sample, where preferably m0 ≥ m. We then rank the covariates according

to the number of times (out of B) they are actually sequenced. When ties occur, the

order of the covariates is determined according to the average rank in the sequences. In

our simulations, we generated B = 100 bootstrap samples from each of the 100 simulated

datasets. We sequenced the first 25 covariates in each bootstrap sample.

Figure 8 shows the recall curves obtained by robust LARS (solid lines) and robust

bootstrapped LARS (dotted lines) for covariates with moderate correlation. The recall

curves obtained by robust bootstrapped LARS perform better than the initial robust

LARS curves for all levels of contamination, the difference being larger with larger con-

tamination proportions. This confirms that by applying the bootstrap we obtain more

stable and reliable results. Even with 20% of contamination, robust bootstrapped LARS

with m = 10 (a = 9) or m = 15 (a = 15) already yields a recall proportion around 90%.

To investigate what minimum number of bootstrap samples is required to obtain

significant improvement over robust LARS, we also tried B = 10, 20 and 50 in the above

setups. In each case, B = 10 and B = 20 do not yield much improvement, while with

B = 50 the results obtained are almost as stable as with B = 100.

6 LEARNING CURVES

Although the simulation results in the previous sections suggested that it suffices to select

the size of the reduced set equal to or slightly larger than the number of predictors in the

final model, we usually have no information about the number of predictors that is needed.

Hence, a graphical tool to select the size of the reduced set would be useful. The following

plot can be constructed to determine a reasonable size for the reduced set. Starting from

a model with only 1 variable (the first one in the sequence), we increase the number of

variables according to the sequence obtained and each time fit a robust regression model

18
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Figure 8: Recall curves for robust LARS and bootstrapped robust LARS for covariates

with moderate correlation and (a) a = 9; (b) a = 15.
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to compute a robust R2 measure such as R2 = 1−Median(e2)/MAD2(y), where e is the

vector of residuals from the robust fit. We then plot these robust R2 values against the

number of variables in the model to obtain a learning curve. The size of the reduced set

can be selected as the point where the learning curve does not have a considerable slope

anymore.

A problem that can occur with a robust R2 measure is that, unlike its classical coun-

terpart, it is not always a nondecreasing function of the number of covariates. This can

be resolved as follows. If the robust R2 at any step is smaller than that of the preceding

step, then fit a robust simple linear regression of the residuals from the preceding step on

the newly selected covariate. The residuals obtained from this fit can be used to compute

another robust R2 value. We then use the larger of the two values.

To investigate the performance of learning curves, we consider a dataset on air pollu-

tion and mortality in 60 Metropolitan areas in the United States. The response variable

is the age-adjusted mortality. There are 14 potential predictors, numbered from 1 to

14. Since row 21 contains 2 missing values, we drop this observation from the data.

Based on robust data exploration we identified 4 clear outliers that correspond to the

four metropolitan areas in California. We applied 5-fold cross-validation (CV) to this

dataset without the four outliers, and obtained the “best model” that has the following

7 covariates: (2, 3, 4, 6, 7, 10, 13).(The order of the covariates in not relevant here.)

Robust bootstrapped LARS applied to this dataset (including the outliers) produced

the sequence (7, 5, 13, 4, 6, 3, 2, 10, 9, 1, 14, 11, 8, 12). We used this sequence and fitted

Least Median of Squares (Rousseeuw 1984) regressions to obtain the robust R2 values.

Figure 9 shows the corresponding learning curve. This plot suggests a reduced set of

size 8. It is encouraging to notice that the reduced set (first 8 covariates in the sequence

above) contains all 7 predictors selected in the “best model” obtained by CV.

7 EXAMPLES

In this section we use two real datasets to evaluate the performance of robust (boot-

strapped) LARS. The demographic data example further explores the idea of “learning

20
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Figure 9: Learning curve for Pollution data.

curves” to choose the size of the reduced set. We then use a large dataset (protein data)

to demonstrate the scalability as well as stability of robust LARS.

Demographic data. This dataset contains demographical information on the 50

states of the United States for 1980. The response variable of interest is the murder rate

per 100,000 residents. There are 25 predictors which we number from 1 to 25. Exploration

of the data using robust estimation and graphical tools revealed one clear outlier. We

applied 5-fold CV to this dataset without the outlier, and obtained the “best of 25”

model that has the following 15 covariates (1, 2, 3, 5, 6, 8, 9, 10, 16, 17, 18, 19, 21, 24, 25).

Figure 10 shows the learning curve for the Demographic data based on robust boot-

strapped LARS. This plot suggests a reduced set of size 12 which include the covariates:

(22, 20, 4, 15,10,2,19,25,8,18,6,24). The boldface numbers correspond to covariates

in the sequence that are also in the model obtained by CV. The number of “hits” is 8

out of 12.

We applied 5-fold CV to the clean data using the reduced set of size 12 obtained by

robust bootstrapped LARS. The model selected in this case has the following 9 covariates:

(22, 20, 4, 15, 2, 10, 25, 18, 24). To compare this “best of 12” model with the “best of 25”

model above, we estimated the prediction errors of these two models 1000 times using
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Figure 10: Learning curve for Demographic data.

5-fold CV. The two density curves are shown in Figure 11. The “best of 12” model has a

mean error of 204.8 (median error 201.5) while the “best of 25” model has a mean error

of 215.9 (median error 202.0). Also, the standard deviations (mads) of the errors are 25.6

(22.7) and 74.6 (31.4), respectively. (Some of the “best of 25” errors are very large and

not included in the plot.) Thus, robust bootstrapped LARS gives more stable results in

this high-variability dataset. It should be mentioned here that we needed almost 10 days

to find the “best of 25” model, while “best of 12” model requires less than 5 minutes

including the time needed to sequence the covariates by robust bootstrapped LARS. (CV

on m covariates is 2(d−m) times faster than CV on d covariates.)

Protein data. This dataset of n = 145751 protein sequences was used for the KDD-

Cup 2004. Each of the 153 blocks corresponds to a native protein, and each data-point

of a particular block is a candidate homologous protein. There are 75 variables in the

dataset: the block number (categorical) and 74 measurements of protein features. We

replace the categorical variable by block indicator variables, and use the first feature as

the response. Though this analysis may not be of particular scientific interest, it will

demonstrate the scalability and stability of the robust LARS algorithm.

We used the package R to apply robust LARS to this dataset, and obtained a reduced
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Figure 11: Error densities for two best models for Demographic data.

set of size 25 from d = 225 covariates (152 block indicators + 73 features) in only

30 minutes. Given the huge computational burden of other robust variable selection

procedures, our algorithm maybe considered extremely suitable for computations of this

magnitude.

For a thorough investigation of the performance of robust LARS with this dataset,

we select 5 blocks with a total of n = 4141 protein sequences. These blocks were chosen

because they contain the highest proportions of homologous proteins (and hence the

highest proportions of potential outliers). We split the data of each block into two

almost equal parts to get a training sample of size n = 2072 and a test sample of size

n = 2069. The number of covariates is d = 77, with 4 block indicators (variables 1 − 4)

and 73 features. We apply robust bootstrapped LARS with B = 100 bootstrap samples

and we sequence the first 25 variables of each bootstrap sample. The resulting learning

curve is shown in Figure 12.

This plot suggests that a drastic reduction to a small number of predictors can be

performed, e.g. m=5 or m=10. The first 10 predictors found by robust bootstrapped

LARS are (14, 13, 5, 76, 73, 8, 7, 40, 46, 51). The covariates in this sequence are almost

the same as those obtained with the whole dataset (not shown). The standard LARS
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Figure 12: Learning curve for Protein data.

produced the sequence (14, 13, 5, 8, 7, 76, 18, 65, 2, 46). Note that the two sequences are

quite different. For example, if we select a model from the first five predictors, then only

3 predictors are contained in both sequences. Using MM-estimators and robust AIC,

the best model selected from the first five variables of the robust sequence contains vari-

ables (14, 13, 5, 76) while the best model out of the first 10 predictors contains variables

(14, 13, 5, 76, 40). Hence only 1 variable is added.

Using classical AIC, the best model selected from the first 5 variables of the LARS

sequence contains variables (14, 13, 5, 8). Variable 76 of the corresponding robust model

is replaced by Variable 8. The best model from the first 10 predictors contains variables

(14, 13, 5, 8, 76, 2). Note that 2 variables are added to the list compared to 1 variable in

the robust case.

We fitted the 4 best models using the training data, and then used them to predict

the test data outcomes. The 1%, 5% and 10% trimmed means of prediction errors for the

smaller robust (classical) model are : 114.92 (117.49), 92.77 (95.66) and 74.82 (78.19),

respectively. The corresponding quantities for the larger robust (classical) model are:

114.37 (115.46), 92.43 (94.84) and 74.34 (76.50), respectively. Notice that the robust

models always outperform the classical models.
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8 CONCLUSIONS

LARS is a very effective, time-efficient model building tool, but is not resistant to out-

liers. We introduced two different approaches to construct robust versions of the LARS

technique. The plug-in approach replaces the classical Pearson correlations in LARS by

easily computable robust correlation estimates. The cleaning approach first transforms of

dataset by shrinking the outliers towards the bulk of the data, and then applies LARS on

the transformed data. Both approaches use robust pairwise correlations estimates which

can be computed efficiently using bivariate-Windsorization or bivariate M-estimates.

The data cleaning approach is limited in use because the sample size needs to be

(much) larger than the number of candidate predictors to ensure that the resulting cor-

relation matrix will be positive definite. Moreover, the data cleaning approach is more

time consuming than the plug-in approach, certainly when only part of the predictors is

being sequenced. Since the plug-in approach has good performance, is faster to compute

and more widely applicable, we prefer this method. Comparing bivariate M-estimates

with bivariate Windsorization we showed that the latter is faster to compute with im-

portant time differences when the number of candidate predictors becomes high.

We propose to use the robust LARS technique to sequence the candidate predictors

and as such identify a reduced set of most promising predictors from which a more refined

model can be selected in a second segmentation step. We recommend combining W plug-

in with bootstrap to obtain more stable and reliable results. The reduced sets obtained

by robust bootstrapped LARS contain more of the important covariates than the reduced

sets obtained by initial robust LARS.

It is important to select the number of predictors to use for the second step. This

number is a trade-off between success-rate, that is the number of important predictors

captured in the reduced set, and feasibility of the segmentation step. Our simulation

study indicated that the reduced set can have size comparable to the actual number of

relevant candidate predictors. However, this number is usually unknown. To still get

an idea about an appropriate size for the reduced set we introduced a learning curve

that plots robust R2 values versus dimension. An appropriate size can be selected as the

dimension corresponding to the point where the curve starts to level off.
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APPENDIX: TECHNICAL DERIVATIONS

A. Determination of γ for One Active Covariate

Assume that the first selected covariate is +Xm. The current prediction µ̂ ← 0 should

be modified as

µ̂ ← γ Xm.

The distance γ should be such that the modified residual (y − µ̂) will have equal corre-

lation with +Xm and another signed covariate Xj. We have

cor(y − µ̂, Xm) =
X ′

m(y − γXm)/n

SD(y − γXm)
=

r − γ

SD(y − γXm)
, (A.1)

and

cor(y − µ̂, +Xj) =
X ′

j(y − γXm)/n

SD(y − γXm)
=

rj − γrjm

SD(y − γXm)
. (A.2)

Equating (A.1) to (A.2), we have

γ(+Xj) =
r − rj

1− rjm

. (A.3)

Similarly, equating (A.1) with the correlation of modified residual and −Xj we have

γ(−Xj) =
r + rj

1 + rjm

. (A.4)

We should take the minimum of (A.3) and (A.4) and minimum over all inactive (not yet

selected) j. The signed covariate that will enter the model at this point is determined

alongwith.

B. Quantities Related to Equiangular Vector BA

Here, A is the set of ‘active’ subscripts. Let XA = (· · · slXl · · · ), l ∈ A, where sl is the

sign of Xl as it enters the model. The standardized equiangular vector BA is obtained

using the following three conditions. BA is a linear combination of the active signed

predictors.

BA = XA wA , where wA is a vector of weights. (A.5)
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BA has unit variance:
1

n
B′

ABA = 1. (A.6)

BA has equal correlation (a, say) with each of the active predictors. Since the covariates

and BA are standardized,

1

n
X ′

ABA = a 1A , 1A is a vector of 1’s. (A.7)

Using equation (A.5) in equation (A.6), we have

1

n
w′

AX ′
AXAwA = 1,

so that

w′
AR

(s)
A wA = 1, (A.8)

where R
(s)
A is the correlation matrix of the active signed variables. Using (A.5) in (A.7),

we have

R
(s)
A wA = a1A,

so that the weight vector wA can be expressed as

wA = a (R
(s)
A )−11A.

Let RA be the correlation matrix the unsigned active covariates, i.e., RA is a submatrix

of RX . Let sA be the vector of signs of the active covariates (we get the sign of each

covariate as it enters the model). We have

wA = a (DARADA)−11A, (A.9)

where DA is the diagonal matrix whose diagonal elements are the elements of sA. Finally,

using equation (A.9) in equation (A.8), we get

a = [1′A(DARADA)−11A]−1/2. (A.10)

The correlation of an inactive covariate Xj with BA, denoted by aj, can be expressed

as follows

aj =
1

n
X ′

jBA =
1

n
X ′

jXAwA = (DArjA)′wA, (A.11)

where rjA is the vector of correlation coefficients between the inactive covariate Xj and

the (unsigned) selected covariates. Thus, we need only (a part of) the correlation matrix

of the data (not the observations themselves) to determine the above quantities.
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C. Determination of γ for Two or More Active Covariates

Let us update r ← (r − γ), see (A.1), and rj ← (rj − γrjm), see (A.2).

The correlation of an active covariate with the ‘current’ residual y−µ̂ is r/SD(y−µ̂),

and the correlation of the active covariate with the current equiangular vector BA is

‘a’. Therefore, the correlation between an active covariate and the ‘modified’ residual

(y − µ̂− γABA) is
r − γA a

SD(y − µ̂− γABA)
.

An inactive covariate +Xj, j ∈ Ac, has correlation rj/SD(y − µ̂) with the ‘current’

residual, and it has correlation aj with BA. Therefore, the correlation between +Xj,

j ∈ Ac, and the ‘modified’ residual is

rj − γA aj

SD(y − µ̂− γABA)
.

Equating the above two quantities, we get

γA(+Xj) = (r − rj)/(a− aj). (A.12)

Similarly,

γA(−Xj) = (r + rj)/(a + aj). (A.13)

We have to choose the minimum possible γA over all inactive covariates. Note that when

A has only one covariate, (A.12) and (A.13) reduce to (A.3) and (A.4), respectively.
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